reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
//===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that ARM uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "ARMISelLowering.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMCallingConv.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMPerfectShuffle.h"
#include "ARMRegisterInfo.h"
#include "ARMSelectionDAGInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "Utils/ARMBaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "arm-isel"

STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
STATISTIC(NumConstpoolPromoted,
  "Number of constants with their storage promoted into constant pools");

static cl::opt<bool>
ARMInterworking("arm-interworking", cl::Hidden,
  cl::desc("Enable / disable ARM interworking (for debugging only)"),
  cl::init(true));

static cl::opt<bool> EnableConstpoolPromotion(
    "arm-promote-constant", cl::Hidden,
    cl::desc("Enable / disable promotion of unnamed_addr constants into "
             "constant pools"),
    cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
static cl::opt<unsigned> ConstpoolPromotionMaxSize(
    "arm-promote-constant-max-size", cl::Hidden,
    cl::desc("Maximum size of constant to promote into a constant pool"),
    cl::init(64));
static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
    "arm-promote-constant-max-total", cl::Hidden,
    cl::desc("Maximum size of ALL constants to promote into a constant pool"),
    cl::init(128));

// The APCS parameter registers.
static const MCPhysReg GPRArgRegs[] = {
  ARM::R0, ARM::R1, ARM::R2, ARM::R3
};

void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
                                       MVT PromotedBitwiseVT) {
  if (VT != PromotedLdStVT) {
    setOperationAction(ISD::LOAD, VT, Promote);
    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);

    setOperationAction(ISD::STORE, VT, Promote);
    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
  }

  MVT ElemTy = VT.getVectorElementType();
  if (ElemTy != MVT::f64)
    setOperationAction(ISD::SETCC, VT, Custom);
  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
  if (ElemTy == MVT::i32) {
    setOperationAction(ISD::SINT_TO_FP, VT, Custom);
    setOperationAction(ISD::UINT_TO_FP, VT, Custom);
    setOperationAction(ISD::FP_TO_SINT, VT, Custom);
    setOperationAction(ISD::FP_TO_UINT, VT, Custom);
  } else {
    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
  }
  setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
  setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
  setOperationAction(ISD::SELECT,            VT, Expand);
  setOperationAction(ISD::SELECT_CC,         VT, Expand);
  setOperationAction(ISD::VSELECT,           VT, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
  if (VT.isInteger()) {
    setOperationAction(ISD::SHL, VT, Custom);
    setOperationAction(ISD::SRA, VT, Custom);
    setOperationAction(ISD::SRL, VT, Custom);
  }

  // Promote all bit-wise operations.
  if (VT.isInteger() && VT != PromotedBitwiseVT) {
    setOperationAction(ISD::AND, VT, Promote);
    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
    setOperationAction(ISD::OR,  VT, Promote);
    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
    setOperationAction(ISD::XOR, VT, Promote);
    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
  }

  // Neon does not support vector divide/remainder operations.
  setOperationAction(ISD::SDIV, VT, Expand);
  setOperationAction(ISD::UDIV, VT, Expand);
  setOperationAction(ISD::FDIV, VT, Expand);
  setOperationAction(ISD::SREM, VT, Expand);
  setOperationAction(ISD::UREM, VT, Expand);
  setOperationAction(ISD::FREM, VT, Expand);

  if (!VT.isFloatingPoint() &&
      VT != MVT::v2i64 && VT != MVT::v1i64)
    for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
      setOperationAction(Opcode, VT, Legal);
}

void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
  addRegisterClass(VT, &ARM::DPRRegClass);
  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
}

void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
  addRegisterClass(VT, &ARM::DPairRegClass);
  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
}

void ARMTargetLowering::setAllExpand(MVT VT) {
  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
    setOperationAction(Opc, VT, Expand);

  // We support these really simple operations even on types where all
  // the actual arithmetic has to be broken down into simpler
  // operations or turned into library calls.
  setOperationAction(ISD::BITCAST, VT, Legal);
  setOperationAction(ISD::LOAD, VT, Legal);
  setOperationAction(ISD::STORE, VT, Legal);
  setOperationAction(ISD::UNDEF, VT, Legal);
}

void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
                                       LegalizeAction Action) {
  setLoadExtAction(ISD::EXTLOAD,  From, To, Action);
  setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
  setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
}

void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
  const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };

  for (auto VT : IntTypes) {
    addRegisterClass(VT, &ARM::MQPRRegClass);
    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
    setOperationAction(ISD::SHL, VT, Custom);
    setOperationAction(ISD::SRA, VT, Custom);
    setOperationAction(ISD::SRL, VT, Custom);
    setOperationAction(ISD::SMIN, VT, Legal);
    setOperationAction(ISD::SMAX, VT, Legal);
    setOperationAction(ISD::UMIN, VT, Legal);
    setOperationAction(ISD::UMAX, VT, Legal);
    setOperationAction(ISD::ABS, VT, Legal);
    setOperationAction(ISD::SETCC, VT, Custom);
    setOperationAction(ISD::MLOAD, VT, Custom);
    setOperationAction(ISD::MSTORE, VT, Legal);
    setOperationAction(ISD::CTLZ, VT, Legal);
    setOperationAction(ISD::CTTZ, VT, Custom);
    setOperationAction(ISD::BITREVERSE, VT, Legal);
    setOperationAction(ISD::BSWAP, VT, Legal);
    setOperationAction(ISD::SADDSAT, VT, Legal);
    setOperationAction(ISD::UADDSAT, VT, Legal);
    setOperationAction(ISD::SSUBSAT, VT, Legal);
    setOperationAction(ISD::USUBSAT, VT, Legal);

    // No native support for these.
    setOperationAction(ISD::UDIV, VT, Expand);
    setOperationAction(ISD::SDIV, VT, Expand);
    setOperationAction(ISD::UREM, VT, Expand);
    setOperationAction(ISD::SREM, VT, Expand);
    setOperationAction(ISD::CTPOP, VT, Expand);

    // Vector reductions
    setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
    setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
    setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
    setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
    setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);

    if (!HasMVEFP) {
      setOperationAction(ISD::SINT_TO_FP, VT, Expand);
      setOperationAction(ISD::UINT_TO_FP, VT, Expand);
      setOperationAction(ISD::FP_TO_SINT, VT, Expand);
      setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    }

    // Pre and Post inc are supported on loads and stores
    for (unsigned im = (unsigned)ISD::PRE_INC;
         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
      setIndexedLoadAction(im, VT, Legal);
      setIndexedStoreAction(im, VT, Legal);
    }
  }

  const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
  for (auto VT : FloatTypes) {
    addRegisterClass(VT, &ARM::MQPRRegClass);
    if (!HasMVEFP)
      setAllExpand(VT);

    // These are legal or custom whether we have MVE.fp or not
    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
    setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
    setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
    setOperationAction(ISD::SETCC, VT, Custom);
    setOperationAction(ISD::MLOAD, VT, Custom);
    setOperationAction(ISD::MSTORE, VT, Legal);

    // Pre and Post inc are supported on loads and stores
    for (unsigned im = (unsigned)ISD::PRE_INC;
         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
      setIndexedLoadAction(im, VT, Legal);
      setIndexedStoreAction(im, VT, Legal);
    }

    if (HasMVEFP) {
      setOperationAction(ISD::FMINNUM, VT, Legal);
      setOperationAction(ISD::FMAXNUM, VT, Legal);
      setOperationAction(ISD::FROUND, VT, Legal);

      // No native support for these.
      setOperationAction(ISD::FDIV, VT, Expand);
      setOperationAction(ISD::FREM, VT, Expand);
      setOperationAction(ISD::FSQRT, VT, Expand);
      setOperationAction(ISD::FSIN, VT, Expand);
      setOperationAction(ISD::FCOS, VT, Expand);
      setOperationAction(ISD::FPOW, VT, Expand);
      setOperationAction(ISD::FLOG, VT, Expand);
      setOperationAction(ISD::FLOG2, VT, Expand);
      setOperationAction(ISD::FLOG10, VT, Expand);
      setOperationAction(ISD::FEXP, VT, Expand);
      setOperationAction(ISD::FEXP2, VT, Expand);
      setOperationAction(ISD::FNEARBYINT, VT, Expand);
    }
  }

  // We 'support' these types up to bitcast/load/store level, regardless of
  // MVE integer-only / float support. Only doing FP data processing on the FP
  // vector types is inhibited at integer-only level.
  const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
  for (auto VT : LongTypes) {
    addRegisterClass(VT, &ARM::MQPRRegClass);
    setAllExpand(VT);
    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
  }
  // We can do bitwise operations on v2i64 vectors
  setOperationAction(ISD::AND, MVT::v2i64, Legal);
  setOperationAction(ISD::OR, MVT::v2i64, Legal);
  setOperationAction(ISD::XOR, MVT::v2i64, Legal);

  // It is legal to extload from v4i8 to v4i16 or v4i32.
  addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
  addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
  addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);

  // Some truncating stores are legal too.
  setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
  setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
  setTruncStoreAction(MVT::v8i16, MVT::v8i8,  Legal);

  // Pre and Post inc on these are legal, given the correct extends
  for (unsigned im = (unsigned)ISD::PRE_INC;
       im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    setIndexedLoadAction(im, MVT::v8i8, Legal);
    setIndexedStoreAction(im, MVT::v8i8, Legal);
    setIndexedLoadAction(im, MVT::v4i8, Legal);
    setIndexedStoreAction(im, MVT::v4i8, Legal);
    setIndexedLoadAction(im, MVT::v4i16, Legal);
    setIndexedStoreAction(im, MVT::v4i16, Legal);
  }

  // Predicate types
  const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1};
  for (auto VT : pTypes) {
    addRegisterClass(VT, &ARM::VCCRRegClass);
    setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
    setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    setOperationAction(ISD::SETCC, VT, Custom);
    setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
    setOperationAction(ISD::LOAD, VT, Custom);
    setOperationAction(ISD::STORE, VT, Custom);
  }
}

ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
                                     const ARMSubtarget &STI)
    : TargetLowering(TM), Subtarget(&STI) {
  RegInfo = Subtarget->getRegisterInfo();
  Itins = Subtarget->getInstrItineraryData();

  setBooleanContents(ZeroOrOneBooleanContent);
  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);

  if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
      !Subtarget->isTargetWatchOS()) {
    bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
    for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
      setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
                            IsHFTarget ? CallingConv::ARM_AAPCS_VFP
                                       : CallingConv::ARM_AAPCS);
  }

  if (Subtarget->isTargetMachO()) {
    // Uses VFP for Thumb libfuncs if available.
    if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
        Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
      static const struct {
        const RTLIB::Libcall Op;
        const char * const Name;
        const ISD::CondCode Cond;
      } LibraryCalls[] = {
        // Single-precision floating-point arithmetic.
        { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
        { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
        { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
        { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },

        // Double-precision floating-point arithmetic.
        { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
        { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
        { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
        { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },

        // Single-precision comparisons.
        { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
        { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
        { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
        { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
        { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
        { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
        { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
        { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },

        // Double-precision comparisons.
        { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
        { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
        { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
        { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
        { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
        { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
        { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
        { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },

        // Floating-point to integer conversions.
        // i64 conversions are done via library routines even when generating VFP
        // instructions, so use the same ones.
        { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
        { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
        { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
        { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },

        // Conversions between floating types.
        { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
        { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },

        // Integer to floating-point conversions.
        // i64 conversions are done via library routines even when generating VFP
        // instructions, so use the same ones.
        // FIXME: There appears to be some naming inconsistency in ARM libgcc:
        // e.g., __floatunsidf vs. __floatunssidfvfp.
        { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
        { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
        { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
        { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
      };

      for (const auto &LC : LibraryCalls) {
        setLibcallName(LC.Op, LC.Name);
        if (LC.Cond != ISD::SETCC_INVALID)
          setCmpLibcallCC(LC.Op, LC.Cond);
      }
    }
  }

  // These libcalls are not available in 32-bit.
  setLibcallName(RTLIB::SHL_I128, nullptr);
  setLibcallName(RTLIB::SRL_I128, nullptr);
  setLibcallName(RTLIB::SRA_I128, nullptr);

  // RTLIB
  if (Subtarget->isAAPCS_ABI() &&
      (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
       Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
    static const struct {
      const RTLIB::Libcall Op;
      const char * const Name;
      const CallingConv::ID CC;
      const ISD::CondCode Cond;
    } LibraryCalls[] = {
      // Double-precision floating-point arithmetic helper functions
      // RTABI chapter 4.1.2, Table 2
      { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },

      // Double-precision floating-point comparison helper functions
      // RTABI chapter 4.1.2, Table 3
      { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
      { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },

      // Single-precision floating-point arithmetic helper functions
      // RTABI chapter 4.1.2, Table 4
      { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },

      // Single-precision floating-point comparison helper functions
      // RTABI chapter 4.1.2, Table 5
      { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
      { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
      { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },

      // Floating-point to integer conversions.
      // RTABI chapter 4.1.2, Table 6
      { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },

      // Conversions between floating types.
      // RTABI chapter 4.1.2, Table 7
      { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },

      // Integer to floating-point conversions.
      // RTABI chapter 4.1.2, Table 8
      { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },

      // Long long helper functions
      // RTABI chapter 4.2, Table 9
      { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },

      // Integer division functions
      // RTABI chapter 4.3.1
      { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    };

    for (const auto &LC : LibraryCalls) {
      setLibcallName(LC.Op, LC.Name);
      setLibcallCallingConv(LC.Op, LC.CC);
      if (LC.Cond != ISD::SETCC_INVALID)
        setCmpLibcallCC(LC.Op, LC.Cond);
    }

    // EABI dependent RTLIB
    if (TM.Options.EABIVersion == EABI::EABI4 ||
        TM.Options.EABIVersion == EABI::EABI5) {
      static const struct {
        const RTLIB::Libcall Op;
        const char *const Name;
        const CallingConv::ID CC;
        const ISD::CondCode Cond;
      } MemOpsLibraryCalls[] = {
        // Memory operations
        // RTABI chapter 4.3.4
        { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
        { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
        { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
      };

      for (const auto &LC : MemOpsLibraryCalls) {
        setLibcallName(LC.Op, LC.Name);
        setLibcallCallingConv(LC.Op, LC.CC);
        if (LC.Cond != ISD::SETCC_INVALID)
          setCmpLibcallCC(LC.Op, LC.Cond);
      }
    }
  }

  if (Subtarget->isTargetWindows()) {
    static const struct {
      const RTLIB::Libcall Op;
      const char * const Name;
      const CallingConv::ID CC;
    } LibraryCalls[] = {
      { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
      { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
      { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
      { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
      { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
      { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
      { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
      { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
    };

    for (const auto &LC : LibraryCalls) {
      setLibcallName(LC.Op, LC.Name);
      setLibcallCallingConv(LC.Op, LC.CC);
    }
  }

  // Use divmod compiler-rt calls for iOS 5.0 and later.
  if (Subtarget->isTargetMachO() &&
      !(Subtarget->isTargetIOS() &&
        Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
  }

  // The half <-> float conversion functions are always soft-float on
  // non-watchos platforms, but are needed for some targets which use a
  // hard-float calling convention by default.
  if (!Subtarget->isTargetWatchABI()) {
    if (Subtarget->isAAPCS_ABI()) {
      setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
      setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
      setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
    } else {
      setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
      setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
      setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
    }
  }

  // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
  // a __gnu_ prefix (which is the default).
  if (Subtarget->isTargetAEABI()) {
    static const struct {
      const RTLIB::Libcall Op;
      const char * const Name;
      const CallingConv::ID CC;
    } LibraryCalls[] = {
      { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
      { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
      { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
    };

    for (const auto &LC : LibraryCalls) {
      setLibcallName(LC.Op, LC.Name);
      setLibcallCallingConv(LC.Op, LC.CC);
    }
  }

  if (Subtarget->isThumb1Only())
    addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
  else
    addRegisterClass(MVT::i32, &ARM::GPRRegClass);

  if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
      Subtarget->hasFPRegs()) {
    addRegisterClass(MVT::f32, &ARM::SPRRegClass);
    addRegisterClass(MVT::f64, &ARM::DPRRegClass);
    if (!Subtarget->hasVFP2Base())
      setAllExpand(MVT::f32);
    if (!Subtarget->hasFP64())
      setAllExpand(MVT::f64);
  }

  if (Subtarget->hasFullFP16()) {
    addRegisterClass(MVT::f16, &ARM::HPRRegClass);
    setOperationAction(ISD::BITCAST, MVT::i16, Custom);
    setOperationAction(ISD::BITCAST, MVT::i32, Custom);
    setOperationAction(ISD::BITCAST, MVT::f16, Custom);

    setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
    setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
  }

  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
    for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
      setTruncStoreAction(VT, InnerVT, Expand);
      addAllExtLoads(VT, InnerVT, Expand);
    }

    setOperationAction(ISD::MULHS, VT, Expand);
    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    setOperationAction(ISD::MULHU, VT, Expand);
    setOperationAction(ISD::UMUL_LOHI, VT, Expand);

    setOperationAction(ISD::BSWAP, VT, Expand);
  }

  setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
  setOperationAction(ISD::ConstantFP, MVT::f64, Custom);

  setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
  setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);

  if (Subtarget->hasMVEIntegerOps())
    addMVEVectorTypes(Subtarget->hasMVEFloatOps());

  // Combine low-overhead loop intrinsics so that we can lower i1 types.
  if (Subtarget->hasLOB()) {
    setTargetDAGCombine(ISD::BRCOND);
    setTargetDAGCombine(ISD::BR_CC);
  }

  if (Subtarget->hasNEON()) {
    addDRTypeForNEON(MVT::v2f32);
    addDRTypeForNEON(MVT::v8i8);
    addDRTypeForNEON(MVT::v4i16);
    addDRTypeForNEON(MVT::v2i32);
    addDRTypeForNEON(MVT::v1i64);

    addQRTypeForNEON(MVT::v4f32);
    addQRTypeForNEON(MVT::v2f64);
    addQRTypeForNEON(MVT::v16i8);
    addQRTypeForNEON(MVT::v8i16);
    addQRTypeForNEON(MVT::v4i32);
    addQRTypeForNEON(MVT::v2i64);

    if (Subtarget->hasFullFP16()) {
      addQRTypeForNEON(MVT::v8f16);
      addDRTypeForNEON(MVT::v4f16);
    }
  }

  if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
    // none of Neon, MVE or VFP supports any arithmetic operations on it.
    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
    // FIXME: Code duplication: FDIV and FREM are expanded always, see
    // ARMTargetLowering::addTypeForNEON method for details.
    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
    // FIXME: Create unittest.
    // In another words, find a way when "copysign" appears in DAG with vector
    // operands.
    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
    // FIXME: Code duplication: SETCC has custom operation action, see
    // ARMTargetLowering::addTypeForNEON method for details.
    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
    // FIXME: Create unittest for FNEG and for FABS.
    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
    setOperationAction(ISD::FMA, MVT::v2f64, Expand);
  }

  if (Subtarget->hasNEON()) {
    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
    // supported for v4f32.
    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
    setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
    setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
    setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
    setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);

    // Mark v2f32 intrinsics.
    setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
    setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
    setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
    setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
    setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
    setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
    setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
    setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
    setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
    setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
    setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
    setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
    setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
    setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);

    // Neon does not support some operations on v1i64 and v2i64 types.
    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
    // Custom handling for some quad-vector types to detect VMULL.
    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
    // Custom handling for some vector types to avoid expensive expansions
    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
    // a destination type that is wider than the source, and nor does
    // it have a FP_TO_[SU]INT instruction with a narrower destination than
    // source.
    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
    setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
    setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
    setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
    setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);

    setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
    setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);

    // NEON does not have single instruction CTPOP for vectors with element
    // types wider than 8-bits.  However, custom lowering can leverage the
    // v8i8/v16i8 vcnt instruction.
    setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
    setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
    setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
    setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
    setOperationAction(ISD::CTPOP,      MVT::v1i64, Custom);
    setOperationAction(ISD::CTPOP,      MVT::v2i64, Custom);

    setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
    setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);

    // NEON does not have single instruction CTTZ for vectors.
    setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
    setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
    setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
    setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);

    setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
    setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
    setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
    setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);

    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);

    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);

    // NEON only has FMA instructions as of VFP4.
    if (!Subtarget->hasVFP4Base()) {
      setOperationAction(ISD::FMA, MVT::v2f32, Expand);
      setOperationAction(ISD::FMA, MVT::v4f32, Expand);
    }

    setTargetDAGCombine(ISD::INTRINSIC_VOID);
    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    setTargetDAGCombine(ISD::SHL);
    setTargetDAGCombine(ISD::SRL);
    setTargetDAGCombine(ISD::SRA);
    setTargetDAGCombine(ISD::FP_TO_SINT);
    setTargetDAGCombine(ISD::FP_TO_UINT);
    setTargetDAGCombine(ISD::FDIV);
    setTargetDAGCombine(ISD::LOAD);

    // It is legal to extload from v4i8 to v4i16 or v4i32.
    for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
                   MVT::v2i32}) {
      for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
        setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
        setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
        setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
      }
    }
  }

  if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
    setTargetDAGCombine(ISD::BUILD_VECTOR);
    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
    setTargetDAGCombine(ISD::STORE);
    setTargetDAGCombine(ISD::SIGN_EXTEND);
    setTargetDAGCombine(ISD::ZERO_EXTEND);
    setTargetDAGCombine(ISD::ANY_EXTEND);
  }

  if (!Subtarget->hasFP64()) {
    // When targeting a floating-point unit with only single-precision
    // operations, f64 is legal for the few double-precision instructions which
    // are present However, no double-precision operations other than moves,
    // loads and stores are provided by the hardware.
    setOperationAction(ISD::FADD,       MVT::f64, Expand);
    setOperationAction(ISD::FSUB,       MVT::f64, Expand);
    setOperationAction(ISD::FMUL,       MVT::f64, Expand);
    setOperationAction(ISD::FMA,        MVT::f64, Expand);
    setOperationAction(ISD::FDIV,       MVT::f64, Expand);
    setOperationAction(ISD::FREM,       MVT::f64, Expand);
    setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
    setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
    setOperationAction(ISD::FNEG,       MVT::f64, Expand);
    setOperationAction(ISD::FABS,       MVT::f64, Expand);
    setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
    setOperationAction(ISD::FSIN,       MVT::f64, Expand);
    setOperationAction(ISD::FCOS,       MVT::f64, Expand);
    setOperationAction(ISD::FPOW,       MVT::f64, Expand);
    setOperationAction(ISD::FLOG,       MVT::f64, Expand);
    setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
    setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
    setOperationAction(ISD::FEXP,       MVT::f64, Expand);
    setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
    setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
    setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
    setOperationAction(ISD::FRINT,      MVT::f64, Expand);
    setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
    setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
    setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
    setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
  }

  if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
    setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
    if (Subtarget->hasFullFP16())
      setOperationAction(ISD::FP_ROUND,  MVT::f16, Custom);
  }

  if (!Subtarget->hasFP16())
    setOperationAction(ISD::FP_EXTEND,  MVT::f32, Custom);

  if (!Subtarget->hasFP64())
    setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);

  computeRegisterProperties(Subtarget->getRegisterInfo());

  // ARM does not have floating-point extending loads.
  for (MVT VT : MVT::fp_valuetypes()) {
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
  }

  // ... or truncating stores
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
  setTruncStoreAction(MVT::f64, MVT::f16, Expand);

  // ARM does not have i1 sign extending load.
  for (MVT VT : MVT::integer_valuetypes())
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);

  // ARM supports all 4 flavors of integer indexed load / store.
  if (!Subtarget->isThumb1Only()) {
    for (unsigned im = (unsigned)ISD::PRE_INC;
         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
      setIndexedLoadAction(im,  MVT::i1,  Legal);
      setIndexedLoadAction(im,  MVT::i8,  Legal);
      setIndexedLoadAction(im,  MVT::i16, Legal);
      setIndexedLoadAction(im,  MVT::i32, Legal);
      setIndexedStoreAction(im, MVT::i1,  Legal);
      setIndexedStoreAction(im, MVT::i8,  Legal);
      setIndexedStoreAction(im, MVT::i16, Legal);
      setIndexedStoreAction(im, MVT::i32, Legal);
    }
  } else {
    // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
    setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
    setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
  }

  setOperationAction(ISD::SADDO, MVT::i32, Custom);
  setOperationAction(ISD::UADDO, MVT::i32, Custom);
  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
  setOperationAction(ISD::USUBO, MVT::i32, Custom);

  setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
  setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
  if (Subtarget->hasDSP()) {
    setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
    setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
    setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
    setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
  }
  if (Subtarget->hasBaseDSP()) {
    setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
    setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
  }

  // i64 operation support.
  setOperationAction(ISD::MUL,     MVT::i64, Expand);
  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
  if (Subtarget->isThumb1Only()) {
    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
  }
  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
      || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
    setOperationAction(ISD::MULHS, MVT::i32, Expand);

  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
  setOperationAction(ISD::SRL,       MVT::i64, Custom);
  setOperationAction(ISD::SRA,       MVT::i64, Custom);
  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);

  // MVE lowers 64 bit shifts to lsll and lsrl
  // assuming that ISD::SRL and SRA of i64 are already marked custom
  if (Subtarget->hasMVEIntegerOps())
    setOperationAction(ISD::SHL, MVT::i64, Custom);

  // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
  if (Subtarget->isThumb1Only()) {
    setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
    setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
    setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
  }

  if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
    setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);

  // ARM does not have ROTL.
  setOperationAction(ISD::ROTL, MVT::i32, Expand);
  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
    setOperationAction(ISD::ROTL, VT, Expand);
    setOperationAction(ISD::ROTR, VT, Expand);
  }
  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
  }

  // @llvm.readcyclecounter requires the Performance Monitors extension.
  // Default to the 0 expansion on unsupported platforms.
  // FIXME: Technically there are older ARM CPUs that have
  // implementation-specific ways of obtaining this information.
  if (Subtarget->hasPerfMon())
    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);

  // Only ARMv6 has BSWAP.
  if (!Subtarget->hasV6Ops())
    setOperationAction(ISD::BSWAP, MVT::i32, Expand);

  bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
                                        : Subtarget->hasDivideInARMMode();
  if (!hasDivide) {
    // These are expanded into libcalls if the cpu doesn't have HW divider.
    setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
    setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
  }

  if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
    setOperationAction(ISD::SDIV, MVT::i32, Custom);
    setOperationAction(ISD::UDIV, MVT::i32, Custom);

    setOperationAction(ISD::SDIV, MVT::i64, Custom);
    setOperationAction(ISD::UDIV, MVT::i64, Custom);
  }

  setOperationAction(ISD::SREM,  MVT::i32, Expand);
  setOperationAction(ISD::UREM,  MVT::i32, Expand);

  // Register based DivRem for AEABI (RTABI 4.2)
  if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
      Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
      Subtarget->isTargetWindows()) {
    setOperationAction(ISD::SREM, MVT::i64, Custom);
    setOperationAction(ISD::UREM, MVT::i64, Custom);
    HasStandaloneRem = false;

    if (Subtarget->isTargetWindows()) {
      const struct {
        const RTLIB::Libcall Op;
        const char * const Name;
        const CallingConv::ID CC;
      } LibraryCalls[] = {
        { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
        { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
        { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
        { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },

        { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
        { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
        { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
        { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
      };

      for (const auto &LC : LibraryCalls) {
        setLibcallName(LC.Op, LC.Name);
        setLibcallCallingConv(LC.Op, LC.CC);
      }
    } else {
      const struct {
        const RTLIB::Libcall Op;
        const char * const Name;
        const CallingConv::ID CC;
      } LibraryCalls[] = {
        { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
        { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
        { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
        { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },

        { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
        { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
        { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
        { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
      };

      for (const auto &LC : LibraryCalls) {
        setLibcallName(LC.Op, LC.Name);
        setLibcallCallingConv(LC.Op, LC.CC);
      }
    }

    setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
    setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
    setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
    setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
  } else {
    setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
  }

  if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
    for (auto &VT : {MVT::f32, MVT::f64})
      setOperationAction(ISD::FPOWI, VT, Custom);

  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);

  setOperationAction(ISD::TRAP, MVT::Other, Legal);
  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);

  // Use the default implementation.
  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);

  if (Subtarget->isTargetWindows())
    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
  else
    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);

  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
  // the default expansion.
  InsertFencesForAtomic = false;
  if (Subtarget->hasAnyDataBarrier() &&
      (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
    // ATOMIC_FENCE needs custom lowering; the others should have been expanded
    // to ldrex/strex loops already.
    setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
    if (!Subtarget->isThumb() || !Subtarget->isMClass())
      setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);

    // On v8, we have particularly efficient implementations of atomic fences
    // if they can be combined with nearby atomic loads and stores.
    if (!Subtarget->hasAcquireRelease() ||
        getTargetMachine().getOptLevel() == 0) {
      // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
      InsertFencesForAtomic = true;
    }
  } else {
    // If there's anything we can use as a barrier, go through custom lowering
    // for ATOMIC_FENCE.
    // If target has DMB in thumb, Fences can be inserted.
    if (Subtarget->hasDataBarrier())
      InsertFencesForAtomic = true;

    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
                       Subtarget->hasAnyDataBarrier() ? Custom : Expand);

    // Set them all for expansion, which will force libcalls.
    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
    // Unordered/Monotonic case.
    if (!InsertFencesForAtomic) {
      setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
      setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
    }
  }

  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);

  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
  if (!Subtarget->hasV6Ops()) {
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
  }
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);

  if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
      !Subtarget->isThumb1Only()) {
    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
    // iff target supports vfp2.
    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
  }

  // We want to custom lower some of our intrinsics.
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
  setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
  if (Subtarget->useSjLjEH())
    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");

  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
  if (Subtarget->hasFullFP16()) {
    setOperationAction(ISD::SETCC,     MVT::f16, Expand);
    setOperationAction(ISD::SELECT,    MVT::f16, Custom);
    setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
  }

  setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);

  setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
  if (Subtarget->hasFullFP16())
      setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);

  // We don't support sin/cos/fmod/copysign/pow
  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
  setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
  setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
  setOperationAction(ISD::FREM,      MVT::f64, Expand);
  setOperationAction(ISD::FREM,      MVT::f32, Expand);
  if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
      !Subtarget->isThumb1Only()) {
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
  }
  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
  setOperationAction(ISD::FPOW,      MVT::f32, Expand);

  if (!Subtarget->hasVFP4Base()) {
    setOperationAction(ISD::FMA, MVT::f64, Expand);
    setOperationAction(ISD::FMA, MVT::f32, Expand);
  }

  // Various VFP goodness
  if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
    // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
    if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
      setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
      setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
    }

    // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
    if (!Subtarget->hasFP16()) {
      setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
      setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
    }
  }

  // Use __sincos_stret if available.
  if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
      getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
    setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
    setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
  }

  // FP-ARMv8 implements a lot of rounding-like FP operations.
  if (Subtarget->hasFPARMv8Base()) {
    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    setOperationAction(ISD::FCEIL, MVT::f32, Legal);
    setOperationAction(ISD::FROUND, MVT::f32, Legal);
    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
    setOperationAction(ISD::FRINT, MVT::f32, Legal);
    setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
    setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
    if (Subtarget->hasNEON()) {
      setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
      setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
      setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
      setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
    }

    if (Subtarget->hasFP64()) {
      setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
      setOperationAction(ISD::FCEIL, MVT::f64, Legal);
      setOperationAction(ISD::FROUND, MVT::f64, Legal);
      setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
      setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
      setOperationAction(ISD::FRINT, MVT::f64, Legal);
      setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
      setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
    }
  }

  // FP16 often need to be promoted to call lib functions
  if (Subtarget->hasFullFP16()) {
    setOperationAction(ISD::FREM, MVT::f16, Promote);
    setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
    setOperationAction(ISD::FSIN, MVT::f16, Promote);
    setOperationAction(ISD::FCOS, MVT::f16, Promote);
    setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
    setOperationAction(ISD::FPOWI, MVT::f16, Promote);
    setOperationAction(ISD::FPOW, MVT::f16, Promote);
    setOperationAction(ISD::FEXP, MVT::f16, Promote);
    setOperationAction(ISD::FEXP2, MVT::f16, Promote);
    setOperationAction(ISD::FLOG, MVT::f16, Promote);
    setOperationAction(ISD::FLOG10, MVT::f16, Promote);
    setOperationAction(ISD::FLOG2, MVT::f16, Promote);

    setOperationAction(ISD::FROUND, MVT::f16, Legal);
  }

  if (Subtarget->hasNEON()) {
    // vmin and vmax aren't available in a scalar form, so we use
    // a NEON instruction with an undef lane instead.
    setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
    setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
    setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
    setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
    setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
    setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
    setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
    setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);

    if (Subtarget->hasFullFP16()) {
      setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
      setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
      setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
      setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);

      setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
      setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
      setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
      setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
    }
  }

  // We have target-specific dag combine patterns for the following nodes:
  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
  setTargetDAGCombine(ISD::ADD);
  setTargetDAGCombine(ISD::SUB);
  setTargetDAGCombine(ISD::MUL);
  setTargetDAGCombine(ISD::AND);
  setTargetDAGCombine(ISD::OR);
  setTargetDAGCombine(ISD::XOR);

  if (Subtarget->hasV6Ops())
    setTargetDAGCombine(ISD::SRL);
  if (Subtarget->isThumb1Only())
    setTargetDAGCombine(ISD::SHL);

  setStackPointerRegisterToSaveRestore(ARM::SP);

  if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
      !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
    setSchedulingPreference(Sched::RegPressure);
  else
    setSchedulingPreference(Sched::Hybrid);

  //// temporary - rewrite interface to use type
  MaxStoresPerMemset = 8;
  MaxStoresPerMemsetOptSize = 4;
  MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
  MaxStoresPerMemcpyOptSize = 2;
  MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
  MaxStoresPerMemmoveOptSize = 2;

  // On ARM arguments smaller than 4 bytes are extended, so all arguments
  // are at least 4 bytes aligned.
  setMinStackArgumentAlignment(Align(4));

  // Prefer likely predicted branches to selects on out-of-order cores.
  PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();

  setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));

  setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));

  if (Subtarget->isThumb() || Subtarget->isThumb2())
    setTargetDAGCombine(ISD::ABS);
}

bool ARMTargetLowering::useSoftFloat() const {
  return Subtarget->useSoftFloat();
}

// FIXME: It might make sense to define the representative register class as the
// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
// SPR's representative would be DPR_VFP2. This should work well if register
// pressure tracking were modified such that a register use would increment the
// pressure of the register class's representative and all of it's super
// classes' representatives transitively. We have not implemented this because
// of the difficulty prior to coalescing of modeling operand register classes
// due to the common occurrence of cross class copies and subregister insertions
// and extractions.
std::pair<const TargetRegisterClass *, uint8_t>
ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
                                           MVT VT) const {
  const TargetRegisterClass *RRC = nullptr;
  uint8_t Cost = 1;
  switch (VT.SimpleTy) {
  default:
    return TargetLowering::findRepresentativeClass(TRI, VT);
  // Use DPR as representative register class for all floating point
  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
  // the cost is 1 for both f32 and f64.
  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
    RRC = &ARM::DPRRegClass;
    // When NEON is used for SP, only half of the register file is available
    // because operations that define both SP and DP results will be constrained
    // to the VFP2 class (D0-D15). We currently model this constraint prior to
    // coalescing by double-counting the SP regs. See the FIXME above.
    if (Subtarget->useNEONForSinglePrecisionFP())
      Cost = 2;
    break;
  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
  case MVT::v4f32: case MVT::v2f64:
    RRC = &ARM::DPRRegClass;
    Cost = 2;
    break;
  case MVT::v4i64:
    RRC = &ARM::DPRRegClass;
    Cost = 4;
    break;
  case MVT::v8i64:
    RRC = &ARM::DPRRegClass;
    Cost = 8;
    break;
  }
  return std::make_pair(RRC, Cost);
}

const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((ARMISD::NodeType)Opcode) {
  case ARMISD::FIRST_NUMBER:  break;
  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
  case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
  case ARMISD::CALL:          return "ARMISD::CALL";
  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
  case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
  case ARMISD::CMP:           return "ARMISD::CMP";
  case ARMISD::CMN:           return "ARMISD::CMN";
  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";

  case ARMISD::CMOV:          return "ARMISD::CMOV";
  case ARMISD::SUBS:          return "ARMISD::SUBS";

  case ARMISD::SSAT:          return "ARMISD::SSAT";
  case ARMISD::USAT:          return "ARMISD::USAT";

  case ARMISD::ASRL:          return "ARMISD::ASRL";
  case ARMISD::LSRL:          return "ARMISD::LSRL";
  case ARMISD::LSLL:          return "ARMISD::LSLL";

  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
  case ARMISD::RRX:           return "ARMISD::RRX";

  case ARMISD::ADDC:          return "ARMISD::ADDC";
  case ARMISD::ADDE:          return "ARMISD::ADDE";
  case ARMISD::SUBC:          return "ARMISD::SUBC";
  case ARMISD::SUBE:          return "ARMISD::SUBE";
  case ARMISD::LSLS:          return "ARMISD::LSLS";

  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
  case ARMISD::VMOVhr:        return "ARMISD::VMOVhr";
  case ARMISD::VMOVrh:        return "ARMISD::VMOVrh";
  case ARMISD::VMOVSR:        return "ARMISD::VMOVSR";

  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
  case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
  case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";

  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";

  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";

  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";

  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";

