reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallVector class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_SMALLVECTOR_H
#define LLVM_ADT_SMALLVECTOR_H

#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemAlloc.h"
#include "llvm/Support/type_traits.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <initializer_list>
#include <iterator>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>

namespace llvm {

/// This is all the non-templated stuff common to all SmallVectors.
class SmallVectorBase {
protected:
  void *BeginX;
  unsigned Size = 0, Capacity;

  SmallVectorBase() = delete;
  SmallVectorBase(void *FirstEl, size_t TotalCapacity)
      : BeginX(FirstEl), Capacity(TotalCapacity) {}

  /// This is an implementation of the grow() method which only works
  /// on POD-like data types and is out of line to reduce code duplication.
  void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize);

public:
  size_t size() const { return Size; }
  size_t capacity() const { return Capacity; }

  LLVM_NODISCARD bool empty() const { return !Size; }

  /// Set the array size to \p N, which the current array must have enough
  /// capacity for.
  ///
  /// This does not construct or destroy any elements in the vector.
  ///
  /// Clients can use this in conjunction with capacity() to write past the end
  /// of the buffer when they know that more elements are available, and only
  /// update the size later. This avoids the cost of value initializing elements
  /// which will only be overwritten.
  void set_size(size_t N) {
    assert(N <= capacity());
    Size = N;
  }
};

/// Figure out the offset of the first element.
template <class T, typename = void> struct SmallVectorAlignmentAndSize {
  AlignedCharArrayUnion<SmallVectorBase> Base;
  AlignedCharArrayUnion<T> FirstEl;
};

/// This is the part of SmallVectorTemplateBase which does not depend on whether
/// the type T is a POD. The extra dummy template argument is used by ArrayRef
/// to avoid unnecessarily requiring T to be complete.
template <typename T, typename = void>
class SmallVectorTemplateCommon : public SmallVectorBase {
  /// Find the address of the first element.  For this pointer math to be valid
  /// with small-size of 0 for T with lots of alignment, it's important that
  /// SmallVectorStorage is properly-aligned even for small-size of 0.
  void *getFirstEl() const {
    return const_cast<void *>(reinterpret_cast<const void *>(
        reinterpret_cast<const char *>(this) +
        offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
  }
  // Space after 'FirstEl' is clobbered, do not add any instance vars after it.

protected:
  SmallVectorTemplateCommon(size_t Size)
      : SmallVectorBase(getFirstEl(), Size) {}

  void grow_pod(size_t MinCapacity, size_t TSize) {
    SmallVectorBase::grow_pod(getFirstEl(), MinCapacity, TSize);
  }

  /// Return true if this is a smallvector which has not had dynamic
  /// memory allocated for it.
  bool isSmall() const { return BeginX == getFirstEl(); }

  /// Put this vector in a state of being small.
  void resetToSmall() {
    BeginX = getFirstEl();
    Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
  }

public:
  using size_type = size_t;
  using difference_type = ptrdiff_t;
  using value_type = T;
  using iterator = T *;
  using const_iterator = const T *;

  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
  using reverse_iterator = std::reverse_iterator<iterator>;

  using reference = T &;
  using const_reference = const T &;
  using pointer = T *;
  using const_pointer = const T *;

  // forward iterator creation methods.
  iterator begin() { return (iterator)this->BeginX; }
  const_iterator begin() const { return (const_iterator)this->BeginX; }
  iterator end() { return begin() + size(); }
  const_iterator end() const { return begin() + size(); }

  // reverse iterator creation methods.
  reverse_iterator rbegin()            { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
  reverse_iterator rend()              { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}

  size_type size_in_bytes() const { return size() * sizeof(T); }
  size_type max_size() const { return size_type(-1) / sizeof(T); }

  size_t capacity_in_bytes() const { return capacity() * sizeof(T); }

  /// Return a pointer to the vector's buffer, even if empty().
  pointer data() { return pointer(begin()); }
  /// Return a pointer to the vector's buffer, even if empty().
  const_pointer data() const { return const_pointer(begin()); }

  reference operator[](size_type idx) {
    assert(idx < size());
    return begin()[idx];
  }
  const_reference operator[](size_type idx) const {
    assert(idx < size());
    return begin()[idx];
  }

  reference front() {
    assert(!empty());
    return begin()[0];
  }
  const_reference front() const {
    assert(!empty());
    return begin()[0];
  }

  reference back() {
    assert(!empty());
    return end()[-1];
  }
  const_reference back() const {
    assert(!empty());
    return end()[-1];
  }
};

