reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
//===- llvm/CodeGen/ScheduleDAG.h - Common Base Class -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Implements the ScheduleDAG class, which is used as the common base
/// class for instruction schedulers. This encapsulates the scheduling DAG,
/// which is shared between SelectionDAG and MachineInstr scheduling.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
#define LLVM_CODEGEN_SCHEDULEDAG_H

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <string>
#include <vector>

namespace llvm {

template<class Graph> class GraphWriter;
class LLVMTargetMachine;
class MachineFunction;
class MachineRegisterInfo;
class MCInstrDesc;
struct MCSchedClassDesc;
class SDNode;
class SUnit;
class ScheduleDAG;
class TargetInstrInfo;
class TargetRegisterClass;
class TargetRegisterInfo;

  /// Scheduling dependency. This represents one direction of an edge in the
  /// scheduling DAG.
  class SDep {
  public:
    /// These are the different kinds of scheduling dependencies.
    enum Kind {
      Data,        ///< Regular data dependence (aka true-dependence).
      Anti,        ///< A register anti-dependence (aka WAR).
      Output,      ///< A register output-dependence (aka WAW).
      Order        ///< Any other ordering dependency.
    };

    // Strong dependencies must be respected by the scheduler. Artificial
    // dependencies may be removed only if they are redundant with another
    // strong dependence.
    //
    // Weak dependencies may be violated by the scheduling strategy, but only if
    // the strategy can prove it is correct to do so.
    //
    // Strong OrderKinds must occur before "Weak".
    // Weak OrderKinds must occur after "Weak".
    enum OrderKind {
      Barrier,      ///< An unknown scheduling barrier.
      MayAliasMem,  ///< Nonvolatile load/Store instructions that may alias.
      MustAliasMem, ///< Nonvolatile load/Store instructions that must alias.
      Artificial,   ///< Arbitrary strong DAG edge (no real dependence).
      Weak,         ///< Arbitrary weak DAG edge.
      Cluster       ///< Weak DAG edge linking a chain of clustered instrs.
    };

  private:
    /// A pointer to the depending/depended-on SUnit, and an enum
    /// indicating the kind of the dependency.
    PointerIntPair<SUnit *, 2, Kind> Dep;

    /// A union discriminated by the dependence kind.
    union {
      /// For Data, Anti, and Output dependencies, the associated register. For
      /// Data dependencies that don't currently have a register/ assigned, this
      /// is set to zero.
      unsigned Reg;

      /// Additional information about Order dependencies.
      unsigned OrdKind; // enum OrderKind
    } Contents;

    /// The time associated with this edge. Often this is just the value of the
    /// Latency field of the predecessor, however advanced models may provide
    /// additional information about specific edges.
    unsigned Latency;

  public:
    /// Constructs a null SDep. This is only for use by container classes which
    /// require default constructors. SUnits may not/ have null SDep edges.
    SDep() : Dep(nullptr, Data) {}

    /// Constructs an SDep with the specified values.
    SDep(SUnit *S, Kind kind, unsigned Reg)
      : Dep(S, kind), Contents() {
      switch (kind) {
      default:
        llvm_unreachable("Reg given for non-register dependence!");
      case Anti:
      case Output:
        assert(Reg != 0 &&
               "SDep::Anti and SDep::Output must use a non-zero Reg!");
        Contents.Reg = Reg;
        Latency = 0;
        break;
      case Data:
        Contents.Reg = Reg;
        Latency = 1;
        break;
      }
    }

    SDep(SUnit *S, OrderKind kind)
      : Dep(S, Order), Contents(), Latency(0) {
      Contents.OrdKind = kind;
    }

    /// Returns true if the specified SDep is equivalent except for latency.
    bool overlaps(const SDep &Other) const;

    bool operator==(const SDep &Other) const {
      return overlaps(Other) && Latency == Other.Latency;
    }

    bool operator!=(const SDep &Other) const {
      return !operator==(Other);
    }

    /// Returns the latency value for this edge, which roughly means the
    /// minimum number of cycles that must elapse between the predecessor and
    /// the successor, given that they have this edge between them.
    unsigned getLatency() const {
      return Latency;
    }

    /// Sets the latency for this edge.
    void setLatency(unsigned Lat) {
      Latency = Lat;
    }

    //// Returns the SUnit to which this edge points.
    SUnit *getSUnit() const;

    //// Assigns the SUnit to which this edge points.
    void setSUnit(SUnit *SU);

    /// Returns an enum value representing the kind of the dependence.
    Kind getKind() const;