  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";

  case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
  case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";

  case ARMISD::PREDICATE_CAST: return "ARMISD::PREDICATE_CAST";
  case ARMISD::VCMP:          return "ARMISD::VCMP";
  case ARMISD::VCMPZ:         return "ARMISD::VCMPZ";
  case ARMISD::VTST:          return "ARMISD::VTST";

  case ARMISD::VSHLs:         return "ARMISD::VSHLs";
  case ARMISD::VSHLu:         return "ARMISD::VSHLu";
  case ARMISD::VSHLIMM:       return "ARMISD::VSHLIMM";
  case ARMISD::VSHRsIMM:      return "ARMISD::VSHRsIMM";
  case ARMISD::VSHRuIMM:      return "ARMISD::VSHRuIMM";
  case ARMISD::VRSHRsIMM:     return "ARMISD::VRSHRsIMM";
  case ARMISD::VRSHRuIMM:     return "ARMISD::VRSHRuIMM";
  case ARMISD::VRSHRNIMM:     return "ARMISD::VRSHRNIMM";
  case ARMISD::VQSHLsIMM:     return "ARMISD::VQSHLsIMM";
  case ARMISD::VQSHLuIMM:     return "ARMISD::VQSHLuIMM";
  case ARMISD::VQSHLsuIMM:    return "ARMISD::VQSHLsuIMM";
  case ARMISD::VQSHRNsIMM:    return "ARMISD::VQSHRNsIMM";
  case ARMISD::VQSHRNuIMM:    return "ARMISD::VQSHRNuIMM";
  case ARMISD::VQSHRNsuIMM:   return "ARMISD::VQSHRNsuIMM";
  case ARMISD::VQRSHRNsIMM:   return "ARMISD::VQRSHRNsIMM";
  case ARMISD::VQRSHRNuIMM:   return "ARMISD::VQRSHRNuIMM";
  case ARMISD::VQRSHRNsuIMM:  return "ARMISD::VQRSHRNsuIMM";
  case ARMISD::VSLIIMM:       return "ARMISD::VSLIIMM";
  case ARMISD::VSRIIMM:       return "ARMISD::VSRIIMM";
  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
  case ARMISD::VDUP:          return "ARMISD::VDUP";
  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
  case ARMISD::VEXT:          return "ARMISD::VEXT";
  case ARMISD::VREV64:        return "ARMISD::VREV64";
  case ARMISD::VREV32:        return "ARMISD::VREV32";
  case ARMISD::VREV16:        return "ARMISD::VREV16";
  case ARMISD::VZIP:          return "ARMISD::VZIP";
  case ARMISD::VUZP:          return "ARMISD::VUZP";
  case ARMISD::VTRN:          return "ARMISD::VTRN";
  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
  case ARMISD::VMOVN:         return "ARMISD::VMOVN";
  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
  case ARMISD::UMAAL:         return "ARMISD::UMAAL";
  case ARMISD::UMLAL:         return "ARMISD::UMLAL";
  case ARMISD::SMLAL:         return "ARMISD::SMLAL";
  case ARMISD::SMLALBB:       return "ARMISD::SMLALBB";
  case ARMISD::SMLALBT:       return "ARMISD::SMLALBT";
  case ARMISD::SMLALTB:       return "ARMISD::SMLALTB";
  case ARMISD::SMLALTT:       return "ARMISD::SMLALTT";
  case ARMISD::SMULWB:        return "ARMISD::SMULWB";
  case ARMISD::SMULWT:        return "ARMISD::SMULWT";
  case ARMISD::SMLALD:        return "ARMISD::SMLALD";
  case ARMISD::SMLALDX:       return "ARMISD::SMLALDX";
  case ARMISD::SMLSLD:        return "ARMISD::SMLSLD";
  case ARMISD::SMLSLDX:       return "ARMISD::SMLSLDX";
  case ARMISD::SMMLAR:        return "ARMISD::SMMLAR";
  case ARMISD::SMMLSR:        return "ARMISD::SMMLSR";
  case ARMISD::QADD16b:       return "ARMISD::QADD16b";
  case ARMISD::QSUB16b:       return "ARMISD::QSUB16b";
  case ARMISD::QADD8b:        return "ARMISD::QADD8b";
  case ARMISD::QSUB8b:        return "ARMISD::QSUB8b";
  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
  case ARMISD::BFI:           return "ARMISD::BFI";
  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
  case ARMISD::VBSL:          return "ARMISD::VBSL";
  case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
  case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
  case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
  case ARMISD::WLS:           return "ARMISD::WLS";
  case ARMISD::LE:            return "ARMISD::LE";
  case ARMISD::LOOP_DEC:      return "ARMISD::LOOP_DEC";
  case ARMISD::CSINV:         return "ARMISD::CSINV";
  case ARMISD::CSNEG:         return "ARMISD::CSNEG";
  case ARMISD::CSINC:         return "ARMISD::CSINC";
  }
  return nullptr;
}

EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
                                          EVT VT) const {
  if (!VT.isVector())
    return getPointerTy(DL);

  // MVE has a predicate register.
  if (Subtarget->hasMVEIntegerOps() &&
      (VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8))
    return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
  return VT.changeVectorElementTypeToInteger();
}

/// getRegClassFor - Return the register class that should be used for the
/// specified value type.
const TargetRegisterClass *
ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
  (void)isDivergent;
  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
  // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
  // MVE Q registers.
  if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
    if (VT == MVT::v4i64)
      return &ARM::QQPRRegClass;
    if (VT == MVT::v8i64)
      return &ARM::QQQQPRRegClass;
  }
  return TargetLowering::getRegClassFor(VT);
}

// memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
// source/dest is aligned and the copy size is large enough. We therefore want
// to align such objects passed to memory intrinsics.
bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
                                               unsigned &PrefAlign) const {
  if (!isa<MemIntrinsic>(CI))
    return false;
  MinSize = 8;
  // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
  // cycle faster than 4-byte aligned LDM.
  PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
  return true;
}

// Create a fast isel object.
FastISel *
ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
                                  const TargetLibraryInfo *libInfo) const {
  return ARM::createFastISel(funcInfo, libInfo);
}

Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
  unsigned NumVals = N->getNumValues();
  if (!NumVals)
    return Sched::RegPressure;

  for (unsigned i = 0; i != NumVals; ++i) {
    EVT VT = N->getValueType(i);
    if (VT == MVT::Glue || VT == MVT::Other)
      continue;
    if (VT.isFloatingPoint() || VT.isVector())
      return Sched::ILP;
  }

  if (!N->isMachineOpcode())
    return Sched::RegPressure;

  // Load are scheduled for latency even if there instruction itinerary
  // is not available.
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());

  if (MCID.getNumDefs() == 0)
    return Sched::RegPressure;
  if (!Itins->isEmpty() &&
      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
    return Sched::ILP;

  return Sched::RegPressure;
}

//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//

static bool isSRL16(const SDValue &Op) {
  if (Op.getOpcode() != ISD::SRL)
    return false;
  if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
    return Const->getZExtValue() == 16;
  return false;
}

static bool isSRA16(const SDValue &Op) {
  if (Op.getOpcode() != ISD::SRA)
    return false;
  if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
    return Const->getZExtValue() == 16;
  return false;
}

static bool isSHL16(const SDValue &Op) {
  if (Op.getOpcode() != ISD::SHL)
    return false;
  if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
    return Const->getZExtValue() == 16;
  return false;
}

// Check for a signed 16-bit value. We special case SRA because it makes it
// more simple when also looking for SRAs that aren't sign extending a
// smaller value. Without the check, we'd need to take extra care with
// checking order for some operations.
static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
  if (isSRA16(Op))
    return isSHL16(Op.getOperand(0));
  return DAG.ComputeNumSignBits(Op) == 17;
}

/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
  switch (CC) {
  default: llvm_unreachable("Unknown condition code!");
  case ISD::SETNE:  return ARMCC::NE;
  case ISD::SETEQ:  return ARMCC::EQ;
  case ISD::SETGT:  return ARMCC::GT;
  case ISD::SETGE:  return ARMCC::GE;
  case ISD::SETLT:  return ARMCC::LT;
  case ISD::SETLE:  return ARMCC::LE;
  case ISD::SETUGT: return ARMCC::HI;
  case ISD::SETUGE: return ARMCC::HS;
  case ISD::SETULT: return ARMCC::LO;
  case ISD::SETULE: return ARMCC::LS;
  }
}

/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
                        ARMCC::CondCodes &CondCode2) {
  CondCode2 = ARMCC::AL;
  switch (CC) {
  default: llvm_unreachable("Unknown FP condition!");
  case ISD::SETEQ:
  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
  case ISD::SETGT:
  case ISD::SETOGT: CondCode = ARMCC::GT; break;
  case ISD::SETGE:
  case ISD::SETOGE: CondCode = ARMCC::GE; break;
  case ISD::SETOLT: CondCode = ARMCC::MI; break;
  case ISD::SETOLE: CondCode = ARMCC::LS; break;
  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
  case ISD::SETO:   CondCode = ARMCC::VC; break;
  case ISD::SETUO:  CondCode = ARMCC::VS; break;
  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
  case ISD::SETUGT: CondCode = ARMCC::HI; break;
  case ISD::SETUGE: CondCode = ARMCC::PL; break;
  case ISD::SETLT:
  case ISD::SETULT: CondCode = ARMCC::LT; break;
  case ISD::SETLE:
  case ISD::SETULE: CondCode = ARMCC::LE; break;
  case ISD::SETNE:
  case ISD::SETUNE: CondCode = ARMCC::NE; break;
  }
}

//===----------------------------------------------------------------------===//
//                      Calling Convention Implementation
//===----------------------------------------------------------------------===//

/// getEffectiveCallingConv - Get the effective calling convention, taking into
/// account presence of floating point hardware and calling convention
/// limitations, such as support for variadic functions.
CallingConv::ID
ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
                                           bool isVarArg) const {
  switch (CC) {
  default:
    report_fatal_error("Unsupported calling convention");
  case CallingConv::ARM_AAPCS:
  case CallingConv::ARM_APCS:
  case CallingConv::GHC:
  case CallingConv::CFGuard_Check:
    return CC;
  case CallingConv::PreserveMost:
    return CallingConv::PreserveMost;
  case CallingConv::ARM_AAPCS_VFP:
  case CallingConv::Swift:
    return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
  case CallingConv::C:
    if (!Subtarget->isAAPCS_ABI())
      return CallingConv::ARM_APCS;
    else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
             !isVarArg)
      return CallingConv::ARM_AAPCS_VFP;
    else
      return CallingConv::ARM_AAPCS;
  case CallingConv::Fast:
  case CallingConv::CXX_FAST_TLS:
    if (!Subtarget->isAAPCS_ABI()) {
      if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
        return CallingConv::Fast;
      return CallingConv::ARM_APCS;
    } else if (Subtarget->hasVFP2Base() &&
               !Subtarget->isThumb1Only() && !isVarArg)
      return CallingConv::ARM_AAPCS_VFP;
    else
      return CallingConv::ARM_AAPCS;
  }
}

CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
                                                 bool isVarArg) const {
  return CCAssignFnForNode(CC, false, isVarArg);
}

CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
                                                   bool isVarArg) const {
  return CCAssignFnForNode(CC, true, isVarArg);
}

/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
/// CallingConvention.
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
                                                 bool Return,
                                                 bool isVarArg) const {
  switch (getEffectiveCallingConv(CC, isVarArg)) {
  default:
    report_fatal_error("Unsupported calling convention");
  case CallingConv::ARM_APCS:
    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
  case CallingConv::ARM_AAPCS:
    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
  case CallingConv::ARM_AAPCS_VFP:
    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
  case CallingConv::Fast:
    return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
  case CallingConv::GHC:
    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
  case CallingConv::PreserveMost:
    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
  case CallingConv::CFGuard_Check:
    return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
  }
}

/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue ARMTargetLowering::LowerCallResult(
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
    SDValue ThisVal) const {
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());
  CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign VA = RVLocs[i];

    // Pass 'this' value directly from the argument to return value, to avoid
    // reg unit interference
    if (i == 0 && isThisReturn) {
      assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
             "unexpected return calling convention register assignment");
      InVals.push_back(ThisVal);
      continue;
    }

    SDValue Val;
    if (VA.needsCustom()) {
      // Handle f64 or half of a v2f64.
      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
                                      InFlag);
      Chain = Lo.getValue(1);
      InFlag = Lo.getValue(2);
      VA = RVLocs[++i]; // skip ahead to next loc
      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
                                      InFlag);
      Chain = Hi.getValue(1);
      InFlag = Hi.getValue(2);
      if (!Subtarget->isLittle())
        std::swap (Lo, Hi);
      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);

      if (VA.getLocVT() == MVT::v2f64) {
        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
                          DAG.getConstant(0, dl, MVT::i32));

        VA = RVLocs[++i]; // skip ahead to next loc
        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
        Chain = Lo.getValue(1);
        InFlag = Lo.getValue(2);
        VA = RVLocs[++i]; // skip ahead to next loc
        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
        Chain = Hi.getValue(1);
        InFlag = Hi.getValue(2);
        if (!Subtarget->isLittle())
          std::swap (Lo, Hi);
        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
                          DAG.getConstant(1, dl, MVT::i32));
      }
    } else {
      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
                               InFlag);
      Chain = Val.getValue(1);
      InFlag = Val.getValue(2);
    }

    switch (VA.getLocInfo()) {
    default: llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full: break;
    case CCValAssign::BCvt:
      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
      break;
    }

    InVals.push_back(Val);
  }

  return Chain;
}

/// LowerMemOpCallTo - Store the argument to the stack.
SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
                                            SDValue Arg, const SDLoc &dl,
                                            SelectionDAG &DAG,
                                            const CCValAssign &VA,
                                            ISD::ArgFlagsTy Flags) const {
  unsigned LocMemOffset = VA.getLocMemOffset();
  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
                       StackPtr, PtrOff);
  return DAG.getStore(
      Chain, dl, Arg, PtrOff,
      MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
}

void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
                                         SDValue Chain, SDValue &Arg,
                                         RegsToPassVector &RegsToPass,
                                         CCValAssign &VA, CCValAssign &NextVA,
                                         SDValue &StackPtr,
                                         SmallVectorImpl<SDValue> &MemOpChains,
                                         ISD::ArgFlagsTy Flags) const {
  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
  unsigned id = Subtarget->isLittle() ? 0 : 1;
  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));

  if (NextVA.isRegLoc())
    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
  else {
    assert(NextVA.isMemLoc());
    if (!StackPtr.getNode())
      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
                                    getPointerTy(DAG.getDataLayout()));

    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
                                           dl, DAG, NextVA,
                                           Flags));
  }
}

/// LowerCall - Lowering a call into a callseq_start <-
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
/// nodes.
SDValue
ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                             SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG                     = CLI.DAG;
  SDLoc &dl                             = CLI.DL;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
  SDValue Chain                         = CLI.Chain;
  SDValue Callee                        = CLI.Callee;
  bool &isTailCall                      = CLI.IsTailCall;
  CallingConv::ID CallConv              = CLI.CallConv;
  bool doesNotRet                       = CLI.DoesNotReturn;
  bool isVarArg                         = CLI.IsVarArg;

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFunction::CallSiteInfo CSInfo;
  bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
  bool isThisReturn = false;
  auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
  bool PreferIndirect = false;

  // Disable tail calls if they're not supported.
  if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
    isTailCall = false;

  if (isa<GlobalAddressSDNode>(Callee)) {
    // If we're optimizing for minimum size and the function is called three or
    // more times in this block, we can improve codesize by calling indirectly
    // as BLXr has a 16-bit encoding.
    auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
    if (CLI.CS) {
      auto *BB = CLI.CS.getParent();
      PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
                       count_if(GV->users(), [&BB](const User *U) {
                         return isa<Instruction>(U) &&
                                cast<Instruction>(U)->getParent() == BB;
                       }) > 2;
    }
  }
  if (isTailCall) {
    // Check if it's really possible to do a tail call.
    isTailCall = IsEligibleForTailCallOptimization(
        Callee, CallConv, isVarArg, isStructRet,
        MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
        PreferIndirect);
    if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
      report_fatal_error("failed to perform tail call elimination on a call "
                         "site marked musttail");
    // We don't support GuaranteedTailCallOpt for ARM, only automatically
    // detected sibcalls.
    if (isTailCall)
      ++NumTailCalls;
  }

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());
  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));

  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();

  if (isTailCall) {
    // For tail calls, memory operands are available in our caller's stack.
    NumBytes = 0;
  } else {
    // Adjust the stack pointer for the new arguments...
    // These operations are automatically eliminated by the prolog/epilog pass
    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
  }

  SDValue StackPtr =
      DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));

  RegsToPassVector RegsToPass;
  SmallVector<SDValue, 8> MemOpChains;

  // Walk the register/memloc assignments, inserting copies/loads.  In the case
  // of tail call optimization, arguments are handled later.
  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
       i != e;
       ++i, ++realArgIdx) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = OutVals[realArgIdx];
    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
    bool isByVal = Flags.isByVal();

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default: llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full: break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
      break;
    }

    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
    if (VA.needsCustom()) {
      if (VA.getLocVT() == MVT::v2f64) {
        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
                                  DAG.getConstant(0, dl, MVT::i32));
        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
                                  DAG.getConstant(1, dl, MVT::i32));

        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);

        VA = ArgLocs[++i]; // skip ahead to next loc
        if (VA.isRegLoc()) {
          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
        } else {
          assert(VA.isMemLoc());

          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
                                                 dl, DAG, VA, Flags));
        }
      } else {
        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
                         StackPtr, MemOpChains, Flags);
      }
    } else if (VA.isRegLoc()) {
      if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
          Outs[0].VT == MVT::i32) {
        assert(VA.getLocVT() == MVT::i32 &&
               "unexpected calling convention register assignment");
        assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
               "unexpected use of 'returned'");
        isThisReturn = true;
      }
      const TargetOptions &Options = DAG.getTarget().Options;
      if (Options.EnableDebugEntryValues)
        CSInfo.emplace_back(VA.getLocReg(), i);
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    } else if (isByVal) {
      assert(VA.isMemLoc());
      unsigned offset = 0;

      // True if this byval aggregate will be split between registers
      // and memory.
      unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
      unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();

      if (CurByValIdx < ByValArgsCount) {

        unsigned RegBegin, RegEnd;
        CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);

        EVT PtrVT =
            DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
        unsigned int i, j;
        for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
          SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
                                     MachinePointerInfo(),
                                     DAG.InferPtrAlignment(AddArg));
          MemOpChains.push_back(Load.getValue(1));
          RegsToPass.push_back(std::make_pair(j, Load));
        }

        // If parameter size outsides register area, "offset" value
        // helps us to calculate stack slot for remained part properly.
        offset = RegEnd - RegBegin;

        CCInfo.nextInRegsParam();
      }

      if (Flags.getByValSize() > 4*offset) {
        auto PtrVT = getPointerTy(DAG.getDataLayout());
        unsigned LocMemOffset = VA.getLocMemOffset();
        SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
        SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
        SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
        SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
        SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
                                           MVT::i32);
        SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
                                            MVT::i32);

        SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
        SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
        MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
                                          Ops));
      }
    } else if (!isTailCall) {
      assert(VA.isMemLoc());

      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
                                             dl, DAG, VA, Flags));
    }
  }

  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);

  // Build a sequence of copy-to-reg nodes chained together with token chain
  // and flag operands which copy the outgoing args into the appropriate regs.
  SDValue InFlag;
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                             RegsToPass[i].second, InFlag);
    InFlag = Chain.getValue(1);
  }

  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
  // node so that legalize doesn't hack it.
  bool isDirect = false;

  const TargetMachine &TM = getTargetMachine();
  const Module *Mod = MF.getFunction().getParent();
  const GlobalValue *GV = nullptr;
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
    GV = G->getGlobal();
  bool isStub =
      !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();

  bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
  bool isLocalARMFunc = false;
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  auto PtrVt = getPointerTy(DAG.getDataLayout());

  if (Subtarget->genLongCalls()) {
    assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
           "long-calls codegen is not position independent!");
    // Handle a global address or an external symbol. If it's not one of
    // those, the target's already in a register, so we don't need to do
    // anything extra.
    if (isa<GlobalAddressSDNode>(Callee)) {
      // Create a constant pool entry for the callee address
      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
      ARMConstantPoolValue *CPV =
        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);

      // Get the address of the callee into a register
      SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
      Callee = DAG.getLoad(
          PtrVt, dl, DAG.getEntryNode(), CPAddr,
          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
      const char *Sym = S->getSymbol();

      // Create a constant pool entry for the callee address
      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
      ARMConstantPoolValue *CPV =
        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
                                      ARMPCLabelIndex, 0);
      // Get the address of the callee into a register
      SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
      Callee = DAG.getLoad(
          PtrVt, dl, DAG.getEntryNode(), CPAddr,
          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
    }
  } else if (isa<GlobalAddressSDNode>(Callee)) {
    if (!PreferIndirect) {
      isDirect = true;
      bool isDef = GV->isStrongDefinitionForLinker();

      // ARM call to a local ARM function is predicable.
      isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
      // tBX takes a register source operand.
      if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
        assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
        Callee = DAG.getNode(
            ARMISD::WrapperPIC, dl, PtrVt,
            DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
        Callee = DAG.getLoad(
            PtrVt, dl, DAG.getEntryNode(), Callee,
            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
            /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
                                     MachineMemOperand::MOInvariant);
      } else if (Subtarget->isTargetCOFF()) {
        assert(Subtarget->isTargetWindows() &&
               "Windows is the only supported COFF target");
        unsigned TargetFlags = GV->hasDLLImportStorageClass()
                                   ? ARMII::MO_DLLIMPORT
                                   : ARMII::MO_NO_FLAG;
        Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0,
                                            TargetFlags);
        if (GV->hasDLLImportStorageClass())
          Callee =
              DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
                          DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
      } else {
        Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
      }
    }
  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    isDirect = true;
    // tBX takes a register source operand.
    const char *Sym = S->getSymbol();
    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
      ARMConstantPoolValue *CPV =
        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
                                      ARMPCLabelIndex, 4);
      SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
      Callee = DAG.getLoad(
          PtrVt, dl, DAG.getEntryNode(), CPAddr,
          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
      Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
    } else {
      Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
    }
  }

  // FIXME: handle tail calls differently.
  unsigned CallOpc;
  if (Subtarget->isThumb()) {
    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
      CallOpc = ARMISD::CALL_NOLINK;
    else
      CallOpc = ARMISD::CALL;
  } else {
    if (!isDirect && !Subtarget->hasV5TOps())
      CallOpc = ARMISD::CALL_NOLINK;
    else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
             // Emit regular call when code size is the priority
             !Subtarget->hasMinSize())
      // "mov lr, pc; b _foo" to avoid confusing the RSP
      CallOpc = ARMISD::CALL_NOLINK;
    else
      CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
  }

  std::vector<SDValue> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  // Add argument registers to the end of the list so that they are known live
  // into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));

  // Add a register mask operand representing the call-preserved registers.
  if (!isTailCall) {
    const uint32_t *Mask;
    const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
    if (isThisReturn) {
      // For 'this' returns, use the R0-preserving mask if applicable
      Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
      if (!Mask) {
        // Set isThisReturn to false if the calling convention is not one that
        // allows 'returned' to be modeled in this way, so LowerCallResult does
        // not try to pass 'this' straight through
        isThisReturn = false;
        Mask = ARI->getCallPreservedMask(MF, CallConv);
      }
    } else
      Mask = ARI->getCallPreservedMask(MF, CallConv);

    assert(Mask && "Missing call preserved mask for calling convention");
    Ops.push_back(DAG.getRegisterMask(Mask));
  }

  if (InFlag.getNode())
    Ops.push_back(InFlag);

  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  if (isTailCall) {
    MF.getFrameInfo().setHasTailCall();
    SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
    DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
    return Ret;
  }

  // Returns a chain and a flag for retval copy to use.
  Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
  InFlag = Chain.getValue(1);
  DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));

  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
                             DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
  if (!Ins.empty())
    InFlag = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
                         InVals, isThisReturn,
                         isThisReturn ? OutVals[0] : SDValue());
}

/// HandleByVal - Every parameter *after* a byval parameter is passed
/// on the stack.  Remember the next parameter register to allocate,
/// and then confiscate the rest of the parameter registers to insure
/// this.
void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
                                    unsigned Align) const {
  // Byval (as with any stack) slots are always at least 4 byte aligned.
  Align = std::max(Align, 4U);

  unsigned Reg = State->AllocateReg(GPRArgRegs);
  if (!Reg)
    return;

  unsigned AlignInRegs = Align / 4;
  unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
  for (unsigned i = 0; i < Waste; ++i)
    Reg = State->AllocateReg(GPRArgRegs);

  if (!Reg)
    return;

  unsigned Excess = 4 * (ARM::R4 - Reg);

  // Special case when NSAA != SP and parameter size greater than size of
  // all remained GPR regs. In that case we can't split parameter, we must
  // send it to stack. We also must set NCRN to R4, so waste all
  // remained registers.
  const unsigned NSAAOffset = State->getNextStackOffset();
  if (NSAAOffset != 0 && Size > Excess) {
    while (State->AllocateReg(GPRArgRegs))
      ;
    return;
  }

  // First register for byval parameter is the first register that wasn't
  // allocated before this method call, so it would be "reg".
  // If parameter is small enough to be saved in range [reg, r4), then
  // the end (first after last) register would be reg + param-size-in-regs,
  // else parameter would be splitted between registers and stack,
  // end register would be r4 in this case.
  unsigned ByValRegBegin = Reg;
  unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
  State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
  // Note, first register is allocated in the beginning of function already,
  // allocate remained amount of registers we need.
  for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
    State->AllocateReg(GPRArgRegs);
  // A byval parameter that is split between registers and memory needs its
  // size truncated here.
  // In the case where the entire structure fits in registers, we set the
  // size in memory to zero.
  Size = std::max<int>(Size - Excess, 0);
}

/// MatchingStackOffset - Return true if the given stack call argument is
/// already available in the same position (relatively) of the caller's
/// incoming argument stack.
static
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
                         MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
                         const TargetInstrInfo *TII) {
  unsigned Bytes = Arg.getValueSizeInBits() / 8;
  int FI = std::numeric_limits<int>::max();
  if (Arg.getOpcode() == ISD::CopyFromReg) {
    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
    if (!Register::isVirtualRegister(VR))
      return false;
    MachineInstr *Def = MRI->getVRegDef(VR);
    if (!Def)
      return false;
    if (!Flags.isByVal()) {
      if (!TII->isLoadFromStackSlot(*Def, FI))
        return false;
    } else {
      return false;
    }
  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
    if (Flags.isByVal())
      // ByVal argument is passed in as a pointer but it's now being
      // dereferenced. e.g.
      // define @foo(%struct.X* %A) {
      //   tail call @bar(%struct.X* byval %A)
      // }
      return false;
    SDValue Ptr = Ld->getBasePtr();
    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
    if (!FINode)
      return false;
    FI = FINode->getIndex();
  } else
    return false;

  assert(FI != std::numeric_limits<int>::max());
  if (!MFI.isFixedObjectIndex(FI))
    return false;
  return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
}

/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool ARMTargetLowering::IsEligibleForTailCallOptimization(
    SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
    bool isCalleeStructRet, bool isCallerStructRet,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    const SmallVectorImpl<SDValue> &OutVals,
    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
    const bool isIndirect) const {
  MachineFunction &MF = DAG.getMachineFunction();
  const Function &CallerF = MF.getFunction();
  CallingConv::ID CallerCC = CallerF.getCallingConv();

  assert(Subtarget->supportsTailCall());

  // Indirect tail calls cannot be optimized for Thumb1 if the args
  // to the call take up r0-r3. The reason is that there are no legal registers
  // left to hold the pointer to the function to be called.
  if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
      (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
    return false;

  // Look for obvious safe cases to perform tail call optimization that do not
  // require ABI changes. This is what gcc calls sibcall.

  // Exception-handling functions need a special set of instructions to indicate
  // a return to the hardware. Tail-calling another function would probably
  // break this.
  if (CallerF.hasFnAttribute("interrupt"))
    return false;

  // Also avoid sibcall optimization if either caller or callee uses struct
  // return semantics.
  if (isCalleeStructRet || isCallerStructRet)
    return false;

  // Externally-defined functions with weak linkage should not be
  // tail-called on ARM when the OS does not support dynamic
  // pre-emption of symbols, as the AAELF spec requires normal calls
  // to undefined weak functions to be replaced with a NOP or jump to the
  // next instruction. The behaviour of branch instructions in this
  // situation (as used for tail calls) is implementation-defined, so we
  // cannot rely on the linker replacing the tail call with a return.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    const GlobalValue *GV = G->getGlobal();
    const Triple &TT = getTargetMachine().getTargetTriple();
    if (GV->hasExternalWeakLinkage() &&
        (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
      return false;
  }

  // Check that the call results are passed in the same way.
  LLVMContext &C = *DAG.getContext();
  if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
                                  CCAssignFnForReturn(CalleeCC, isVarArg),
                                  CCAssignFnForReturn(CallerCC, isVarArg)))
    return false;
  // The callee has to preserve all registers the caller needs to preserve.
  const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
  if (CalleeCC != CallerCC) {
    const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
    if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
      return false;
  }

  // If Caller's vararg or byval argument has been split between registers and
  // stack, do not perform tail call, since part of the argument is in caller's
  // local frame.
  const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
  if (AFI_Caller->getArgRegsSaveSize())
    return false;

  // If the callee takes no arguments then go on to check the results of the
  // call.
  if (!Outs.empty()) {
    // Check if stack adjustment is needed. For now, do not do this if any
    // argument is passed on the stack.
    SmallVector<CCValAssign, 16> ArgLocs;
    CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
    if (CCInfo.getNextStackOffset()) {
      // Check if the arguments are already laid out in the right way as
      // the caller's fixed stack objects.
      MachineFrameInfo &MFI = MF.getFrameInfo();
      const MachineRegisterInfo *MRI = &MF.getRegInfo();
      const TargetInstrInfo *TII = Subtarget->getInstrInfo();
      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
           i != e;
           ++i, ++realArgIdx) {
        CCValAssign &VA = ArgLocs[i];
        EVT RegVT = VA.getLocVT();
        SDValue Arg = OutVals[realArgIdx];
        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
        if (VA.getLocInfo() == CCValAssign::Indirect)
          return false;
        if (VA.needsCustom()) {
          // f64 and vector types are split into multiple registers or
          // register/stack-slot combinations.  The types will not match
          // the registers; give up on memory f64 refs until we figure
          // out what to do about this.
          if (!VA.isRegLoc())
            return false;
          if (!ArgLocs[++i].isRegLoc())
            return false;
          if (RegVT == MVT::v2f64) {
            if (!ArgLocs[++i].isRegLoc())
              return false;
            if (!ArgLocs[++i].isRegLoc())
              return false;
          }
        } else if (!VA.isRegLoc()) {
          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
                                   MFI, MRI, TII))
            return false;
        }
      }
    }

    const MachineRegisterInfo &MRI = MF.getRegInfo();
    if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
      return false;
  }

  return true;
}

bool
ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
                                  MachineFunction &MF, bool isVarArg,
                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
                                  LLVMContext &Context) const {
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
  return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
}

static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
                                    const SDLoc &DL, SelectionDAG &DAG) {
  const MachineFunction &MF = DAG.getMachineFunction();
  const Function &F = MF.getFunction();

  StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();

  // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
  // version of the "preferred return address". These offsets affect the return
  // instruction if this is a return from PL1 without hypervisor extensions.
  //    IRQ/FIQ: +4     "subs pc, lr, #4"
  //    SWI:     0      "subs pc, lr, #0"
  //    ABORT:   +4     "subs pc, lr, #4"
  //    UNDEF:   +4/+2  "subs pc, lr, #0"
  // UNDEF varies depending on where the exception came from ARM or Thumb
  // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.

  int64_t LROffset;
  if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
      IntKind == "ABORT")
    LROffset = 4;
  else if (IntKind == "SWI" || IntKind == "UNDEF")
    LROffset = 0;
  else
    report_fatal_error("Unsupported interrupt attribute. If present, value "
                       "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");

  RetOps.insert(RetOps.begin() + 1,
                DAG.getConstant(LROffset, DL, MVT::i32, false));

  return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
}

SDValue
ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                               bool isVarArg,
                               const SmallVectorImpl<ISD::OutputArg> &Outs,
                               const SmallVectorImpl<SDValue> &OutVals,
                               const SDLoc &dl, SelectionDAG &DAG) const {
  // CCValAssign - represent the assignment of the return value to a location.
  SmallVector<CCValAssign, 16> RVLocs;

  // CCState - Info about the registers and stack slots.
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  // Analyze outgoing return values.
  CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps;
  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
  bool isLittleEndian = Subtarget->isLittle();

  MachineFunction &MF = DAG.getMachineFunction();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  AFI->setReturnRegsCount(RVLocs.size());

  // Copy the result values into the output registers.
  for (unsigned i = 0, realRVLocIdx = 0;
       i != RVLocs.size();
       ++i, ++realRVLocIdx) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");

    SDValue Arg = OutVals[realRVLocIdx];
    bool ReturnF16 = false;

    if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
      // Half-precision return values can be returned like this:
      //
      // t11 f16 = fadd ...
      // t12: i16 = bitcast t11
      //   t13: i32 = zero_extend t12
      // t14: f32 = bitcast t13  <~~~~~~~ Arg
      //
      // to avoid code generation for bitcasts, we simply set Arg to the node
      // that produces the f16 value, t11 in this case.
      //
      if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
        SDValue ZE = Arg.getOperand(0);
        if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
          SDValue BC = ZE.getOperand(0);
          if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
            Arg = BC.getOperand(0);
            ReturnF16 = true;
          }
        }
      }
    }

    switch (VA.getLocInfo()) {
    default: llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full: break;
    case CCValAssign::BCvt:
      if (!ReturnF16)
        Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
      break;
    }

    if (VA.needsCustom()) {
      if (VA.getLocVT() == MVT::v2f64) {
        // Extract the first half and return it in two registers.
        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
                                   DAG.getConstant(0, dl, MVT::i32));
        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
                                       DAG.getVTList(MVT::i32, MVT::i32), Half);

        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
                                 HalfGPRs.getValue(isLittleEndian ? 0 : 1),
                                 Flag);
        Flag = Chain.getValue(1);
        RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
        VA = RVLocs[++i]; // skip ahead to next loc
        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
                                 HalfGPRs.getValue(isLittleEndian ? 1 : 0),
                                 Flag);
        Flag = Chain.getValue(1);
        RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
        VA = RVLocs[++i]; // skip ahead to next loc

        // Extract the 2nd half and fall through to handle it as an f64 value.
        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
                          DAG.getConstant(1, dl, MVT::i32));
      }
      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
      // available.
      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
                                  DAG.getVTList(MVT::i32, MVT::i32), Arg);
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
                               fmrrd.getValue(isLittleEndian ? 0 : 1),
                               Flag);
      Flag = Chain.getValue(1);
      RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
      VA = RVLocs[++i]; // skip ahead to next loc
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
                               fmrrd.getValue(isLittleEndian ? 1 : 0),
                               Flag);
    } else
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);

    // Guarantee that all emitted copies are
    // stuck together, avoiding something bad.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(),
                                     ReturnF16 ? MVT::f16 : VA.getLocVT()));
  }
  const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
  const MCPhysReg *I =
      TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
  if (I) {
    for (; *I; ++I) {
      if (ARM::GPRRegClass.contains(*I))
        RetOps.push_back(DAG.getRegister(*I, MVT::i32));
      else if (ARM::DPRRegClass.contains(*I))
        RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
      else
        llvm_unreachable("Unexpected register class in CSRsViaCopy!");
    }
  }

  // Update chain and glue.
  RetOps[0] = Chain;
  if (Flag.getNode())
    RetOps.push_back(Flag);

  // CPUs which aren't M-class use a special sequence to return from
  // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
  // though we use "subs pc, lr, #N").
  //
  // M-class CPUs actually use a normal return sequence with a special
  // (hardware-provided) value in LR, so the normal code path works.
  if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
      !Subtarget->isMClass()) {
    if (Subtarget->isThumb1Only())
      report_fatal_error("interrupt attribute is not supported in Thumb1");
    return LowerInterruptReturn(RetOps, dl, DAG);
  }

  return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
}

bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
  if (N->getNumValues() != 1)
    return false;
  if (!N->hasNUsesOfValue(1, 0))
    return false;

  SDValue TCChain = Chain;
  SDNode *Copy = *N->use_begin();
  if (Copy->getOpcode() == ISD::CopyToReg) {
    // If the copy has a glue operand, we conservatively assume it isn't safe to
    // perform a tail call.
    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
      return false;
    TCChain = Copy->getOperand(0);
  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
    SDNode *VMov = Copy;
    // f64 returned in a pair of GPRs.
    SmallPtrSet<SDNode*, 2> Copies;
    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
         UI != UE; ++UI) {
      if (UI->getOpcode() != ISD::CopyToReg)
        return false;
      Copies.insert(*UI);
    }
    if (Copies.size() > 2)
      return false;

    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
         UI != UE; ++UI) {
      SDValue UseChain = UI->getOperand(0);
      if (Copies.count(UseChain.getNode()))
        // Second CopyToReg
        Copy = *UI;
      else {
        // We are at the top of this chain.
        // If the copy has a glue operand, we conservatively assume it
        // isn't safe to perform a tail call.
        if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
          return false;
        // First CopyToReg
        TCChain = UseChain;
      }
    }
  } else if (Copy->getOpcode() == ISD::BITCAST) {
    // f32 returned in a single GPR.
    if (!Copy->hasOneUse())
      return false;
    Copy = *Copy->use_begin();
    if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
      return false;
    // If the copy has a glue operand, we conservatively assume it isn't safe to
    // perform a tail call.
    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
      return false;
    TCChain = Copy->getOperand(0);
  } else {
    return false;
  }

  bool HasRet = false;
  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
       UI != UE; ++UI) {
    if (UI->getOpcode() != ARMISD::RET_FLAG &&
        UI->getOpcode() != ARMISD::INTRET_FLAG)
      return false;
    HasRet = true;
  }

  if (!HasRet)
    return false;

  Chain = TCChain;
  return true;
}

bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
  if (!Subtarget->supportsTailCall())
    return false;

  auto Attr =
      CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
  if (!CI->isTailCall() || Attr.getValueAsString() == "true")
    return false;

  return true;
}

// Trying to write a 64 bit value so need to split into two 32 bit values first,
// and pass the lower and high parts through.
static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
  SDLoc DL(Op);
  SDValue WriteValue = Op->getOperand(2);

  // This function is only supposed to be called for i64 type argument.
  assert(WriteValue.getValueType() == MVT::i64
          && "LowerWRITE_REGISTER called for non-i64 type argument.");

  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
                           DAG.getConstant(0, DL, MVT::i32));
  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
                           DAG.getConstant(1, DL, MVT::i32));
  SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
  return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
}

// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOVi.
SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
                                             SelectionDAG &DAG) const {
  EVT PtrVT = Op.getValueType();
  // FIXME there is no actual debug info here
  SDLoc dl(Op);
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
  SDValue Res;

  // When generating execute-only code Constant Pools must be promoted to the
  // global data section. It's a bit ugly that we can't share them across basic
  // blocks, but this way we guarantee that execute-only behaves correct with
  // position-independent addressing modes.
  if (Subtarget->genExecuteOnly()) {
    auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
    auto T = const_cast<Type*>(CP->getType());
    auto C = const_cast<Constant*>(CP->getConstVal());
    auto M = const_cast<Module*>(DAG.getMachineFunction().
                                 getFunction().getParent());
    auto GV = new GlobalVariable(
                    *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
                    Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
                    Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
                    Twine(AFI->createPICLabelUId())
                  );
    SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
                                            dl, PtrVT);
    return LowerGlobalAddress(GA, DAG);
  }

  if (CP->isMachineConstantPoolEntry())
    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
                                    CP->getAlignment());
  else
    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
                                    CP->getAlignment());
  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
}

unsigned ARMTargetLowering::getJumpTableEncoding() const {
  return MachineJumpTableInfo::EK_Inline;
}

SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
                                             SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  unsigned ARMPCLabelIndex = 0;
  SDLoc DL(Op);
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
  SDValue CPAddr;
  bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
  if (!IsPositionIndependent) {
    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
  } else {
    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
    ARMPCLabelIndex = AFI->createPICLabelUId();
    ARMConstantPoolValue *CPV =
      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
                                      ARMCP::CPBlockAddress, PCAdj);
    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
  }
  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
  SDValue Result = DAG.getLoad(
      PtrVT, DL, DAG.getEntryNode(), CPAddr,
      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
  if (!IsPositionIndependent)
    return Result;
  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
}

/// Convert a TLS address reference into the correct sequence of loads
/// and calls to compute the variable's address for Darwin, and return an
/// SDValue containing the final node.