/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put method
/// implementations that are designed to work with non-POD-like T's.
template <typename T, bool = is_trivially_copyable<T>::value>
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
protected:
  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}

  static void destroy_range(T *S, T *E) {
    while (S != E) {
      --E;
      E->~T();
    }
  }

  /// Move the range [I, E) into the uninitialized memory starting with "Dest",
  /// constructing elements as needed.
  template<typename It1, typename It2>
  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    std::uninitialized_copy(std::make_move_iterator(I),
                            std::make_move_iterator(E), Dest);
  }

  /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
  /// constructing elements as needed.
  template<typename It1, typename It2>
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    std::uninitialized_copy(I, E, Dest);
  }

  /// Grow the allocated memory (without initializing new elements), doubling
  /// the size of the allocated memory. Guarantees space for at least one more
  /// element, or MinSize more elements if specified.
  void grow(size_t MinSize = 0);

public:
  void push_back(const T &Elt) {
    if (LLVM_UNLIKELY(this->size() >= this->capacity()))
      this->grow();
    ::new ((void*) this->end()) T(Elt);
    this->set_size(this->size() + 1);
  }

  void push_back(T &&Elt) {
    if (LLVM_UNLIKELY(this->size() >= this->capacity()))
      this->grow();
    ::new ((void*) this->end()) T(::std::move(Elt));
    this->set_size(this->size() + 1);
  }

  void pop_back() {
    this->set_size(this->size() - 1);
    this->end()->~T();
  }
};

// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T, bool TriviallyCopyable>
void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
  if (MinSize > UINT32_MAX)
    report_bad_alloc_error("SmallVector capacity overflow during allocation");

  // Always grow, even from zero.
  size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2));
  NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX));
  T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T)));

  // Move the elements over.
  this->uninitialized_move(this->begin(), this->end(), NewElts);

  // Destroy the original elements.
  destroy_range(this->begin(), this->end());

  // If this wasn't grown from the inline copy, deallocate the old space.
  if (!this->isSmall())
    free(this->begin());

  this->BeginX = NewElts;
  this->Capacity = NewCapacity;
}

/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
/// method implementations that are designed to work with POD-like T's.
template <typename T>
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
protected:
  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}

  // No need to do a destroy loop for POD's.
  static void destroy_range(T *, T *) {}

  /// Move the range [I, E) onto the uninitialized memory
  /// starting with "Dest", constructing elements into it as needed.
  template<typename It1, typename It2>
  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    // Just do a copy.
    uninitialized_copy(I, E, Dest);
  }

  /// Copy the range [I, E) onto the uninitialized memory
  /// starting with "Dest", constructing elements into it as needed.
  template<typename It1, typename It2>
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    // Arbitrary iterator types; just use the basic implementation.
    std::uninitialized_copy(I, E, Dest);
  }

  /// Copy the range [I, E) onto the uninitialized memory
  /// starting with "Dest", constructing elements into it as needed.
  template <typename T1, typename T2>
  static void uninitialized_copy(
      T1 *I, T1 *E, T2 *Dest,
      typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
                                           T2>::value>::type * = nullptr) {
    // Use memcpy for PODs iterated by pointers (which includes SmallVector
    // iterators): std::uninitialized_copy optimizes to memmove, but we can
    // use memcpy here. Note that I and E are iterators and thus might be
    // invalid for memcpy if they are equal.
    if (I != E)
      memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
  }

  /// Double the size of the allocated memory, guaranteeing space for at
  /// least one more element or MinSize if specified.
  void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }

public:
  void push_back(const T &Elt) {
    if (LLVM_UNLIKELY(this->size() >= this->capacity()))
      this->grow();
    memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T));
    this->set_size(this->size() + 1);
  }

  void pop_back() { this->set_size(this->size() - 1); }
};

/// This class consists of common code factored out of the SmallVector class to
/// reduce code duplication based on the SmallVector 'N' template parameter.
template <typename T>
class SmallVectorImpl : public SmallVectorTemplateBase<T> {
  using SuperClass = SmallVectorTemplateBase<T>;

public:
  using iterator = typename SuperClass::iterator;
  using const_iterator = typename SuperClass::const_iterator;
  using reference = typename SuperClass::reference;
  using size_type = typename SuperClass::size_type;

protected:
  // Default ctor - Initialize to empty.
  explicit SmallVectorImpl(unsigned N)
      : SmallVectorTemplateBase<T>(N) {}

public:
  SmallVectorImpl(const SmallVectorImpl &) = delete;