    /// Shorthand for getKind() != SDep::Data.
    bool isCtrl() const {
      return getKind() != Data;
    }

    /// Tests if this is an Order dependence between two memory accesses
    /// where both sides of the dependence access memory in non-volatile and
    /// fully modeled ways.
    bool isNormalMemory() const {
      return getKind() == Order && (Contents.OrdKind == MayAliasMem
                                    || Contents.OrdKind == MustAliasMem);
    }

    /// Tests if this is an Order dependence that is marked as a barrier.
    bool isBarrier() const {
      return getKind() == Order && Contents.OrdKind == Barrier;
    }

    /// Tests if this is could be any kind of memory dependence.
    bool isNormalMemoryOrBarrier() const {
      return (isNormalMemory() || isBarrier());
    }

    /// Tests if this is an Order dependence that is marked as
    /// "must alias", meaning that the SUnits at either end of the edge have a
    /// memory dependence on a known memory location.
    bool isMustAlias() const {
      return getKind() == Order && Contents.OrdKind == MustAliasMem;
    }

    /// Tests if this a weak dependence. Weak dependencies are considered DAG
    /// edges for height computation and other heuristics, but do not force
    /// ordering. Breaking a weak edge may require the scheduler to compensate,
    /// for example by inserting a copy.
    bool isWeak() const {
      return getKind() == Order && Contents.OrdKind >= Weak;
    }

    /// Tests if this is an Order dependence that is marked as
    /// "artificial", meaning it isn't necessary for correctness.
    bool isArtificial() const {
      return getKind() == Order && Contents.OrdKind == Artificial;
    }

    /// Tests if this is an Order dependence that is marked as "cluster",
    /// meaning it is artificial and wants to be adjacent.
    bool isCluster() const {
      return getKind() == Order && Contents.OrdKind == Cluster;
    }

    /// Tests if this is a Data dependence that is associated with a register.
    bool isAssignedRegDep() const {
      return getKind() == Data && Contents.Reg != 0;
    }

    /// Returns the register associated with this edge. This is only valid on
    /// Data, Anti, and Output edges. On Data edges, this value may be zero,
    /// meaning there is no associated register.
    unsigned getReg() const {
      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
             "getReg called on non-register dependence edge!");
      return Contents.Reg;
    }

    /// Assigns the associated register for this edge. This is only valid on
    /// Data, Anti, and Output edges. On Anti and Output edges, this value must
    /// not be zero. On Data edges, the value may be zero, which would mean that
    /// no specific register is associated with this edge.
    void setReg(unsigned Reg) {
      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
             "setReg called on non-register dependence edge!");
      assert((getKind() != Anti || Reg != 0) &&
             "SDep::Anti edge cannot use the zero register!");
      assert((getKind() != Output || Reg != 0) &&
             "SDep::Output edge cannot use the zero register!");
      Contents.Reg = Reg;
    }

    void dump(const TargetRegisterInfo *TRI = nullptr) const;
  };

  /// Scheduling unit. This is a node in the scheduling DAG.
  class SUnit {
  private:
    enum : unsigned { BoundaryID = ~0u };

    SDNode *Node = nullptr;        ///< Representative node.
    MachineInstr *Instr = nullptr; ///< Alternatively, a MachineInstr.

  public:
    SUnit *OrigNode = nullptr; ///< If not this, the node from which this node
                               /// was cloned. (SD scheduling only)

    const MCSchedClassDesc *SchedClass =
        nullptr; ///< nullptr or resolved SchedClass.

    SmallVector<SDep, 4> Preds;  ///< All sunit predecessors.
    SmallVector<SDep, 4> Succs;  ///< All sunit successors.

    typedef SmallVectorImpl<SDep>::iterator pred_iterator;
    typedef SmallVectorImpl<SDep>::iterator succ_iterator;
    typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator;
    typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator;