/// Darwin only has one TLS scheme which must be capable of dealing with the
/// fully general situation, in the worst case. This means:
///     + "extern __thread" declaration.
///     + Defined in a possibly unknown dynamic library.
///
/// The general system is that each __thread variable has a [3 x i32] descriptor
/// which contains information used by the runtime to calculate the address. The
/// only part of this the compiler needs to know about is the first word, which
/// contains a function pointer that must be called with the address of the
/// entire descriptor in "r0".
///
/// Since this descriptor may be in a different unit, in general access must
/// proceed along the usual ARM rules. A common sequence to produce is:
///
///     movw rT1, :lower16:_var$non_lazy_ptr
///     movt rT1, :upper16:_var$non_lazy_ptr
///     ldr r0, [rT1]
///     ldr rT2, [r0]
///     blx rT2
///     [...address now in r0...]
SDValue
ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
                                               SelectionDAG &DAG) const {
  assert(Subtarget->isTargetDarwin() &&
         "This function expects a Darwin target");
  SDLoc DL(Op);

  // First step is to get the address of the actua global symbol. This is where
  // the TLS descriptor lives.
  SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);

  // The first entry in the descriptor is a function pointer that we must call
  // to obtain the address of the variable.
  SDValue Chain = DAG.getEntryNode();
  SDValue FuncTLVGet = DAG.getLoad(
      MVT::i32, DL, Chain, DescAddr,
      MachinePointerInfo::getGOT(DAG.getMachineFunction()),
      /* Alignment = */ 4,
      MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
          MachineMemOperand::MOInvariant);
  Chain = FuncTLVGet.getValue(1);

  MachineFunction &F = DAG.getMachineFunction();
  MachineFrameInfo &MFI = F.getFrameInfo();
  MFI.setAdjustsStack(true);

  // TLS calls preserve all registers except those that absolutely must be
  // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
  // silly).
  auto TRI =
      getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
  auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
  const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());

  // Finally, we can make the call. This is just a degenerate version of a
  // normal AArch64 call node: r0 takes the address of the descriptor, and
  // returns the address of the variable in this thread.
  Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
  Chain =
      DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
                  Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
                  DAG.getRegisterMask(Mask), Chain.getValue(1));
  return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
}

SDValue
ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
                                                SelectionDAG &DAG) const {
  assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");

  SDValue Chain = DAG.getEntryNode();
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDLoc DL(Op);

  // Load the current TEB (thread environment block)
  SDValue Ops[] = {Chain,
                   DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
                   DAG.getTargetConstant(15, DL, MVT::i32),
                   DAG.getTargetConstant(0, DL, MVT::i32),
                   DAG.getTargetConstant(13, DL, MVT::i32),
                   DAG.getTargetConstant(0, DL, MVT::i32),
                   DAG.getTargetConstant(2, DL, MVT::i32)};
  SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
                                   DAG.getVTList(MVT::i32, MVT::Other), Ops);

  SDValue TEB = CurrentTEB.getValue(0);
  Chain = CurrentTEB.getValue(1);

  // Load the ThreadLocalStoragePointer from the TEB
  // A pointer to the TLS array is located at offset 0x2c from the TEB.
  SDValue TLSArray =
      DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
  TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());

  // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
  // offset into the TLSArray.

  // Load the TLS index from the C runtime
  SDValue TLSIndex =
      DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
  TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
  TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());

  SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
                              DAG.getConstant(2, DL, MVT::i32));
  SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
                            DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
                            MachinePointerInfo());

  // Get the offset of the start of the .tls section (section base)
  const auto *GA = cast<GlobalAddressSDNode>(Op);
  auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
  SDValue Offset = DAG.getLoad(
      PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
                                    DAG.getTargetConstantPool(CPV, PtrVT, 4)),
      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));

  return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
}

// Lower ISD::GlobalTLSAddress using the "general dynamic" model
SDValue
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
                                                 SelectionDAG &DAG) const {
  SDLoc dl(GA);
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
  MachineFunction &MF = DAG.getMachineFunction();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
  ARMConstantPoolValue *CPV =
    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
  Argument = DAG.getLoad(
      PtrVT, dl, DAG.getEntryNode(), Argument,
      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
  SDValue Chain = Argument.getValue(1);

  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);

  // call __tls_get_addr.
  ArgListTy Args;
  ArgListEntry Entry;
  Entry.Node = Argument;
  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
  Args.push_back(Entry);

  // FIXME: is there useful debug info available here?
  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
      CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
      DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));

  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
  return CallResult.first;
}

// Lower ISD::GlobalTLSAddress using the "initial exec" or
// "local exec" model.
SDValue
ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
                                        SelectionDAG &DAG,
                                        TLSModel::Model model) const {
  const GlobalValue *GV = GA->getGlobal();
  SDLoc dl(GA);
  SDValue Offset;
  SDValue Chain = DAG.getEntryNode();
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  // Get the Thread Pointer
  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);

  if (model == TLSModel::InitialExec) {
    MachineFunction &MF = DAG.getMachineFunction();
    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
    // Initial exec model.
    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
    ARMConstantPoolValue *CPV =
      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
                                      true);
    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
    Offset = DAG.getLoad(
        PtrVT, dl, Chain, Offset,
        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
    Chain = Offset.getValue(1);

    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);

    Offset = DAG.getLoad(
        PtrVT, dl, Chain, Offset,
        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
  } else {
    // local exec model
    assert(model == TLSModel::LocalExec);
    ARMConstantPoolValue *CPV =
      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
    Offset = DAG.getLoad(
        PtrVT, dl, Chain, Offset,
        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
  }

  // The address of the thread local variable is the add of the thread
  // pointer with the offset of the variable.
  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
}

SDValue
ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
  if (DAG.getTarget().useEmulatedTLS())
    return LowerToTLSEmulatedModel(GA, DAG);

  if (Subtarget->isTargetDarwin())
    return LowerGlobalTLSAddressDarwin(Op, DAG);

  if (Subtarget->isTargetWindows())
    return LowerGlobalTLSAddressWindows(Op, DAG);

  // TODO: implement the "local dynamic" model
  assert(Subtarget->isTargetELF() && "Only ELF implemented here");
  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());

  switch (model) {
    case TLSModel::GeneralDynamic:
    case TLSModel::LocalDynamic:
      return LowerToTLSGeneralDynamicModel(GA, DAG);
    case TLSModel::InitialExec:
    case TLSModel::LocalExec:
      return LowerToTLSExecModels(GA, DAG, model);
  }
  llvm_unreachable("bogus TLS model");
}

/// Return true if all users of V are within function F, looking through
/// ConstantExprs.
static bool allUsersAreInFunction(const Value *V, const Function *F) {
  SmallVector<const User*,4> Worklist;
  for (auto *U : V->users())
    Worklist.push_back(U);
  while (!Worklist.empty()) {
    auto *U = Worklist.pop_back_val();
    if (isa<ConstantExpr>(U)) {
      for (auto *UU : U->users())
        Worklist.push_back(UU);
      continue;
    }

    auto *I = dyn_cast<Instruction>(U);
    if (!I || I->getParent()->getParent() != F)
      return false;
  }
  return true;
}

static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
                                     const GlobalValue *GV, SelectionDAG &DAG,
                                     EVT PtrVT, const SDLoc &dl) {
  // If we're creating a pool entry for a constant global with unnamed address,
  // and the global is small enough, we can emit it inline into the constant pool
  // to save ourselves an indirection.
  //
  // This is a win if the constant is only used in one function (so it doesn't
  // need to be duplicated) or duplicating the constant wouldn't increase code
  // size (implying the constant is no larger than 4 bytes).
  const Function &F = DAG.getMachineFunction().getFunction();

  // We rely on this decision to inline being idemopotent and unrelated to the
  // use-site. We know that if we inline a variable at one use site, we'll
  // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
  // doesn't know about this optimization, so bail out if it's enabled else
  // we could decide to inline here (and thus never emit the GV) but require
  // the GV from fast-isel generated code.
  if (!EnableConstpoolPromotion ||
      DAG.getMachineFunction().getTarget().Options.EnableFastISel)
      return SDValue();

  auto *GVar = dyn_cast<GlobalVariable>(GV);
  if (!GVar || !GVar->hasInitializer() ||
      !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
      !GVar->hasLocalLinkage())
    return SDValue();

  // If we inline a value that contains relocations, we move the relocations
  // from .data to .text. This is not allowed in position-independent code.
  auto *Init = GVar->getInitializer();
  if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
      Init->needsRelocation())
    return SDValue();

  // The constant islands pass can only really deal with alignment requests
  // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
  // any type wanting greater alignment requirements than 4 bytes. We also
  // can only promote constants that are multiples of 4 bytes in size or
  // are paddable to a multiple of 4. Currently we only try and pad constants
  // that are strings for simplicity.
  auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
  unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
  unsigned Align = DAG.getDataLayout().getPreferredAlignment(GVar);
  unsigned RequiredPadding = 4 - (Size % 4);
  bool PaddingPossible =
    RequiredPadding == 4 || (CDAInit && CDAInit->isString());
  if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
      Size == 0)
    return SDValue();

  unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
  MachineFunction &MF = DAG.getMachineFunction();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();

  // We can't bloat the constant pool too much, else the ConstantIslands pass
  // may fail to converge. If we haven't promoted this global yet (it may have
  // multiple uses), and promoting it would increase the constant pool size (Sz
  // > 4), ensure we have space to do so up to MaxTotal.
  if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
    if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
        ConstpoolPromotionMaxTotal)
      return SDValue();

  // This is only valid if all users are in a single function; we can't clone
  // the constant in general. The LLVM IR unnamed_addr allows merging
  // constants, but not cloning them.
  //
  // We could potentially allow cloning if we could prove all uses of the
  // constant in the current function don't care about the address, like
  // printf format strings. But that isn't implemented for now.
  if (!allUsersAreInFunction(GVar, &F))
    return SDValue();

  // We're going to inline this global. Pad it out if needed.
  if (RequiredPadding != 4) {
    StringRef S = CDAInit->getAsString();

    SmallVector<uint8_t,16> V(S.size());
    std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
    while (RequiredPadding--)
      V.push_back(0);
    Init = ConstantDataArray::get(*DAG.getContext(), V);
  }

  auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
  SDValue CPAddr =
    DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
  if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
    AFI->markGlobalAsPromotedToConstantPool(GVar);
    AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
                                      PaddedSize - 4);
  }
  ++NumConstpoolPromoted;
  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
}

bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
    if (!(GV = GA->getBaseObject()))
      return false;
  if (const auto *V = dyn_cast<GlobalVariable>(GV))
    return V->isConstant();
  return isa<Function>(GV);
}

SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
                                              SelectionDAG &DAG) const {
  switch (Subtarget->getTargetTriple().getObjectFormat()) {
  default: llvm_unreachable("unknown object format");
  case Triple::COFF:
    return LowerGlobalAddressWindows(Op, DAG);
  case Triple::ELF:
    return LowerGlobalAddressELF(Op, DAG);
  case Triple::MachO:
    return LowerGlobalAddressDarwin(Op, DAG);
  }
}

SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
                                                 SelectionDAG &DAG) const {
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDLoc dl(Op);
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
  const TargetMachine &TM = getTargetMachine();
  bool IsRO = isReadOnly(GV);

  // promoteToConstantPool only if not generating XO text section
  if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
    if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
      return V;

  if (isPositionIndependent()) {
    bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
    SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
                                           UseGOT_PREL ? ARMII::MO_GOT : 0);
    SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
    if (UseGOT_PREL)
      Result =
          DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
                      MachinePointerInfo::getGOT(DAG.getMachineFunction()));
    return Result;
  } else if (Subtarget->isROPI() && IsRO) {
    // PC-relative.
    SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
    SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
    return Result;
  } else if (Subtarget->isRWPI() && !IsRO) {
    // SB-relative.
    SDValue RelAddr;
    if (Subtarget->useMovt()) {
      ++NumMovwMovt;
      SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
      RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
    } else { // use literal pool for address constant
      ARMConstantPoolValue *CPV =
        ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
      SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
      RelAddr = DAG.getLoad(
          PtrVT, dl, DAG.getEntryNode(), CPAddr,
          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
    }
    SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
    SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
    return Result;
  }

  // If we have T2 ops, we can materialize the address directly via movt/movw
  // pair. This is always cheaper.
  if (Subtarget->useMovt()) {
    ++NumMovwMovt;
    // FIXME: Once remat is capable of dealing with instructions with register
    // operands, expand this into two nodes.
    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
  } else {
    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
    return DAG.getLoad(
        PtrVT, dl, DAG.getEntryNode(), CPAddr,
        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
  }
}

SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
                                                    SelectionDAG &DAG) const {
  assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
         "ROPI/RWPI not currently supported for Darwin");
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDLoc dl(Op);
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();

  if (Subtarget->useMovt())
    ++NumMovwMovt;

  // FIXME: Once remat is capable of dealing with instructions with register
  // operands, expand this into multiple nodes
  unsigned Wrapper =
      isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;

  SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
  SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);

  if (Subtarget->isGVIndirectSymbol(GV))
    Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
                         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
  return Result;
}

SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
                                                     SelectionDAG &DAG) const {
  assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
  assert(Subtarget->useMovt() &&
         "Windows on ARM expects to use movw/movt");
  assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
         "ROPI/RWPI not currently supported for Windows");

  const TargetMachine &TM = getTargetMachine();
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
  ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
  if (GV->hasDLLImportStorageClass())
    TargetFlags = ARMII::MO_DLLIMPORT;
  else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
    TargetFlags = ARMII::MO_COFFSTUB;
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue Result;
  SDLoc DL(Op);

  ++NumMovwMovt;

  // FIXME: Once remat is capable of dealing with instructions with register
  // operands, expand this into two nodes.
  Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
                       DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
                                                  TargetFlags));
  if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
                         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
  return Result;
}

SDValue
ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  SDValue Val = DAG.getConstant(0, dl, MVT::i32);
  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
                     Op.getOperand(1), Val);
}

SDValue
ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
                     Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
}

SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
                                                      SelectionDAG &DAG) const {
  SDLoc dl(Op);
  return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
                     Op.getOperand(0));
}

SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
    SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
  unsigned IntNo =
      cast<ConstantSDNode>(
          Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
          ->getZExtValue();
  switch (IntNo) {
    default:
      return SDValue();  // Don't custom lower most intrinsics.
    case Intrinsic::arm_gnu_eabi_mcount: {
      MachineFunction &MF = DAG.getMachineFunction();
      EVT PtrVT = getPointerTy(DAG.getDataLayout());
      SDLoc dl(Op);
      SDValue Chain = Op.getOperand(0);
      // call "\01__gnu_mcount_nc"
      const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
      const uint32_t *Mask =
          ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
      assert(Mask && "Missing call preserved mask for calling convention");
      // Mark LR an implicit live-in.
      unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
      SDValue ReturnAddress =
          DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
      std::vector<EVT> ResultTys = {MVT::Other, MVT::Glue};
      SDValue Callee =
          DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
      SDValue RegisterMask = DAG.getRegisterMask(Mask);
      if (Subtarget->isThumb())
        return SDValue(
            DAG.getMachineNode(
                ARM::tBL_PUSHLR, dl, ResultTys,
                {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
                 DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
            0);
      return SDValue(
          DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
                             {ReturnAddress, Callee, RegisterMask, Chain}),
          0);
    }
  }
}

SDValue
ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
                                          const ARMSubtarget *Subtarget) const {
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  SDLoc dl(Op);
  switch (IntNo) {
  default: return SDValue();    // Don't custom lower most intrinsics.
  case Intrinsic::thread_pointer: {
    EVT PtrVT = getPointerTy(DAG.getDataLayout());
    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
  }
  case Intrinsic::arm_cls: {
    const SDValue &Operand = Op.getOperand(1);
    const EVT VTy = Op.getValueType();
    SDValue SRA =
        DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
    SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
    SDValue SHL =
        DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
    SDValue OR =
        DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
    SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
    return Result;
  }
  case Intrinsic::arm_cls64: {
    // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
    //          else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
    const SDValue &Operand = Op.getOperand(1);
    const EVT VTy = Op.getValueType();

    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
                             DAG.getConstant(1, dl, VTy));
    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
                             DAG.getConstant(0, dl, VTy));
    SDValue Constant0 = DAG.getConstant(0, dl, VTy);
    SDValue Constant1 = DAG.getConstant(1, dl, VTy);
    SDValue Constant31 = DAG.getConstant(31, dl, VTy);
    SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
    SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
    SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
    SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
    SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
    SDValue CheckLo =
        DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
    SDValue HiIsZero =
        DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
    SDValue AdjustedLo =
        DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
    SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
    SDValue Result =
        DAG.getSelect(dl, VTy, CheckLo,
                      DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
    return Result;
  }
  case Intrinsic::eh_sjlj_lsda: {
    MachineFunction &MF = DAG.getMachineFunction();
    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
    EVT PtrVT = getPointerTy(DAG.getDataLayout());
    SDValue CPAddr;
    bool IsPositionIndependent = isPositionIndependent();
    unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
    ARMConstantPoolValue *CPV =
      ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
                                      ARMCP::CPLSDA, PCAdj);
    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
    SDValue Result = DAG.getLoad(
        PtrVT, dl, DAG.getEntryNode(), CPAddr,
        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));

    if (IsPositionIndependent) {
      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
    }
    return Result;
  }
  case Intrinsic::arm_neon_vabs:
    return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
                        Op.getOperand(1));
  case Intrinsic::arm_neon_vmulls:
  case Intrinsic::arm_neon_vmullu: {
    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
      ? ARMISD::VMULLs : ARMISD::VMULLu;
    return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  }
  case Intrinsic::arm_neon_vminnm:
  case Intrinsic::arm_neon_vmaxnm: {
    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
      ? ISD::FMINNUM : ISD::FMAXNUM;
    return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  }
  case Intrinsic::arm_neon_vminu:
  case Intrinsic::arm_neon_vmaxu: {
    if (Op.getValueType().isFloatingPoint())
      return SDValue();
    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
      ? ISD::UMIN : ISD::UMAX;
    return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
                         Op.getOperand(1), Op.getOperand(2));
  }
  case Intrinsic::arm_neon_vmins:
  case Intrinsic::arm_neon_vmaxs: {
    // v{min,max}s is overloaded between signed integers and floats.
    if (!Op.getValueType().isFloatingPoint()) {
      unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
        ? ISD::SMIN : ISD::SMAX;
      return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
                         Op.getOperand(1), Op.getOperand(2));
    }
    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
      ? ISD::FMINIMUM : ISD::FMAXIMUM;
    return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  }
  case Intrinsic::arm_neon_vtbl1:
    return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::arm_neon_vtbl2:
    return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
  case Intrinsic::arm_mve_pred_i2v:
  case Intrinsic::arm_mve_pred_v2i:
    return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
                       Op.getOperand(1));
  }
}

static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
                                 const ARMSubtarget *Subtarget) {
  SDLoc dl(Op);
  ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
  auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
  if (SSID == SyncScope::SingleThread)
    return Op;

  if (!Subtarget->hasDataBarrier()) {
    // Some ARMv6 cpus can support data barriers with an mcr instruction.
    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
    // here.
    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
           "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
                       DAG.getConstant(0, dl, MVT::i32));
  }

  ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
  AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
  ARM_MB::MemBOpt Domain = ARM_MB::ISH;
  if (Subtarget->isMClass()) {
    // Only a full system barrier exists in the M-class architectures.
    Domain = ARM_MB::SY;
  } else if (Subtarget->preferISHSTBarriers() &&
             Ord == AtomicOrdering::Release) {
    // Swift happens to implement ISHST barriers in a way that's compatible with
    // Release semantics but weaker than ISH so we'd be fools not to use
    // it. Beware: other processors probably don't!
    Domain = ARM_MB::ISHST;
  }

  return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
                     DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
                     DAG.getConstant(Domain, dl, MVT::i32));
}

static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
                             const ARMSubtarget *Subtarget) {
  // ARM pre v5TE and Thumb1 does not have preload instructions.
  if (!(Subtarget->isThumb2() ||
        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
    // Just preserve the chain.
    return Op.getOperand(0);

  SDLoc dl(Op);
  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
  if (!isRead &&
      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
    // ARMv7 with MP extension has PLDW.
    return Op.getOperand(0);

  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
  if (Subtarget->isThumb()) {
    // Invert the bits.
    isRead = ~isRead & 1;
    isData = ~isData & 1;
  }

  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
                     Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
                     DAG.getConstant(isData, dl, MVT::i32));
}

static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
  MachineFunction &MF = DAG.getMachineFunction();
  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();

  // vastart just stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  SDLoc dl(Op);
  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
                                                CCValAssign &NextVA,
                                                SDValue &Root,
                                                SelectionDAG &DAG,
                                                const SDLoc &dl) const {
  MachineFunction &MF = DAG.getMachineFunction();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();

  const TargetRegisterClass *RC;
  if (AFI->isThumb1OnlyFunction())
    RC = &ARM::tGPRRegClass;
  else
    RC = &ARM::GPRRegClass;

  // Transform the arguments stored in physical registers into virtual ones.
  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);

  SDValue ArgValue2;
  if (NextVA.isMemLoc()) {
    MachineFrameInfo &MFI = MF.getFrameInfo();
    int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);

    // Create load node to retrieve arguments from the stack.
    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
    ArgValue2 = DAG.getLoad(
        MVT::i32, dl, Root, FIN,
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
  } else {
    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
  }
  if (!Subtarget->isLittle())
    std::swap (ArgValue, ArgValue2);
  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
}

// The remaining GPRs hold either the beginning of variable-argument
// data, or the beginning of an aggregate passed by value (usually
// byval).  Either way, we allocate stack slots adjacent to the data
// provided by our caller, and store the unallocated registers there.
// If this is a variadic function, the va_list pointer will begin with
// these values; otherwise, this reassembles a (byval) structure that
// was split between registers and memory.
// Return: The frame index registers were stored into.
int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
                                      const SDLoc &dl, SDValue &Chain,
                                      const Value *OrigArg,
                                      unsigned InRegsParamRecordIdx,
                                      int ArgOffset, unsigned ArgSize) const {
  // Currently, two use-cases possible:
  // Case #1. Non-var-args function, and we meet first byval parameter.
  //          Setup first unallocated register as first byval register;
  //          eat all remained registers
  //          (these two actions are performed by HandleByVal method).
  //          Then, here, we initialize stack frame with
  //          "store-reg" instructions.
  // Case #2. Var-args function, that doesn't contain byval parameters.
  //          The same: eat all remained unallocated registers,
  //          initialize stack frame.

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  unsigned RBegin, REnd;
  if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
    CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
  } else {
    unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
    RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
    REnd = ARM::R4;
  }

  if (REnd != RBegin)
    ArgOffset = -4 * (ARM::R4 - RBegin);

  auto PtrVT = getPointerTy(DAG.getDataLayout());
  int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
  SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);

  SmallVector<SDValue, 4> MemOps;
  const TargetRegisterClass *RC =
      AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;

  for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
    unsigned VReg = MF.addLiveIn(Reg, RC);
    SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
    SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
                                 MachinePointerInfo(OrigArg, 4 * i));
    MemOps.push_back(Store);
    FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
  }

  if (!MemOps.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
  return FrameIndex;
}

// Setup stack frame, the va_list pointer will start from.
void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
                                             const SDLoc &dl, SDValue &Chain,
                                             unsigned ArgOffset,
                                             unsigned TotalArgRegsSaveSize,
                                             bool ForceMutable) const {
  MachineFunction &MF = DAG.getMachineFunction();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();

  // Try to store any remaining integer argument regs
  // to their spots on the stack so that they may be loaded by dereferencing
  // the result of va_next.
  // If there is no regs to be stored, just point address after last
  // argument passed via stack.
  int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
                                  CCInfo.getInRegsParamsCount(),
                                  CCInfo.getNextStackOffset(),
                                  std::max(4U, TotalArgRegsSaveSize));
  AFI->setVarArgsFrameIndex(FrameIndex);
}

SDValue ARMTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());
  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));

  SmallVector<SDValue, 16> ArgValues;
  SDValue ArgValue;
  Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
  unsigned CurArgIdx = 0;

  // Initially ArgRegsSaveSize is zero.
  // Then we increase this value each time we meet byval parameter.
  // We also increase this value in case of varargs function.
  AFI->setArgRegsSaveSize(0);

  // Calculate the amount of stack space that we need to allocate to store
  // byval and variadic arguments that are passed in registers.
  // We need to know this before we allocate the first byval or variadic
  // argument, as they will be allocated a stack slot below the CFA (Canonical
  // Frame Address, the stack pointer at entry to the function).
  unsigned ArgRegBegin = ARM::R4;
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
      break;

    CCValAssign &VA = ArgLocs[i];
    unsigned Index = VA.getValNo();
    ISD::ArgFlagsTy Flags = Ins[Index].Flags;
    if (!Flags.isByVal())
      continue;

    assert(VA.isMemLoc() && "unexpected byval pointer in reg");
    unsigned RBegin, REnd;
    CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
    ArgRegBegin = std::min(ArgRegBegin, RBegin);

    CCInfo.nextInRegsParam();
  }
  CCInfo.rewindByValRegsInfo();

  int lastInsIndex = -1;
  if (isVarArg && MFI.hasVAStart()) {
    unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
    if (RegIdx != array_lengthof(GPRArgRegs))
      ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
  }

  unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
  AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    if (Ins[VA.getValNo()].isOrigArg()) {
      std::advance(CurOrigArg,
                   Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
      CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
    }
    // Arguments stored in registers.
    if (VA.isRegLoc()) {
      EVT RegVT = VA.getLocVT();

      if (VA.needsCustom()) {
        // f64 and vector types are split up into multiple registers or
        // combinations of registers and stack slots.
        if (VA.getLocVT() == MVT::v2f64) {
          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
                                                   Chain, DAG, dl);
          VA = ArgLocs[++i]; // skip ahead to next loc
          SDValue ArgValue2;
          if (VA.isMemLoc()) {
            int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
                                    MachinePointerInfo::getFixedStack(
                                        DAG.getMachineFunction(), FI));
          } else {
            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
                                             Chain, DAG, dl);
          }
          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
                                 ArgValue, ArgValue1,
                                 DAG.getIntPtrConstant(0, dl));
          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
                                 ArgValue, ArgValue2,
                                 DAG.getIntPtrConstant(1, dl));
        } else
          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
      } else {
        const TargetRegisterClass *RC;


        if (RegVT == MVT::f16)
          RC = &ARM::HPRRegClass;
        else if (RegVT == MVT::f32)
          RC = &ARM::SPRRegClass;
        else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
          RC = &ARM::DPRRegClass;
        else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
          RC = &ARM::QPRRegClass;
        else if (RegVT == MVT::i32)
          RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
                                           : &ARM::GPRRegClass;
        else
          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");

        // Transform the arguments in physical registers into virtual ones.
        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);

        // If this value is passed in r0 and has the returned attribute (e.g.
        // C++ 'structors), record this fact for later use.
        if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
          AFI->setPreservesR0();
        }
      }

      // If this is an 8 or 16-bit value, it is really passed promoted
      // to 32 bits.  Insert an assert[sz]ext to capture this, then
      // truncate to the right size.
      switch (VA.getLocInfo()) {
      default: llvm_unreachable("Unknown loc info!");
      case CCValAssign::Full: break;
      case CCValAssign::BCvt:
        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
        break;
      case CCValAssign::SExt:
        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
                               DAG.getValueType(VA.getValVT()));
        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
        break;
      case CCValAssign::ZExt:
        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
                               DAG.getValueType(VA.getValVT()));
        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
        break;
      }

      InVals.push_back(ArgValue);
    } else { // VA.isRegLoc()
      // sanity check
      assert(VA.isMemLoc());
      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");

      int index = VA.getValNo();

      // Some Ins[] entries become multiple ArgLoc[] entries.
      // Process them only once.
      if (index != lastInsIndex)
        {
          ISD::ArgFlagsTy Flags = Ins[index].Flags;
          // FIXME: For now, all byval parameter objects are marked mutable.
          // This can be changed with more analysis.
          // In case of tail call optimization mark all arguments mutable.
          // Since they could be overwritten by lowering of arguments in case of
          // a tail call.
          if (Flags.isByVal()) {
            assert(Ins[index].isOrigArg() &&
                   "Byval arguments cannot be implicit");
            unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();

            int FrameIndex = StoreByValRegs(
                CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
                VA.getLocMemOffset(), Flags.getByValSize());
            InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
            CCInfo.nextInRegsParam();
          } else {
            unsigned FIOffset = VA.getLocMemOffset();
            int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
                                           FIOffset, true);

            // Create load nodes to retrieve arguments from the stack.
            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
                                         MachinePointerInfo::getFixedStack(
                                             DAG.getMachineFunction(), FI)));
          }
          lastInsIndex = index;
        }
    }
  }

  // varargs
  if (isVarArg && MFI.hasVAStart())
    VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
                         CCInfo.getNextStackOffset(),
                         TotalArgRegsSaveSize);

  AFI->setArgumentStackSize(CCInfo.getNextStackOffset());

  return Chain;
}

/// isFloatingPointZero - Return true if this is +0.0.
static bool isFloatingPointZero(SDValue Op) {
  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
    return CFP->getValueAPF().isPosZero();
  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
    // Maybe this has already been legalized into the constant pool?
    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
          return CFP->getValueAPF().isPosZero();
    }
  } else if (Op->getOpcode() == ISD::BITCAST &&
             Op->getValueType(0) == MVT::f64) {
    // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
    // created by LowerConstantFP().
    SDValue BitcastOp = Op->getOperand(0);
    if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
        isNullConstant(BitcastOp->getOperand(0)))
      return true;
  }
  return false;
}

/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
/// the given operands.
SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
                                     SDValue &ARMcc, SelectionDAG &DAG,
                                     const SDLoc &dl) const {
  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
    unsigned C = RHSC->getZExtValue();
    if (!isLegalICmpImmediate((int32_t)C)) {
      // Constant does not fit, try adjusting it by one.
      switch (CC) {
      default: break;
      case ISD::SETLT:
      case ISD::SETGE:
        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
          RHS = DAG.getConstant(C - 1, dl, MVT::i32);
        }
        break;
      case ISD::SETULT:
      case ISD::SETUGE:
        if (C != 0 && isLegalICmpImmediate(C-1)) {
          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
          RHS = DAG.getConstant(C - 1, dl, MVT::i32);
        }
        break;
      case ISD::SETLE:
      case ISD::SETGT:
        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
          RHS = DAG.getConstant(C + 1, dl, MVT::i32);
        }
        break;
      case ISD::SETULE:
      case ISD::SETUGT:
        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
          RHS = DAG.getConstant(C + 1, dl, MVT::i32);
        }
        break;
      }
    }
  } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
             (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
    // In ARM and Thumb-2, the compare instructions can shift their second
    // operand.
    CC = ISD::getSetCCSwappedOperands(CC);
    std::swap(LHS, RHS);
  }

  // Thumb1 has very limited immediate modes, so turning an "and" into a
  // shift can save multiple instructions.
  //
  // If we have (x & C1), and C1 is an appropriate mask, we can transform it
  // into "((x << n) >> n)".  But that isn't necessarily profitable on its
  // own. If it's the operand to an unsigned comparison with an immediate,
  // we can eliminate one of the shifts: we transform
  // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
  //
  // We avoid transforming cases which aren't profitable due to encoding
  // details:
  //
  // 1. C2 fits into the immediate field of a cmp, and the transformed version
  // would not; in that case, we're essentially trading one immediate load for
  // another.
  // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
  // 3. C2 is zero; we have other code for this special case.
  //
  // FIXME: Figure out profitability for Thumb2; we usually can't save an
  // instruction, since the AND is always one instruction anyway, but we could
  // use narrow instructions in some cases.
  if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
      LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
      LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
      !isSignedIntSetCC(CC)) {
    unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
    auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
    uint64_t RHSV = RHSC->getZExtValue();
    if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
      unsigned ShiftBits = countLeadingZeros(Mask);
      if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
        SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
        LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
        RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
      }
    }
  }

  // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
  // single "lsls x, c+1".  The shift sets the "C" and "Z" flags the same
  // way a cmp would.
  // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
  // some tweaks to the heuristics for the previous and->shift transform.
  // FIXME: Optimize cases where the LHS isn't a shift.
  if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
      isa<ConstantSDNode>(RHS) &&
      cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
      CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
      cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
    unsigned ShiftAmt =
      cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
    SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
                                DAG.getVTList(MVT::i32, MVT::i32),
                                LHS.getOperand(0),
                                DAG.getConstant(ShiftAmt, dl, MVT::i32));
    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
                                     Shift.getValue(1), SDValue());
    ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
    return Chain.getValue(1);
  }

  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);

  // If the RHS is a constant zero then the V (overflow) flag will never be
  // set. This can allow us to simplify GE to PL or LT to MI, which can be
  // simpler for other passes (like the peephole optimiser) to deal with.
  if (isNullConstant(RHS)) {
    switch (CondCode) {
      default: break;
      case ARMCC::GE:
        CondCode = ARMCC::PL;
        break;
      case ARMCC::LT:
        CondCode = ARMCC::MI;
        break;
    }
  }

  ARMISD::NodeType CompareType;
  switch (CondCode) {
  default:
    CompareType = ARMISD::CMP;
    break;
  case ARMCC::EQ:
  case ARMCC::NE:
    // Uses only Z Flag
    CompareType = ARMISD::CMPZ;
    break;
  }
  ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
}

/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
                                     SelectionDAG &DAG, const SDLoc &dl) const {
  assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
  SDValue Cmp;
  if (!isFloatingPointZero(RHS))
    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
  else
    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
}

/// duplicateCmp - Glue values can have only one use, so this function
/// duplicates a comparison node.
SDValue
ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
  unsigned Opc = Cmp.getOpcode();
  SDLoc DL(Cmp);
  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));

  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
  Cmp = Cmp.getOperand(0);
  Opc = Cmp.getOpcode();
  if (Opc == ARMISD::CMPFP)
    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
  else {
    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
  }
  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
}

// This function returns three things: the arithmetic computation itself
// (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
// comparison and the condition code define the case in which the arithmetic
// computation *does not* overflow.
std::pair<SDValue, SDValue>
ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
                                 SDValue &ARMcc) const {
  assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");

  SDValue Value, OverflowCmp;
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  SDLoc dl(Op);

  // FIXME: We are currently always generating CMPs because we don't support
  // generating CMN through the backend. This is not as good as the natural
  // CMP case because it causes a register dependency and cannot be folded
  // later.