  ~SmallVectorImpl() {
    // Subclass has already destructed this vector's elements.
    // If this wasn't grown from the inline copy, deallocate the old space.
    if (!this->isSmall())
      free(this->begin());
  }

  void clear() {
    this->destroy_range(this->begin(), this->end());
    this->Size = 0;
  }

  void resize(size_type N) {
    if (N < this->size()) {
      this->destroy_range(this->begin()+N, this->end());
      this->set_size(N);
    } else if (N > this->size()) {
      if (this->capacity() < N)
        this->grow(N);
      for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
        new (&*I) T();
      this->set_size(N);
    }
  }

  void resize(size_type N, const T &NV) {
    if (N < this->size()) {
      this->destroy_range(this->begin()+N, this->end());
      this->set_size(N);
    } else if (N > this->size()) {
      if (this->capacity() < N)
        this->grow(N);
      std::uninitialized_fill(this->end(), this->begin()+N, NV);
      this->set_size(N);
    }
  }

  void reserve(size_type N) {
    if (this->capacity() < N)
      this->grow(N);
  }

  LLVM_NODISCARD T pop_back_val() {
    T Result = ::std::move(this->back());
    this->pop_back();
    return Result;
  }

  void swap(SmallVectorImpl &RHS);

  /// Add the specified range to the end of the SmallVector.
  template <typename in_iter,
            typename = typename std::enable_if<std::is_convertible<
                typename std::iterator_traits<in_iter>::iterator_category,
                std::input_iterator_tag>::value>::type>
  void append(in_iter in_start, in_iter in_end) {
    size_type NumInputs = std::distance(in_start, in_end);
    if (NumInputs > this->capacity() - this->size())
      this->grow(this->size()+NumInputs);

    this->uninitialized_copy(in_start, in_end, this->end());
    this->set_size(this->size() + NumInputs);
  }

  /// Append \p NumInputs copies of \p Elt to the end.
  void append(size_type NumInputs, const T &Elt) {
    if (NumInputs > this->capacity() - this->size())
      this->grow(this->size()+NumInputs);

    std::uninitialized_fill_n(this->end(), NumInputs, Elt);
    this->set_size(this->size() + NumInputs);
  }

  void append(std::initializer_list<T> IL) {
    append(IL.begin(), IL.end());
  }

  // FIXME: Consider assigning over existing elements, rather than clearing &
  // re-initializing them - for all assign(...) variants.

  void assign(size_type NumElts, const T &Elt) {
    clear();
    if (this->capacity() < NumElts)
      this->grow(NumElts);
    this->set_size(NumElts);
    std::uninitialized_fill(this->begin(), this->end(), Elt);
  }

  template <typename in_iter,
            typename = typename std::enable_if<std::is_convertible<
                typename std::iterator_traits<in_iter>::iterator_category,
                std::input_iterator_tag>::value>::type>
  void assign(in_iter in_start, in_iter in_end) {
    clear();
    append(in_start, in_end);
  }

  void assign(std::initializer_list<T> IL) {
    clear();
    append(IL);
  }

  iterator erase(const_iterator CI) {
    // Just cast away constness because this is a non-const member function.
    iterator I = const_cast<iterator>(CI);

    assert(I >= this->begin() && "Iterator to erase is out of bounds.");
    assert(I < this->end() && "Erasing at past-the-end iterator.");

    iterator N = I;
    // Shift all elts down one.
    std::move(I+1, this->end(), I);
    // Drop the last elt.
    this->pop_back();
    return(N);
  }

  iterator erase(const_iterator CS, const_iterator CE) {
    // Just cast away constness because this is a non-const member function.
    iterator S = const_cast<iterator>(CS);
    iterator E = const_cast<iterator>(CE);

    assert(S >= this->begin() && "Range to erase is out of bounds.");
    assert(S <= E && "Trying to erase invalid range.");
    assert(E <= this->end() && "Trying to erase past the end.");

    iterator N = S;
    // Shift all elts down.
    iterator I = std::move(E, this->end(), S);
    // Drop the last elts.
    this->destroy_range(I, this->end());
    this->set_size(I - this->begin());
    return(N);
  }

  iterator insert(iterator I, T &&Elt) {
    if (I == this->end()) {  // Important special case for empty vector.
      this->push_back(::std::move(Elt));
      return this->end()-1;
    }