    unsigned NodeNum = BoundaryID;     ///< Entry # of node in the node vector.
    unsigned NodeQueueId = 0;          ///< Queue id of node.
    unsigned NumPreds = 0;             ///< # of SDep::Data preds.
    unsigned NumSuccs = 0;             ///< # of SDep::Data sucss.
    unsigned NumPredsLeft = 0;         ///< # of preds not scheduled.
    unsigned NumSuccsLeft = 0;         ///< # of succs not scheduled.
    unsigned WeakPredsLeft = 0;        ///< # of weak preds not scheduled.
    unsigned WeakSuccsLeft = 0;        ///< # of weak succs not scheduled.
    unsigned short NumRegDefsLeft = 0; ///< # of reg defs with no scheduled use.
    unsigned short Latency = 0;        ///< Node latency.
    bool isVRegCycle      : 1;         ///< May use and def the same vreg.
    bool isCall           : 1;         ///< Is a function call.
    bool isCallOp         : 1;         ///< Is a function call operand.
    bool isTwoAddress     : 1;         ///< Is a two-address instruction.
    bool isCommutable     : 1;         ///< Is a commutable instruction.
    bool hasPhysRegUses   : 1;         ///< Has physreg uses.
    bool hasPhysRegDefs   : 1;         ///< Has physreg defs that are being used.
    bool hasPhysRegClobbers : 1;       ///< Has any physreg defs, used or not.
    bool isPending        : 1;         ///< True once pending.
    bool isAvailable      : 1;         ///< True once available.
    bool isScheduled      : 1;         ///< True once scheduled.
    bool isScheduleHigh   : 1;         ///< True if preferable to schedule high.
    bool isScheduleLow    : 1;         ///< True if preferable to schedule low.
    bool isCloned         : 1;         ///< True if this node has been cloned.
    bool isUnbuffered     : 1;         ///< Uses an unbuffered resource.
    bool hasReservedResource : 1;      ///< Uses a reserved resource.
    Sched::Preference SchedulingPref = Sched::None; ///< Scheduling preference.

  private:
    bool isDepthCurrent   : 1;         ///< True if Depth is current.
    bool isHeightCurrent  : 1;         ///< True if Height is current.
    unsigned Depth = 0;                ///< Node depth.
    unsigned Height = 0;               ///< Node height.

  public:
    unsigned TopReadyCycle = 0; ///< Cycle relative to start when node is ready.
    unsigned BotReadyCycle = 0; ///< Cycle relative to end when node is ready.

    const TargetRegisterClass *CopyDstRC =
        nullptr; ///< Is a special copy node if != nullptr.
    const TargetRegisterClass *CopySrcRC = nullptr;

    /// Constructs an SUnit for pre-regalloc scheduling to represent an
    /// SDNode and any nodes flagged to it.
    SUnit(SDNode *node, unsigned nodenum)
      : Node(node), NodeNum(nodenum), isVRegCycle(false), isCall(false),
        isCallOp(false), isTwoAddress(false), isCommutable(false),
        hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
        isPending(false), isAvailable(false), isScheduled(false),
        isScheduleHigh(false), isScheduleLow(false), isCloned(false),
        isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
        isHeightCurrent(false) {}

    /// Constructs an SUnit for post-regalloc scheduling to represent a
    /// MachineInstr.
    SUnit(MachineInstr *instr, unsigned nodenum)
      : Instr(instr), NodeNum(nodenum), isVRegCycle(false), isCall(false),
        isCallOp(false), isTwoAddress(false), isCommutable(false),
        hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
        isPending(false), isAvailable(false), isScheduled(false),
        isScheduleHigh(false), isScheduleLow(false), isCloned(false),
        isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
        isHeightCurrent(false) {}

    /// Constructs a placeholder SUnit.
    SUnit()
      : isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
        isCommutable(false), hasPhysRegUses(false), hasPhysRegDefs(false),
        hasPhysRegClobbers(false), isPending(false), isAvailable(false),
        isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
        isCloned(false), isUnbuffered(false), hasReservedResource(false),
        isDepthCurrent(false), isHeightCurrent(false) {}

    /// Boundary nodes are placeholders for the boundary of the
    /// scheduling region.
    ///
    /// BoundaryNodes can have DAG edges, including Data edges, but they do not
    /// correspond to schedulable entities (e.g. instructions) and do not have a
    /// valid ID. Consequently, always check for boundary nodes before accessing
    /// an associative data structure keyed on node ID.
    bool isBoundaryNode() const { return NodeNum == BoundaryID; }

    /// Assigns the representative SDNode for this SUnit. This may be used
    /// during pre-regalloc scheduling.
    void setNode(SDNode *N) {
      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
      Node = N;
    }

    /// Returns the representative SDNode for this SUnit. This may be used
    /// during pre-regalloc scheduling.
    SDNode *getNode() const {
      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
      return Node;
    }

    /// Returns true if this SUnit refers to a machine instruction as
    /// opposed to an SDNode.
    bool isInstr() const { return Instr; }

    /// Assigns the instruction for the SUnit. This may be used during
    /// post-regalloc scheduling.
    void setInstr(MachineInstr *MI) {
      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
      Instr = MI;
    }