  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("Unknown overflow instruction!");
  case ISD::SADDO:
    ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
    Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
    OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
    break;
  case ISD::UADDO:
    ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
    // We use ADDC here to correspond to its use in LowerUnsignedALUO.
    // We do not use it in the USUBO case as Value may not be used.
    Value = DAG.getNode(ARMISD::ADDC, dl,
                        DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
                .getValue(0);
    OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
    break;
  case ISD::SSUBO:
    ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
    Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
    OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
    break;
  case ISD::USUBO:
    ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
    Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
    OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
    break;
  case ISD::UMULO:
    // We generate a UMUL_LOHI and then check if the high word is 0.
    ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
    Value = DAG.getNode(ISD::UMUL_LOHI, dl,
                        DAG.getVTList(Op.getValueType(), Op.getValueType()),
                        LHS, RHS);
    OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
                              DAG.getConstant(0, dl, MVT::i32));
    Value = Value.getValue(0); // We only want the low 32 bits for the result.
    break;
  case ISD::SMULO:
    // We generate a SMUL_LOHI and then check if all the bits of the high word
    // are the same as the sign bit of the low word.
    ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
    Value = DAG.getNode(ISD::SMUL_LOHI, dl,
                        DAG.getVTList(Op.getValueType(), Op.getValueType()),
                        LHS, RHS);
    OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
                              DAG.getNode(ISD::SRA, dl, Op.getValueType(),
                                          Value.getValue(0),
                                          DAG.getConstant(31, dl, MVT::i32)));
    Value = Value.getValue(0); // We only want the low 32 bits for the result.
    break;
  } // switch (...)

  return std::make_pair(Value, OverflowCmp);
}

SDValue
ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
  // Let legalize expand this if it isn't a legal type yet.
  if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
    return SDValue();

  SDValue Value, OverflowCmp;
  SDValue ARMcc;
  std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
  SDLoc dl(Op);
  // We use 0 and 1 as false and true values.
  SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
  SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
  EVT VT = Op.getValueType();

  SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
                                 ARMcc, CCR, OverflowCmp);

  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
  return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
}

static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
                                              SelectionDAG &DAG) {
  SDLoc DL(BoolCarry);
  EVT CarryVT = BoolCarry.getValueType();

  // This converts the boolean value carry into the carry flag by doing
  // ARMISD::SUBC Carry, 1
  SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
                              DAG.getVTList(CarryVT, MVT::i32),
                              BoolCarry, DAG.getConstant(1, DL, CarryVT));
  return Carry.getValue(1);
}

static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
                                              SelectionDAG &DAG) {
  SDLoc DL(Flags);

  // Now convert the carry flag into a boolean carry. We do this
  // using ARMISD:ADDE 0, 0, Carry
  return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
                     DAG.getConstant(0, DL, MVT::i32),
                     DAG.getConstant(0, DL, MVT::i32), Flags);
}

SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
                                             SelectionDAG &DAG) const {
  // Let legalize expand this if it isn't a legal type yet.
  if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
    return SDValue();

  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  SDLoc dl(Op);

  EVT VT = Op.getValueType();
  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
  SDValue Value;
  SDValue Overflow;
  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("Unknown overflow instruction!");
  case ISD::UADDO:
    Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
    // Convert the carry flag into a boolean value.
    Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
    break;
  case ISD::USUBO: {
    Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
    // Convert the carry flag into a boolean value.
    Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
    // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
    // value. So compute 1 - C.
    Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
                           DAG.getConstant(1, dl, MVT::i32), Overflow);
    break;
  }
  }

  return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
}

static SDValue LowerSADDSUBSAT(SDValue Op, SelectionDAG &DAG,
                               const ARMSubtarget *Subtarget) {
  EVT VT = Op.getValueType();
  if (!Subtarget->hasDSP())
    return SDValue();
  if (!VT.isSimple())
    return SDValue();

  unsigned NewOpcode;
  bool IsAdd = Op->getOpcode() == ISD::SADDSAT;
  switch (VT.getSimpleVT().SimpleTy) {
  default:
    return SDValue();
  case MVT::i8:
    NewOpcode = IsAdd ? ARMISD::QADD8b : ARMISD::QSUB8b;
    break;
  case MVT::i16:
    NewOpcode = IsAdd ? ARMISD::QADD16b : ARMISD::QSUB16b;
    break;
  }

  SDLoc dl(Op);
  SDValue Add =
      DAG.getNode(NewOpcode, dl, MVT::i32,
                  DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
                  DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
  return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
}

SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
  SDValue Cond = Op.getOperand(0);
  SDValue SelectTrue = Op.getOperand(1);
  SDValue SelectFalse = Op.getOperand(2);
  SDLoc dl(Op);
  unsigned Opc = Cond.getOpcode();

  if (Cond.getResNo() == 1 &&
      (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
       Opc == ISD::USUBO)) {
    if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
      return SDValue();

    SDValue Value, OverflowCmp;
    SDValue ARMcc;
    std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
    EVT VT = Op.getValueType();

    return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
                   OverflowCmp, DAG);
  }

  // Convert:
  //
  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
  //
  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
    const ConstantSDNode *CMOVTrue =
      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
    const ConstantSDNode *CMOVFalse =
      dyn_cast<ConstantSDNode>(Cond.getOperand(1));

    if (CMOVTrue && CMOVFalse) {
      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();

      SDValue True;
      SDValue False;
      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
        True = SelectTrue;
        False = SelectFalse;
      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
        True = SelectFalse;
        False = SelectTrue;
      }

      if (True.getNode() && False.getNode()) {
        EVT VT = Op.getValueType();
        SDValue ARMcc = Cond.getOperand(2);
        SDValue CCR = Cond.getOperand(3);
        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
        assert(True.getValueType() == VT);
        return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
      }
    }
  }

  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
  // undefined bits before doing a full-word comparison with zero.
  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
                     DAG.getConstant(1, dl, Cond.getValueType()));

  return DAG.getSelectCC(dl, Cond,
                         DAG.getConstant(0, dl, Cond.getValueType()),
                         SelectTrue, SelectFalse, ISD::SETNE);
}

static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
                                 bool &swpCmpOps, bool &swpVselOps) {
  // Start by selecting the GE condition code for opcodes that return true for
  // 'equality'
  if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
      CC == ISD::SETULE || CC == ISD::SETGE  || CC == ISD::SETLE)
    CondCode = ARMCC::GE;

  // and GT for opcodes that return false for 'equality'.
  else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
           CC == ISD::SETULT || CC == ISD::SETGT  || CC == ISD::SETLT)
    CondCode = ARMCC::GT;

  // Since we are constrained to GE/GT, if the opcode contains 'less', we need
  // to swap the compare operands.
  if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
      CC == ISD::SETULT || CC == ISD::SETLE  || CC == ISD::SETLT)
    swpCmpOps = true;

  // Both GT and GE are ordered comparisons, and return false for 'unordered'.
  // If we have an unordered opcode, we need to swap the operands to the VSEL
  // instruction (effectively negating the condition).
  //
  // This also has the effect of swapping which one of 'less' or 'greater'
  // returns true, so we also swap the compare operands. It also switches
  // whether we return true for 'equality', so we compensate by picking the
  // opposite condition code to our original choice.
  if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
      CC == ISD::SETUGT) {
    swpCmpOps = !swpCmpOps;
    swpVselOps = !swpVselOps;
    CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
  }

  // 'ordered' is 'anything but unordered', so use the VS condition code and
  // swap the VSEL operands.
  if (CC == ISD::SETO) {
    CondCode = ARMCC::VS;
    swpVselOps = true;
  }

  // 'unordered or not equal' is 'anything but equal', so use the EQ condition
  // code and swap the VSEL operands. Also do this if we don't care about the
  // unordered case.
  if (CC == ISD::SETUNE || CC == ISD::SETNE) {
    CondCode = ARMCC::EQ;
    swpVselOps = true;
  }
}

SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
                                   SDValue TrueVal, SDValue ARMcc, SDValue CCR,
                                   SDValue Cmp, SelectionDAG &DAG) const {
  if (!Subtarget->hasFP64() && VT == MVT::f64) {
    FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
                           DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
    TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
                          DAG.getVTList(MVT::i32, MVT::i32), TrueVal);

    SDValue TrueLow = TrueVal.getValue(0);
    SDValue TrueHigh = TrueVal.getValue(1);
    SDValue FalseLow = FalseVal.getValue(0);
    SDValue FalseHigh = FalseVal.getValue(1);

    SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
                              ARMcc, CCR, Cmp);
    SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
                               ARMcc, CCR, duplicateCmp(Cmp, DAG));

    return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
  } else {
    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
                       Cmp);
  }
}

static bool isGTorGE(ISD::CondCode CC) {
  return CC == ISD::SETGT || CC == ISD::SETGE;
}

static bool isLTorLE(ISD::CondCode CC) {
  return CC == ISD::SETLT || CC == ISD::SETLE;
}

// See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
// All of these conditions (and their <= and >= counterparts) will do:
//          x < k ? k : x
//          x > k ? x : k
//          k < x ? x : k
//          k > x ? k : x
static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
                            const SDValue TrueVal, const SDValue FalseVal,
                            const ISD::CondCode CC, const SDValue K) {
  return (isGTorGE(CC) &&
          ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
         (isLTorLE(CC) &&
          ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
}

// Similar to isLowerSaturate(), but checks for upper-saturating conditions.
static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
                            const SDValue TrueVal, const SDValue FalseVal,
                            const ISD::CondCode CC, const SDValue K) {
  return (isGTorGE(CC) &&
          ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
         (isLTorLE(CC) &&
          ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
}

// Check if two chained conditionals could be converted into SSAT or USAT.
//
// SSAT can replace a set of two conditional selectors that bound a number to an
// interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
//
//     x < -k ? -k : (x > k ? k : x)
//     x < -k ? -k : (x < k ? x : k)
//     x > -k ? (x > k ? k : x) : -k
//     x < k ? (x < -k ? -k : x) : k
//     etc.
//
// USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
// a power of 2.
//
// It returns true if the conversion can be done, false otherwise.
// Additionally, the variable is returned in parameter V, the constant in K and
// usat is set to true if the conditional represents an unsigned saturation
static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
                                    uint64_t &K, bool &usat) {
  SDValue LHS1 = Op.getOperand(0);
  SDValue RHS1 = Op.getOperand(1);
  SDValue TrueVal1 = Op.getOperand(2);
  SDValue FalseVal1 = Op.getOperand(3);
  ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();

  const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
  if (Op2.getOpcode() != ISD::SELECT_CC)
    return false;

  SDValue LHS2 = Op2.getOperand(0);
  SDValue RHS2 = Op2.getOperand(1);
  SDValue TrueVal2 = Op2.getOperand(2);
  SDValue FalseVal2 = Op2.getOperand(3);
  ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();

  // Find out which are the constants and which are the variables
  // in each conditional
  SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
                                                        ? &RHS1
                                                        : nullptr;
  SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
                                                        ? &RHS2
                                                        : nullptr;
  SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
  SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
  SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
  SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;

  // We must detect cases where the original operations worked with 16- or
  // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
  // must work with sign-extended values but the select operations return
  // the original non-extended value.
  SDValue V2TmpReg = V2Tmp;
  if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
    V2TmpReg = V2Tmp->getOperand(0);

  // Check that the registers and the constants have the correct values
  // in both conditionals
  if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
      V2TmpReg != V2)
    return false;

  // Figure out which conditional is saturating the lower/upper bound.
  const SDValue *LowerCheckOp =
      isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
          ? &Op
          : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
                ? &Op2
                : nullptr;
  const SDValue *UpperCheckOp =
      isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
          ? &Op
          : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
                ? &Op2
                : nullptr;

  if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
    return false;

  // Check that the constant in the lower-bound check is
  // the opposite of the constant in the upper-bound check
  // in 1's complement.
  int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
  int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
  int64_t PosVal = std::max(Val1, Val2);
  int64_t NegVal = std::min(Val1, Val2);

  if (((Val1 > Val2 && UpperCheckOp == &Op) ||
       (Val1 < Val2 && UpperCheckOp == &Op2)) &&
      isPowerOf2_64(PosVal + 1)) {

    // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
    if (Val1 == ~Val2)
      usat = false;
    else if (NegVal == 0)
      usat = true;
    else
      return false;

    V = V2;
    K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive

    return true;
  }

  return false;
}

// Check if a condition of the type x < k ? k : x can be converted into a
// bit operation instead of conditional moves.
// Currently this is allowed given:
// - The conditions and values match up
// - k is 0 or -1 (all ones)
// This function will not check the last condition, thats up to the caller
// It returns true if the transformation can be made, and in such case
// returns x in V, and k in SatK.
static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
                                         SDValue &SatK)
{
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
  SDValue TrueVal = Op.getOperand(2);
  SDValue FalseVal = Op.getOperand(3);

  SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
                                               ? &RHS
                                               : nullptr;

  // No constant operation in comparison, early out
  if (!K)
    return false;

  SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
  V = (KTmp == TrueVal) ? FalseVal : TrueVal;
  SDValue VTmp = (K && *K == LHS) ? RHS : LHS;

  // If the constant on left and right side, or variable on left and right,
  // does not match, early out
  if (*K != KTmp || V != VTmp)
    return false;

  if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
    SatK = *K;
    return true;
  }

  return false;
}

bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
  if (VT == MVT::f32)
    return !Subtarget->hasVFP2Base();
  if (VT == MVT::f64)
    return !Subtarget->hasFP64();
  if (VT == MVT::f16)
    return !Subtarget->hasFullFP16();
  return false;
}

SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  SDLoc dl(Op);

  // Try to convert two saturating conditional selects into a single SSAT
  SDValue SatValue;
  uint64_t SatConstant;
  bool SatUSat;
  if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
      isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
    if (SatUSat)
      return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
                         DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
    else
      return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
                         DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
  }

  // Try to convert expressions of the form x < k ? k : x (and similar forms)
  // into more efficient bit operations, which is possible when k is 0 or -1
  // On ARM and Thumb-2 which have flexible operand 2 this will result in
  // single instructions. On Thumb the shift and the bit operation will be two
  // instructions.
  // Only allow this transformation on full-width (32-bit) operations
  SDValue LowerSatConstant;
  if (VT == MVT::i32 &&
      isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
    SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
                                 DAG.getConstant(31, dl, VT));
    if (isNullConstant(LowerSatConstant)) {
      SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
                                      DAG.getAllOnesConstant(dl, VT));
      return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
    } else if (isAllOnesConstant(LowerSatConstant))
      return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
  }

  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
  SDValue TrueVal = Op.getOperand(2);
  SDValue FalseVal = Op.getOperand(3);
  ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
  ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);

  if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
      LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
    unsigned TVal = CTVal->getZExtValue();
    unsigned FVal = CFVal->getZExtValue();
    unsigned Opcode = 0;

    if (TVal == ~FVal) {
      Opcode = ARMISD::CSINV;
    } else if (TVal == ~FVal + 1) {
      Opcode = ARMISD::CSNEG;
    } else if (TVal + 1 == FVal) {
      Opcode = ARMISD::CSINC;
    } else if (TVal == FVal + 1) {
      Opcode = ARMISD::CSINC;
      std::swap(TrueVal, FalseVal);
      std::swap(TVal, FVal);
      CC = ISD::getSetCCInverse(CC, true);
    }

    if (Opcode) {
      // If one of the constants is cheaper than another, materialise the
      // cheaper one and let the csel generate the other.
      if (Opcode != ARMISD::CSINC &&
          HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
        std::swap(TrueVal, FalseVal);
        std::swap(TVal, FVal);
        CC = ISD::getSetCCInverse(CC, true);
      }

      // Attempt to use ZR checking TVal is 0, possibly inverting the condition
      // to get there. CSINC not is invertable like the other two (~(~a) == a,
      // -(-a) == a, but (a+1)+1 != a).
      if (FVal == 0 && Opcode != ARMISD::CSINC) {
        std::swap(TrueVal, FalseVal);
        std::swap(TVal, FVal);
        CC = ISD::getSetCCInverse(CC, true);
      }
      if (TVal == 0)
        TrueVal = DAG.getRegister(ARM::ZR, MVT::i32);

      // Drops F's value because we can get it by inverting/negating TVal.
      FalseVal = TrueVal;

      SDValue ARMcc;
      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
      EVT VT = TrueVal.getValueType();
      return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
    }
  }

  if (isUnsupportedFloatingType(LHS.getValueType())) {
    DAG.getTargetLoweringInfo().softenSetCCOperands(
        DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);

    // If softenSetCCOperands only returned one value, we should compare it to
    // zero.
    if (!RHS.getNode()) {
      RHS = DAG.getConstant(0, dl, LHS.getValueType());
      CC = ISD::SETNE;
    }
  }

  if (LHS.getValueType() == MVT::i32) {
    // Try to generate VSEL on ARMv8.
    // The VSEL instruction can't use all the usual ARM condition
    // codes: it only has two bits to select the condition code, so it's
    // constrained to use only GE, GT, VS and EQ.
    //
    // To implement all the various ISD::SETXXX opcodes, we sometimes need to
    // swap the operands of the previous compare instruction (effectively
    // inverting the compare condition, swapping 'less' and 'greater') and
    // sometimes need to swap the operands to the VSEL (which inverts the
    // condition in the sense of firing whenever the previous condition didn't)
    if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
                                        TrueVal.getValueType() == MVT::f32 ||
                                        TrueVal.getValueType() == MVT::f64)) {
      ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
      if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
          CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
        CC = ISD::getSetCCInverse(CC, true);
        std::swap(TrueVal, FalseVal);
      }
    }

    SDValue ARMcc;
    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
    // Choose GE over PL, which vsel does now support
    if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
      ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
    return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
  }

  ARMCC::CondCodes CondCode, CondCode2;
  FPCCToARMCC(CC, CondCode, CondCode2);

  // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
  // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
  // must use VSEL (limited condition codes), due to not having conditional f16
  // moves.
  if (Subtarget->hasFPARMv8Base() &&
      !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
      (TrueVal.getValueType() == MVT::f16 ||
       TrueVal.getValueType() == MVT::f32 ||
       TrueVal.getValueType() == MVT::f64)) {
    bool swpCmpOps = false;
    bool swpVselOps = false;
    checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);

    if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
        CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
      if (swpCmpOps)
        std::swap(LHS, RHS);
      if (swpVselOps)
        std::swap(TrueVal, FalseVal);
    }
  }

  SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
  SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
  if (CondCode2 != ARMCC::AL) {
    SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
    // FIXME: Needs another CMP because flag can have but one use.
    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
    Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
  }
  return Result;
}

/// canChangeToInt - Given the fp compare operand, return true if it is suitable
/// to morph to an integer compare sequence.
static bool canChangeToInt(SDValue Op, bool &SeenZero,
                           const ARMSubtarget *Subtarget) {
  SDNode *N = Op.getNode();
  if (!N->hasOneUse())
    // Otherwise it requires moving the value from fp to integer registers.
    return false;
  if (!N->getNumValues())
    return false;
  EVT VT = Op.getValueType();
  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
    // vmrs are very slow, e.g. cortex-a8.
    return false;

  if (isFloatingPointZero(Op)) {
    SeenZero = true;
    return true;
  }
  return ISD::isNormalLoad(N);
}

static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
  if (isFloatingPointZero(Op))
    return DAG.getConstant(0, SDLoc(Op), MVT::i32);

  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
    return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
                       Ld->getPointerInfo(), Ld->getAlignment(),
                       Ld->getMemOperand()->getFlags());

  llvm_unreachable("Unknown VFP cmp argument!");
}

static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
                           SDValue &RetVal1, SDValue &RetVal2) {
  SDLoc dl(Op);

  if (isFloatingPointZero(Op)) {
    RetVal1 = DAG.getConstant(0, dl, MVT::i32);
    RetVal2 = DAG.getConstant(0, dl, MVT::i32);
    return;
  }

  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
    SDValue Ptr = Ld->getBasePtr();
    RetVal1 =
        DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
                    Ld->getAlignment(), Ld->getMemOperand()->getFlags());

    EVT PtrType = Ptr.getValueType();
    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
    SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
                                 PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
    RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
                          Ld->getPointerInfo().getWithOffset(4), NewAlign,
                          Ld->getMemOperand()->getFlags());
    return;
  }

  llvm_unreachable("Unknown VFP cmp argument!");
}

/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
/// f32 and even f64 comparisons to integer ones.
SDValue
ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
  SDValue LHS = Op.getOperand(2);
  SDValue RHS = Op.getOperand(3);
  SDValue Dest = Op.getOperand(4);
  SDLoc dl(Op);

  bool LHSSeenZero = false;
  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
  bool RHSSeenZero = false;
  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
    // If unsafe fp math optimization is enabled and there are no other uses of
    // the CMP operands, and the condition code is EQ or NE, we can optimize it
    // to an integer comparison.
    if (CC == ISD::SETOEQ)
      CC = ISD::SETEQ;
    else if (CC == ISD::SETUNE)
      CC = ISD::SETNE;

    SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
    SDValue ARMcc;
    if (LHS.getValueType() == MVT::f32) {
      LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
                        bitcastf32Toi32(LHS, DAG), Mask);
      RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
                        bitcastf32Toi32(RHS, DAG), Mask);
      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
                         Chain, Dest, ARMcc, CCR, Cmp);
    }

    SDValue LHS1, LHS2;
    SDValue RHS1, RHS2;
    expandf64Toi32(LHS, DAG, LHS1, LHS2);
    expandf64Toi32(RHS, DAG, RHS1, RHS2);
    LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
    RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
    ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
  }

  return SDValue();
}

SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDValue Cond = Op.getOperand(1);
  SDValue Dest = Op.getOperand(2);
  SDLoc dl(Op);

  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
  // instruction.
  unsigned Opc = Cond.getOpcode();
  bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
                      !Subtarget->isThumb1Only();
  if (Cond.getResNo() == 1 &&
      (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
       Opc == ISD::USUBO || OptimizeMul)) {
    // Only lower legal XALUO ops.
    if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
      return SDValue();

    // The actual operation with overflow check.
    SDValue Value, OverflowCmp;
    SDValue ARMcc;
    std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);

    // Reverse the condition code.
    ARMCC::CondCodes CondCode =
        (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
    CondCode = ARMCC::getOppositeCondition(CondCode);
    ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);

    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
                       OverflowCmp);
  }

  return SDValue();
}

SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
  SDValue LHS = Op.getOperand(2);
  SDValue RHS = Op.getOperand(3);
  SDValue Dest = Op.getOperand(4);
  SDLoc dl(Op);

  if (isUnsupportedFloatingType(LHS.getValueType())) {
    DAG.getTargetLoweringInfo().softenSetCCOperands(
        DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);

    // If softenSetCCOperands only returned one value, we should compare it to
    // zero.
    if (!RHS.getNode()) {
      RHS = DAG.getConstant(0, dl, LHS.getValueType());
      CC = ISD::SETNE;
    }
  }

  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
  // instruction.
  unsigned Opc = LHS.getOpcode();
  bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
                      !Subtarget->isThumb1Only();
  if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
      (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
       Opc == ISD::USUBO || OptimizeMul) &&
      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
    // Only lower legal XALUO ops.
    if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
      return SDValue();

    // The actual operation with overflow check.
    SDValue Value, OverflowCmp;
    SDValue ARMcc;
    std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);

    if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
      // Reverse the condition code.
      ARMCC::CondCodes CondCode =
          (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
      CondCode = ARMCC::getOppositeCondition(CondCode);
      ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
    }
    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);

    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
                       OverflowCmp);
  }

  if (LHS.getValueType() == MVT::i32) {
    SDValue ARMcc;
    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
                       Chain, Dest, ARMcc, CCR, Cmp);
  }

  if (getTargetMachine().Options.UnsafeFPMath &&
      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
       CC == ISD::SETNE || CC == ISD::SETUNE)) {
    if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
      return Result;
  }

  ARMCC::CondCodes CondCode, CondCode2;
  FPCCToARMCC(CC, CondCode, CondCode2);

  SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
  if (CondCode2 != ARMCC::AL) {
    ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
  }
  return Res;
}

SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDValue Table = Op.getOperand(1);
  SDValue Index = Op.getOperand(2);
  SDLoc dl(Op);

  EVT PTy = getPointerTy(DAG.getDataLayout());
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
  if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
    // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
    // which does another jump to the destination. This also makes it easier
    // to translate it to TBB / TBH later (Thumb2 only).
    // FIXME: This might not work if the function is extremely large.
    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
                       Addr, Op.getOperand(2), JTI);
  }
  if (isPositionIndependent() || Subtarget->isROPI()) {
    Addr =
        DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
                    MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
    Chain = Addr.getValue(1);
    Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
  } else {
    Addr =
        DAG.getLoad(PTy, dl, Chain, Addr,
                    MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
    Chain = Addr.getValue(1);
    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
  }
}

static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
  EVT VT = Op.getValueType();
  SDLoc dl(Op);

  if (Op.getValueType().getVectorElementType() == MVT::i32) {
    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
      return Op;
    return DAG.UnrollVectorOp(Op.getNode());
  }

  const bool HasFullFP16 =
    static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();

  EVT NewTy;
  const EVT OpTy = Op.getOperand(0).getValueType();
  if (OpTy == MVT::v4f32)
    NewTy = MVT::v4i32;
  else if (OpTy == MVT::v4f16 && HasFullFP16)
    NewTy = MVT::v4i16;
  else if (OpTy == MVT::v8f16 && HasFullFP16)
    NewTy = MVT::v8i16;
  else
    llvm_unreachable("Invalid type for custom lowering!");

  if (VT != MVT::v4i16 && VT != MVT::v8i16)
    return DAG.UnrollVectorOp(Op.getNode());

  Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
}

SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  if (VT.isVector())
    return LowerVectorFP_TO_INT(Op, DAG);
  if (isUnsupportedFloatingType(Op.getOperand(0).getValueType())) {
    RTLIB::Libcall LC;
    if (Op.getOpcode() == ISD::FP_TO_SINT)
      LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
                              Op.getValueType());
    else
      LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
                              Op.getValueType());
    MakeLibCallOptions CallOptions;
    return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
                       CallOptions, SDLoc(Op)).first;
  }

  return Op;
}

static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
  EVT VT = Op.getValueType();
  SDLoc dl(Op);

  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
    if (VT.getVectorElementType() == MVT::f32)
      return Op;
    return DAG.UnrollVectorOp(Op.getNode());
  }

  assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
          Op.getOperand(0).getValueType() == MVT::v8i16) &&
         "Invalid type for custom lowering!");

  const bool HasFullFP16 =
    static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();

  EVT DestVecType;
  if (VT == MVT::v4f32)
    DestVecType = MVT::v4i32;
  else if (VT == MVT::v4f16 && HasFullFP16)
    DestVecType = MVT::v4i16;
  else if (VT == MVT::v8f16 && HasFullFP16)
    DestVecType = MVT::v8i16;
  else
    return DAG.UnrollVectorOp(Op.getNode());

  unsigned CastOpc;
  unsigned Opc;
  switch (Op.getOpcode()) {
  default: llvm_unreachable("Invalid opcode!");
  case ISD::SINT_TO_FP:
    CastOpc = ISD::SIGN_EXTEND;
    Opc = ISD::SINT_TO_FP;
    break;
  case ISD::UINT_TO_FP:
    CastOpc = ISD::ZERO_EXTEND;
    Opc = ISD::UINT_TO_FP;
    break;
  }

  Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
  return DAG.getNode(Opc, dl, VT, Op);
}

SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  if (VT.isVector())
    return LowerVectorINT_TO_FP(Op, DAG);
  if (isUnsupportedFloatingType(VT)) {
    RTLIB::Libcall LC;
    if (Op.getOpcode() == ISD::SINT_TO_FP)
      LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
                              Op.getValueType());
    else
      LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
                              Op.getValueType());
    MakeLibCallOptions CallOptions;
    return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
                       CallOptions, SDLoc(Op)).first;
  }

  return Op;
}

SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
  // Implement fcopysign with a fabs and a conditional fneg.
  SDValue Tmp0 = Op.getOperand(0);
  SDValue Tmp1 = Op.getOperand(1);
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  EVT SrcVT = Tmp1.getValueType();
  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
    Tmp0.getOpcode() == ARMISD::VMOVDRR;
  bool UseNEON = !InGPR && Subtarget->hasNEON();

  if (UseNEON) {
    // Use VBSL to copy the sign bit.
    unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
                               DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
    if (VT == MVT::f64)
      Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
                         DAG.getConstant(32, dl, MVT::i32));
    else /*if (VT == MVT::f32)*/
      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
    if (SrcVT == MVT::f32) {
      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
      if (VT == MVT::f64)
        Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
                           DAG.getConstant(32, dl, MVT::i32));
    } else if (VT == MVT::f32)
      Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
                         DAG.getConstant(32, dl, MVT::i32));
    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);

    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
                                            dl, MVT::i32);
    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));

    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
    if (VT == MVT::f32) {
      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
                        DAG.getConstant(0, dl, MVT::i32));
    } else {
      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
    }

    return Res;
  }

  // Bitcast operand 1 to i32.
  if (SrcVT == MVT::f64)
    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
                       Tmp1).getValue(1);
  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);

  // Or in the signbit with integer operations.
  SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
  SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
  if (VT == MVT::f32) {
    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
  }

  // f64: Or the high part with signbit and then combine two parts.
  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
                     Tmp0);
  SDValue Lo = Tmp0.getValue(0);
  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
}

SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MFI.setReturnAddressIsTaken(true);

  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
    return SDValue();

  EVT VT = Op.getValueType();
  SDLoc dl(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  if (Depth) {
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
    SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
                       MachinePointerInfo());
  }

  // Return LR, which contains the return address. Mark it an implicit live-in.
  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}

SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
  const ARMBaseRegisterInfo &ARI =
    *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MFI.setFrameAddressIsTaken(true);

  EVT VT = Op.getValueType();
  SDLoc dl(Op);  // FIXME probably not meaningful
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  Register FrameReg = ARI.getFrameRegister(MF);
  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
  while (Depth--)
    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
                            MachinePointerInfo());
  return FrameAddr;
}

// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
                                              const MachineFunction &MF) const {
  Register Reg = StringSwitch<unsigned>(RegName)
                       .Case("sp", ARM::SP)
                       .Default(0);
  if (Reg)
    return Reg;
  report_fatal_error(Twine("Invalid register name \""
                              + StringRef(RegName)  + "\"."));
}

// Result is 64 bit value so split into two 32 bit values and return as a
// pair of values.
static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
                                SelectionDAG &DAG) {
  SDLoc DL(N);

  // This function is only supposed to be called for i64 type destination.
  assert(N->getValueType(0) == MVT::i64
          && "ExpandREAD_REGISTER called for non-i64 type result.");

  SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
                             DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
                             N->getOperand(0),
                             N->getOperand(1));

  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
                    Read.getValue(1)));
  Results.push_back(Read.getOperand(0));
}

/// \p BC is a bitcast that is about to be turned into a VMOVDRR.
/// When \p DstVT, the destination type of \p BC, is on the vector
/// register bank and the source of bitcast, \p Op, operates on the same bank,
/// it might be possible to combine them, such that everything stays on the
/// vector register bank.
/// \p return The node that would replace \p BT, if the combine
/// is possible.
static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
                                                SelectionDAG &DAG) {
  SDValue Op = BC->getOperand(0);
  EVT DstVT = BC->getValueType(0);

  // The only vector instruction that can produce a scalar (remember,
  // since the bitcast was about to be turned into VMOVDRR, the source
  // type is i64) from a vector is EXTRACT_VECTOR_ELT.
  // Moreover, we can do this combine only if there is one use.
  // Finally, if the destination type is not a vector, there is not
  // much point on forcing everything on the vector bank.
  if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
      !Op.hasOneUse())
    return SDValue();

  // If the index is not constant, we will introduce an additional
  // multiply that will stick.
  // Give up in that case.
  ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
  if (!Index)
    return SDValue();
  unsigned DstNumElt = DstVT.getVectorNumElements();

  // Compute the new index.
  const APInt &APIntIndex = Index->getAPIntValue();
  APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
  NewIndex *= APIntIndex;
  // Check if the new constant index fits into i32.
  if (NewIndex.getBitWidth() > 32)
    return SDValue();

  // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
  // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
  SDLoc dl(Op);
  SDValue ExtractSrc = Op.getOperand(0);
  EVT VecVT = EVT::getVectorVT(
      *DAG.getContext(), DstVT.getScalarType(),
      ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
  SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
                     DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
}

/// ExpandBITCAST - If the target supports VFP, this function is called to
/// expand a bit convert where either the source or destination type is i64 to
/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
/// operand type is illegal (e.g., v2f32 for a target that doesn't support
/// vectors), since the legalizer won't know what to do with that.
static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
                             const ARMSubtarget *Subtarget) {
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  SDLoc dl(N);
  SDValue Op = N->getOperand(0);

  // This function is only supposed to be called for i64 types, either as the
  // source or destination of the bit convert.
  EVT SrcVT = Op.getValueType();
  EVT DstVT = N->getValueType(0);
  const bool HasFullFP16 = Subtarget->hasFullFP16();

  if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
     // FullFP16: half values are passed in S-registers, and we don't
     // need any of the bitcast and moves:
     //
     // t2: f32,ch = CopyFromReg t0, Register:f32 %0
     //   t5: i32 = bitcast t2
     // t18: f16 = ARMISD::VMOVhr t5
     if (Op.getOpcode() != ISD::CopyFromReg ||
         Op.getValueType() != MVT::f32)
       return SDValue();

     auto Move = N->use_begin();
     if (Move->getOpcode() != ARMISD::VMOVhr)
       return SDValue();

     SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
     SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
     DAG.ReplaceAllUsesWith(*Move, &Copy);
     return Copy;
  }

  if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
    if (!HasFullFP16)
      return SDValue();
    // SoftFP: read half-precision arguments:
    //
    // t2: i32,ch = ...
    //        t7: i16 = truncate t2 <~~~~ Op
    //      t8: f16 = bitcast t7    <~~~~ N
    //
    if (Op.getOperand(0).getValueType() == MVT::i32)
      return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
                         MVT::f16, Op.getOperand(0));

    return SDValue();
  }

  // Half-precision return values
  if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
    if (!HasFullFP16)
      return SDValue();
    //
    //          t11: f16 = fadd t8, t10
    //        t12: i16 = bitcast t11       <~~~ SDNode N
    //      t13: i32 = zero_extend t12
    //    t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
    //  t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
    //
    // transform this into:
    //
    //    t20: i32 = ARMISD::VMOVrh t11
    //  t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
    //
    auto ZeroExtend = N->use_begin();
    if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
        ZeroExtend->getValueType(0) != MVT::i32)
      return SDValue();

    auto Copy = ZeroExtend->use_begin();
    if (Copy->getOpcode() == ISD::CopyToReg &&
        Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
      SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
      DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
      return Cvt;
    }
    return SDValue();
  }

  if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
    return SDValue();

  // Turn i64->f64 into VMOVDRR.
  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
    // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
    // if we can combine the bitcast with its source.
    if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
      return Val;

    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
                             DAG.getConstant(0, dl, MVT::i32));
    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
                             DAG.getConstant(1, dl, MVT::i32));
    return DAG.getNode(ISD::BITCAST, dl, DstVT,
                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
  }

  // Turn f64->i64 into VMOVRRD.
  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
    SDValue Cvt;
    if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
        SrcVT.getVectorNumElements() > 1)
      Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
                        DAG.getVTList(MVT::i32, MVT::i32),
                        DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
    else
      Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
                        DAG.getVTList(MVT::i32, MVT::i32), Op);
    // Merge the pieces into a single i64 value.
    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
  }

  return SDValue();
}

/// getZeroVector - Returns a vector of specified type with all zero elements.
/// Zero vectors are used to represent vector negation and in those cases
/// will be implemented with the NEON VNEG instruction.  However, VNEG does
/// not support i64 elements, so sometimes the zero vectors will need to be
/// explicitly constructed.  Regardless, use a canonical VMOV to create the
/// zero vector.
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
  assert(VT.isVector() && "Expected a vector type");
  // The canonical modified immediate encoding of a zero vector is....0!
  SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}

/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
                                                SelectionDAG &DAG) const {
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
  EVT VT = Op.getValueType();
  unsigned VTBits = VT.getSizeInBits();
  SDLoc dl(Op);
  SDValue ShOpLo = Op.getOperand(0);
  SDValue ShOpHi = Op.getOperand(1);
  SDValue ShAmt  = Op.getOperand(2);
  SDValue ARMcc;
  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;

  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);

  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
                                 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
                                   DAG.getConstant(VTBits, dl, MVT::i32));
  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
  SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
  SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
  SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
                            ISD::SETGE, ARMcc, DAG, dl);
  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
                           ARMcc, CCR, CmpLo);

  SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
  SDValue HiBigShift = Opc == ISD::SRA
                           ? DAG.getNode(Opc, dl, VT, ShOpHi,
                                         DAG.getConstant(VTBits - 1, dl, VT))
                           : DAG.getConstant(0, dl, VT);
  SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
                            ISD::SETGE, ARMcc, DAG, dl);
  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
                           ARMcc, CCR, CmpHi);

  SDValue Ops[2] = { Lo, Hi };
  return DAG.getMergeValues(Ops, dl);
}

/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
                                               SelectionDAG &DAG) const {
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
  EVT VT = Op.getValueType();
  unsigned VTBits = VT.getSizeInBits();
  SDLoc dl(Op);
  SDValue ShOpLo = Op.getOperand(0);
  SDValue ShOpHi = Op.getOperand(1);
  SDValue ShAmt  = Op.getOperand(2);
  SDValue ARMcc;
  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);

  assert(Op.getOpcode() == ISD::SHL_PARTS);
  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
                                 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
  SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);

  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
                                   DAG.getConstant(VTBits, dl, MVT::i32));
  SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
  SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
                            ISD::SETGE, ARMcc, DAG, dl);
  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
                           ARMcc, CCR, CmpHi);

  SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
                          ISD::SETGE, ARMcc, DAG, dl);
  SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
                           DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);

  SDValue Ops[2] = { Lo, Hi };
  return DAG.getMergeValues(Ops, dl);
}

SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
                                            SelectionDAG &DAG) const {
  // The rounding mode is in bits 23:22 of the FPSCR.
  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
  // so that the shift + and get folded into a bitfield extract.
  SDLoc dl(Op);
  SDValue Ops[] = { DAG.getEntryNode(),
                    DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };

  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
                                  DAG.getConstant(1U << 22, dl, MVT::i32));
  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
                              DAG.getConstant(22, dl, MVT::i32));
  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
                     DAG.getConstant(3, dl, MVT::i32));
}

static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
                         const ARMSubtarget *ST) {
  SDLoc dl(N);
  EVT VT = N->getValueType(0);
  if (VT.isVector() && ST->hasNEON()) {

    // Compute the least significant set bit: LSB = X & -X
    SDValue X = N->getOperand(0);
    SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
    SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);

    EVT ElemTy = VT.getVectorElementType();

    if (ElemTy == MVT::i8) {
      // Compute with: cttz(x) = ctpop(lsb - 1)
      SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
                                DAG.getTargetConstant(1, dl, ElemTy));
      SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
      return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
    }

    if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
        (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
      // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
      unsigned NumBits = ElemTy.getSizeInBits();
      SDValue WidthMinus1 =
          DAG.getNode(ARMISD::VMOVIMM, dl, VT,
                      DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
      SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
      return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
    }

    // Compute with: cttz(x) = ctpop(lsb - 1)

    // Compute LSB - 1.
    SDValue Bits;
    if (ElemTy == MVT::i64) {
      // Load constant 0xffff'ffff'ffff'ffff to register.
      SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
                               DAG.getTargetConstant(0x1eff, dl, MVT::i32));
      Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
    } else {
      SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
                                DAG.getTargetConstant(1, dl, ElemTy));
      Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
    }
    return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
  }

  if (!ST->hasV6T2Ops())
    return SDValue();

  SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
}

static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
                          const ARMSubtarget *ST) {
  EVT VT = N->getValueType(0);
  SDLoc DL(N);

  assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
  assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
          VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
         "Unexpected type for custom ctpop lowering");

  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
  SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
  Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);

  // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
  unsigned EltSize = 8;
  unsigned NumElts = VT.is64BitVector() ? 8 : 16;
  while (EltSize != VT.getScalarSizeInBits()) {
    SmallVector<SDValue, 8> Ops;
    Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
                                  TLI.getPointerTy(DAG.getDataLayout())));
    Ops.push_back(Res);

    EltSize *= 2;
    NumElts /= 2;
    MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
  }

  return Res;
}

/// Getvshiftimm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift operation, where all the elements of the
/// build_vector must have the same constant integer value.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
  // Ignore bit_converts.
  while (Op.getOpcode() == ISD::BITCAST)
    Op = Op.getOperand(0);
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
  APInt SplatBits, SplatUndef;
  unsigned SplatBitSize;
  bool HasAnyUndefs;
  if (!BVN ||
      !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
                            ElementBits) ||
      SplatBitSize > ElementBits)
    return false;
  Cnt = SplatBits.getSExtValue();
  return true;
}

/// isVShiftLImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift left operation.  That value must be in the range:
///   0 <= Value < ElementBits for a left shift; or
///   0 <= Value <= ElementBits for a long left shift.
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
  assert(VT.isVector() && "vector shift count is not a vector type");
  int64_t ElementBits = VT.getScalarSizeInBits();
  if (!getVShiftImm(Op, ElementBits, Cnt))
    return false;
  return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
}

/// isVShiftRImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift right operation.  For a shift opcode, the value
/// is positive, but for an intrinsic the value count must be negative. The
/// absolute value must be in the range:
///   1 <= |Value| <= ElementBits for a right shift; or
///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
                         int64_t &Cnt) {
  assert(VT.isVector() && "vector shift count is not a vector type");
  int64_t ElementBits = VT.getScalarSizeInBits();
  if (!getVShiftImm(Op, ElementBits, Cnt))
    return false;
  if (!isIntrinsic)
    return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
  if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
    Cnt = -Cnt;
    return true;
  }
  return false;
}

static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
                          const ARMSubtarget *ST) {
  EVT VT = N->getValueType(0);
  SDLoc dl(N);
  int64_t Cnt;

  if (!VT.isVector())
    return SDValue();

  // We essentially have two forms here. Shift by an immediate and shift by a
  // vector register (there are also shift by a gpr, but that is just handled
  // with a tablegen pattern). We cannot easily match shift by an immediate in
  // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
  // For shifting by a vector, we don't have VSHR, only VSHL (which can be
  // signed or unsigned, and a negative shift indicates a shift right).
  if (N->getOpcode() == ISD::SHL) {
    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
      return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
                         DAG.getConstant(Cnt, dl, MVT::i32));
    return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
                       N->getOperand(1));
  }

  assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
         "unexpected vector shift opcode");

  if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
    unsigned VShiftOpc =
        (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
    return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
                       DAG.getConstant(Cnt, dl, MVT::i32));
  }