    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    assert(I <= this->end() && "Inserting past the end of the vector.");

    if (this->size() >= this->capacity()) {
      size_t EltNo = I-this->begin();
      this->grow();
      I = this->begin()+EltNo;
    }

    ::new ((void*) this->end()) T(::std::move(this->back()));
    // Push everything else over.
    std::move_backward(I, this->end()-1, this->end());
    this->set_size(this->size() + 1);

    // If we just moved the element we're inserting, be sure to update
    // the reference.
    T *EltPtr = &Elt;
    if (I <= EltPtr && EltPtr < this->end())
      ++EltPtr;

    *I = ::std::move(*EltPtr);
    return I;
  }

  iterator insert(iterator I, const T &Elt) {
    if (I == this->end()) {  // Important special case for empty vector.
      this->push_back(Elt);
      return this->end()-1;
    }

    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    assert(I <= this->end() && "Inserting past the end of the vector.");

    if (this->size() >= this->capacity()) {
      size_t EltNo = I-this->begin();
      this->grow();
      I = this->begin()+EltNo;
    }
    ::new ((void*) this->end()) T(std::move(this->back()));
    // Push everything else over.
    std::move_backward(I, this->end()-1, this->end());
    this->set_size(this->size() + 1);

    // If we just moved the element we're inserting, be sure to update
    // the reference.
    const T *EltPtr = &Elt;
    if (I <= EltPtr && EltPtr < this->end())
      ++EltPtr;

    *I = *EltPtr;
    return I;
  }

  iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    size_t InsertElt = I - this->begin();

    if (I == this->end()) {  // Important special case for empty vector.
      append(NumToInsert, Elt);
      return this->begin()+InsertElt;
    }

    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    assert(I <= this->end() && "Inserting past the end of the vector.");

    // Ensure there is enough space.
    reserve(this->size() + NumToInsert);

    // Uninvalidate the iterator.
    I = this->begin()+InsertElt;

    // If there are more elements between the insertion point and the end of the
    // range than there are being inserted, we can use a simple approach to
    // insertion.  Since we already reserved space, we know that this won't
    // reallocate the vector.
    if (size_t(this->end()-I) >= NumToInsert) {
      T *OldEnd = this->end();
      append(std::move_iterator<iterator>(this->end() - NumToInsert),
             std::move_iterator<iterator>(this->end()));

      // Copy the existing elements that get replaced.
      std::move_backward(I, OldEnd-NumToInsert, OldEnd);

      std::fill_n(I, NumToInsert, Elt);
      return I;
    }

    // Otherwise, we're inserting more elements than exist already, and we're
    // not inserting at the end.

    // Move over the elements that we're about to overwrite.
    T *OldEnd = this->end();
    this->set_size(this->size() + NumToInsert);
    size_t NumOverwritten = OldEnd-I;
    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);

    // Replace the overwritten part.
    std::fill_n(I, NumOverwritten, Elt);

    // Insert the non-overwritten middle part.
    std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
    return I;
  }

  template <typename ItTy,
            typename = typename std::enable_if<std::is_convertible<
                typename std::iterator_traits<ItTy>::iterator_category,
                std::input_iterator_tag>::value>::type>
  iterator insert(iterator I, ItTy From, ItTy To) {
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    size_t InsertElt = I - this->begin();

    if (I == this->end()) {  // Important special case for empty vector.
      append(From, To);
      return this->begin()+InsertElt;
    }

    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    assert(I <= this->end() && "Inserting past the end of the vector.");

    size_t NumToInsert = std::distance(From, To);

    // Ensure there is enough space.
    reserve(this->size() + NumToInsert);

    // Uninvalidate the iterator.
    I = this->begin()+InsertElt;

    // If there are more elements between the insertion point and the end of the
    // range than there are being inserted, we can use a simple approach to
    // insertion.  Since we already reserved space, we know that this won't
    // reallocate the vector.
    if (size_t(this->end()-I) >= NumToInsert) {
      T *OldEnd = this->end();
      append(std::move_iterator<iterator>(this->end() - NumToInsert),
             std::move_iterator<iterator>(this->end()));

      // Copy the existing elements that get replaced.
      std::move_backward(I, OldEnd-NumToInsert, OldEnd);

      std::copy(From, To, I);
      return I;
    }

    // Otherwise, we're inserting more elements than exist already, and we're
    // not inserting at the end.