    /// Returns the representative MachineInstr for this SUnit. This may be used
    /// during post-regalloc scheduling.
    MachineInstr *getInstr() const {
      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
      return Instr;
    }

    /// Adds the specified edge as a pred of the current node if not already.
    /// It also adds the current node as a successor of the specified node.
    bool addPred(const SDep &D, bool Required = true);

    /// Adds a barrier edge to SU by calling addPred(), with latency 0
    /// generally or latency 1 for a store followed by a load.
    bool addPredBarrier(SUnit *SU) {
      SDep Dep(SU, SDep::Barrier);
      unsigned TrueMemOrderLatency =
        ((SU->getInstr()->mayStore() && this->getInstr()->mayLoad()) ? 1 : 0);
      Dep.setLatency(TrueMemOrderLatency);
      return addPred(Dep);
    }

    /// Removes the specified edge as a pred of the current node if it exists.
    /// It also removes the current node as a successor of the specified node.
    void removePred(const SDep &D);

    /// Returns the depth of this node, which is the length of the maximum path
    /// up to any node which has no predecessors.
    unsigned getDepth() const {
      if (!isDepthCurrent)
        const_cast<SUnit *>(this)->ComputeDepth();
      return Depth;
    }

    /// Returns the height of this node, which is the length of the
    /// maximum path down to any node which has no successors.
    unsigned getHeight() const {
      if (!isHeightCurrent)
        const_cast<SUnit *>(this)->ComputeHeight();
      return Height;
    }

    /// If NewDepth is greater than this node's depth value, sets it to
    /// be the new depth value. This also recursively marks successor nodes
    /// dirty.
    void setDepthToAtLeast(unsigned NewDepth);

    /// If NewHeight is greater than this node's height value, set it to be
    /// the new height value. This also recursively marks predecessor nodes
    /// dirty.
    void setHeightToAtLeast(unsigned NewHeight);

    /// Sets a flag in this node to indicate that its stored Depth value
    /// will require recomputation the next time getDepth() is called.
    void setDepthDirty();

    /// Sets a flag in this node to indicate that its stored Height value
    /// will require recomputation the next time getHeight() is called.
    void setHeightDirty();

    /// Tests if node N is a predecessor of this node.
    bool isPred(const SUnit *N) const {
      for (const SDep &Pred : Preds)
        if (Pred.getSUnit() == N)
          return true;
      return false;
    }

    /// Tests if node N is a successor of this node.
    bool isSucc(const SUnit *N) const {
      for (const SDep &Succ : Succs)
        if (Succ.getSUnit() == N)
          return true;
      return false;
    }

    bool isTopReady() const {
      return NumPredsLeft == 0;
    }
    bool isBottomReady() const {
      return NumSuccsLeft == 0;
    }

    /// Orders this node's predecessor edges such that the critical path
    /// edge occurs first.
    void biasCriticalPath();

    void dumpAttributes() const;

  private:
    void ComputeDepth();
    void ComputeHeight();
  };

  /// Returns true if the specified SDep is equivalent except for latency.
  inline bool SDep::overlaps(const SDep &Other) const {
    if (Dep != Other.Dep)
      return false;
    switch (Dep.getInt()) {
    case Data:
    case Anti:
    case Output:
      return Contents.Reg == Other.Contents.Reg;
    case Order:
      return Contents.OrdKind == Other.Contents.OrdKind;
    }
    llvm_unreachable("Invalid dependency kind!");
  }

  //// Returns the SUnit to which this edge points.
  inline SUnit *SDep::getSUnit() const { return Dep.getPointer(); }

  //// Assigns the SUnit to which this edge points.
  inline void SDep::setSUnit(SUnit *SU) { Dep.setPointer(SU); }

  /// Returns an enum value representing the kind of the dependence.
  inline SDep::Kind SDep::getKind() const { return Dep.getInt(); }

  //===--------------------------------------------------------------------===//

  /// This interface is used to plug different priorities computation
  /// algorithms into the list scheduler. It implements the interface of a
  /// standard priority queue, where nodes are inserted in arbitrary order and
  /// returned in priority order.  The computation of the priority and the
  /// representation of the queue are totally up to the implementation to
  /// decide.
  class SchedulingPriorityQueue {
    virtual void anchor();

    unsigned CurCycle = 0;
    bool HasReadyFilter;

  public:
    SchedulingPriorityQueue(bool rf = false) :  HasReadyFilter(rf) {}

    virtual ~SchedulingPriorityQueue() = default;

    virtual bool isBottomUp() const = 0;