  // Other right shifts we don't have operations for (we use a shift left by a
  // negative number).
  EVT ShiftVT = N->getOperand(1).getValueType();
  SDValue NegatedCount = DAG.getNode(
      ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
  unsigned VShiftOpc =
      (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
  return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
}

static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
                                const ARMSubtarget *ST) {
  EVT VT = N->getValueType(0);
  SDLoc dl(N);

  // We can get here for a node like i32 = ISD::SHL i32, i64
  if (VT != MVT::i64)
    return SDValue();

  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
          N->getOpcode() == ISD::SHL) &&
         "Unknown shift to lower!");

  unsigned ShOpc = N->getOpcode();
  if (ST->hasMVEIntegerOps()) {
    SDValue ShAmt = N->getOperand(1);
    unsigned ShPartsOpc = ARMISD::LSLL;
    ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);

    // If the shift amount is greater than 32 or has a greater bitwidth than 64
    // then do the default optimisation
    if (ShAmt->getValueType(0).getSizeInBits() > 64 ||
        (Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32)))
      return SDValue();

    // Extract the lower 32 bits of the shift amount if it's not an i32
    if (ShAmt->getValueType(0) != MVT::i32)
      ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);

    if (ShOpc == ISD::SRL) {
      if (!Con)
        // There is no t2LSRLr instruction so negate and perform an lsll if the
        // shift amount is in a register, emulating a right shift.
        ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
                            DAG.getConstant(0, dl, MVT::i32), ShAmt);
      else
        // Else generate an lsrl on the immediate shift amount
        ShPartsOpc = ARMISD::LSRL;
    } else if (ShOpc == ISD::SRA)
      ShPartsOpc = ARMISD::ASRL;

    // Lower 32 bits of the destination/source
    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
                             DAG.getConstant(0, dl, MVT::i32));
    // Upper 32 bits of the destination/source
    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
                             DAG.getConstant(1, dl, MVT::i32));

    // Generate the shift operation as computed above
    Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
                     ShAmt);
    // The upper 32 bits come from the second return value of lsll
    Hi = SDValue(Lo.getNode(), 1);
    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
  }

  // We only lower SRA, SRL of 1 here, all others use generic lowering.
  if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
    return SDValue();

  // If we are in thumb mode, we don't have RRX.
  if (ST->isThumb1Only())
    return SDValue();

  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
                           DAG.getConstant(0, dl, MVT::i32));
  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
                           DAG.getConstant(1, dl, MVT::i32));

  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
  // captures the result into a carry flag.
  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);

  // The low part is an ARMISD::RRX operand, which shifts the carry in.
  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));

  // Merge the pieces into a single i64 value.
 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}

static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
                           const ARMSubtarget *ST) {
  bool Invert = false;
  bool Swap = false;
  unsigned Opc = ARMCC::AL;

  SDValue Op0 = Op.getOperand(0);
  SDValue Op1 = Op.getOperand(1);
  SDValue CC = Op.getOperand(2);
  EVT VT = Op.getValueType();
  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
  SDLoc dl(Op);

  EVT CmpVT;
  if (ST->hasNEON())
    CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
  else {
    assert(ST->hasMVEIntegerOps() &&
           "No hardware support for integer vector comparison!");

    if (Op.getValueType().getVectorElementType() != MVT::i1)
      return SDValue();

    // Make sure we expand floating point setcc to scalar if we do not have
    // mve.fp, so that we can handle them from there.
    if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
      return SDValue();

    CmpVT = VT;
  }

  if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
      (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
    // Special-case integer 64-bit equality comparisons. They aren't legal,
    // but they can be lowered with a few vector instructions.
    unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
    EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
    SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
    SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
    SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
                              DAG.getCondCode(ISD::SETEQ));
    SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
    SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
    Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
    if (SetCCOpcode == ISD::SETNE)
      Merged = DAG.getNOT(dl, Merged, CmpVT);
    Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
    return Merged;
  }

  if (CmpVT.getVectorElementType() == MVT::i64)
    // 64-bit comparisons are not legal in general.
    return SDValue();

  if (Op1.getValueType().isFloatingPoint()) {
    switch (SetCCOpcode) {
    default: llvm_unreachable("Illegal FP comparison");
    case ISD::SETUNE:
    case ISD::SETNE:
      if (ST->hasMVEFloatOps()) {
        Opc = ARMCC::NE; break;
      } else {
        Invert = true; LLVM_FALLTHROUGH;
      }
    case ISD::SETOEQ:
    case ISD::SETEQ:  Opc = ARMCC::EQ; break;
    case ISD::SETOLT:
    case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
    case ISD::SETOGT:
    case ISD::SETGT:  Opc = ARMCC::GT; break;
    case ISD::SETOLE:
    case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
    case ISD::SETOGE:
    case ISD::SETGE: Opc = ARMCC::GE; break;
    case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
    case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
    case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
    case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
    case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
    case ISD::SETONE: {
      // Expand this to (OLT | OGT).
      SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
                                   DAG.getConstant(ARMCC::GT, dl, MVT::i32));
      SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
                                   DAG.getConstant(ARMCC::GT, dl, MVT::i32));
      SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
      if (Invert)
        Result = DAG.getNOT(dl, Result, VT);
      return Result;
    }
    case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH;
    case ISD::SETO: {
      // Expand this to (OLT | OGE).
      SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
                                   DAG.getConstant(ARMCC::GT, dl, MVT::i32));
      SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
                                   DAG.getConstant(ARMCC::GE, dl, MVT::i32));
      SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
      if (Invert)
        Result = DAG.getNOT(dl, Result, VT);
      return Result;
    }
    }
  } else {
    // Integer comparisons.
    switch (SetCCOpcode) {
    default: llvm_unreachable("Illegal integer comparison");
    case ISD::SETNE:
      if (ST->hasMVEIntegerOps()) {
        Opc = ARMCC::NE; break;
      } else {
        Invert = true; LLVM_FALLTHROUGH;
      }
    case ISD::SETEQ:  Opc = ARMCC::EQ; break;
    case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
    case ISD::SETGT:  Opc = ARMCC::GT; break;
    case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
    case ISD::SETGE:  Opc = ARMCC::GE; break;
    case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
    case ISD::SETUGT: Opc = ARMCC::HI; break;
    case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
    case ISD::SETUGE: Opc = ARMCC::HS; break;
    }

    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
    if (ST->hasNEON() && Opc == ARMCC::EQ) {
      SDValue AndOp;
      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
        AndOp = Op0;
      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
        AndOp = Op1;

      // Ignore bitconvert.
      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
        AndOp = AndOp.getOperand(0);

      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
        Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
        Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
        SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
        if (!Invert)
          Result = DAG.getNOT(dl, Result, VT);
        return Result;
      }
    }
  }

  if (Swap)
    std::swap(Op0, Op1);

  // If one of the operands is a constant vector zero, attempt to fold the
  // comparison to a specialized compare-against-zero form.
  SDValue SingleOp;
  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
    SingleOp = Op0;
  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
    if (Opc == ARMCC::GE)
      Opc = ARMCC::LE;
    else if (Opc == ARMCC::GT)
      Opc = ARMCC::LT;
    SingleOp = Op1;
  }

  SDValue Result;
  if (SingleOp.getNode()) {
    Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp,
                         DAG.getConstant(Opc, dl, MVT::i32));
  } else {
    Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
                         DAG.getConstant(Opc, dl, MVT::i32));
  }

  Result = DAG.getSExtOrTrunc(Result, dl, VT);

  if (Invert)
    Result = DAG.getNOT(dl, Result, VT);

  return Result;
}

static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  SDValue Carry = Op.getOperand(2);
  SDValue Cond = Op.getOperand(3);
  SDLoc DL(Op);

  assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");

  // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
  // have to invert the carry first.
  Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
                      DAG.getConstant(1, DL, MVT::i32), Carry);
  // This converts the boolean value carry into the carry flag.
  Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);

  SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
  SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);

  SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
  SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
  SDValue ARMcc = DAG.getConstant(
      IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
                                   Cmp.getValue(1), SDValue());
  return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
                     CCR, Chain.getValue(1));
}

/// isVMOVModifiedImm - Check if the specified splat value corresponds to a
/// valid vector constant for a NEON or MVE instruction with a "modified
/// immediate" operand (e.g., VMOV).  If so, return the encoded value.
static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
                                 unsigned SplatBitSize, SelectionDAG &DAG,
                                 const SDLoc &dl, EVT &VT, bool is128Bits,
                                 VMOVModImmType type) {
  unsigned OpCmode, Imm;

  // SplatBitSize is set to the smallest size that splats the vector, so a
  // zero vector will always have SplatBitSize == 8.  However, NEON modified
  // immediate instructions others than VMOV do not support the 8-bit encoding
  // of a zero vector, and the default encoding of zero is supposed to be the
  // 32-bit version.
  if (SplatBits == 0)
    SplatBitSize = 32;

  switch (SplatBitSize) {
  case 8:
    if (type != VMOVModImm)
      return SDValue();
    // Any 1-byte value is OK.  Op=0, Cmode=1110.
    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
    OpCmode = 0xe;
    Imm = SplatBits;
    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
    break;

  case 16:
    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
    if ((SplatBits & ~0xff) == 0) {
      // Value = 0x00nn: Op=x, Cmode=100x.
      OpCmode = 0x8;
      Imm = SplatBits;
      break;
    }
    if ((SplatBits & ~0xff00) == 0) {
      // Value = 0xnn00: Op=x, Cmode=101x.
      OpCmode = 0xa;
      Imm = SplatBits >> 8;
      break;
    }
    return SDValue();

  case 32:
    // NEON's 32-bit VMOV supports splat values where:
    // * only one byte is nonzero, or
    // * the least significant byte is 0xff and the second byte is nonzero, or
    // * the least significant 2 bytes are 0xff and the third is nonzero.
    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
    if ((SplatBits & ~0xff) == 0) {
      // Value = 0x000000nn: Op=x, Cmode=000x.
      OpCmode = 0;
      Imm = SplatBits;
      break;
    }
    if ((SplatBits & ~0xff00) == 0) {
      // Value = 0x0000nn00: Op=x, Cmode=001x.
      OpCmode = 0x2;
      Imm = SplatBits >> 8;
      break;
    }
    if ((SplatBits & ~0xff0000) == 0) {
      // Value = 0x00nn0000: Op=x, Cmode=010x.
      OpCmode = 0x4;
      Imm = SplatBits >> 16;
      break;
    }
    if ((SplatBits & ~0xff000000) == 0) {
      // Value = 0xnn000000: Op=x, Cmode=011x.
      OpCmode = 0x6;
      Imm = SplatBits >> 24;
      break;
    }

    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
    if (type == OtherModImm) return SDValue();

    if ((SplatBits & ~0xffff) == 0 &&
        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
      // Value = 0x0000nnff: Op=x, Cmode=1100.
      OpCmode = 0xc;
      Imm = SplatBits >> 8;
      break;
    }

    // cmode == 0b1101 is not supported for MVE VMVN
    if (type == MVEVMVNModImm)
      return SDValue();

    if ((SplatBits & ~0xffffff) == 0 &&
        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
      // Value = 0x00nnffff: Op=x, Cmode=1101.
      OpCmode = 0xd;
      Imm = SplatBits >> 16;
      break;
    }

    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
    // VMOV.I32.  A (very) minor optimization would be to replicate the value
    // and fall through here to test for a valid 64-bit splat.  But, then the
    // caller would also need to check and handle the change in size.
    return SDValue();

  case 64: {
    if (type != VMOVModImm)
      return SDValue();
    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
    uint64_t BitMask = 0xff;
    uint64_t Val = 0;
    unsigned ImmMask = 1;
    Imm = 0;
    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
        Val |= BitMask;
        Imm |= ImmMask;
      } else if ((SplatBits & BitMask) != 0) {
        return SDValue();
      }
      BitMask <<= 8;
      ImmMask <<= 1;
    }

    if (DAG.getDataLayout().isBigEndian())
      // swap higher and lower 32 bit word
      Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);

    // Op=1, Cmode=1110.
    OpCmode = 0x1e;
    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
    break;
  }

  default:
    llvm_unreachable("unexpected size for isVMOVModifiedImm");
  }

  unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
  return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
}

SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
                                           const ARMSubtarget *ST) const {
  EVT VT = Op.getValueType();
  bool IsDouble = (VT == MVT::f64);
  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
  const APFloat &FPVal = CFP->getValueAPF();

  // Prevent floating-point constants from using literal loads
  // when execute-only is enabled.
  if (ST->genExecuteOnly()) {
    // If we can represent the constant as an immediate, don't lower it
    if (isFPImmLegal(FPVal, VT))
      return Op;
    // Otherwise, construct as integer, and move to float register
    APInt INTVal = FPVal.bitcastToAPInt();
    SDLoc DL(CFP);
    switch (VT.getSimpleVT().SimpleTy) {
      default:
        llvm_unreachable("Unknown floating point type!");
        break;
      case MVT::f64: {
        SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
        SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
        if (!ST->isLittle())
          std::swap(Lo, Hi);
        return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
      }
      case MVT::f32:
          return DAG.getNode(ARMISD::VMOVSR, DL, VT,
              DAG.getConstant(INTVal, DL, MVT::i32));
    }
  }

  if (!ST->hasVFP3Base())
    return SDValue();

  // Use the default (constant pool) lowering for double constants when we have
  // an SP-only FPU
  if (IsDouble && !Subtarget->hasFP64())
    return SDValue();

  // Try splatting with a VMOV.f32...
  int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);

  if (ImmVal != -1) {
    if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
      // We have code in place to select a valid ConstantFP already, no need to
      // do any mangling.
      return Op;
    }

    // It's a float and we are trying to use NEON operations where
    // possible. Lower it to a splat followed by an extract.
    SDLoc DL(Op);
    SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
    SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
                                      NewVal);
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
                       DAG.getConstant(0, DL, MVT::i32));
  }

  // The rest of our options are NEON only, make sure that's allowed before
  // proceeding..
  if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
    return SDValue();

  EVT VMovVT;
  uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();

  // It wouldn't really be worth bothering for doubles except for one very
  // important value, which does happen to match: 0.0. So make sure we don't do
  // anything stupid.
  if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
    return SDValue();

  // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
  SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
                                     VMovVT, false, VMOVModImm);
  if (NewVal != SDValue()) {
    SDLoc DL(Op);
    SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
                                      NewVal);
    if (IsDouble)
      return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);

    // It's a float: cast and extract a vector element.
    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
                                       VecConstant);
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
                       DAG.getConstant(0, DL, MVT::i32));
  }

  // Finally, try a VMVN.i32
  NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
                             false, VMVNModImm);
  if (NewVal != SDValue()) {
    SDLoc DL(Op);
    SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);

    if (IsDouble)
      return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);

    // It's a float: cast and extract a vector element.
    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
                                       VecConstant);
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
                       DAG.getConstant(0, DL, MVT::i32));
  }

  return SDValue();
}

// check if an VEXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are the same.
static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
  unsigned NumElts = VT.getVectorNumElements();

  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
  if (M[0] < 0)
    return false;

  Imm = M[0];

  // If this is a VEXT shuffle, the immediate value is the index of the first
  // element.  The other shuffle indices must be the successive elements after
  // the first one.
  unsigned ExpectedElt = Imm;
  for (unsigned i = 1; i < NumElts; ++i) {
    // Increment the expected index.  If it wraps around, just follow it
    // back to index zero and keep going.
    ++ExpectedElt;
    if (ExpectedElt == NumElts)
      ExpectedElt = 0;

    if (M[i] < 0) continue; // ignore UNDEF indices
    if (ExpectedElt != static_cast<unsigned>(M[i]))
      return false;
  }

  return true;
}

static bool isVEXTMask(ArrayRef<int> M, EVT VT,
                       bool &ReverseVEXT, unsigned &Imm) {
  unsigned NumElts = VT.getVectorNumElements();
  ReverseVEXT = false;

  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
  if (M[0] < 0)
    return false;

  Imm = M[0];

  // If this is a VEXT shuffle, the immediate value is the index of the first
  // element.  The other shuffle indices must be the successive elements after
  // the first one.
  unsigned ExpectedElt = Imm;
  for (unsigned i = 1; i < NumElts; ++i) {
    // Increment the expected index.  If it wraps around, it may still be
    // a VEXT but the source vectors must be swapped.
    ExpectedElt += 1;
    if (ExpectedElt == NumElts * 2) {
      ExpectedElt = 0;
      ReverseVEXT = true;
    }

    if (M[i] < 0) continue; // ignore UNDEF indices
    if (ExpectedElt != static_cast<unsigned>(M[i]))
      return false;
  }

  // Adjust the index value if the source operands will be swapped.
  if (ReverseVEXT)
    Imm -= NumElts;

  return true;
}

/// isVREVMask - Check if a vector shuffle corresponds to a VREV
/// instruction with the specified blocksize.  (The order of the elements
/// within each block of the vector is reversed.)
static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
         "Only possible block sizes for VREV are: 16, 32, 64");

  unsigned EltSz = VT.getScalarSizeInBits();
  if (EltSz == 64)
    return false;

  unsigned NumElts = VT.getVectorNumElements();
  unsigned BlockElts = M[0] + 1;
  // If the first shuffle index is UNDEF, be optimistic.
  if (M[0] < 0)
    BlockElts = BlockSize / EltSz;

  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
    return false;

  for (unsigned i = 0; i < NumElts; ++i) {
    if (M[i] < 0) continue; // ignore UNDEF indices
    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
      return false;
  }

  return true;
}

static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
  // range, then 0 is placed into the resulting vector. So pretty much any mask
  // of 8 elements can work here.
  return VT == MVT::v8i8 && M.size() == 8;
}

static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
                               unsigned Index) {
  if (Mask.size() == Elements * 2)
    return Index / Elements;
  return Mask[Index] == 0 ? 0 : 1;
}

// Checks whether the shuffle mask represents a vector transpose (VTRN) by
// checking that pairs of elements in the shuffle mask represent the same index
// in each vector, incrementing the expected index by 2 at each step.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
//  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
//  v2={e,f,g,h}
// WhichResult gives the offset for each element in the mask based on which
// of the two results it belongs to.
//
// The transpose can be represented either as:
// result1 = shufflevector v1, v2, result1_shuffle_mask
// result2 = shufflevector v1, v2, result2_shuffle_mask
// where v1/v2 and the shuffle masks have the same number of elements
// (here WhichResult (see below) indicates which result is being checked)
//
// or as:
// results = shufflevector v1, v2, shuffle_mask
// where both results are returned in one vector and the shuffle mask has twice
// as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
// want to check the low half and high half of the shuffle mask as if it were
// the other case
static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned EltSz = VT.getScalarSizeInBits();
  if (EltSz == 64)
    return false;

  unsigned NumElts = VT.getVectorNumElements();
  if (M.size() != NumElts && M.size() != NumElts*2)
    return false;

  // If the mask is twice as long as the input vector then we need to check the
  // upper and lower parts of the mask with a matching value for WhichResult
  // FIXME: A mask with only even values will be rejected in case the first
  // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
  // M[0] is used to determine WhichResult
  for (unsigned i = 0; i < M.size(); i += NumElts) {
    WhichResult = SelectPairHalf(NumElts, M, i);
    for (unsigned j = 0; j < NumElts; j += 2) {
      if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
          (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
        return false;
    }
  }

  if (M.size() == NumElts*2)
    WhichResult = 0;

  return true;
}

/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
  unsigned EltSz = VT.getScalarSizeInBits();
  if (EltSz == 64)
    return false;

  unsigned NumElts = VT.getVectorNumElements();
  if (M.size() != NumElts && M.size() != NumElts*2)
    return false;

  for (unsigned i = 0; i < M.size(); i += NumElts) {
    WhichResult = SelectPairHalf(NumElts, M, i);
    for (unsigned j = 0; j < NumElts; j += 2) {
      if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
          (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
        return false;
    }
  }

  if (M.size() == NumElts*2)
    WhichResult = 0;

  return true;
}

// Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
// that the mask elements are either all even and in steps of size 2 or all odd
// and in steps of size 2.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
//  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
//  v2={e,f,g,h}
// Requires similar checks to that of isVTRNMask with
// respect the how results are returned.
static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned EltSz = VT.getScalarSizeInBits();
  if (EltSz == 64)
    return false;

  unsigned NumElts = VT.getVectorNumElements();
  if (M.size() != NumElts && M.size() != NumElts*2)
    return false;

  for (unsigned i = 0; i < M.size(); i += NumElts) {
    WhichResult = SelectPairHalf(NumElts, M, i);
    for (unsigned j = 0; j < NumElts; ++j) {
      if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
        return false;
    }
  }

  if (M.size() == NumElts*2)
    WhichResult = 0;

  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
  if (VT.is64BitVector() && EltSz == 32)
    return false;

  return true;
}

/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
  unsigned EltSz = VT.getScalarSizeInBits();
  if (EltSz == 64)
    return false;

  unsigned NumElts = VT.getVectorNumElements();
  if (M.size() != NumElts && M.size() != NumElts*2)
    return false;

  unsigned Half = NumElts / 2;
  for (unsigned i = 0; i < M.size(); i += NumElts) {
    WhichResult = SelectPairHalf(NumElts, M, i);
    for (unsigned j = 0; j < NumElts; j += Half) {
      unsigned Idx = WhichResult;
      for (unsigned k = 0; k < Half; ++k) {
        int MIdx = M[i + j + k];
        if (MIdx >= 0 && (unsigned) MIdx != Idx)
          return false;
        Idx += 2;
      }
    }
  }

  if (M.size() == NumElts*2)
    WhichResult = 0;

  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
  if (VT.is64BitVector() && EltSz == 32)
    return false;

  return true;
}

// Checks whether the shuffle mask represents a vector zip (VZIP) by checking
// that pairs of elements of the shufflemask represent the same index in each
// vector incrementing sequentially through the vectors.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
//  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
//  v2={e,f,g,h}
// Requires similar checks to that of isVTRNMask with respect the how results
// are returned.
static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned EltSz = VT.getScalarSizeInBits();
  if (EltSz == 64)
    return false;

  unsigned NumElts = VT.getVectorNumElements();
  if (M.size() != NumElts && M.size() != NumElts*2)
    return false;

  for (unsigned i = 0; i < M.size(); i += NumElts) {
    WhichResult = SelectPairHalf(NumElts, M, i);
    unsigned Idx = WhichResult * NumElts / 2;
    for (unsigned j = 0; j < NumElts; j += 2) {
      if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
          (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
        return false;
      Idx += 1;
    }
  }

  if (M.size() == NumElts*2)
    WhichResult = 0;

  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
  if (VT.is64BitVector() && EltSz == 32)
    return false;

  return true;
}

/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
  unsigned EltSz = VT.getScalarSizeInBits();
  if (EltSz == 64)
    return false;

  unsigned NumElts = VT.getVectorNumElements();
  if (M.size() != NumElts && M.size() != NumElts*2)
    return false;

  for (unsigned i = 0; i < M.size(); i += NumElts) {
    WhichResult = SelectPairHalf(NumElts, M, i);
    unsigned Idx = WhichResult * NumElts / 2;
    for (unsigned j = 0; j < NumElts; j += 2) {
      if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
          (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
        return false;
      Idx += 1;
    }
  }

  if (M.size() == NumElts*2)
    WhichResult = 0;

  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
  if (VT.is64BitVector() && EltSz == 32)
    return false;

  return true;
}

/// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
/// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
                                           unsigned &WhichResult,
                                           bool &isV_UNDEF) {
  isV_UNDEF = false;
  if (isVTRNMask(ShuffleMask, VT, WhichResult))
    return ARMISD::VTRN;
  if (isVUZPMask(ShuffleMask, VT, WhichResult))
    return ARMISD::VUZP;
  if (isVZIPMask(ShuffleMask, VT, WhichResult))
    return ARMISD::VZIP;

  isV_UNDEF = true;
  if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
    return ARMISD::VTRN;
  if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
    return ARMISD::VUZP;
  if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
    return ARMISD::VZIP;

  return 0;
}

/// \return true if this is a reverse operation on an vector.
static bool isReverseMask(ArrayRef<int> M, EVT VT) {
  unsigned NumElts = VT.getVectorNumElements();
  // Make sure the mask has the right size.
  if (NumElts != M.size())
      return false;

  // Look for <15, ..., 3, -1, 1, 0>.
  for (unsigned i = 0; i != NumElts; ++i)
    if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
      return false;

  return true;
}

static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top) {
  unsigned NumElts = VT.getVectorNumElements();
  // Make sure the mask has the right size.
  if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
      return false;

  // If Top
  //   Look for <0, N, 2, N+2, 4, N+4, ..>.
  //   This inserts Input2 into Input1
  // else if not Top
  //   Look for <0, N+1, 2, N+3, 4, N+5, ..>
  //   This inserts Input1 into Input2
  unsigned Offset = Top ? 0 : 1;
  for (unsigned i = 0; i < NumElts; i+=2) {
    if (M[i] >= 0 && M[i] != (int)i)
      return false;
    if (M[i+1] >= 0 && M[i+1] != (int)(NumElts + i + Offset))
      return false;
  }

  return true;
}

// If N is an integer constant that can be moved into a register in one
// instruction, return an SDValue of such a constant (will become a MOV
// instruction).  Otherwise return null.
static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
                                     const ARMSubtarget *ST, const SDLoc &dl) {
  uint64_t Val;
  if (!isa<ConstantSDNode>(N))
    return SDValue();
  Val = cast<ConstantSDNode>(N)->getZExtValue();

  if (ST->isThumb1Only()) {
    if (Val <= 255 || ~Val <= 255)
      return DAG.getConstant(Val, dl, MVT::i32);
  } else {
    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
      return DAG.getConstant(Val, dl, MVT::i32);
  }
  return SDValue();
}

static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
                                    const ARMSubtarget *ST) {
  SDLoc dl(Op);
  EVT VT = Op.getValueType();

  assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");

  unsigned NumElts = VT.getVectorNumElements();
  unsigned BoolMask;
  unsigned BitsPerBool;
  if (NumElts == 4) {
    BitsPerBool = 4;
    BoolMask = 0xf;
  } else if (NumElts == 8) {
    BitsPerBool = 2;
    BoolMask = 0x3;
  } else if (NumElts == 16) {
    BitsPerBool = 1;
    BoolMask = 0x1;
  } else
    return SDValue();

  // If this is a single value copied into all lanes (a splat), we can just sign
  // extend that single value
  SDValue FirstOp = Op.getOperand(0);
  if (!isa<ConstantSDNode>(FirstOp) &&
      std::all_of(std::next(Op->op_begin()), Op->op_end(),
                  [&FirstOp](SDUse &U) {
                    return U.get().isUndef() || U.get() == FirstOp;
                  })) {
    SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
                              DAG.getValueType(MVT::i1));
    return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
  }

  // First create base with bits set where known
  unsigned Bits32 = 0;
  for (unsigned i = 0; i < NumElts; ++i) {
    SDValue V = Op.getOperand(i);
    if (!isa<ConstantSDNode>(V) && !V.isUndef())
      continue;
    bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
    if (BitSet)
      Bits32 |= BoolMask << (i * BitsPerBool);
  }

  // Add in unknown nodes
  SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
                             DAG.getConstant(Bits32, dl, MVT::i32));
  for (unsigned i = 0; i < NumElts; ++i) {
    SDValue V = Op.getOperand(i);
    if (isa<ConstantSDNode>(V) || V.isUndef())
      continue;
    Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
                       DAG.getConstant(i, dl, MVT::i32));
  }

  return Base;
}

// If this is a case we can't handle, return null and let the default
// expansion code take care of it.
SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
                                             const ARMSubtarget *ST) const {
  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
  SDLoc dl(Op);
  EVT VT = Op.getValueType();

  if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
    return LowerBUILD_VECTOR_i1(Op, DAG, ST);

  APInt SplatBits, SplatUndef;
  unsigned SplatBitSize;
  bool HasAnyUndefs;
  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
    if (SplatUndef.isAllOnesValue())
      return DAG.getUNDEF(VT);

    if ((ST->hasNEON() && SplatBitSize <= 64) ||
        (ST->hasMVEIntegerOps() && SplatBitSize <= 32)) {
      // Check if an immediate VMOV works.
      EVT VmovVT;
      SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
                                      SplatUndef.getZExtValue(), SplatBitSize,
                                      DAG, dl, VmovVT, VT.is128BitVector(),
                                      VMOVModImm);

      if (Val.getNode()) {
        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
      }

      // Try an immediate VMVN.
      uint64_t NegatedImm = (~SplatBits).getZExtValue();
      Val = isVMOVModifiedImm(
          NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
          DAG, dl, VmovVT, VT.is128BitVector(),
          ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
      if (Val.getNode()) {
        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
      }

      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
        if (ImmVal != -1) {
          SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
        }
      }
    }
  }

  // Scan through the operands to see if only one value is used.
  //
  // As an optimisation, even if more than one value is used it may be more
  // profitable to splat with one value then change some lanes.
  //
  // Heuristically we decide to do this if the vector has a "dominant" value,
  // defined as splatted to more than half of the lanes.
  unsigned NumElts = VT.getVectorNumElements();
  bool isOnlyLowElement = true;
  bool usesOnlyOneValue = true;
  bool hasDominantValue = false;
  bool isConstant = true;

  // Map of the number of times a particular SDValue appears in the
  // element list.
  DenseMap<SDValue, unsigned> ValueCounts;
  SDValue Value;
  for (unsigned i = 0; i < NumElts; ++i) {
    SDValue V = Op.getOperand(i);
    if (V.isUndef())
      continue;
    if (i > 0)
      isOnlyLowElement = false;
    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
      isConstant = false;

    ValueCounts.insert(std::make_pair(V, 0));
    unsigned &Count = ValueCounts[V];

    // Is this value dominant? (takes up more than half of the lanes)
    if (++Count > (NumElts / 2)) {
      hasDominantValue = true;
      Value = V;
    }
  }
  if (ValueCounts.size() != 1)
    usesOnlyOneValue = false;
  if (!Value.getNode() && !ValueCounts.empty())
    Value = ValueCounts.begin()->first;

  if (ValueCounts.empty())
    return DAG.getUNDEF(VT);

  // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
  // Keep going if we are hitting this case.
  if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);

  unsigned EltSize = VT.getScalarSizeInBits();

  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
  // i32 and try again.
  if (hasDominantValue && EltSize <= 32) {
    if (!isConstant) {
      SDValue N;

      // If we are VDUPing a value that comes directly from a vector, that will
      // cause an unnecessary move to and from a GPR, where instead we could
      // just use VDUPLANE. We can only do this if the lane being extracted
      // is at a constant index, as the VDUP from lane instructions only have
      // constant-index forms.
      ConstantSDNode *constIndex;
      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
          (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
        // We need to create a new undef vector to use for the VDUPLANE if the
        // size of the vector from which we get the value is different than the
        // size of the vector that we need to create. We will insert the element
        // such that the register coalescer will remove unnecessary copies.
        if (VT != Value->getOperand(0).getValueType()) {
          unsigned index = constIndex->getAPIntValue().getLimitedValue() %
                             VT.getVectorNumElements();
          N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
                 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
                        Value, DAG.getConstant(index, dl, MVT::i32)),
                           DAG.getConstant(index, dl, MVT::i32));
        } else
          N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
                        Value->getOperand(0), Value->getOperand(1));
      } else
        N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);

      if (!usesOnlyOneValue) {
        // The dominant value was splatted as 'N', but we now have to insert
        // all differing elements.
        for (unsigned I = 0; I < NumElts; ++I) {
          if (Op.getOperand(I) == Value)
            continue;
          SmallVector<SDValue, 3> Ops;
          Ops.push_back(N);
          Ops.push_back(Op.getOperand(I));
          Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
        }
      }
      return N;
    }
    if (VT.getVectorElementType().isFloatingPoint()) {
      SmallVector<SDValue, 8> Ops;
      MVT FVT = VT.getVectorElementType().getSimpleVT();
      assert(FVT == MVT::f32 || FVT == MVT::f16);
      MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
      for (unsigned i = 0; i < NumElts; ++i)
        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
                                  Op.getOperand(i)));
      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
      SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
      Val = LowerBUILD_VECTOR(Val, DAG, ST);
      if (Val.getNode())
        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
    }
    if (usesOnlyOneValue) {
      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
      if (isConstant && Val.getNode())
        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
    }
  }

  // If all elements are constants and the case above didn't get hit, fall back
  // to the default expansion, which will generate a load from the constant
  // pool.
  if (isConstant)
    return SDValue();

  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
  if (NumElts >= 4) {
    SDValue shuffle = ReconstructShuffle(Op, DAG);
    if (shuffle != SDValue())
      return shuffle;
  }

  if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
    // If we haven't found an efficient lowering, try splitting a 128-bit vector
    // into two 64-bit vectors; we might discover a better way to lower it.
    SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
    EVT ExtVT = VT.getVectorElementType();
    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
    SDValue Lower =
        DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
    if (Lower.getOpcode() == ISD::BUILD_VECTOR)
      Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
    SDValue Upper = DAG.getBuildVector(
        HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
    if (Upper.getOpcode() == ISD::BUILD_VECTOR)
      Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
    if (Lower && Upper)
      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
  }

  // Vectors with 32- or 64-bit elements can be built by directly assigning
  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
  // will be legalized.
  if (EltSize >= 32) {
    // Do the expansion with floating-point types, since that is what the VFP
    // registers are defined to use, and since i64 is not legal.
    EVT EltVT = EVT::getFloatingPointVT(EltSize);
    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
    SmallVector<SDValue, 8> Ops;
    for (unsigned i = 0; i < NumElts; ++i)
      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
  }

  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
  // know the default expansion would otherwise fall back on something even
  // worse. For a vector with one or two non-undef values, that's
  // scalar_to_vector for the elements followed by a shuffle (provided the
  // shuffle is valid for the target) and materialization element by element
  // on the stack followed by a load for everything else.
  if (!isConstant && !usesOnlyOneValue) {
    SDValue Vec = DAG.getUNDEF(VT);
    for (unsigned i = 0 ; i < NumElts; ++i) {
      SDValue V = Op.getOperand(i);
      if (V.isUndef())
        continue;
      SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
    }
    return Vec;
  }

  return SDValue();
}

// Gather data to see if the operation can be modelled as a
// shuffle in combination with VEXTs.
SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
                                              SelectionDAG &DAG) const {
  assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  unsigned NumElts = VT.getVectorNumElements();

  struct ShuffleSourceInfo {
    SDValue Vec;
    unsigned MinElt = std::numeric_limits<unsigned>::max();
    unsigned MaxElt = 0;

    // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
    // be compatible with the shuffle we intend to construct. As a result
    // ShuffleVec will be some sliding window into the original Vec.
    SDValue ShuffleVec;

    // Code should guarantee that element i in Vec starts at element "WindowBase
    // + i * WindowScale in ShuffleVec".
    int WindowBase = 0;
    int WindowScale = 1;

    ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}

    bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
  };

  // First gather all vectors used as an immediate source for this BUILD_VECTOR
  // node.
  SmallVector<ShuffleSourceInfo, 2> Sources;
  for (unsigned i = 0; i < NumElts; ++i) {
    SDValue V = Op.getOperand(i);
    if (V.isUndef())
      continue;
    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
      // A shuffle can only come from building a vector from various
      // elements of other vectors.
      return SDValue();
    } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
      // Furthermore, shuffles require a constant mask, whereas extractelts
      // accept variable indices.
      return SDValue();
    }

    // Add this element source to the list if it's not already there.
    SDValue SourceVec = V.getOperand(0);
    auto Source = llvm::find(Sources, SourceVec);
    if (Source == Sources.end())
      Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));

    // Update the minimum and maximum lane number seen.
    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
    Source->MinElt = std::min(Source->MinElt, EltNo);
    Source->MaxElt = std::max(Source->MaxElt, EltNo);
  }

  // Currently only do something sane when at most two source vectors
  // are involved.
  if (Sources.size() > 2)
    return SDValue();

  // Find out the smallest element size among result and two sources, and use
  // it as element size to build the shuffle_vector.
  EVT SmallestEltTy = VT.getVectorElementType();
  for (auto &Source : Sources) {
    EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
    if (SrcEltTy.bitsLT(SmallestEltTy))
      SmallestEltTy = SrcEltTy;
  }
  unsigned ResMultiplier =
      VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
  NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
  EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);

  // If the source vector is too wide or too narrow, we may nevertheless be able
  // to construct a compatible shuffle either by concatenating it with UNDEF or
  // extracting a suitable range of elements.
  for (auto &Src : Sources) {
    EVT SrcVT = Src.ShuffleVec.getValueType();

    if (SrcVT.getSizeInBits() == VT.getSizeInBits())
      continue;

    // This stage of the search produces a source with the same element type as
    // the original, but with a total width matching the BUILD_VECTOR output.
    EVT EltVT = SrcVT.getVectorElementType();
    unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
    EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);

    if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
      if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
        return SDValue();
      // We can pad out the smaller vector for free, so if it's part of a
      // shuffle...
      Src.ShuffleVec =
          DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
                      DAG.getUNDEF(Src.ShuffleVec.getValueType()));
      continue;
    }

    if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
      return SDValue();

    if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
      // Span too large for a VEXT to cope
      return SDValue();
    }

    if (Src.MinElt >= NumSrcElts) {
      // The extraction can just take the second half
      Src.ShuffleVec =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(NumSrcElts, dl, MVT::i32));
      Src.WindowBase = -NumSrcElts;
    } else if (Src.MaxElt < NumSrcElts) {
      // The extraction can just take the first half
      Src.ShuffleVec =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(0, dl, MVT::i32));
    } else {
      // An actual VEXT is needed
      SDValue VEXTSrc1 =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(0, dl, MVT::i32));
      SDValue VEXTSrc2 =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(NumSrcElts, dl, MVT::i32));

      Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
                                   VEXTSrc2,
                                   DAG.getConstant(Src.MinElt, dl, MVT::i32));
      Src.WindowBase = -Src.MinElt;
    }
  }

  // Another possible incompatibility occurs from the vector element types. We
  // can fix this by bitcasting the source vectors to the same type we intend
  // for the shuffle.
  for (auto &Src : Sources) {
    EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
    if (SrcEltTy == SmallestEltTy)
      continue;
    assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
    Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
    Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
    Src.WindowBase *= Src.WindowScale;
  }

  // Final sanity check before we try to actually produce a shuffle.
  LLVM_DEBUG(for (auto Src
                  : Sources)
                 assert(Src.ShuffleVec.getValueType() == ShuffleVT););

  // The stars all align, our next step is to produce the mask for the shuffle.
  SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
  int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
  for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
    SDValue Entry = Op.getOperand(i);
    if (Entry.isUndef())
      continue;

    auto Src = llvm::find(Sources, Entry.getOperand(0));
    int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();

    // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
    // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
    // segment.
    EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
    int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
                               VT.getScalarSizeInBits());
    int LanesDefined = BitsDefined / BitsPerShuffleLane;

    // This source is expected to fill ResMultiplier lanes of the final shuffle,
    // starting at the appropriate offset.
    int *LaneMask = &Mask[i * ResMultiplier];

    int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
    ExtractBase += NumElts * (Src - Sources.begin());
    for (int j = 0; j < LanesDefined; ++j)
      LaneMask[j] = ExtractBase + j;
  }