    // Move over the elements that we're about to overwrite.
    T *OldEnd = this->end();
    this->set_size(this->size() + NumToInsert);
    size_t NumOverwritten = OldEnd-I;
    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);

    // Replace the overwritten part.
    for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
      *J = *From;
      ++J; ++From;
    }

    // Insert the non-overwritten middle part.
    this->uninitialized_copy(From, To, OldEnd);
    return I;
  }

  void insert(iterator I, std::initializer_list<T> IL) {
    insert(I, IL.begin(), IL.end());
  }

  template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
    if (LLVM_UNLIKELY(this->size() >= this->capacity()))
      this->grow();
    ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
    this->set_size(this->size() + 1);
    return this->back();
  }

  SmallVectorImpl &operator=(const SmallVectorImpl &RHS);

  SmallVectorImpl &operator=(SmallVectorImpl &&RHS);

  bool operator==(const SmallVectorImpl &RHS) const {
    if (this->size() != RHS.size()) return false;
    return std::equal(this->begin(), this->end(), RHS.begin());
  }
  bool operator!=(const SmallVectorImpl &RHS) const {
    return !(*this == RHS);
  }

  bool operator<(const SmallVectorImpl &RHS) const {
    return std::lexicographical_compare(this->begin(), this->end(),
                                        RHS.begin(), RHS.end());
  }
};

template <typename T>
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
  if (this == &RHS) return;

  // We can only avoid copying elements if neither vector is small.
  if (!this->isSmall() && !RHS.isSmall()) {
    std::swap(this->BeginX, RHS.BeginX);
    std::swap(this->Size, RHS.Size);
    std::swap(this->Capacity, RHS.Capacity);
    return;
  }
  if (RHS.size() > this->capacity())
    this->grow(RHS.size());
  if (this->size() > RHS.capacity())
    RHS.grow(this->size());

  // Swap the shared elements.
  size_t NumShared = this->size();
  if (NumShared > RHS.size()) NumShared = RHS.size();
  for (size_type i = 0; i != NumShared; ++i)
    std::swap((*this)[i], RHS[i]);

  // Copy over the extra elts.
  if (this->size() > RHS.size()) {
    size_t EltDiff = this->size() - RHS.size();
    this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
    RHS.set_size(RHS.size() + EltDiff);
    this->destroy_range(this->begin()+NumShared, this->end());
    this->set_size(NumShared);
  } else if (RHS.size() > this->size()) {
    size_t EltDiff = RHS.size() - this->size();
    this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
    this->set_size(this->size() + EltDiff);
    this->destroy_range(RHS.begin()+NumShared, RHS.end());
    RHS.set_size(NumShared);
  }
}

template <typename T>
SmallVectorImpl<T> &SmallVectorImpl<T>::
  operator=(const SmallVectorImpl<T> &RHS) {
  // Avoid self-assignment.
  if (this == &RHS) return *this;

  // If we already have sufficient space, assign the common elements, then
  // destroy any excess.
  size_t RHSSize = RHS.size();
  size_t CurSize = this->size();
  if (CurSize >= RHSSize) {
    // Assign common elements.
    iterator NewEnd;
    if (RHSSize)
      NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
    else
      NewEnd = this->begin();

    // Destroy excess elements.
    this->destroy_range(NewEnd, this->end());

    // Trim.
    this->set_size(RHSSize);
    return *this;
  }

  // If we have to grow to have enough elements, destroy the current elements.
  // This allows us to avoid copying them during the grow.
  // FIXME: don't do this if they're efficiently moveable.
  if (this->capacity() < RHSSize) {
    // Destroy current elements.
    this->destroy_range(this->begin(), this->end());
    this->set_size(0);
    CurSize = 0;
    this->grow(RHSSize);
  } else if (CurSize) {
    // Otherwise, use assignment for the already-constructed elements.
    std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
  }

  // Copy construct the new elements in place.
  this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
                           this->begin()+CurSize);

  // Set end.
  this->set_size(RHSSize);
  return *this;
}

template <typename T>
SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
  // Avoid self-assignment.
  if (this == &RHS) return *this;