    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
    virtual void addNode(const SUnit *SU) = 0;
    virtual void updateNode(const SUnit *SU) = 0;
    virtual void releaseState() = 0;

    virtual bool empty() const = 0;

    bool hasReadyFilter() const { return HasReadyFilter; }

    virtual bool tracksRegPressure() const { return false; }

    virtual bool isReady(SUnit *) const {
      assert(!HasReadyFilter && "The ready filter must override isReady()");
      return true;
    }

    virtual void push(SUnit *U) = 0;

    void push_all(const std::vector<SUnit *> &Nodes) {
      for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
           E = Nodes.end(); I != E; ++I)
        push(*I);
    }

    virtual SUnit *pop() = 0;

    virtual void remove(SUnit *SU) = 0;

    virtual void dump(ScheduleDAG *) const {}

    /// As each node is scheduled, this method is invoked.  This allows the
    /// priority function to adjust the priority of related unscheduled nodes,
    /// for example.
    virtual void scheduledNode(SUnit *) {}

    virtual void unscheduledNode(SUnit *) {}

    void setCurCycle(unsigned Cycle) {
      CurCycle = Cycle;
    }

    unsigned getCurCycle() const {
      return CurCycle;
    }
  };

  class ScheduleDAG {
  public:
    const LLVMTargetMachine &TM;        ///< Target processor
    const TargetInstrInfo *TII;         ///< Target instruction information
    const TargetRegisterInfo *TRI;      ///< Target processor register info
    MachineFunction &MF;                ///< Machine function
    MachineRegisterInfo &MRI;           ///< Virtual/real register map
    std::vector<SUnit> SUnits;          ///< The scheduling units.
    SUnit EntrySU;                      ///< Special node for the region entry.
    SUnit ExitSU;                       ///< Special node for the region exit.

#ifdef NDEBUG
    static const bool StressSched = false;
#else
    bool StressSched;
#endif

    explicit ScheduleDAG(MachineFunction &mf);

    virtual ~ScheduleDAG();

    /// Clears the DAG state (between regions).
    void clearDAG();

    /// Returns the MCInstrDesc of this SUnit.
    /// Returns NULL for SDNodes without a machine opcode.
    const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
      if (SU->isInstr()) return &SU->getInstr()->getDesc();
      return getNodeDesc(SU->getNode());
    }

    /// Pops up a GraphViz/gv window with the ScheduleDAG rendered using 'dot'.
    virtual void viewGraph(const Twine &Name, const Twine &Title);
    virtual void viewGraph();

    virtual void dumpNode(const SUnit &SU) const = 0;
    virtual void dump() const = 0;
    void dumpNodeName(const SUnit &SU) const;

    /// Returns a label for an SUnit node in a visualization of the ScheduleDAG.
    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;

    /// Returns a label for the region of code covered by the DAG.
    virtual std::string getDAGName() const = 0;

    /// Adds custom features for a visualization of the ScheduleDAG.
    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}

#ifndef NDEBUG
    /// Verifies that all SUnits were scheduled and that their state is
    /// consistent. Returns the number of scheduled SUnits.
    unsigned VerifyScheduledDAG(bool isBottomUp);
#endif

  protected:
    void dumpNodeAll(const SUnit &SU) const;

  private:
    /// Returns the MCInstrDesc of this SDNode or NULL.
    const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
  };

  class SUnitIterator : public std::iterator<std::forward_iterator_tag,
                                             SUnit, ptrdiff_t> {
    SUnit *Node;
    unsigned Operand;

    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}

  public:
    bool operator==(const SUnitIterator& x) const {
      return Operand == x.Operand;
    }
    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }

    pointer operator*() const {
      return Node->Preds[Operand].getSUnit();
    }
    pointer operator->() const { return operator*(); }

    SUnitIterator& operator++() {                // Preincrement
      ++Operand;
      return *this;
    }
    SUnitIterator operator++(int) { // Postincrement
      SUnitIterator tmp = *this; ++*this; return tmp;
    }

    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
    static SUnitIterator end  (SUnit *N) {
      return SUnitIterator(N, (unsigned)N->Preds.size());
    }

    unsigned getOperand() const { return Operand; }
    const SUnit *getNode() const { return Node; }