  // We can't handle more than two sources. This should have already
  // been checked before this point.
  assert(Sources.size() <= 2 && "Too many sources!");

  SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
  for (unsigned i = 0; i < Sources.size(); ++i)
    ShuffleOps[i] = Sources[i].ShuffleVec;

  SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
                                            ShuffleOps[1], Mask, DAG);
  if (!Shuffle)
    return SDValue();
  return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
}

enum ShuffleOpCodes {
  OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
  OP_VREV,
  OP_VDUP0,
  OP_VDUP1,
  OP_VDUP2,
  OP_VDUP3,
  OP_VEXT1,
  OP_VEXT2,
  OP_VEXT3,
  OP_VUZPL, // VUZP, left result
  OP_VUZPR, // VUZP, right result
  OP_VZIPL, // VZIP, left result
  OP_VZIPR, // VZIP, right result
  OP_VTRNL, // VTRN, left result
  OP_VTRNR  // VTRN, right result
};

static bool isLegalMVEShuffleOp(unsigned PFEntry) {
  unsigned OpNum = (PFEntry >> 26) & 0x0F;
  switch (OpNum) {
  case OP_COPY:
  case OP_VREV:
  case OP_VDUP0:
  case OP_VDUP1:
  case OP_VDUP2:
  case OP_VDUP3:
    return true;
  }
  return false;
}

/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
  if (VT.getVectorNumElements() == 4 &&
      (VT.is128BitVector() || VT.is64BitVector())) {
    unsigned PFIndexes[4];
    for (unsigned i = 0; i != 4; ++i) {
      if (M[i] < 0)
        PFIndexes[i] = 8;
      else
        PFIndexes[i] = M[i];
    }

    // Compute the index in the perfect shuffle table.
    unsigned PFTableIndex =
      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
    unsigned Cost = (PFEntry >> 30);

    if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
      return true;
  }

  bool ReverseVEXT, isV_UNDEF;
  unsigned Imm, WhichResult;

  unsigned EltSize = VT.getScalarSizeInBits();
  if (EltSize >= 32 ||
      ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
      ShuffleVectorInst::isIdentityMask(M) ||
      isVREVMask(M, VT, 64) ||
      isVREVMask(M, VT, 32) ||
      isVREVMask(M, VT, 16))
    return true;
  else if (Subtarget->hasNEON() &&
           (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
            isVTBLMask(M, VT) ||
            isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
    return true;
  else if (Subtarget->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) &&
           isReverseMask(M, VT))
    return true;
  else if (Subtarget->hasMVEIntegerOps() &&
           (isVMOVNMask(M, VT, 0) || isVMOVNMask(M, VT, 1)))
    return true;
  else
    return false;
}

/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
                                      SDValue RHS, SelectionDAG &DAG,
                                      const SDLoc &dl) {
  unsigned OpNum = (PFEntry >> 26) & 0x0F;
  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);

  if (OpNum == OP_COPY) {
    if (LHSID == (1*9+2)*9+3) return LHS;
    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
    return RHS;
  }

  SDValue OpLHS, OpRHS;
  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
  EVT VT = OpLHS.getValueType();

  switch (OpNum) {
  default: llvm_unreachable("Unknown shuffle opcode!");
  case OP_VREV:
    // VREV divides the vector in half and swaps within the half.
    if (VT.getVectorElementType() == MVT::i32 ||
        VT.getVectorElementType() == MVT::f32)
      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
    // vrev <4 x i16> -> VREV32
    if (VT.getVectorElementType() == MVT::i16)
      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
    // vrev <4 x i8> -> VREV16
    assert(VT.getVectorElementType() == MVT::i8);
    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
  case OP_VDUP0:
  case OP_VDUP1:
  case OP_VDUP2:
  case OP_VDUP3:
    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
  case OP_VEXT1:
  case OP_VEXT2:
  case OP_VEXT3:
    return DAG.getNode(ARMISD::VEXT, dl, VT,
                       OpLHS, OpRHS,
                       DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
  case OP_VUZPL:
  case OP_VUZPR:
    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
  case OP_VZIPL:
  case OP_VZIPR:
    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
  case OP_VTRNL:
  case OP_VTRNR:
    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
  }
}

static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
                                       ArrayRef<int> ShuffleMask,
                                       SelectionDAG &DAG) {
  // Check to see if we can use the VTBL instruction.
  SDValue V1 = Op.getOperand(0);
  SDValue V2 = Op.getOperand(1);
  SDLoc DL(Op);

  SmallVector<SDValue, 8> VTBLMask;
  for (ArrayRef<int>::iterator
         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
    VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));

  if (V2.getNode()->isUndef())
    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
                       DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));

  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
                     DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
}

static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
                                                      SelectionDAG &DAG) {
  SDLoc DL(Op);
  SDValue OpLHS = Op.getOperand(0);
  EVT VT = OpLHS.getValueType();

  assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
         "Expect an v8i16/v16i8 type");
  OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
  // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
  // extract the first 8 bytes into the top double word and the last 8 bytes
  // into the bottom double word. The v8i16 case is similar.
  unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
  return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
                     DAG.getConstant(ExtractNum, DL, MVT::i32));
}

static EVT getVectorTyFromPredicateVector(EVT VT) {
  switch (VT.getSimpleVT().SimpleTy) {
  case MVT::v4i1:
    return MVT::v4i32;
  case MVT::v8i1:
    return MVT::v8i16;
  case MVT::v16i1:
    return MVT::v16i8;
  default:
    llvm_unreachable("Unexpected vector predicate type");
  }
}

static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
                                    SelectionDAG &DAG) {
  // Converting from boolean predicates to integers involves creating a vector
  // of all ones or all zeroes and selecting the lanes based upon the real
  // predicate.
  SDValue AllOnes =
      DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
  AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);

  SDValue AllZeroes =
      DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
  AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);

  // Get full vector type from predicate type
  EVT NewVT = getVectorTyFromPredicateVector(VT);

  SDValue RecastV1;
  // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
  // this to a v16i1. This cannot be done with an ordinary bitcast because the
  // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
  // since we know in hardware the sizes are really the same.
  if (VT != MVT::v16i1)
    RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
  else
    RecastV1 = Pred;

  // Select either all ones or zeroes depending upon the real predicate bits.
  SDValue PredAsVector =
      DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);

  // Recast our new predicate-as-integer v16i8 vector into something
  // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
  return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
}

static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
                                      const ARMSubtarget *ST) {
  EVT VT = Op.getValueType();
  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
  ArrayRef<int> ShuffleMask = SVN->getMask();

  assert(ST->hasMVEIntegerOps() &&
         "No support for vector shuffle of boolean predicates");

  SDValue V1 = Op.getOperand(0);
  SDLoc dl(Op);
  if (isReverseMask(ShuffleMask, VT)) {
    SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
    SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
    SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
                              DAG.getConstant(16, dl, MVT::i32));
    return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
  }

  // Until we can come up with optimised cases for every single vector
  // shuffle in existence we have chosen the least painful strategy. This is
  // to essentially promote the boolean predicate to a 8-bit integer, where
  // each predicate represents a byte. Then we fall back on a normal integer
  // vector shuffle and convert the result back into a predicate vector. In
  // many cases the generated code might be even better than scalar code
  // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
  // fields in a register into 8 other arbitrary 2-bit fields!
  SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG);
  EVT NewVT = PredAsVector.getValueType();

  // Do the shuffle!
  SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector,
                                          DAG.getUNDEF(NewVT), ShuffleMask);

  // Now return the result of comparing the shuffled vector with zero,
  // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
  return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
                     DAG.getConstant(ARMCC::NE, dl, MVT::i32));
}

static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
                                   const ARMSubtarget *ST) {
  SDValue V1 = Op.getOperand(0);
  SDValue V2 = Op.getOperand(1);
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
  unsigned EltSize = VT.getScalarSizeInBits();

  if (ST->hasMVEIntegerOps() && EltSize == 1)
    return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);

  // Convert shuffles that are directly supported on NEON to target-specific
  // DAG nodes, instead of keeping them as shuffles and matching them again
  // during code selection.  This is more efficient and avoids the possibility
  // of inconsistencies between legalization and selection.
  // FIXME: floating-point vectors should be canonicalized to integer vectors
  // of the same time so that they get CSEd properly.
  ArrayRef<int> ShuffleMask = SVN->getMask();

  if (EltSize <= 32) {
    if (SVN->isSplat()) {
      int Lane = SVN->getSplatIndex();
      // If this is undef splat, generate it via "just" vdup, if possible.
      if (Lane == -1) Lane = 0;

      // Test if V1 is a SCALAR_TO_VECTOR.
      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
      }
      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
      // reaches it).
      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
          !isa<ConstantSDNode>(V1.getOperand(0))) {
        bool IsScalarToVector = true;
        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
          if (!V1.getOperand(i).isUndef()) {
            IsScalarToVector = false;
            break;
          }
        if (IsScalarToVector)
          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
      }
      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
                         DAG.getConstant(Lane, dl, MVT::i32));
    }

    bool ReverseVEXT = false;
    unsigned Imm = 0;
    if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
      if (ReverseVEXT)
        std::swap(V1, V2);
      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
                         DAG.getConstant(Imm, dl, MVT::i32));
    }

    if (isVREVMask(ShuffleMask, VT, 64))
      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
    if (isVREVMask(ShuffleMask, VT, 32))
      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
    if (isVREVMask(ShuffleMask, VT, 16))
      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);

    if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
                         DAG.getConstant(Imm, dl, MVT::i32));
    }

    // Check for Neon shuffles that modify both input vectors in place.
    // If both results are used, i.e., if there are two shuffles with the same
    // source operands and with masks corresponding to both results of one of
    // these operations, DAG memoization will ensure that a single node is
    // used for both shuffles.
    unsigned WhichResult = 0;
    bool isV_UNDEF = false;
    if (ST->hasNEON()) {
      if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
              ShuffleMask, VT, WhichResult, isV_UNDEF)) {
        if (isV_UNDEF)
          V2 = V1;
        return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
            .getValue(WhichResult);
      }
    }
    if (ST->hasMVEIntegerOps()) {
      if (isVMOVNMask(ShuffleMask, VT, 0))
        return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
                           DAG.getConstant(0, dl, MVT::i32));
      if (isVMOVNMask(ShuffleMask, VT, 1))
        return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
                           DAG.getConstant(1, dl, MVT::i32));
    }

    // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
    // shuffles that produce a result larger than their operands with:
    //   shuffle(concat(v1, undef), concat(v2, undef))
    // ->
    //   shuffle(concat(v1, v2), undef)
    // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
    //
    // This is useful in the general case, but there are special cases where
    // native shuffles produce larger results: the two-result ops.
    //
    // Look through the concat when lowering them:
    //   shuffle(concat(v1, v2), undef)
    // ->
    //   concat(VZIP(v1, v2):0, :1)
    //
    if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
      SDValue SubV1 = V1->getOperand(0);
      SDValue SubV2 = V1->getOperand(1);
      EVT SubVT = SubV1.getValueType();

      // We expect these to have been canonicalized to -1.
      assert(llvm::all_of(ShuffleMask, [&](int i) {
        return i < (int)VT.getVectorNumElements();
      }) && "Unexpected shuffle index into UNDEF operand!");

      if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
              ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
        if (isV_UNDEF)
          SubV2 = SubV1;
        assert((WhichResult == 0) &&
               "In-place shuffle of concat can only have one result!");
        SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
                                  SubV1, SubV2);
        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
                           Res.getValue(1));
      }
    }
  }

  // If the shuffle is not directly supported and it has 4 elements, use
  // the PerfectShuffle-generated table to synthesize it from other shuffles.
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts == 4) {
    unsigned PFIndexes[4];
    for (unsigned i = 0; i != 4; ++i) {
      if (ShuffleMask[i] < 0)
        PFIndexes[i] = 8;
      else
        PFIndexes[i] = ShuffleMask[i];
    }

    // Compute the index in the perfect shuffle table.
    unsigned PFTableIndex =
      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
    unsigned Cost = (PFEntry >> 30);

    if (Cost <= 4) {
      if (ST->hasNEON())
        return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
      else if (isLegalMVEShuffleOp(PFEntry)) {
        unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
        unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
        unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
        unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
        if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
          return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
      }
    }
  }

  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
  if (EltSize >= 32) {
    // Do the expansion with floating-point types, since that is what the VFP
    // registers are defined to use, and since i64 is not legal.
    EVT EltVT = EVT::getFloatingPointVT(EltSize);
    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
    SmallVector<SDValue, 8> Ops;
    for (unsigned i = 0; i < NumElts; ++i) {
      if (ShuffleMask[i] < 0)
        Ops.push_back(DAG.getUNDEF(EltVT));
      else
        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
                                                  dl, MVT::i32)));
    }
    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
  }

  if (ST->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
    return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);

  if (ST->hasNEON() && VT == MVT::v8i8)
    if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
      return NewOp;

  return SDValue();
}

static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
                                         const ARMSubtarget *ST) {
  EVT VecVT = Op.getOperand(0).getValueType();
  SDLoc dl(Op);

  assert(ST->hasMVEIntegerOps() &&
         "LowerINSERT_VECTOR_ELT_i1 called without MVE!");

  SDValue Conv =
      DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
  unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
  unsigned LaneWidth =
      getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
  unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
  SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
                            Op.getOperand(1), DAG.getValueType(MVT::i1));
  SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
                            DAG.getConstant(~Mask, dl, MVT::i32));
  return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
}

SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
                                                  SelectionDAG &DAG) const {
  // INSERT_VECTOR_ELT is legal only for immediate indexes.
  SDValue Lane = Op.getOperand(2);
  if (!isa<ConstantSDNode>(Lane))
    return SDValue();

  SDValue Elt = Op.getOperand(1);
  EVT EltVT = Elt.getValueType();

  if (Subtarget->hasMVEIntegerOps() &&
      Op.getValueType().getScalarSizeInBits() == 1)
    return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);

  if (getTypeAction(*DAG.getContext(), EltVT) ==
      TargetLowering::TypePromoteFloat) {
    // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
    // but the type system will try to do that if we don't intervene.
    // Reinterpret any such vector-element insertion as one with the
    // corresponding integer types.

    SDLoc dl(Op);

    EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
    assert(getTypeAction(*DAG.getContext(), IEltVT) !=
           TargetLowering::TypePromoteFloat);

    SDValue VecIn = Op.getOperand(0);
    EVT VecVT = VecIn.getValueType();
    EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
                                  VecVT.getVectorNumElements());

    SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
    SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
    SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
                                  IVecIn, IElt, Lane);
    return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
  }

  return Op;
}

static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
                                          const ARMSubtarget *ST) {
  EVT VecVT = Op.getOperand(0).getValueType();
  SDLoc dl(Op);

  assert(ST->hasMVEIntegerOps() &&
         "LowerINSERT_VECTOR_ELT_i1 called without MVE!");

  SDValue Conv =
      DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
  unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
  unsigned LaneWidth =
      getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
  SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
                              DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
  return Shift;
}

static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
                                       const ARMSubtarget *ST) {
  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
  SDValue Lane = Op.getOperand(1);
  if (!isa<ConstantSDNode>(Lane))
    return SDValue();

  SDValue Vec = Op.getOperand(0);
  EVT VT = Vec.getValueType();

  if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
    return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);

  if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
    SDLoc dl(Op);
    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
  }

  return Op;
}

static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
                                      const ARMSubtarget *ST) {
  SDValue V1 = Op.getOperand(0);
  SDValue V2 = Op.getOperand(1);
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  EVT Op1VT = V1.getValueType();
  EVT Op2VT = V2.getValueType();
  unsigned NumElts = VT.getVectorNumElements();

  assert(Op1VT == Op2VT && "Operand types don't match!");
  assert(VT.getScalarSizeInBits() == 1 &&
         "Unexpected custom CONCAT_VECTORS lowering");
  assert(ST->hasMVEIntegerOps() &&
         "CONCAT_VECTORS lowering only supported for MVE");

  SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
  SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);

  // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
  // promoted to v8i16, etc.

  MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();

  // Extract the vector elements from Op1 and Op2 one by one and truncate them
  // to be the right size for the destination. For example, if Op1 is v4i1 then
  // the promoted vector is v4i32. The result of concatentation gives a v8i1,
  // which when promoted is v8i16. That means each i32 element from Op1 needs
  // truncating to i16 and inserting in the result.
  EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
  SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
  auto ExractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
    EVT NewVT = NewV.getValueType();
    EVT ConcatVT = ConVec.getValueType();
    for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
      SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
                                DAG.getIntPtrConstant(i, dl));
      ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
                           DAG.getConstant(j, dl, MVT::i32));
    }
    return ConVec;
  };
  unsigned j = 0;
  ConVec = ExractInto(NewV1, ConVec, j);
  ConVec = ExractInto(NewV2, ConVec, j);

  // Now return the result of comparing the subvector with zero,
  // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
  return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
                     DAG.getConstant(ARMCC::NE, dl, MVT::i32));
}

static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
                                   const ARMSubtarget *ST) {
  EVT VT = Op->getValueType(0);
  if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
    return LowerCONCAT_VECTORS_i1(Op, DAG, ST);

  // The only time a CONCAT_VECTORS operation can have legal types is when
  // two 64-bit vectors are concatenated to a 128-bit vector.
  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
         "unexpected CONCAT_VECTORS");
  SDLoc dl(Op);
  SDValue Val = DAG.getUNDEF(MVT::v2f64);
  SDValue Op0 = Op.getOperand(0);
  SDValue Op1 = Op.getOperand(1);
  if (!Op0.isUndef())
    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
                      DAG.getIntPtrConstant(0, dl));
  if (!Op1.isUndef())
    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
                      DAG.getIntPtrConstant(1, dl));
  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
}

static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
                                      const ARMSubtarget *ST) {
  SDValue V1 = Op.getOperand(0);
  SDValue V2 = Op.getOperand(1);
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  EVT Op1VT = V1.getValueType();
  unsigned NumElts = VT.getVectorNumElements();
  unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();

  assert(VT.getScalarSizeInBits() == 1 &&
         "Unexpected custom EXTRACT_SUBVECTOR lowering");
  assert(ST->hasMVEIntegerOps() &&
         "EXTRACT_SUBVECTOR lowering only supported for MVE");

  SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);

  // We now have Op1 promoted to a vector of integers, where v8i1 gets
  // promoted to v8i16, etc.

  MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();

  EVT SubVT = MVT::getVectorVT(ElType, NumElts);
  SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
  for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
                              DAG.getIntPtrConstant(i, dl));
    SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
                         DAG.getConstant(j, dl, MVT::i32));
  }

  // Now return the result of comparing the subvector with zero,
  // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
  return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
                     DAG.getConstant(ARMCC::NE, dl, MVT::i32));
}

/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
/// element has been zero/sign-extended, depending on the isSigned parameter,
/// from an integer type half its size.
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
                                   bool isSigned) {
  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
  EVT VT = N->getValueType(0);
  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
    SDNode *BVN = N->getOperand(0).getNode();
    if (BVN->getValueType(0) != MVT::v4i32 ||
        BVN->getOpcode() != ISD::BUILD_VECTOR)
      return false;
    unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
    unsigned HiElt = 1 - LoElt;
    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
      return false;
    if (isSigned) {
      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
        return true;
    } else {
      if (Hi0->isNullValue() && Hi1->isNullValue())
        return true;
    }
    return false;
  }

  if (N->getOpcode() != ISD::BUILD_VECTOR)
    return false;

  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    SDNode *Elt = N->getOperand(i).getNode();
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
      unsigned EltSize = VT.getScalarSizeInBits();
      unsigned HalfSize = EltSize / 2;
      if (isSigned) {
        if (!isIntN(HalfSize, C->getSExtValue()))
          return false;
      } else {
        if (!isUIntN(HalfSize, C->getZExtValue()))
          return false;
      }
      continue;
    }
    return false;
  }

  return true;
}

/// isSignExtended - Check if a node is a vector value that is sign-extended
/// or a constant BUILD_VECTOR with sign-extended elements.
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
    return true;
  if (isExtendedBUILD_VECTOR(N, DAG, true))
    return true;
  return false;
}

/// isZeroExtended - Check if a node is a vector value that is zero-extended
/// or a constant BUILD_VECTOR with zero-extended elements.
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
    return true;
  if (isExtendedBUILD_VECTOR(N, DAG, false))
    return true;
  return false;
}

static EVT getExtensionTo64Bits(const EVT &OrigVT) {
  if (OrigVT.getSizeInBits() >= 64)
    return OrigVT;

  assert(OrigVT.isSimple() && "Expecting a simple value type");

  MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
  switch (OrigSimpleTy) {
  default: llvm_unreachable("Unexpected Vector Type");
  case MVT::v2i8:
  case MVT::v2i16:
     return MVT::v2i32;
  case MVT::v4i8:
    return  MVT::v4i16;
  }
}

/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
/// We insert the required extension here to get the vector to fill a D register.
static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
                                            const EVT &OrigTy,
                                            const EVT &ExtTy,
                                            unsigned ExtOpcode) {
  // The vector originally had a size of OrigTy. It was then extended to ExtTy.
  // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
  // 64-bits we need to insert a new extension so that it will be 64-bits.
  assert(ExtTy.is128BitVector() && "Unexpected extension size");
  if (OrigTy.getSizeInBits() >= 64)
    return N;

  // Must extend size to at least 64 bits to be used as an operand for VMULL.
  EVT NewVT = getExtensionTo64Bits(OrigTy);

  return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
}

/// SkipLoadExtensionForVMULL - return a load of the original vector size that
/// does not do any sign/zero extension. If the original vector is less
/// than 64 bits, an appropriate extension will be added after the load to
/// reach a total size of 64 bits. We have to add the extension separately
/// because ARM does not have a sign/zero extending load for vectors.
static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
  EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());

  // The load already has the right type.
  if (ExtendedTy == LD->getMemoryVT())
    return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
                       LD->getBasePtr(), LD->getPointerInfo(),
                       LD->getAlignment(), LD->getMemOperand()->getFlags());

  // We need to create a zextload/sextload. We cannot just create a load
  // followed by a zext/zext node because LowerMUL is also run during normal
  // operation legalization where we can't create illegal types.
  return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
                        LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
                        LD->getMemoryVT(), LD->getAlignment(),
                        LD->getMemOperand()->getFlags());
}

/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
/// extending load, or BUILD_VECTOR with extended elements, return the
/// unextended value. The unextended vector should be 64 bits so that it can
/// be used as an operand to a VMULL instruction. If the original vector size
/// before extension is less than 64 bits we add a an extension to resize
/// the vector to 64 bits.
static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
    return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
                                        N->getOperand(0)->getValueType(0),
                                        N->getValueType(0),
                                        N->getOpcode());

  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
           "Expected extending load");

    SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
    unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
    SDValue extLoad =
        DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);

    return newLoad;
  }

  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
  // have been legalized as a BITCAST from v4i32.
  if (N->getOpcode() == ISD::BITCAST) {
    SDNode *BVN = N->getOperand(0).getNode();
    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
    unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
    return DAG.getBuildVector(
        MVT::v2i32, SDLoc(N),
        {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
  }
  // Construct a new BUILD_VECTOR with elements truncated to half the size.
  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
  EVT VT = N->getValueType(0);
  unsigned EltSize = VT.getScalarSizeInBits() / 2;
  unsigned NumElts = VT.getVectorNumElements();
  MVT TruncVT = MVT::getIntegerVT(EltSize);
  SmallVector<SDValue, 8> Ops;
  SDLoc dl(N);
  for (unsigned i = 0; i != NumElts; ++i) {
    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
    const APInt &CInt = C->getAPIntValue();
    // Element types smaller than 32 bits are not legal, so use i32 elements.
    // The values are implicitly truncated so sext vs. zext doesn't matter.
    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
  }
  return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
}

static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
  unsigned Opcode = N->getOpcode();
  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
    SDNode *N0 = N->getOperand(0).getNode();
    SDNode *N1 = N->getOperand(1).getNode();
    return N0->hasOneUse() && N1->hasOneUse() &&
      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
  }
  return false;
}

static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
  unsigned Opcode = N->getOpcode();
  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
    SDNode *N0 = N->getOperand(0).getNode();
    SDNode *N1 = N->getOperand(1).getNode();
    return N0->hasOneUse() && N1->hasOneUse() &&
      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
  }
  return false;
}

static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
  // Multiplications are only custom-lowered for 128-bit vectors so that
  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
  EVT VT = Op.getValueType();
  assert(VT.is128BitVector() && VT.isInteger() &&
         "unexpected type for custom-lowering ISD::MUL");
  SDNode *N0 = Op.getOperand(0).getNode();
  SDNode *N1 = Op.getOperand(1).getNode();
  unsigned NewOpc = 0;
  bool isMLA = false;
  bool isN0SExt = isSignExtended(N0, DAG);
  bool isN1SExt = isSignExtended(N1, DAG);
  if (isN0SExt && isN1SExt)
    NewOpc = ARMISD::VMULLs;
  else {
    bool isN0ZExt = isZeroExtended(N0, DAG);
    bool isN1ZExt = isZeroExtended(N1, DAG);
    if (isN0ZExt && isN1ZExt)
      NewOpc = ARMISD::VMULLu;
    else if (isN1SExt || isN1ZExt) {
      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
      if (isN1SExt && isAddSubSExt(N0, DAG)) {
        NewOpc = ARMISD::VMULLs;
        isMLA = true;
      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
        NewOpc = ARMISD::VMULLu;
        isMLA = true;
      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
        std::swap(N0, N1);
        NewOpc = ARMISD::VMULLu;
        isMLA = true;
      }
    }

    if (!NewOpc) {
      if (VT == MVT::v2i64)
        // Fall through to expand this.  It is not legal.
        return SDValue();
      else
        // Other vector multiplications are legal.
        return Op;
    }
  }

  // Legalize to a VMULL instruction.
  SDLoc DL(Op);
  SDValue Op0;
  SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
  if (!isMLA) {
    Op0 = SkipExtensionForVMULL(N0, DAG);
    assert(Op0.getValueType().is64BitVector() &&
           Op1.getValueType().is64BitVector() &&
           "unexpected types for extended operands to VMULL");
    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
  }

  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
  // isel lowering to take advantage of no-stall back to back vmul + vmla.
  //   vmull q0, d4, d6
  //   vmlal q0, d5, d6
  // is faster than
  //   vaddl q0, d4, d5
  //   vmovl q1, d6
  //   vmul  q0, q0, q1
  SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
  SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
  EVT Op1VT = Op1.getValueType();
  return DAG.getNode(N0->getOpcode(), DL, VT,
                     DAG.getNode(NewOpc, DL, VT,
                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
                     DAG.getNode(NewOpc, DL, VT,
                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
}

static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
                              SelectionDAG &DAG) {
  // TODO: Should this propagate fast-math-flags?

  // Convert to float
  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
  // Get reciprocal estimate.
  // float4 recip = vrecpeq_f32(yf);
  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
                   Y);
  // Because char has a smaller range than uchar, we can actually get away
  // without any newton steps.  This requires that we use a weird bias
  // of 0xb000, however (again, this has been exhaustively tested).
  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
  Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
  // Convert back to short.
  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
  return X;
}

static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
                               SelectionDAG &DAG) {
  // TODO: Should this propagate fast-math-flags?

  SDValue N2;
  // Convert to float.
  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);

  // Use reciprocal estimate and one refinement step.
  // float4 recip = vrecpeq_f32(yf);
  // recip *= vrecpsq_f32(yf, recip);
  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
                   N1);
  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
                   DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
                   N1, N2);
  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
  // Because short has a smaller range than ushort, we can actually get away
  // with only a single newton step.  This requires that we use a weird bias
  // of 89, however (again, this has been exhaustively tested).
  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
  N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
  // Convert back to integer and return.
  // return vmovn_s32(vcvt_s32_f32(result));
  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
  return N0;
}

static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
                         const ARMSubtarget *ST) {
  EVT VT = Op.getValueType();
  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
         "unexpected type for custom-lowering ISD::SDIV");

  SDLoc dl(Op);
  SDValue N0 = Op.getOperand(0);
  SDValue N1 = Op.getOperand(1);
  SDValue N2, N3;

  if (VT == MVT::v8i8) {
    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);

    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
                     DAG.getIntPtrConstant(4, dl));
    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
                     DAG.getIntPtrConstant(4, dl));
    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
                     DAG.getIntPtrConstant(0, dl));
    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
                     DAG.getIntPtrConstant(0, dl));

    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16

    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
    N0 = LowerCONCAT_VECTORS(N0, DAG, ST);

    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
    return N0;
  }
  return LowerSDIV_v4i16(N0, N1, dl, DAG);
}

static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
                         const ARMSubtarget *ST) {
  // TODO: Should this propagate fast-math-flags?
  EVT VT = Op.getValueType();
  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
         "unexpected type for custom-lowering ISD::UDIV");

  SDLoc dl(Op);
  SDValue N0 = Op.getOperand(0);
  SDValue N1 = Op.getOperand(1);
  SDValue N2, N3;

  if (VT == MVT::v8i8) {
    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);

    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
                     DAG.getIntPtrConstant(4, dl));
    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
                     DAG.getIntPtrConstant(4, dl));
    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
                     DAG.getIntPtrConstant(0, dl));
    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
                     DAG.getIntPtrConstant(0, dl));

    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16

    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
    N0 = LowerCONCAT_VECTORS(N0, DAG, ST);

    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
                                     MVT::i32),
                     N0);
    return N0;
  }

  // v4i16 sdiv ... Convert to float.
  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);

  // Use reciprocal estimate and two refinement steps.
  // float4 recip = vrecpeq_f32(yf);
  // recip *= vrecpsq_f32(yf, recip);
  // recip *= vrecpsq_f32(yf, recip);
  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
                   BN1);
  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
                   DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
                   BN1, N2);
  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
                   DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
                   BN1, N2);
  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
  // Simply multiplying by the reciprocal estimate can leave us a few ulps
  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
  // and that it will never cause us to return an answer too large).
  // float4 result = as_float4(as_int4(xf*recip) + 2);
  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
  N1 = DAG.getConstant(2, dl, MVT::v4i32);
  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
  // Convert back to integer and return.
  // return vmovn_u32(vcvt_s32_f32(result));
  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
  return N0;
}

static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
  SDNode *N = Op.getNode();
  EVT VT = N->getValueType(0);
  SDVTList VTs = DAG.getVTList(VT, MVT::i32);

  SDValue Carry = Op.getOperand(2);

  SDLoc DL(Op);

  SDValue Result;
  if (Op.getOpcode() == ISD::ADDCARRY) {
    // This converts the boolean value carry into the carry flag.
    Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);

    // Do the addition proper using the carry flag we wanted.
    Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
                         Op.getOperand(1), Carry);

    // Now convert the carry flag into a boolean value.
    Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
  } else {
    // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
    // have to invert the carry first.
    Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
                        DAG.getConstant(1, DL, MVT::i32), Carry);
    // This converts the boolean value carry into the carry flag.
    Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);

    // Do the subtraction proper using the carry flag we wanted.
    Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
                         Op.getOperand(1), Carry);

    // Now convert the carry flag into a boolean value.
    Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
    // But the carry returned by ARMISD::SUBE is not a borrow as expected
    // by ISD::SUBCARRY, so compute 1 - C.
    Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
                        DAG.getConstant(1, DL, MVT::i32), Carry);
  }

  // Return both values.
  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
}

SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
  assert(Subtarget->isTargetDarwin());

  // For iOS, we want to call an alternative entry point: __sincos_stret,
  // return values are passed via sret.
  SDLoc dl(Op);
  SDValue Arg = Op.getOperand(0);
  EVT ArgVT = Arg.getValueType();
  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();

  // Pair of floats / doubles used to pass the result.
  Type *RetTy = StructType::get(ArgTy, ArgTy);
  auto &DL = DAG.getDataLayout();

  ArgListTy Args;
  bool ShouldUseSRet = Subtarget->isAPCS_ABI();
  SDValue SRet;
  if (ShouldUseSRet) {
    // Create stack object for sret.
    const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
    const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
    int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
    SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));

    ArgListEntry Entry;
    Entry.Node = SRet;
    Entry.Ty = RetTy->getPointerTo();
    Entry.IsSExt = false;
    Entry.IsZExt = false;
    Entry.IsSRet = true;
    Args.push_back(Entry);
    RetTy = Type::getVoidTy(*DAG.getContext());
  }

  ArgListEntry Entry;
  Entry.Node = Arg;
  Entry.Ty = ArgTy;
  Entry.IsSExt = false;
  Entry.IsZExt = false;
  Args.push_back(Entry);

  RTLIB::Libcall LC =
      (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
  const char *LibcallName = getLibcallName(LC);
  CallingConv::ID CC = getLibcallCallingConv(LC);
  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));

  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(dl)
      .setChain(DAG.getEntryNode())
      .setCallee(CC, RetTy, Callee, std::move(Args))
      .setDiscardResult(ShouldUseSRet);
  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);

  if (!ShouldUseSRet)
    return CallResult.first;

  SDValue LoadSin =
      DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());

  // Address of cos field.
  SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
                            DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
  SDValue LoadCos =
      DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());

  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
                     LoadSin.getValue(0), LoadCos.getValue(0));
}

SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
                                                  bool Signed,
                                                  SDValue &Chain) const {
  EVT VT = Op.getValueType();
  assert((VT == MVT::i32 || VT == MVT::i64) &&
         "unexpected type for custom lowering DIV");
  SDLoc dl(Op);

  const auto &DL = DAG.getDataLayout();
  const auto &TLI = DAG.getTargetLoweringInfo();

  const char *Name = nullptr;
  if (Signed)
    Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
  else
    Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";

  SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));

  ARMTargetLowering::ArgListTy Args;

  for (auto AI : {1, 0}) {
    ArgListEntry Arg;
    Arg.Node = Op.getOperand(AI);
    Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
    Args.push_back(Arg);
  }

  CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(dl)
    .setChain(Chain)
    .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
               ES, std::move(Args));

  return LowerCallTo(CLI).first;
}

// This is a code size optimisation: return the original SDIV node to
// DAGCombiner when we don't want to expand SDIV into a sequence of
// instructions, and an empty node otherwise which will cause the
// SDIV to be expanded in DAGCombine.
SDValue
ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
                                 SelectionDAG &DAG,
                                 SmallVectorImpl<SDNode *> &Created) const {
  // TODO: Support SREM
  if (N->getOpcode() != ISD::SDIV)
    return SDValue();

  const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
  const bool MinSize = ST.hasMinSize();
  const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
                                      : ST.hasDivideInARMMode();

  // Don't touch vector types; rewriting this may lead to scalarizing
  // the int divs.
  if (N->getOperand(0).getValueType().isVector())
    return SDValue();

  // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
  // hwdiv support for this to be really profitable.
  if (!(MinSize && HasDivide))
    return SDValue();

  // ARM mode is a bit simpler than Thumb: we can handle large power
  // of 2 immediates with 1 mov instruction; no further checks required,
  // just return the sdiv node.
  if (!ST.isThumb())
    return SDValue(N, 0);

  // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
  // and thus lose the code size benefits of a MOVS that requires only 2.
  // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
  // but as it's doing exactly this, it's not worth the trouble to get TTI.
  if (Divisor.sgt(128))
    return SDValue();

  return SDValue(N, 0);
}

SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
                                            bool Signed) const {
  assert(Op.getValueType() == MVT::i32 &&
         "unexpected type for custom lowering DIV");
  SDLoc dl(Op);

  SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
                               DAG.getEntryNode(), Op.getOperand(1));

  return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
}

static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
  SDLoc DL(N);
  SDValue Op = N->getOperand(1);
  if (N->getValueType(0) == MVT::i32)
    return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
                           DAG.getConstant(0, DL, MVT::i32));
  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
                           DAG.getConstant(1, DL, MVT::i32));
  return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
                     DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
}

void ARMTargetLowering::ExpandDIV_Windows(
    SDValue Op, SelectionDAG &DAG, bool Signed,
    SmallVectorImpl<SDValue> &Results) const {
  const auto &DL = DAG.getDataLayout();
  const auto &TLI = DAG.getTargetLoweringInfo();

  assert(Op.getValueType() == MVT::i64 &&
         "unexpected type for custom lowering DIV");
  SDLoc dl(Op);

  SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());

  SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);

  SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
  SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
                              DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
  Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);

  Results.push_back(Lower);
  Results.push_back(Upper);
}

static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
  LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
  EVT MemVT = LD->getMemoryVT();
  assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
         "Expected a predicate type!");
  assert(MemVT == Op.getValueType());
  assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
         "Expected a non-extending load");
  assert(LD->isUnindexed() && "Expected a unindexed load");

  // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
  // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
  // need to make sure that 8/4 bits are actually loaded into the correct
  // place, which means loading the value and then shuffling the values into
  // the bottom bits of the predicate.
  // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
  // for BE).