  // If the RHS isn't small, clear this vector and then steal its buffer.
  if (!RHS.isSmall()) {
    this->destroy_range(this->begin(), this->end());
    if (!this->isSmall()) free(this->begin());
    this->BeginX = RHS.BeginX;
    this->Size = RHS.Size;
    this->Capacity = RHS.Capacity;
    RHS.resetToSmall();
    return *this;
  }

  // If we already have sufficient space, assign the common elements, then
  // destroy any excess.
  size_t RHSSize = RHS.size();
  size_t CurSize = this->size();
  if (CurSize >= RHSSize) {
    // Assign common elements.
    iterator NewEnd = this->begin();
    if (RHSSize)
      NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);

    // Destroy excess elements and trim the bounds.
    this->destroy_range(NewEnd, this->end());
    this->set_size(RHSSize);

    // Clear the RHS.
    RHS.clear();

    return *this;
  }

  // If we have to grow to have enough elements, destroy the current elements.
  // This allows us to avoid copying them during the grow.
  // FIXME: this may not actually make any sense if we can efficiently move
  // elements.
  if (this->capacity() < RHSSize) {
    // Destroy current elements.
    this->destroy_range(this->begin(), this->end());
    this->set_size(0);
    CurSize = 0;
    this->grow(RHSSize);
  } else if (CurSize) {
    // Otherwise, use assignment for the already-constructed elements.
    std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
  }

  // Move-construct the new elements in place.
  this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
                           this->begin()+CurSize);

  // Set end.
  this->set_size(RHSSize);

  RHS.clear();
  return *this;
}

/// Storage for the SmallVector elements.  This is specialized for the N=0 case
/// to avoid allocating unnecessary storage.
template <typename T, unsigned N>
struct SmallVectorStorage {
  AlignedCharArrayUnion<T> InlineElts[N];
};

/// We need the storage to be properly aligned even for small-size of 0 so that
/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
/// well-defined.
template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {};

/// This is a 'vector' (really, a variable-sized array), optimized
/// for the case when the array is small.  It contains some number of elements
/// in-place, which allows it to avoid heap allocation when the actual number of
/// elements is below that threshold.  This allows normal "small" cases to be
/// fast without losing generality for large inputs.
///
/// Note that this does not attempt to be exception safe.
///
template <typename T, unsigned N>
class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> {
public:
  SmallVector() : SmallVectorImpl<T>(N) {}

  ~SmallVector() {
    // Destroy the constructed elements in the vector.
    this->destroy_range(this->begin(), this->end());
  }

  explicit SmallVector(size_t Size, const T &Value = T())
    : SmallVectorImpl<T>(N) {
    this->assign(Size, Value);
  }

  template <typename ItTy,
            typename = typename std::enable_if<std::is_convertible<
                typename std::iterator_traits<ItTy>::iterator_category,
                std::input_iterator_tag>::value>::type>
  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
    this->append(S, E);
  }

  template <typename RangeTy>
  explicit SmallVector(const iterator_range<RangeTy> &R)
      : SmallVectorImpl<T>(N) {
    this->append(R.begin(), R.end());
  }

  SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
    this->assign(IL);
  }

  SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
    if (!RHS.empty())
      SmallVectorImpl<T>::operator=(RHS);
  }

  const SmallVector &operator=(const SmallVector &RHS) {
    SmallVectorImpl<T>::operator=(RHS);
    return *this;
  }

  SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
    if (!RHS.empty())
      SmallVectorImpl<T>::operator=(::std::move(RHS));
  }

  SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
    if (!RHS.empty())
      SmallVectorImpl<T>::operator=(::std::move(RHS));
  }

  const SmallVector &operator=(SmallVector &&RHS) {
    SmallVectorImpl<T>::operator=(::std::move(RHS));
    return *this;
  }

  const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
    SmallVectorImpl<T>::operator=(::std::move(RHS));
    return *this;
  }

  const SmallVector &operator=(std::initializer_list<T> IL) {
    this->assign(IL);
    return *this;
  }
};

template <typename T, unsigned N>
inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
  return X.capacity_in_bytes();
}

} // end namespace llvm

namespace std {

  /// Implement std::swap in terms of SmallVector swap.
  template<typename T>
  inline void
  swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
    LHS.swap(RHS);
  }

  /// Implement std::swap in terms of SmallVector swap.
  template<typename T, unsigned N>
  inline void
  swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
    LHS.swap(RHS);
  }

} // end namespace std

#endif // LLVM_ADT_SMALLVECTOR_H