    /// Tests if this is not an SDep::Data dependence.
    bool isCtrlDep() const {
      return getSDep().isCtrl();
    }
    bool isArtificialDep() const {
      return getSDep().isArtificial();
    }
    const SDep &getSDep() const {
      return Node->Preds[Operand];
    }
  };

  template <> struct GraphTraits<SUnit*> {
    typedef SUnit *NodeRef;
    typedef SUnitIterator ChildIteratorType;
    static NodeRef getEntryNode(SUnit *N) { return N; }
    static ChildIteratorType child_begin(NodeRef N) {
      return SUnitIterator::begin(N);
    }
    static ChildIteratorType child_end(NodeRef N) {
      return SUnitIterator::end(N);
    }
  };

  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
    typedef pointer_iterator<std::vector<SUnit>::iterator> nodes_iterator;
    static nodes_iterator nodes_begin(ScheduleDAG *G) {
      return nodes_iterator(G->SUnits.begin());
    }
    static nodes_iterator nodes_end(ScheduleDAG *G) {
      return nodes_iterator(G->SUnits.end());
    }
  };

  /// This class can compute a topological ordering for SUnits and provides
  /// methods for dynamically updating the ordering as new edges are added.
  ///
  /// This allows a very fast implementation of IsReachable, for example.
  class ScheduleDAGTopologicalSort {
    /// A reference to the ScheduleDAG's SUnits.
    std::vector<SUnit> &SUnits;
    SUnit *ExitSU;

    // Have any new nodes been added?
    bool Dirty = false;

    // Outstanding added edges, that have not been applied to the ordering.
    SmallVector<std::pair<SUnit *, SUnit *>, 16> Updates;

    /// Maps topological index to the node number.
    std::vector<int> Index2Node;
    /// Maps the node number to its topological index.
    std::vector<int> Node2Index;
    /// a set of nodes visited during a DFS traversal.
    BitVector Visited;

    /// Makes a DFS traversal and mark all nodes affected by the edge insertion.
    /// These nodes will later get new topological indexes by means of the Shift
    /// method.
    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);

    /// Reassigns topological indexes for the nodes in the DAG to
    /// preserve the topological ordering.
    void Shift(BitVector& Visited, int LowerBound, int UpperBound);

    /// Assigns the topological index to the node n.
    void Allocate(int n, int index);

    /// Fix the ordering, by either recomputing from scratch or by applying
    /// any outstanding updates. Uses a heuristic to estimate what will be
    /// cheaper.
    void FixOrder();

  public:
    ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);

    /// Creates the initial topological ordering from the DAG to be scheduled.
    void InitDAGTopologicalSorting();

    /// Returns an array of SUs that are both in the successor
    /// subtree of StartSU and in the predecessor subtree of TargetSU.
    /// StartSU and TargetSU are not in the array.
    /// Success is false if TargetSU is not in the successor subtree of
    /// StartSU, else it is true.
    std::vector<int> GetSubGraph(const SUnit &StartSU, const SUnit &TargetSU,
                                 bool &Success);

    /// Checks if \p SU is reachable from \p TargetSU.
    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);

    /// Returns true if addPred(TargetSU, SU) creates a cycle.
    bool WillCreateCycle(SUnit *TargetSU, SUnit *SU);

    /// Updates the topological ordering to accommodate an edge to be
    /// added from SUnit \p X to SUnit \p Y.
    void AddPred(SUnit *Y, SUnit *X);

    /// Queues an update to the topological ordering to accommodate an edge to
    /// be added from SUnit \p X to SUnit \p Y.
    void AddPredQueued(SUnit *Y, SUnit *X);

    /// Updates the topological ordering to accommodate an an edge to be
    /// removed from the specified node \p N from the predecessors of the
    /// current node \p M.
    void RemovePred(SUnit *M, SUnit *N);

    /// Mark the ordering as temporarily broken, after a new node has been
    /// added.
    void MarkDirty() { Dirty = true; }

    typedef std::vector<int>::iterator iterator;
    typedef std::vector<int>::const_iterator const_iterator;
    iterator begin() { return Index2Node.begin(); }
    const_iterator begin() const { return Index2Node.begin(); }
    iterator end() { return Index2Node.end(); }
    const_iterator end() const { return Index2Node.end(); }

    typedef std::vector<int>::reverse_iterator reverse_iterator;
    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
    reverse_iterator rbegin() { return Index2Node.rbegin(); }
    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
    reverse_iterator rend() { return Index2Node.rend(); }
    const_reverse_iterator rend() const { return Index2Node.rend(); }
  };

} // end namespace llvm

#endif // LLVM_CODEGEN_SCHEDULEDAG_H