  SDLoc dl(Op);
  SDValue Load = DAG.getExtLoad(
      ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
      EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
      LD->getMemOperand());
  SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Load);
  if (MemVT != MVT::v16i1)
    Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
                       DAG.getConstant(0, dl, MVT::i32));
  return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
}

static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
  StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
  EVT MemVT = ST->getMemoryVT();
  assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
         "Expected a predicate type!");
  assert(MemVT == ST->getValue().getValueType());
  assert(!ST->isTruncatingStore() && "Expected a non-extending store");
  assert(ST->isUnindexed() && "Expected a unindexed store");

  // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
  // unset and a scalar store.
  SDLoc dl(Op);
  SDValue Build = ST->getValue();
  if (MemVT != MVT::v16i1) {
    SmallVector<SDValue, 16> Ops;
    for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++)
      Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
                                DAG.getConstant(I, dl, MVT::i32)));
    for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
      Ops.push_back(DAG.getUNDEF(MVT::i32));
    Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
  }
  SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
  return DAG.getTruncStore(
      ST->getChain(), dl, GRP, ST->getBasePtr(),
      EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
      ST->getMemOperand());
}

static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
  MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
  MVT VT = Op.getSimpleValueType();
  SDValue Mask = N->getMask();
  SDValue PassThru = N->getPassThru();
  SDLoc dl(Op);

  auto IsZero = [](SDValue PassThru) {
    return (ISD::isBuildVectorAllZeros(PassThru.getNode()) ||
      (PassThru->getOpcode() == ARMISD::VMOVIMM &&
       isNullConstant(PassThru->getOperand(0))));
  };

  if (IsZero(PassThru))
    return Op;

  // MVE Masked loads use zero as the passthru value. Here we convert undef to
  // zero too, and other values are lowered to a select.
  SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
                                DAG.getTargetConstant(0, dl, MVT::i32));
  SDValue NewLoad = DAG.getMaskedLoad(
      VT, dl, N->getChain(), N->getBasePtr(), Mask, ZeroVec, N->getMemoryVT(),
      N->getMemOperand(), N->getExtensionType(), N->isExpandingLoad());
  SDValue Combo = NewLoad;
  if (!PassThru.isUndef() &&
      (PassThru.getOpcode() != ISD::BITCAST ||
       !IsZero(PassThru->getOperand(0))))
    Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
  return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
}

static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
  if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
    // Acquire/Release load/store is not legal for targets without a dmb or
    // equivalent available.
    return SDValue();

  // Monotonic load/store is legal for all targets.
  return Op;
}

static void ReplaceREADCYCLECOUNTER(SDNode *N,
                                    SmallVectorImpl<SDValue> &Results,
                                    SelectionDAG &DAG,
                                    const ARMSubtarget *Subtarget) {
  SDLoc DL(N);
  // Under Power Management extensions, the cycle-count is:
  //    mrc p15, #0, <Rt>, c9, c13, #0
  SDValue Ops[] = { N->getOperand(0), // Chain
                    DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
                    DAG.getTargetConstant(15, DL, MVT::i32),
                    DAG.getTargetConstant(0, DL, MVT::i32),
                    DAG.getTargetConstant(9, DL, MVT::i32),
                    DAG.getTargetConstant(13, DL, MVT::i32),
                    DAG.getTargetConstant(0, DL, MVT::i32)
  };

  SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
                                 DAG.getVTList(MVT::i32, MVT::Other), Ops);
  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
                                DAG.getConstant(0, DL, MVT::i32)));
  Results.push_back(Cycles32.getValue(1));
}

static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
  SDLoc dl(V.getNode());
  SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
  SDValue VHi = DAG.getAnyExtOrTrunc(
      DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
      dl, MVT::i32);
  bool isBigEndian = DAG.getDataLayout().isBigEndian();
  if (isBigEndian)
    std::swap (VLo, VHi);
  SDValue RegClass =
      DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
  SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
  SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
  const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
  return SDValue(
      DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
}

static void ReplaceCMP_SWAP_64Results(SDNode *N,
                                       SmallVectorImpl<SDValue> & Results,
                                       SelectionDAG &DAG) {
  assert(N->getValueType(0) == MVT::i64 &&
         "AtomicCmpSwap on types less than 64 should be legal");
  SDValue Ops[] = {N->getOperand(1),
                   createGPRPairNode(DAG, N->getOperand(2)),
                   createGPRPairNode(DAG, N->getOperand(3)),
                   N->getOperand(0)};
  SDNode *CmpSwap = DAG.getMachineNode(
      ARM::CMP_SWAP_64, SDLoc(N),
      DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);

  MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
  DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});

  bool isBigEndian = DAG.getDataLayout().isBigEndian();

  Results.push_back(
      DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
                                 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
  Results.push_back(
      DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
                                 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
  Results.push_back(SDValue(CmpSwap, 2));
}

static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
                          SelectionDAG &DAG) {
  const auto &TLI = DAG.getTargetLoweringInfo();

  assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
         "Custom lowering is MSVCRT specific!");

  SDLoc dl(Op);
  SDValue Val = Op.getOperand(0);
  MVT Ty = Val->getSimpleValueType(0);
  SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
  SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
                                         TLI.getPointerTy(DAG.getDataLayout()));

  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;

  Entry.Node = Val;
  Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
  Entry.IsZExt = true;
  Args.push_back(Entry);

  Entry.Node = Exponent;
  Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
  Entry.IsZExt = true;
  Args.push_back(Entry);

  Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());

  // In the in-chain to the call is the entry node  If we are emitting a
  // tailcall, the chain will be mutated if the node has a non-entry input
  // chain.
  SDValue InChain = DAG.getEntryNode();
  SDValue TCChain = InChain;

  const Function &F = DAG.getMachineFunction().getFunction();
  bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
              F.getReturnType() == LCRTy;
  if (IsTC)
    InChain = TCChain;

  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(dl)
      .setChain(InChain)
      .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
      .setTailCall(IsTC);
  std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);

  // Return the chain (the DAG root) if it is a tail call
  return !CI.second.getNode() ? DAG.getRoot() : CI.first;
}

SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
  switch (Op.getOpcode()) {
  default: llvm_unreachable("Don't know how to custom lower this!");
  case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
  case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
  case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
  case ISD::SELECT:        return LowerSELECT(Op, DAG);
  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
  case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
  case ISD::VASTART:       return LowerVASTART(Op, DAG);
  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
  case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
  case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
                                                               Subtarget);
  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
  case ISD::SHL:
  case ISD::SRL:
  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
  case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
  case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
  case ISD::SRL_PARTS:
  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
  case ISD::CTTZ:
  case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
  case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
  case ISD::SETCC:         return LowerVSETCC(Op, DAG, Subtarget);
  case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
  case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
  case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
  case ISD::MUL:           return LowerMUL(Op, DAG);
  case ISD::SDIV:
    if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
      return LowerDIV_Windows(Op, DAG, /* Signed */ true);
    return LowerSDIV(Op, DAG, Subtarget);
  case ISD::UDIV:
    if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
      return LowerDIV_Windows(Op, DAG, /* Signed */ false);
    return LowerUDIV(Op, DAG, Subtarget);
  case ISD::ADDCARRY:
  case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
  case ISD::SADDO:
  case ISD::SSUBO:
    return LowerSignedALUO(Op, DAG);
  case ISD::UADDO:
  case ISD::USUBO:
    return LowerUnsignedALUO(Op, DAG);
  case ISD::SADDSAT:
  case ISD::SSUBSAT:
    return LowerSADDSUBSAT(Op, DAG, Subtarget);
  case ISD::LOAD:
    return LowerPredicateLoad(Op, DAG);
  case ISD::STORE:
    return LowerPredicateStore(Op, DAG);
  case ISD::MLOAD:
    return LowerMLOAD(Op, DAG);
  case ISD::ATOMIC_LOAD:
  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
  case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
  case ISD::SDIVREM:
  case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
  case ISD::DYNAMIC_STACKALLOC:
    if (Subtarget->isTargetWindows())
      return LowerDYNAMIC_STACKALLOC(Op, DAG);
    llvm_unreachable("Don't know how to custom lower this!");
  case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
  case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
  case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
  case ARMISD::WIN__DBZCHK: return SDValue();
  }
}

static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
                                 SelectionDAG &DAG) {
  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
  unsigned Opc = 0;
  if (IntNo == Intrinsic::arm_smlald)
    Opc = ARMISD::SMLALD;
  else if (IntNo == Intrinsic::arm_smlaldx)
    Opc = ARMISD::SMLALDX;
  else if (IntNo == Intrinsic::arm_smlsld)
    Opc = ARMISD::SMLSLD;
  else if (IntNo == Intrinsic::arm_smlsldx)
    Opc = ARMISD::SMLSLDX;
  else
    return;

  SDLoc dl(N);
  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
                           N->getOperand(3),
                           DAG.getConstant(0, dl, MVT::i32));
  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
                           N->getOperand(3),
                           DAG.getConstant(1, dl, MVT::i32));

  SDValue LongMul = DAG.getNode(Opc, dl,
                                DAG.getVTList(MVT::i32, MVT::i32),
                                N->getOperand(1), N->getOperand(2),
                                Lo, Hi);
  Results.push_back(LongMul.getValue(0));
  Results.push_back(LongMul.getValue(1));
}

/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
                                           SmallVectorImpl<SDValue> &Results,
                                           SelectionDAG &DAG) const {
  SDValue Res;
  switch (N->getOpcode()) {
  default:
    llvm_unreachable("Don't know how to custom expand this!");
  case ISD::READ_REGISTER:
    ExpandREAD_REGISTER(N, Results, DAG);
    break;
  case ISD::BITCAST:
    Res = ExpandBITCAST(N, DAG, Subtarget);
    break;
  case ISD::SRL:
  case ISD::SRA:
  case ISD::SHL:
    Res = Expand64BitShift(N, DAG, Subtarget);
    break;
  case ISD::SREM:
  case ISD::UREM:
    Res = LowerREM(N, DAG);
    break;
  case ISD::SDIVREM:
  case ISD::UDIVREM:
    Res = LowerDivRem(SDValue(N, 0), DAG);
    assert(Res.getNumOperands() == 2 && "DivRem needs two values");
    Results.push_back(Res.getValue(0));
    Results.push_back(Res.getValue(1));
    return;
  case ISD::SADDSAT:
  case ISD::SSUBSAT:
    Res = LowerSADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
    break;
  case ISD::READCYCLECOUNTER:
    ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
    return;
  case ISD::UDIV:
  case ISD::SDIV:
    assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
    return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
                             Results);
  case ISD::ATOMIC_CMP_SWAP:
    ReplaceCMP_SWAP_64Results(N, Results, DAG);
    return;
  case ISD::INTRINSIC_WO_CHAIN:
    return ReplaceLongIntrinsic(N, Results, DAG);
  case ISD::ABS:
     lowerABS(N, Results, DAG);
     return ;

  }
  if (Res.getNode())
    Results.push_back(Res);
}

//===----------------------------------------------------------------------===//
//                           ARM Scheduler Hooks
//===----------------------------------------------------------------------===//

/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
/// registers the function context.
void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
                                               MachineBasicBlock *MBB,
                                               MachineBasicBlock *DispatchBB,
                                               int FI) const {
  assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
         "ROPI/RWPI not currently supported with SjLj");
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  DebugLoc dl = MI.getDebugLoc();
  MachineFunction *MF = MBB->getParent();
  MachineRegisterInfo *MRI = &MF->getRegInfo();
  MachineConstantPool *MCP = MF->getConstantPool();
  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
  const Function &F = MF->getFunction();

  bool isThumb = Subtarget->isThumb();
  bool isThumb2 = Subtarget->isThumb2();

  unsigned PCLabelId = AFI->createPICLabelUId();
  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
  ARMConstantPoolValue *CPV =
    ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);

  const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
                                           : &ARM::GPRRegClass;

  // Grab constant pool and fixed stack memory operands.
  MachineMemOperand *CPMMO =
      MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
                               MachineMemOperand::MOLoad, 4, 4);

  MachineMemOperand *FIMMOSt =
      MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
                               MachineMemOperand::MOStore, 4, 4);

  // Load the address of the dispatch MBB into the jump buffer.
  if (isThumb2) {
    // Incoming value: jbuf
    //   ldr.n  r5, LCPI1_1
    //   orr    r5, r5, #1
    //   add    r5, pc
    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
    Register NewVReg1 = MRI->createVirtualRegister(TRC);
    BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
        .addConstantPoolIndex(CPI)
        .addMemOperand(CPMMO)
        .add(predOps(ARMCC::AL));
    // Set the low bit because of thumb mode.
    Register NewVReg2 = MRI->createVirtualRegister(TRC);
    BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
        .addReg(NewVReg1, RegState::Kill)
        .addImm(0x01)
        .add(predOps(ARMCC::AL))
        .add(condCodeOp());
    Register NewVReg3 = MRI->createVirtualRegister(TRC);
    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
      .addReg(NewVReg2, RegState::Kill)
      .addImm(PCLabelId);
    BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
        .addReg(NewVReg3, RegState::Kill)
        .addFrameIndex(FI)
        .addImm(36) // &jbuf[1] :: pc
        .addMemOperand(FIMMOSt)
        .add(predOps(ARMCC::AL));
  } else if (isThumb) {
    // Incoming value: jbuf
    //   ldr.n  r1, LCPI1_4
    //   add    r1, pc
    //   mov    r2, #1
    //   orrs   r1, r2
    //   add    r2, $jbuf, #+4 ; &jbuf[1]
    //   str    r1, [r2]
    Register NewVReg1 = MRI->createVirtualRegister(TRC);
    BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
        .addConstantPoolIndex(CPI)
        .addMemOperand(CPMMO)
        .add(predOps(ARMCC::AL));
    Register NewVReg2 = MRI->createVirtualRegister(TRC);
    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
      .addReg(NewVReg1, RegState::Kill)
      .addImm(PCLabelId);
    // Set the low bit because of thumb mode.
    Register NewVReg3 = MRI->createVirtualRegister(TRC);
    BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
        .addReg(ARM::CPSR, RegState::Define)
        .addImm(1)
        .add(predOps(ARMCC::AL));
    Register NewVReg4 = MRI->createVirtualRegister(TRC);
    BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
        .addReg(ARM::CPSR, RegState::Define)
        .addReg(NewVReg2, RegState::Kill)
        .addReg(NewVReg3, RegState::Kill)
        .add(predOps(ARMCC::AL));
    Register NewVReg5 = MRI->createVirtualRegister(TRC);
    BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
            .addFrameIndex(FI)
            .addImm(36); // &jbuf[1] :: pc
    BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
        .addReg(NewVReg4, RegState::Kill)
        .addReg(NewVReg5, RegState::Kill)
        .addImm(0)
        .addMemOperand(FIMMOSt)
        .add(predOps(ARMCC::AL));
  } else {
    // Incoming value: jbuf
    //   ldr  r1, LCPI1_1
    //   add  r1, pc, r1
    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
    Register NewVReg1 = MRI->createVirtualRegister(TRC);
    BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
        .addConstantPoolIndex(CPI)
        .addImm(0)
        .addMemOperand(CPMMO)
        .add(predOps(ARMCC::AL));
    Register NewVReg2 = MRI->createVirtualRegister(TRC);
    BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
        .addReg(NewVReg1, RegState::Kill)
        .addImm(PCLabelId)
        .add(predOps(ARMCC::AL));
    BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
        .addReg(NewVReg2, RegState::Kill)
        .addFrameIndex(FI)
        .addImm(36) // &jbuf[1] :: pc
        .addMemOperand(FIMMOSt)
        .add(predOps(ARMCC::AL));
  }
}

void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
                                              MachineBasicBlock *MBB) const {
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  DebugLoc dl = MI.getDebugLoc();
  MachineFunction *MF = MBB->getParent();
  MachineRegisterInfo *MRI = &MF->getRegInfo();
  MachineFrameInfo &MFI = MF->getFrameInfo();
  int FI = MFI.getFunctionContextIndex();

  const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
                                                        : &ARM::GPRnopcRegClass;

  // Get a mapping of the call site numbers to all of the landing pads they're
  // associated with.
  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
  unsigned MaxCSNum = 0;
  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
       ++BB) {
    if (!BB->isEHPad()) continue;

    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
    // pad.
    for (MachineBasicBlock::iterator
           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
      if (!II->isEHLabel()) continue;

      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
      if (!MF->hasCallSiteLandingPad(Sym)) continue;

      SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
      for (SmallVectorImpl<unsigned>::iterator
             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
           CSI != CSE; ++CSI) {
        CallSiteNumToLPad[*CSI].push_back(&*BB);
        MaxCSNum = std::max(MaxCSNum, *CSI);
      }
      break;
    }
  }

  // Get an ordered list of the machine basic blocks for the jump table.
  std::vector<MachineBasicBlock*> LPadList;
  SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
  LPadList.reserve(CallSiteNumToLPad.size());
  for (unsigned I = 1; I <= MaxCSNum; ++I) {
    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
    for (SmallVectorImpl<MachineBasicBlock*>::iterator
           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
      LPadList.push_back(*II);
      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
    }
  }

  assert(!LPadList.empty() &&
         "No landing pad destinations for the dispatch jump table!");

  // Create the jump table and associated information.
  MachineJumpTableInfo *JTI =
    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
  unsigned MJTI = JTI->createJumpTableIndex(LPadList);

  // Create the MBBs for the dispatch code.

  // Shove the dispatch's address into the return slot in the function context.
  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
  DispatchBB->setIsEHPad();

  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
  unsigned trap_opcode;
  if (Subtarget->isThumb())
    trap_opcode = ARM::tTRAP;
  else
    trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;

  BuildMI(TrapBB, dl, TII->get(trap_opcode));
  DispatchBB->addSuccessor(TrapBB);

  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
  DispatchBB->addSuccessor(DispContBB);

  // Insert and MBBs.
  MF->insert(MF->end(), DispatchBB);
  MF->insert(MF->end(), DispContBB);
  MF->insert(MF->end(), TrapBB);

  // Insert code into the entry block that creates and registers the function
  // context.
  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);

  MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
      MachinePointerInfo::getFixedStack(*MF, FI),
      MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);

  MachineInstrBuilder MIB;
  MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));

  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();

  // Add a register mask with no preserved registers.  This results in all
  // registers being marked as clobbered. This can't work if the dispatch block
  // is in a Thumb1 function and is linked with ARM code which uses the FP
  // registers, as there is no way to preserve the FP registers in Thumb1 mode.
  MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));

  bool IsPositionIndependent = isPositionIndependent();
  unsigned NumLPads = LPadList.size();
  if (Subtarget->isThumb2()) {
    Register NewVReg1 = MRI->createVirtualRegister(TRC);
    BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
        .addFrameIndex(FI)
        .addImm(4)
        .addMemOperand(FIMMOLd)
        .add(predOps(ARMCC::AL));

    if (NumLPads < 256) {
      BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
          .addReg(NewVReg1)
          .addImm(LPadList.size())
          .add(predOps(ARMCC::AL));
    } else {
      Register VReg1 = MRI->createVirtualRegister(TRC);
      BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
          .addImm(NumLPads & 0xFFFF)
          .add(predOps(ARMCC::AL));

      unsigned VReg2 = VReg1;
      if ((NumLPads & 0xFFFF0000) != 0) {
        VReg2 = MRI->createVirtualRegister(TRC);
        BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
            .addReg(VReg1)
            .addImm(NumLPads >> 16)
            .add(predOps(ARMCC::AL));
      }

      BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
          .addReg(NewVReg1)
          .addReg(VReg2)
          .add(predOps(ARMCC::AL));
    }

    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
      .addMBB(TrapBB)
      .addImm(ARMCC::HI)
      .addReg(ARM::CPSR);

    Register NewVReg3 = MRI->createVirtualRegister(TRC);
    BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
        .addJumpTableIndex(MJTI)
        .add(predOps(ARMCC::AL));

    Register NewVReg4 = MRI->createVirtualRegister(TRC);
    BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
        .addReg(NewVReg3, RegState::Kill)
        .addReg(NewVReg1)
        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
        .add(predOps(ARMCC::AL))
        .add(condCodeOp());

    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
      .addReg(NewVReg4, RegState::Kill)
      .addReg(NewVReg1)
      .addJumpTableIndex(MJTI);
  } else if (Subtarget->isThumb()) {
    Register NewVReg1 = MRI->createVirtualRegister(TRC);
    BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
        .addFrameIndex(FI)
        .addImm(1)
        .addMemOperand(FIMMOLd)
        .add(predOps(ARMCC::AL));

    if (NumLPads < 256) {
      BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
          .addReg(NewVReg1)
          .addImm(NumLPads)
          .add(predOps(ARMCC::AL));
    } else {
      MachineConstantPool *ConstantPool = MF->getConstantPool();
      Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);

      // MachineConstantPool wants an explicit alignment.
      unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
      if (Align == 0)
        Align = MF->getDataLayout().getTypeAllocSize(C->getType());
      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);

      Register VReg1 = MRI->createVirtualRegister(TRC);
      BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
          .addReg(VReg1, RegState::Define)
          .addConstantPoolIndex(Idx)
          .add(predOps(ARMCC::AL));
      BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
          .addReg(NewVReg1)
          .addReg(VReg1)
          .add(predOps(ARMCC::AL));
    }

    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
      .addMBB(TrapBB)
      .addImm(ARMCC::HI)
      .addReg(ARM::CPSR);

    Register NewVReg2 = MRI->createVirtualRegister(TRC);
    BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
        .addReg(ARM::CPSR, RegState::Define)
        .addReg(NewVReg1)
        .addImm(2)
        .add(predOps(ARMCC::AL));

    Register NewVReg3 = MRI->createVirtualRegister(TRC);
    BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
        .addJumpTableIndex(MJTI)
        .add(predOps(ARMCC::AL));

    Register NewVReg4 = MRI->createVirtualRegister(TRC);
    BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
        .addReg(ARM::CPSR, RegState::Define)
        .addReg(NewVReg2, RegState::Kill)
        .addReg(NewVReg3)
        .add(predOps(ARMCC::AL));

    MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
        MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);

    Register NewVReg5 = MRI->createVirtualRegister(TRC);
    BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
        .addReg(NewVReg4, RegState::Kill)
        .addImm(0)
        .addMemOperand(JTMMOLd)
        .add(predOps(ARMCC::AL));

    unsigned NewVReg6 = NewVReg5;
    if (IsPositionIndependent) {
      NewVReg6 = MRI->createVirtualRegister(TRC);
      BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
          .addReg(ARM::CPSR, RegState::Define)
          .addReg(NewVReg5, RegState::Kill)
          .addReg(NewVReg3)
          .add(predOps(ARMCC::AL));
    }

    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
      .addReg(NewVReg6, RegState::Kill)
      .addJumpTableIndex(MJTI);
  } else {
    Register NewVReg1 = MRI->createVirtualRegister(TRC);
    BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
        .addFrameIndex(FI)
        .addImm(4)
        .addMemOperand(FIMMOLd)
        .add(predOps(ARMCC::AL));

    if (NumLPads < 256) {
      BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
          .addReg(NewVReg1)
          .addImm(NumLPads)
          .add(predOps(ARMCC::AL));
    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
      Register VReg1 = MRI->createVirtualRegister(TRC);
      BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
          .addImm(NumLPads & 0xFFFF)
          .add(predOps(ARMCC::AL));

      unsigned VReg2 = VReg1;
      if ((NumLPads & 0xFFFF0000) != 0) {
        VReg2 = MRI->createVirtualRegister(TRC);
        BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
            .addReg(VReg1)
            .addImm(NumLPads >> 16)
            .add(predOps(ARMCC::AL));
      }

      BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
          .addReg(NewVReg1)
          .addReg(VReg2)
          .add(predOps(ARMCC::AL));
    } else {
      MachineConstantPool *ConstantPool = MF->getConstantPool();
      Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);

      // MachineConstantPool wants an explicit alignment.
      unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
      if (Align == 0)
        Align = MF->getDataLayout().getTypeAllocSize(C->getType());
      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);

      Register VReg1 = MRI->createVirtualRegister(TRC);
      BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
          .addReg(VReg1, RegState::Define)
          .addConstantPoolIndex(Idx)
          .addImm(0)
          .add(predOps(ARMCC::AL));
      BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
          .addReg(NewVReg1)
          .addReg(VReg1, RegState::Kill)
          .add(predOps(ARMCC::AL));
    }

    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
      .addMBB(TrapBB)
      .addImm(ARMCC::HI)
      .addReg(ARM::CPSR);

    Register NewVReg3 = MRI->createVirtualRegister(TRC);
    BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
        .addReg(NewVReg1)
        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
        .add(predOps(ARMCC::AL))
        .add(condCodeOp());
    Register NewVReg4 = MRI->createVirtualRegister(TRC);
    BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
        .addJumpTableIndex(MJTI)
        .add(predOps(ARMCC::AL));

    MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
        MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
    Register NewVReg5 = MRI->createVirtualRegister(TRC);
    BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
        .addReg(NewVReg3, RegState::Kill)
        .addReg(NewVReg4)
        .addImm(0)
        .addMemOperand(JTMMOLd)
        .add(predOps(ARMCC::AL));

    if (IsPositionIndependent) {
      BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
        .addReg(NewVReg5, RegState::Kill)
        .addReg(NewVReg4)
        .addJumpTableIndex(MJTI);
    } else {
      BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
        .addReg(NewVReg5, RegState::Kill)
        .addJumpTableIndex(MJTI);
    }
  }

  // Add the jump table entries as successors to the MBB.
  SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
  for (std::vector<MachineBasicBlock*>::iterator
         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
    MachineBasicBlock *CurMBB = *I;
    if (SeenMBBs.insert(CurMBB).second)
      DispContBB->addSuccessor(CurMBB);
  }

  // N.B. the order the invoke BBs are processed in doesn't matter here.
  const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
  SmallVector<MachineBasicBlock*, 64> MBBLPads;
  for (MachineBasicBlock *BB : InvokeBBs) {

    // Remove the landing pad successor from the invoke block and replace it
    // with the new dispatch block.
    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
                                                  BB->succ_end());
    while (!Successors.empty()) {
      MachineBasicBlock *SMBB = Successors.pop_back_val();
      if (SMBB->isEHPad()) {
        BB->removeSuccessor(SMBB);
        MBBLPads.push_back(SMBB);
      }
    }

    BB->addSuccessor(DispatchBB, BranchProbability::getZero());
    BB->normalizeSuccProbs();

    // Find the invoke call and mark all of the callee-saved registers as
    // 'implicit defined' so that they're spilled. This prevents code from
    // moving instructions to before the EH block, where they will never be
    // executed.
    for (MachineBasicBlock::reverse_iterator
           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
      if (!II->isCall()) continue;

      DenseMap<unsigned, bool> DefRegs;
      for (MachineInstr::mop_iterator
             OI = II->operands_begin(), OE = II->operands_end();
           OI != OE; ++OI) {
        if (!OI->isReg()) continue;
        DefRegs[OI->getReg()] = true;
      }

      MachineInstrBuilder MIB(*MF, &*II);

      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
        unsigned Reg = SavedRegs[i];
        if (Subtarget->isThumb2() &&
            !ARM::tGPRRegClass.contains(Reg) &&
            !ARM::hGPRRegClass.contains(Reg))
          continue;
        if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
          continue;
        if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
          continue;
        if (!DefRegs[Reg])
          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
      }

      break;
    }
  }

  // Mark all former landing pads as non-landing pads. The dispatch is the only
  // landing pad now.
  for (SmallVectorImpl<MachineBasicBlock*>::iterator
         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
    (*I)->setIsEHPad(false);

  // The instruction is gone now.
  MI.eraseFromParent();
}

static
MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
       E = MBB->succ_end(); I != E; ++I)
    if (*I != Succ)
      return *I;
  llvm_unreachable("Expecting a BB with two successors!");
}

/// Return the load opcode for a given load size. If load size >= 8,
/// neon opcode will be returned.
static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
  if (LdSize >= 8)
    return LdSize == 16 ? ARM::VLD1q32wb_fixed
                        : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
  if (IsThumb1)
    return LdSize == 4 ? ARM::tLDRi
                       : LdSize == 2 ? ARM::tLDRHi
                                     : LdSize == 1 ? ARM::tLDRBi : 0;
  if (IsThumb2)
    return LdSize == 4 ? ARM::t2LDR_POST
                       : LdSize == 2 ? ARM::t2LDRH_POST
                                     : LdSize == 1 ? ARM::t2LDRB_POST : 0;
  return LdSize == 4 ? ARM::LDR_POST_IMM
                     : LdSize == 2 ? ARM::LDRH_POST
                                   : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
}

/// Return the store opcode for a given store size. If store size >= 8,
/// neon opcode will be returned.
static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
  if (StSize >= 8)
    return StSize == 16 ? ARM::VST1q32wb_fixed
                        : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
  if (IsThumb1)
    return StSize == 4 ? ARM::tSTRi
                       : StSize == 2 ? ARM::tSTRHi
                                     : StSize == 1 ? ARM::tSTRBi : 0;
  if (IsThumb2)
    return StSize == 4 ? ARM::t2STR_POST
                       : StSize == 2 ? ARM::t2STRH_POST
                                     : StSize == 1 ? ARM::t2STRB_POST : 0;
  return StSize == 4 ? ARM::STR_POST_IMM
                     : StSize == 2 ? ARM::STRH_POST
                                   : StSize == 1 ? ARM::STRB_POST_IMM : 0;
}

/// Emit a post-increment load operation with given size. The instructions
/// will be added to BB at Pos.
static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
                       const TargetInstrInfo *TII, const DebugLoc &dl,
                       unsigned LdSize, unsigned Data, unsigned AddrIn,
                       unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
  unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
  assert(LdOpc != 0 && "Should have a load opcode");
  if (LdSize >= 8) {
    BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
        .addReg(AddrOut, RegState::Define)
        .addReg(AddrIn)
        .addImm(0)
        .add(predOps(ARMCC::AL));
  } else if (IsThumb1) {
    // load + update AddrIn
    BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
        .addReg(AddrIn)
        .addImm(0)
        .add(predOps(ARMCC::AL));
    BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
        .add(t1CondCodeOp())
        .addReg(AddrIn)
        .addImm(LdSize)
        .add(predOps(ARMCC::AL));
  } else if (IsThumb2) {
    BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
        .addReg(AddrOut, RegState::Define)
        .addReg(AddrIn)
        .addImm(LdSize)
        .add(predOps(ARMCC::AL));
  } else { // arm
    BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
        .addReg(AddrOut, RegState::Define)
        .addReg(AddrIn)
        .addReg(0)
        .addImm(LdSize)
        .add(predOps(ARMCC::AL));
  }
}

/// Emit a post-increment store operation with given size. The instructions
/// will be added to BB at Pos.
static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
                       const TargetInstrInfo *TII, const DebugLoc &dl,
                       unsigned StSize, unsigned Data, unsigned AddrIn,
                       unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
  unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
  assert(StOpc != 0 && "Should have a store opcode");
  if (StSize >= 8) {
    BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
        .addReg(AddrIn)
        .addImm(0)
        .addReg(Data)
        .add(predOps(ARMCC::AL));
  } else if (IsThumb1) {
    // store + update AddrIn
    BuildMI(*BB, Pos, dl, TII->get(StOpc))
        .addReg(Data)
        .addReg(AddrIn)
        .addImm(0)
        .add(predOps(ARMCC::AL));
    BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
        .add(t1CondCodeOp())
        .addReg(AddrIn)
        .addImm(StSize)
        .add(predOps(ARMCC::AL));
  } else if (IsThumb2) {
    BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
        .addReg(Data)
        .addReg(AddrIn)
        .addImm(StSize)
        .add(predOps(ARMCC::AL));
  } else { // arm
    BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
        .addReg(Data)
        .addReg(AddrIn)
        .addReg(0)
        .addImm(StSize)
        .add(predOps(ARMCC::AL));
  }
}

MachineBasicBlock *
ARMTargetLowering::EmitStructByval(MachineInstr &MI,
                                   MachineBasicBlock *BB) const {
  // This pseudo instruction has 3 operands: dst, src, size
  // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
  // Otherwise, we will generate unrolled scalar copies.
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator It = ++BB->getIterator();

  Register dest = MI.getOperand(0).getReg();
  Register src = MI.getOperand(1).getReg();
  unsigned SizeVal = MI.getOperand(2).getImm();
  unsigned Align = MI.getOperand(3).getImm();
  DebugLoc dl = MI.getDebugLoc();

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  unsigned UnitSize = 0;
  const TargetRegisterClass *TRC = nullptr;
  const TargetRegisterClass *VecTRC = nullptr;

  bool IsThumb1 = Subtarget->isThumb1Only();
  bool IsThumb2 = Subtarget->isThumb2();
  bool IsThumb = Subtarget->isThumb();

  if (Align & 1) {
    UnitSize = 1;
  } else if (Align & 2) {
    UnitSize = 2;
  } else {
    // Check whether we can use NEON instructions.
    if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
        Subtarget->hasNEON()) {
      if ((Align % 16 == 0) && SizeVal >= 16)
        UnitSize = 16;
      else if ((Align % 8 == 0) && SizeVal >= 8)
        UnitSize = 8;
    }
    // Can't use NEON instructions.
    if (UnitSize == 0)
      UnitSize = 4;
  }

  // Select the correct opcode and register class for unit size load/store
  bool IsNeon = UnitSize >= 8;
  TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
  if (IsNeon)
    VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
                            : UnitSize == 8 ? &ARM::DPRRegClass
                                            : nullptr;

  unsigned BytesLeft = SizeVal % UnitSize;
  unsigned LoopSize = SizeVal - BytesLeft;

  if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
    // Use LDR and STR to copy.
    // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
    // [destOut] = STR_POST(scratch, destIn, UnitSize)
    unsigned srcIn = src;
    unsigned destIn = dest;
    for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
      Register srcOut = MRI.createVirtualRegister(TRC);
      Register destOut = MRI.createVirtualRegister(TRC);
      Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
      emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
                 IsThumb1, IsThumb2);
      emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
                 IsThumb1, IsThumb2);
      srcIn = srcOut;
      destIn = destOut;
    }

    // Handle the leftover bytes with LDRB and STRB.
    // [scratch, srcOut] = LDRB_POST(srcIn, 1)
    // [destOut] = STRB_POST(scratch, destIn, 1)
    for (unsigned i = 0; i < BytesLeft; i++) {
      Register srcOut = MRI.createVirtualRegister(TRC);
      Register destOut = MRI.createVirtualRegister(TRC);
      Register scratch = MRI.createVirtualRegister(TRC);
      emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
                 IsThumb1, IsThumb2);
      emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
                 IsThumb1, IsThumb2);
      srcIn = srcOut;
      destIn = destOut;
    }
    MI.eraseFromParent(); // The instruction is gone now.
    return BB;
  }

  // Expand the pseudo op to a loop.
  // thisMBB:
  //   ...
  //   movw varEnd, # --> with thumb2
  //   movt varEnd, #
  //   ldrcp varEnd, idx --> without thumb2
  //   fallthrough --> loopMBB
  // loopMBB:
  //   PHI varPhi, varEnd, varLoop
  //   PHI srcPhi, src, srcLoop
  //   PHI destPhi, dst, destLoop
  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
  //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
  //   subs varLoop, varPhi, #UnitSize
  //   bne loopMBB
  //   fallthrough --> exitMBB
  // exitMBB:
  //   epilogue to handle left-over bytes
  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
  //   [destOut] = STRB_POST(scratch, destLoop, 1)
  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MF->insert(It, loopMBB);
  MF->insert(It, exitMBB);

  // Transfer the remainder of BB and its successor edges to exitMBB.
  exitMBB->splice(exitMBB->begin(), BB,
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  // Load an immediate to varEnd.
  Register varEnd = MRI.createVirtualRegister(TRC);
  if (Subtarget->useMovt()) {
    unsigned Vtmp = varEnd;
    if ((LoopSize & 0xFFFF0000) != 0)
      Vtmp = MRI.createVirtualRegister(TRC);
    BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
        .addImm(LoopSize & 0xFFFF)
        .add(predOps(ARMCC::AL));

    if ((LoopSize & 0xFFFF0000) != 0)
      BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
          .addReg(Vtmp)
          .addImm(LoopSize >> 16)
          .add(predOps(ARMCC::AL));
  } else {
    MachineConstantPool *ConstantPool = MF->getConstantPool();
    Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
    const Constant *C = ConstantInt::get(Int32Ty, LoopSize);

    // MachineConstantPool wants an explicit alignment.
    unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
    if (Align == 0)
      Align = MF->getDataLayout().getTypeAllocSize(C->getType());
    unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
    MachineMemOperand *CPMMO =
        MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
                                 MachineMemOperand::MOLoad, 4, 4);

    if (IsThumb)
      BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
          .addReg(varEnd, RegState::Define)
          .addConstantPoolIndex(Idx)
          .add(predOps(ARMCC::AL))
          .addMemOperand(CPMMO);
    else
      BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
          .addReg(varEnd, RegState::Define)
          .addConstantPoolIndex(Idx)
          .addImm(0)
          .add(predOps(ARMCC::AL))
          .addMemOperand(CPMMO);
  }
  BB->addSuccessor(loopMBB);

  // Generate the loop body:
  //   varPhi = PHI(varLoop, varEnd)
  //   srcPhi = PHI(srcLoop, src)
  //   destPhi = PHI(destLoop, dst)
  MachineBasicBlock *entryBB = BB;
  BB = loopMBB;
  Register varLoop = MRI.createVirtualRegister(TRC);
  Register varPhi = MRI.createVirtualRegister(TRC);
  Register srcLoop = MRI.createVirtualRegister(TRC);
  Register srcPhi = MRI.createVirtualRegister(TRC);
  Register destLoop = MRI.createVirtualRegister(TRC);
  Register destPhi = MRI.createVirtualRegister(TRC);

  BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
    .addReg(varLoop).addMBB(loopMBB)
    .addReg(varEnd).addMBB(entryBB);
  BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
    .addReg(srcLoop).addMBB(loopMBB)
    .addReg(src).addMBB(entryBB);
  BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
    .addReg(destLoop).addMBB(loopMBB)
    .addReg(dest).addMBB(entryBB);

  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
  //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
  Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
  emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
             IsThumb1, IsThumb2);
  emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
             IsThumb1, IsThumb2);

  // Decrement loop variable by UnitSize.
  if (IsThumb1) {
    BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
        .add(t1CondCodeOp())
        .addReg(varPhi)
        .addImm(UnitSize)
        .add(predOps(ARMCC::AL));
  } else {
    MachineInstrBuilder MIB =
        BuildMI(*BB, BB->end(), dl,
                TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
    MIB.addReg(varPhi)
        .addImm(UnitSize)
        .add(predOps(ARMCC::AL))
        .add(condCodeOp());
    MIB->getOperand(5).setReg(ARM::CPSR);
    MIB->getOperand(5).setIsDef(true);
  }
  BuildMI(*BB, BB->end(), dl,
          TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
      .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);

  // loopMBB can loop back to loopMBB or fall through to exitMBB.
  BB->addSuccessor(loopMBB);
  BB->addSuccessor(exitMBB);

  // Add epilogue to handle BytesLeft.
  BB = exitMBB;
  auto StartOfExit = exitMBB->begin();

  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
  //   [destOut] = STRB_POST(scratch, destLoop, 1)
  unsigned srcIn = srcLoop;
  unsigned destIn = destLoop;
  for (unsigned i = 0; i < BytesLeft; i++) {
    Register srcOut = MRI.createVirtualRegister(TRC);
    Register destOut = MRI.createVirtualRegister(TRC);
    Register scratch = MRI.createVirtualRegister(TRC);
    emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
               IsThumb1, IsThumb2);
    emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
               IsThumb1, IsThumb2);
    srcIn = srcOut;
    destIn = destOut;
  }

  MI.eraseFromParent(); // The instruction is gone now.
  return BB;
}

MachineBasicBlock *
ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
                                       MachineBasicBlock *MBB) const {
  const TargetMachine &TM = getTargetMachine();
  const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  assert(Subtarget->isTargetWindows() &&
         "__chkstk is only supported on Windows");
  assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");

  // __chkstk takes the number of words to allocate on the stack in R4, and
  // returns the stack adjustment in number of bytes in R4.  This will not
  // clober any other registers (other than the obvious lr).
  //
  // Although, technically, IP should be considered a register which may be
  // clobbered, the call itself will not touch it.  Windows on ARM is a pure
  // thumb-2 environment, so there is no interworking required.  As a result, we
  // do not expect a veneer to be emitted by the linker, clobbering IP.
  //
  // Each module receives its own copy of __chkstk, so no import thunk is
  // required, again, ensuring that IP is not clobbered.
  //
  // Finally, although some linkers may theoretically provide a trampoline for
  // out of range calls (which is quite common due to a 32M range limitation of
  // branches for Thumb), we can generate the long-call version via
  // -mcmodel=large, alleviating the need for the trampoline which may clobber
  // IP.

  switch (TM.getCodeModel()) {
  case CodeModel::Tiny:
    llvm_unreachable("Tiny code model not available on ARM.");
  case CodeModel::Small:
  case CodeModel::Medium:
  case CodeModel::Kernel:
    BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
        .add(predOps(ARMCC::AL))
        .addExternalSymbol("__chkstk")
        .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
        .addReg(ARM::R4, RegState::Implicit | RegState::Define)
        .addReg(ARM::R12,
                RegState::Implicit | RegState::Define | RegState::Dead)
        .addReg(ARM::CPSR,
                RegState::Implicit | RegState::Define | RegState::Dead);
    break;
  case CodeModel::Large: {
    MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
    Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);

    BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
      .addExternalSymbol("__chkstk");
    BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
        .add(predOps(ARMCC::AL))
        .addReg(Reg, RegState::Kill)
        .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
        .addReg(ARM::R4, RegState::Implicit | RegState::Define)
        .addReg(ARM::R12,
                RegState::Implicit | RegState::Define | RegState::Dead)
        .addReg(ARM::CPSR,
                RegState::Implicit | RegState::Define | RegState::Dead);
    break;
  }
  }

  BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
      .addReg(ARM::SP, RegState::Kill)
      .addReg(ARM::R4, RegState::Kill)
      .setMIFlags(MachineInstr::FrameSetup)
      .add(predOps(ARMCC::AL))
      .add(condCodeOp());

  MI.eraseFromParent();
  return MBB;
}

MachineBasicBlock *
ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
                                       MachineBasicBlock *MBB) const {
  DebugLoc DL = MI.getDebugLoc();
  MachineFunction *MF = MBB->getParent();
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();

  MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
  MF->insert(++MBB->getIterator(), ContBB);
  ContBB->splice(ContBB->begin(), MBB,
                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
  ContBB->transferSuccessorsAndUpdatePHIs(MBB);
  MBB->addSuccessor(ContBB);

  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
  BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
  MF->push_back(TrapBB);
  MBB->addSuccessor(TrapBB);

  BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
      .addReg(MI.getOperand(0).getReg())
      .addImm(0)
      .add(predOps(ARMCC::AL));
  BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
      .addMBB(TrapBB)
      .addImm(ARMCC::EQ)
      .addReg(ARM::CPSR);

  MI.eraseFromParent();
  return ContBB;
}

// The CPSR operand of SelectItr might be missing a kill marker
// because there were multiple uses of CPSR, and ISel didn't know
// which to mark. Figure out whether SelectItr should have had a
// kill marker, and set it if it should. Returns the correct kill
// marker value.
static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
                                   MachineBasicBlock* BB,
                                   const TargetRegisterInfo* TRI) {
  // Scan forward through BB for a use/def of CPSR.
  MachineBasicBlock::iterator miI(std::next(SelectItr));
  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
    const MachineInstr& mi = *miI;
    if (mi.readsRegister(ARM::CPSR))
      return false;
    if (mi.definesRegister(ARM::CPSR))
      break; // Should have kill-flag - update below.
  }

  // If we hit the end of the block, check whether CPSR is live into a
  // successor.
  if (miI == BB->end()) {
    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
                                          sEnd = BB->succ_end();
         sItr != sEnd; ++sItr) {
      MachineBasicBlock* succ = *sItr;
      if (succ->isLiveIn(ARM::CPSR))
        return false;
    }
  }

  // We found a def, or hit the end of the basic block and CPSR wasn't live
  // out. SelectMI should have a kill flag on CPSR.
  SelectItr->addRegisterKilled(ARM::CPSR, TRI);
  return true;
}

MachineBasicBlock *
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
                                               MachineBasicBlock *BB) const {
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  DebugLoc dl = MI.getDebugLoc();
  bool isThumb2 = Subtarget->isThumb2();
  switch (MI.getOpcode()) {
  default: {
    MI.print(errs());
    llvm_unreachable("Unexpected instr type to insert");
  }

  // Thumb1 post-indexed loads are really just single-register LDMs.
  case ARM::tLDR_postidx: {
    MachineOperand Def(MI.getOperand(1));
    BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
        .add(Def)  // Rn_wb
        .add(MI.getOperand(2))  // Rn
        .add(MI.getOperand(3))  // PredImm
        .add(MI.getOperand(4))  // PredReg
        .add(MI.getOperand(0))  // Rt
        .cloneMemRefs(MI);
    MI.eraseFromParent();
    return BB;
  }

  // The Thumb2 pre-indexed stores have the same MI operands, they just
  // define them differently in the .td files from the isel patterns, so
  // they need pseudos.
  case ARM::t2STR_preidx:
    MI.setDesc(TII->get(ARM::t2STR_PRE));
    return BB;
  case ARM::t2STRB_preidx:
    MI.setDesc(TII->get(ARM::t2STRB_PRE));
    return BB;
  case ARM::t2STRH_preidx:
    MI.setDesc(TII->get(ARM::t2STRH_PRE));
    return BB;

  case ARM::STRi_preidx:
  case ARM::STRBi_preidx: {
    unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
                                                         : ARM::STRB_PRE_IMM;
    // Decode the offset.
    unsigned Offset = MI.getOperand(4).getImm();
    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
    Offset = ARM_AM::getAM2Offset(Offset);
    if (isSub)
      Offset = -Offset;

    MachineMemOperand *MMO = *MI.memoperands_begin();
    BuildMI(*BB, MI, dl, TII->get(NewOpc))
        .add(MI.getOperand(0)) // Rn_wb
        .add(MI.getOperand(1)) // Rt
        .add(MI.getOperand(2)) // Rn
        .addImm(Offset)        // offset (skip GPR==zero_reg)
        .add(MI.getOperand(5)) // pred
        .add(MI.getOperand(6))
        .addMemOperand(MMO);
    MI.eraseFromParent();
    return BB;
  }
  case ARM::STRr_preidx:
  case ARM::STRBr_preidx:
  case ARM::STRH_preidx: {
    unsigned NewOpc;
    switch (MI.getOpcode()) {
    default: llvm_unreachable("unexpected opcode!");
    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
    }
    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
    for (unsigned i = 0; i < MI.getNumOperands(); ++i)
      MIB.add(MI.getOperand(i));
    MI.eraseFromParent();
    return BB;
  }

  case ARM::tMOVCCr_pseudo: {
    // To "insert" a SELECT_CC instruction, we actually have to insert the
    // diamond control-flow pattern.  The incoming instruction knows the
    // destination vreg to set, the condition code register to branch on, the
    // true/false values to select between, and a branch opcode to use.
    const BasicBlock *LLVM_BB = BB->getBasicBlock();
    MachineFunction::iterator It = ++BB->getIterator();

    //  thisMBB:
    //  ...
    //   TrueVal = ...
    //   cmpTY ccX, r1, r2
    //   bCC copy1MBB
    //   fallthrough --> copy0MBB
    MachineBasicBlock *thisMBB  = BB;
    MachineFunction *F = BB->getParent();
    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
    F->insert(It, copy0MBB);
    F->insert(It, sinkMBB);

    // Check whether CPSR is live past the tMOVCCr_pseudo.
    const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
    if (!MI.killsRegister(ARM::CPSR) &&
        !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
      copy0MBB->addLiveIn(ARM::CPSR);
      sinkMBB->addLiveIn(ARM::CPSR);
    }

    // Transfer the remainder of BB and its successor edges to sinkMBB.
    sinkMBB->splice(sinkMBB->begin(), BB,
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

    BB->addSuccessor(copy0MBB);
    BB->addSuccessor(sinkMBB);

    BuildMI(BB, dl, TII->get(ARM::tBcc))
        .addMBB(sinkMBB)
        .addImm(MI.getOperand(3).getImm())
        .addReg(MI.getOperand(4).getReg());

    //  copy0MBB:
    //   %FalseValue = ...
    //   # fallthrough to sinkMBB
    BB = copy0MBB;

    // Update machine-CFG edges
    BB->addSuccessor(sinkMBB);

    //  sinkMBB:
    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
    //  ...
    BB = sinkMBB;
    BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
        .addReg(MI.getOperand(1).getReg())
        .addMBB(copy0MBB)
        .addReg(MI.getOperand(2).getReg())
        .addMBB(thisMBB);

    MI.eraseFromParent(); // The pseudo instruction is gone now.
    return BB;
  }

  case ARM::BCCi64:
  case ARM::BCCZi64: {
    // If there is an unconditional branch to the other successor, remove it.
    BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());

    // Compare both parts that make up the double comparison separately for
    // equality.
    bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;

    Register LHS1 = MI.getOperand(1).getReg();
    Register LHS2 = MI.getOperand(2).getReg();
    if (RHSisZero) {
      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
          .addReg(LHS1)
          .addImm(0)
          .add(predOps(ARMCC::AL));
      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
        .addReg(LHS2).addImm(0)
        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
    } else {
      Register RHS1 = MI.getOperand(3).getReg();
      Register RHS2 = MI.getOperand(4).getReg();
      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
          .addReg(LHS1)
          .addReg(RHS1)
          .add(predOps(ARMCC::AL));
      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
        .addReg(LHS2).addReg(RHS2)
        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
    }

    MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
    if (MI.getOperand(0).getImm() == ARMCC::NE)
      std::swap(destMBB, exitMBB);

    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
    if (isThumb2)
      BuildMI(BB, dl, TII->get(ARM::t2B))
          .addMBB(exitMBB)
          .add(predOps(ARMCC::AL));
    else
      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);

    MI.eraseFromParent(); // The pseudo instruction is gone now.
    return BB;
  }

  case ARM::Int_eh_sjlj_setjmp:
  case ARM::Int_eh_sjlj_setjmp_nofp:
  case ARM::tInt_eh_sjlj_setjmp:
  case ARM::t2Int_eh_sjlj_setjmp:
  case ARM::t2Int_eh_sjlj_setjmp_nofp:
    return BB;

  case ARM::Int_eh_sjlj_setup_dispatch:
    EmitSjLjDispatchBlock(MI, BB);
    return BB;

  case ARM::ABS:
  case ARM::t2ABS: {
    // To insert an ABS instruction, we have to insert the
    // diamond control-flow pattern.  The incoming instruction knows the
    // source vreg to test against 0, the destination vreg to set,
    // the condition code register to branch on, the
    // true/false values to select between, and a branch opcode to use.
    // It transforms
    //     V1 = ABS V0
    // into
    //     V2 = MOVS V0
    //     BCC                      (branch to SinkBB if V0 >= 0)
    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
    //     SinkBB: V1 = PHI(V2, V3)
    const BasicBlock *LLVM_BB = BB->getBasicBlock();
    MachineFunction::iterator BBI = ++BB->getIterator();
    MachineFunction *Fn = BB->getParent();
    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
    Fn->insert(BBI, RSBBB);
    Fn->insert(BBI, SinkBB);

    Register ABSSrcReg = MI.getOperand(1).getReg();
    Register ABSDstReg = MI.getOperand(0).getReg();
    bool ABSSrcKIll = MI.getOperand(1).isKill();
    bool isThumb2 = Subtarget->isThumb2();
    MachineRegisterInfo &MRI = Fn->getRegInfo();
    // In Thumb mode S must not be specified if source register is the SP or
    // PC and if destination register is the SP, so restrict register class
    Register NewRsbDstReg = MRI.createVirtualRegister(
        isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);

    // Transfer the remainder of BB and its successor edges to sinkMBB.
    SinkBB->splice(SinkBB->begin(), BB,
                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
    SinkBB->transferSuccessorsAndUpdatePHIs(BB);

    BB->addSuccessor(RSBBB);
    BB->addSuccessor(SinkBB);

    // fall through to SinkMBB
    RSBBB->addSuccessor(SinkBB);

    // insert a cmp at the end of BB
    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
        .addReg(ABSSrcReg)
        .addImm(0)
        .add(predOps(ARMCC::AL));

    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
    BuildMI(BB, dl,
      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);

    // insert rsbri in RSBBB
    // Note: BCC and rsbri will be converted into predicated rsbmi
    // by if-conversion pass
    BuildMI(*RSBBB, RSBBB->begin(), dl,
            TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
        .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
        .addImm(0)
        .add(predOps(ARMCC::AL))
        .add(condCodeOp());

    // insert PHI in SinkBB,
    // reuse ABSDstReg to not change uses of ABS instruction
    BuildMI(*SinkBB, SinkBB->begin(), dl,
      TII->get(ARM::PHI), ABSDstReg)
      .addReg(NewRsbDstReg).addMBB(RSBBB)
      .addReg(ABSSrcReg).addMBB(BB);

    // remove ABS instruction
    MI.eraseFromParent();

    // return last added BB
    return SinkBB;
  }
  case ARM::COPY_STRUCT_BYVAL_I32:
    ++NumLoopByVals;
    return EmitStructByval(MI, BB);
  case ARM::WIN__CHKSTK:
    return EmitLowered__chkstk(MI, BB);
  case ARM::WIN__DBZCHK:
    return EmitLowered__dbzchk(MI, BB);
  }
}

/// Attaches vregs to MEMCPY that it will use as scratch registers
/// when it is expanded into LDM/STM. This is done as a post-isel lowering
/// instead of as a custom inserter because we need the use list from the SDNode.
static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
                                    MachineInstr &MI, const SDNode *Node) {
  bool isThumb1 = Subtarget->isThumb1Only();

  DebugLoc DL = MI.getDebugLoc();
  MachineFunction *MF = MI.getParent()->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  MachineInstrBuilder MIB(*MF, MI);

  // If the new dst/src is unused mark it as dead.
  if (!Node->hasAnyUseOfValue(0)) {
    MI.getOperand(0).setIsDead(true);
  }
  if (!Node->hasAnyUseOfValue(1)) {
    MI.getOperand(1).setIsDead(true);
  }

  // The MEMCPY both defines and kills the scratch registers.
  for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
    Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
                                                         : &ARM::GPRRegClass);
    MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
  }
}

void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
                                                      SDNode *Node) const {
  if (MI.getOpcode() == ARM::MEMCPY) {
    attachMEMCPYScratchRegs(Subtarget, MI, Node);
    return;
  }

  const MCInstrDesc *MCID = &MI.getDesc();
  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
  // operand is still set to noreg. If needed, set the optional operand's
  // register to CPSR, and remove the redundant implicit def.
  //
  // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).

  // Rename pseudo opcodes.
  unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
  unsigned ccOutIdx;
  if (NewOpc) {
    const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
    MCID = &TII->get(NewOpc);

    assert(MCID->getNumOperands() ==
           MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
        && "converted opcode should be the same except for cc_out"
           " (and, on Thumb1, pred)");

    MI.setDesc(*MCID);

    // Add the optional cc_out operand
    MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));

    // On Thumb1, move all input operands to the end, then add the predicate
    if (Subtarget->isThumb1Only()) {
      for (unsigned c = MCID->getNumOperands() - 4; c--;) {
        MI.addOperand(MI.getOperand(1));
        MI.RemoveOperand(1);
      }

      // Restore the ties
      for (unsigned i = MI.getNumOperands(); i--;) {
        const MachineOperand& op = MI.getOperand(i);
        if (op.isReg() && op.isUse()) {
          int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
          if (DefIdx != -1)
            MI.tieOperands(DefIdx, i);
        }
      }

      MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
      MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
      ccOutIdx = 1;
    } else
      ccOutIdx = MCID->getNumOperands() - 1;
  } else
    ccOutIdx = MCID->getNumOperands() - 1;

  // Any ARM instruction that sets the 's' bit should specify an optional
  // "cc_out" operand in the last operand position.
  if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
    assert(!NewOpc && "Optional cc_out operand required");
    return;
  }
  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
  // since we already have an optional CPSR def.
  bool definesCPSR = false;
  bool deadCPSR = false;
  for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
       ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
      definesCPSR = true;
      if (MO.isDead())
        deadCPSR = true;
      MI.RemoveOperand(i);
      break;
    }
  }
  if (!definesCPSR) {
    assert(!NewOpc && "Optional cc_out operand required");
    return;
  }
  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
  if (deadCPSR) {
    assert(!MI.getOperand(ccOutIdx).getReg() &&
           "expect uninitialized optional cc_out operand");
    // Thumb1 instructions must have the S bit even if the CPSR is dead.
    if (!Subtarget->isThumb1Only())
      return;
  }

  // If this instruction was defined with an optional CPSR def and its dag node
  // had a live implicit CPSR def, then activate the optional CPSR def.
  MachineOperand &MO = MI.getOperand(ccOutIdx);
  MO.setReg(ARM::CPSR);
  MO.setIsDef(true);
}

//===----------------------------------------------------------------------===//
//                           ARM Optimization Hooks
//===----------------------------------------------------------------------===//

// Helper function that checks if N is a null or all ones constant.
static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
  return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
}

// Return true if N is conditionally 0 or all ones.
// Detects these expressions where cc is an i1 value:
//
//   (select cc 0, y)   [AllOnes=0]
//   (select cc y, 0)   [AllOnes=0]
//   (zext cc)          [AllOnes=0]
//   (sext cc)          [AllOnes=0/1]
//   (select cc -1, y)  [AllOnes=1]
//   (select cc y, -1)  [AllOnes=1]
//
// Invert is set when N is the null/all ones constant when CC is false.
// OtherOp is set to the alternative value of N.
static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
                                       SDValue &CC, bool &Invert,
                                       SDValue &OtherOp,
                                       SelectionDAG &DAG) {
  switch (N->getOpcode()) {
  default: return false;
  case ISD::SELECT: {
    CC = N->getOperand(0);
    SDValue N1 = N->getOperand(1);
    SDValue N2 = N->getOperand(2);
    if (isZeroOrAllOnes(N1, AllOnes)) {
      Invert = false;
      OtherOp = N2;
      return true;
    }
    if (isZeroOrAllOnes(N2, AllOnes)) {
      Invert = true;
      OtherOp = N1;
      return true;
    }
    return false;
  }
  case ISD::ZERO_EXTEND:
    // (zext cc) can never be the all ones value.
    if (AllOnes)
      return false;
    LLVM_FALLTHROUGH;
  case ISD::SIGN_EXTEND: {
    SDLoc dl(N);
    EVT VT = N->getValueType(0);
    CC = N->getOperand(0);
    if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
      return false;
    Invert = !AllOnes;
    if (AllOnes)
      // When looking for an AllOnes constant, N is an sext, and the 'other'
      // value is 0.
      OtherOp = DAG.getConstant(0, dl, VT);
    else if (N->getOpcode() == ISD::ZERO_EXTEND)
      // When looking for a 0 constant, N can be zext or sext.
      OtherOp = DAG.getConstant(1, dl, VT);
    else
      OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
                                VT);
    return true;
  }
  }
}

// Combine a constant select operand into its use:
//
//   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
//   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
//   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
//   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
//   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
//
// The transform is rejected if the select doesn't have a constant operand that
// is null, or all ones when AllOnes is set.
//
// Also recognize sext/zext from i1:
//
//   (add (zext cc), x) -> (select cc (add x, 1), x)
//   (add (sext cc), x) -> (select cc (add x, -1), x)
//
// These transformations eventually create predicated instructions.
//
// @param N       The node to transform.
// @param Slct    The N operand that is a select.
// @param OtherOp The other N operand (x above).
// @param DCI     Context.
// @param AllOnes Require the select constant to be all ones instead of null.
// @returns The new node, or SDValue() on failure.
static
SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
                            TargetLowering::DAGCombinerInfo &DCI,
                            bool AllOnes = false) {
  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);
  SDValue NonConstantVal;
  SDValue CCOp;
  bool SwapSelectOps;
  if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
                                  NonConstantVal, DAG))
    return SDValue();

  // Slct is now know to be the desired identity constant when CC is true.
  SDValue TrueVal = OtherOp;
  SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
                                 OtherOp, NonConstantVal);
  // Unless SwapSelectOps says CC should be false.
  if (SwapSelectOps)
    std::swap(TrueVal, FalseVal);

  return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
                     CCOp, TrueVal, FalseVal);
}

// Attempt combineSelectAndUse on each operand of a commutative operator N.
static
SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
                                       TargetLowering::DAGCombinerInfo &DCI) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  if (N0.getNode()->hasOneUse())
    if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
      return Result;
  if (N1.getNode()->hasOneUse())
    if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
      return Result;
  return SDValue();
}

static bool IsVUZPShuffleNode(SDNode *N) {
  // VUZP shuffle node.
  if (N->getOpcode() == ARMISD::VUZP)
    return true;

  // "VUZP" on i32 is an alias for VTRN.
  if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
    return true;

  return false;
}

static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const ARMSubtarget *Subtarget) {
  // Look for ADD(VUZP.0, VUZP.1).
  if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
      N0 == N1)
   return SDValue();

  // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
  if (!N->getValueType(0).is64BitVector())
    return SDValue();

  // Generate vpadd.
  SelectionDAG &DAG = DCI.DAG;
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  SDLoc dl(N);
  SDNode *Unzip = N0.getNode();
  EVT VT = N->getValueType(0);

  SmallVector<SDValue, 8> Ops;
  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
                                TLI.getPointerTy(DAG.getDataLayout())));
  Ops.push_back(Unzip->getOperand(0));
  Ops.push_back(Unzip->getOperand(1));

  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
}

static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
                                      TargetLowering::DAGCombinerInfo &DCI,
                                      const ARMSubtarget *Subtarget) {
  // Check for two extended operands.
  if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
        N1.getOpcode() == ISD::SIGN_EXTEND) &&
      !(N0.getOpcode() == ISD::ZERO_EXTEND &&
        N1.getOpcode() == ISD::ZERO_EXTEND))
    return SDValue();

  SDValue N00 = N0.getOperand(0);
  SDValue N10 = N1.getOperand(0);

  // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
  if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
      N00 == N10)
    return SDValue();

  // We only recognize Q register paddl here; this can't be reached until
  // after type legalization.
  if (!N00.getValueType().is64BitVector() ||
      !N0.getValueType().is128BitVector())
    return SDValue();

  // Generate vpaddl.
  SelectionDAG &DAG = DCI.DAG;
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  SDLoc dl(N);
  EVT VT = N->getValueType(0);

  SmallVector<SDValue, 8> Ops;
  // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
  unsigned Opcode;
  if (N0.getOpcode() == ISD::SIGN_EXTEND)
    Opcode = Intrinsic::arm_neon_vpaddls;
  else
    Opcode = Intrinsic::arm_neon_vpaddlu;
  Ops.push_back(DAG.getConstant(Opcode, dl,
                                TLI.getPointerTy(DAG.getDataLayout())));
  EVT ElemTy = N00.getValueType().getVectorElementType();
  unsigned NumElts = VT.getVectorNumElements();
  EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
  SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
                               N00.getOperand(0), N00.getOperand(1));
  Ops.push_back(Concat);

  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
}

// FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
// an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
// much easier to match.
static SDValue
AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
                               TargetLowering::DAGCombinerInfo &DCI,
                               const ARMSubtarget *Subtarget) {
  // Only perform optimization if after legalize, and if NEON is available. We
  // also expected both operands to be BUILD_VECTORs.
  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
      || N0.getOpcode() != ISD::BUILD_VECTOR
      || N1.getOpcode() != ISD::BUILD_VECTOR)
    return SDValue();

  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
  EVT VT = N->getValueType(0);
  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
    return SDValue();

  // Check that the vector operands are of the right form.
  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
  // operands, where N is the size of the formed vector.
  // Each EXTRACT_VECTOR should have the same input vector and odd or even
  // index such that we have a pair wise add pattern.

  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
    return SDValue();
  SDValue Vec = N0->getOperand(0)->getOperand(0);
  SDNode *V = Vec.getNode();
  unsigned nextIndex = 0;

  // For each operands to the ADD which are BUILD_VECTORs,
  // check to see if each of their operands are an EXTRACT_VECTOR with
  // the same vector and appropriate index.
  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {

      SDValue ExtVec0 = N0->getOperand(i);
      SDValue ExtVec1 = N1->getOperand(i);

      // First operand is the vector, verify its the same.
      if (V != ExtVec0->getOperand(0).getNode() ||
          V != ExtVec1->getOperand(0).getNode())
        return SDValue();

      // Second is the constant, verify its correct.
      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));

      // For the constant, we want to see all the even or all the odd.
      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
          || C1->getZExtValue() != nextIndex+1)
        return SDValue();

      // Increment index.
      nextIndex+=2;
    } else
      return SDValue();
  }

  // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
  // we're using the entire input vector, otherwise there's a size/legality
  // mismatch somewhere.
  if (nextIndex != Vec.getValueType().getVectorNumElements() ||
      Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
    return SDValue();

  // Create VPADDL node.
  SelectionDAG &DAG = DCI.DAG;
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();

  SDLoc dl(N);

  // Build operand list.
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
                                TLI.getPointerTy(DAG.getDataLayout())));

  // Input is the vector.
  Ops.push_back(Vec);

  // Get widened type and narrowed type.
  MVT widenType;
  unsigned numElem = VT.getVectorNumElements();

  EVT inputLaneType = Vec.getValueType().getVectorElementType();
  switch (inputLaneType.getSimpleVT().SimpleTy) {
    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
    default:
      llvm_unreachable("Invalid vector element type for padd optimization.");
  }

  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
  unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
  return DAG.getNode(ExtOp, dl, VT, tmp);
}

static SDValue findMUL_LOHI(SDValue V) {
  if (V->getOpcode() == ISD::UMUL_LOHI ||
      V->getOpcode() == ISD::SMUL_LOHI)
    return V;
  return SDValue();
}

static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
                                        TargetLowering::DAGCombinerInfo &DCI,
                                        const ARMSubtarget *Subtarget) {
  if (!Subtarget->hasBaseDSP())
    return SDValue();

  // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
  // accumulates the product into a 64-bit value. The 16-bit values will
  // be sign extended somehow or SRA'd into 32-bit values
  // (addc (adde (mul 16bit, 16bit), lo), hi)
  SDValue Mul = AddcNode->getOperand(0);
  SDValue Lo = AddcNode->getOperand(1);
  if (Mul.getOpcode() != ISD::MUL) {
    Lo = AddcNode->getOperand(0);
    Mul = AddcNode->getOperand(1);
    if (Mul.getOpcode() != ISD::MUL)
      return SDValue();
  }

  SDValue SRA = AddeNode->getOperand(0);
  SDValue Hi = AddeNode->getOperand(1);
  if (SRA.getOpcode() != ISD::SRA) {
    SRA = AddeNode->getOperand(1);
    Hi = AddeNode->getOperand(0);
    if (SRA.getOpcode() != ISD::SRA)
      return SDValue();
  }
  if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
    if (Const->getZExtValue() != 31)
      return SDValue();
  } else
    return SDValue();

  if (SRA.getOperand(0) != Mul)
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(AddcNode);
  unsigned Opcode = 0;
  SDValue Op0;
  SDValue Op1;

  if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
    Opcode = ARMISD::SMLALBB;
    Op0 = Mul.getOperand(0);
    Op1 = Mul.getOperand(1);
  } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
    Opcode = ARMISD::SMLALBT;
    Op0 = Mul.getOperand(0);
    Op1 = Mul.getOperand(1).getOperand(0);
  } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
    Opcode = ARMISD::SMLALTB;
    Op0 = Mul.getOperand(0).getOperand(0);
    Op1 = Mul.getOperand(1);
  } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
    Opcode = ARMISD::SMLALTT;
    Op0 = Mul->getOperand(0).getOperand(0);
    Op1 = Mul->getOperand(1).getOperand(0);
  }

  if (!Op0 || !Op1)
    return SDValue();

  SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
                              Op0, Op1, Lo, Hi);
  // Replace the ADDs' nodes uses by the MLA node's values.
  SDValue HiMLALResult(SMLAL.getNode(), 1);
  SDValue LoMLALResult(SMLAL.getNode(), 0);

  DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
  DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);

  // Return original node to notify the driver to stop replacing.
  SDValue resNode(AddcNode, 0);
  return resNode;
}

static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
                                     TargetLowering::DAGCombinerInfo &DCI,
                                     const ARMSubtarget *Subtarget) {
  // Look for multiply add opportunities.
  // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
  // each add nodes consumes a value from ISD::UMUL_LOHI and there is
  // a glue link from the first add to the second add.
  // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
  // a S/UMLAL instruction.
  //                  UMUL_LOHI
  //                 / :lo    \ :hi
  //                V          \          [no multiline comment]
  //    loAdd ->  ADDC         |
  //                 \ :carry /
  //                  V      V
  //                    ADDE   <- hiAdd
  //
  // In the special case where only the higher part of a signed result is used
  // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
  // a constant with the exact value of 0x80000000, we recognize we are dealing
  // with a "rounded multiply and add" (or subtract) and transform it into
  // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.

  assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
          AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
         "Expect an ADDE or SUBE");

  assert(AddeSubeNode->getNumOperands() == 3 &&
         AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
         "ADDE node has the wrong inputs");

  // Check that we are chained to the right ADDC or SUBC node.
  SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
  if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
       AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
      (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
       AddcSubcNode->getOpcode() != ARMISD::SUBC))
    return SDValue();

  SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
  SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);

  // Check if the two operands are from the same mul_lohi node.
  if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
    return SDValue();

  assert(AddcSubcNode->getNumValues() == 2 &&
         AddcSubcNode->getValueType(0) == MVT::i32 &&
         "Expect ADDC with two result values. First: i32");

  // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
  // maybe a SMLAL which multiplies two 16-bit values.
  if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
      AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
      AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
      AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
      AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
    return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);

  // Check for the triangle shape.
  SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
  SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);

  // Make sure that the ADDE/SUBE operands are not coming from the same node.
  if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
    return SDValue();

  // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
  bool IsLeftOperandMUL = false;
  SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
  if (MULOp == SDValue())
    MULOp = findMUL_LOHI(AddeSubeOp1);
  else
    IsLeftOperandMUL = true;
  if (MULOp == SDValue())
    return SDValue();

  // Figure out the right opcode.
  unsigned Opc = MULOp->getOpcode();
  unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;

  // Figure out the high and low input values to the MLAL node.
  SDValue *HiAddSub = nullptr;
  SDValue *LoMul = nullptr;
  SDValue *LowAddSub = nullptr;

  // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
  if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
    return SDValue();

  if (IsLeftOperandMUL)
    HiAddSub = &AddeSubeOp1;
  else
    HiAddSub = &AddeSubeOp0;

  // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
  // whose low result is fed to the ADDC/SUBC we are checking.

  if (AddcSubcOp0 == MULOp.getValue(0)) {
    LoMul = &AddcSubcOp0;
    LowAddSub = &AddcSubcOp1;
  }
  if (AddcSubcOp1 == MULOp.getValue(0)) {
    LoMul = &AddcSubcOp1;
    LowAddSub = &AddcSubcOp0;
  }

  if (!LoMul)
    return SDValue();

  // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
  // the replacement below will create a cycle.
  if (AddcSubcNode == HiAddSub->getNode() ||
      AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
    return SDValue();

  // Create the merged node.
  SelectionDAG &DAG = DCI.DAG;

  // Start building operand list.
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(LoMul->getOperand(0));
  Ops.push_back(LoMul->getOperand(1));

  // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
  // the case, we must be doing signed multiplication and only use the higher
  // part of the result of the MLAL, furthermore the LowAddSub must be a constant
  // addition or subtraction with the value of 0x800000.
  if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
      FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
      LowAddSub->getNode()->getOpcode() == ISD::Constant &&
      static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
          0x80000000) {
    Ops.push_back(*HiAddSub);
    if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
      FinalOpc = ARMISD::SMMLSR;
    } else {
      FinalOpc = ARMISD::SMMLAR;
    }
    SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
    DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);

    return SDValue(AddeSubeNode, 0);
  } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
    // SMMLS is generated during instruction selection and the rest of this
    // function can not handle the case where AddcSubcNode is a SUBC.
    return SDValue();

  // Finish building the operand list for {U/S}MLAL
  Ops.push_back(*LowAddSub);
  Ops.push_back(*HiAddSub);

  SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
                                 DAG.getVTList(MVT::i32, MVT::i32), Ops);

  // Replace the ADDs' nodes uses by the MLA node's values.
  SDValue HiMLALResult(MLALNode.getNode(), 1);
  DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);

  SDValue LoMLALResult(MLALNode.getNode(), 0);
  DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);

  // Return original node to notify the driver to stop replacing.
  return SDValue(AddeSubeNode, 0);
}

static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
                                      TargetLowering::DAGCombinerInfo &DCI,
                                      const ARMSubtarget *Subtarget) {
  // UMAAL is similar to UMLAL except that it adds two unsigned values.
  // While trying to combine for the other MLAL nodes, first search for the
  // chance to use UMAAL. Check if Addc uses a node which has already
  // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
  // as the addend, and it's handled in PerformUMLALCombine.

  if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
    return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);

  // Check that we have a glued ADDC node.
  SDNode* AddcNode = AddeNode->getOperand(2).getNode();
  if (AddcNode->getOpcode() != ARMISD::ADDC)
    return SDValue();

  // Find the converted UMAAL or quit if it doesn't exist.
  SDNode *UmlalNode = nullptr;
  SDValue AddHi;
  if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
    UmlalNode = AddcNode->getOperand(0).getNode();
    AddHi = AddcNode->getOperand(1);
  } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
    UmlalNode = AddcNode->getOperand(1).getNode();
    AddHi = AddcNode->getOperand(0);
  } else {
    return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
  }

  // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
  // the ADDC as well as Zero.
  if (!isNullConstant(UmlalNode->getOperand(3)))
    return SDValue();

  if ((isNullConstant(AddeNode->getOperand(0)) &&
       AddeNode->getOperand(1).getNode() == UmlalNode) ||
      (AddeNode->getOperand(0).getNode() == UmlalNode &&
       isNullConstant(AddeNode->getOperand(1)))) {
    SelectionDAG &DAG = DCI.DAG;
    SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
                      UmlalNode->getOperand(2), AddHi };
    SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
                                 DAG.getVTList(MVT::i32, MVT::i32), Ops);

    // Replace the ADDs' nodes uses by the UMAAL node's values.
    DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
    DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));

    // Return original node to notify the driver to stop replacing.
    return SDValue(AddeNode, 0);
  }
  return SDValue();
}

static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
                                   const ARMSubtarget *Subtarget) {
  if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
    return SDValue();

  // Check that we have a pair of ADDC and ADDE as operands.
  // Both addends of the ADDE must be zero.
  SDNode* AddcNode = N->getOperand(2).getNode();
  SDNode* AddeNode = N->getOperand(3).getNode();
  if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
      (AddeNode->getOpcode() == ARMISD::ADDE) &&
      isNullConstant(AddeNode->getOperand(0)) &&
      isNullConstant(AddeNode->getOperand(1)) &&
      (AddeNode->getOperand(2).getNode() == AddcNode))
    return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
                       DAG.getVTList(MVT::i32, MVT::i32),
                       {N->getOperand(0), N->getOperand(1),
                        AddcNode->getOperand(0), AddcNode->getOperand(1)});
  else
    return SDValue();
}

static SDValue PerformAddcSubcCombine(SDNode *N,
                                      TargetLowering::DAGCombinerInfo &DCI,
                                      const ARMSubtarget *Subtarget) {
  SelectionDAG &DAG(DCI.DAG);

  if (N->getOpcode() == ARMISD::SUBC) {
    // (SUBC (ADDE 0, 0, C), 1) -> C
    SDValue LHS = N->getOperand(0);
    SDValue RHS = N->getOperand(1);
    if (LHS->getOpcode() == ARMISD::ADDE &&
        isNullConstant(LHS->getOperand(0)) &&
        isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
      return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
    }
  }

  if (Subtarget->isThumb1Only()) {
    SDValue RHS = N->getOperand(1);
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
      int32_t imm = C->getSExtValue();
      if (imm < 0 && imm > std::numeric_limits<int>::min()) {
        SDLoc DL(N);
        RHS = DAG.getConstant(-imm, DL, MVT::i32);
        unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
                                                           : ARMISD::ADDC;
        return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
      }
    }
  }

  return SDValue();
}

static SDValue PerformAddeSubeCombine(SDNode *N,
                                      TargetLowering::DAGCombinerInfo &DCI,
                                      const ARMSubtarget *Subtarget) {
  if (Subtarget->isThumb1Only()) {
    SelectionDAG &DAG = DCI.DAG;
    SDValue RHS = N->getOperand(1);
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
      int64_t imm = C->getSExtValue();
      if (imm < 0) {
        SDLoc DL(N);

        // The with-carry-in form matches bitwise not instead of the negation.
        // Effectively, the inverse interpretation of the carry flag already
        // accounts for part of the negation.
        RHS = DAG.getConstant(~imm, DL, MVT::i32);

        unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
                                                           : ARMISD::ADDE;
        return DAG.getNode(Opcode, DL, N->getVTList(),
                           N->getOperand(0), RHS, N->getOperand(2));
      }
    }
  } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
    return AddCombineTo64bitMLAL(N, DCI, Subtarget);
  }
  return SDValue();
}

static SDValue PerformABSCombine(SDNode *N,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const ARMSubtarget *Subtarget) {
  SDValue res;
  SelectionDAG &DAG = DCI.DAG;
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();

  if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
    return SDValue();

  if (!TLI.expandABS(N, res, DAG))
      return SDValue();

  return res;
}

/// PerformADDECombine - Target-specific dag combine transform from
/// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
/// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
static SDValue PerformADDECombine(SDNode *N,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const ARMSubtarget *Subtarget) {
  // Only ARM and Thumb2 support UMLAL/SMLAL.
  if (Subtarget->isThumb1Only())
    return PerformAddeSubeCombine(N, DCI, Subtarget);

  // Only perform the checks after legalize when the pattern is available.
  if (DCI.isBeforeLegalize()) return SDValue();

  return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
}

/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
/// operands N0 and N1.  This is a helper for PerformADDCombine that is
/// called with the default operands, and if that fails, with commuted
/// operands.
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
                                          TargetLowering::DAGCombinerInfo &DCI,
                                          const ARMSubtarget *Subtarget){
  // Attempt to create vpadd for this add.
  if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
    return Result;

  // Attempt to create vpaddl for this add.
  if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
    return Result;
  if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
                                                      Subtarget))
    return Result;

  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
  if (N0.getNode()->hasOneUse())
    if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
      return Result;
  return SDValue();
}

bool
ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
                                                 CombineLevel Level) const {
  if (Level == BeforeLegalizeTypes)
    return true;

  if (N->getOpcode() != ISD::SHL)
    return true;

  if (Subtarget->isThumb1Only()) {
    // Avoid making expensive immediates by commuting shifts. (This logic
    // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
    // for free.)
    if (N->getOpcode() != ISD::SHL)
      return true;
    SDValue N1 = N->getOperand(0);
    if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
        N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
      return true;
    if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
      if (Const->getAPIntValue().ult(256))
        return false;
      if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
          Const->getAPIntValue().sgt(-256))
        return false;
    }
    return true;
  }

  // Turn off commute-with-shift transform after legalization, so it doesn't
  // conflict with PerformSHLSimplify.  (We could try to detect when
  // PerformSHLSimplify would trigger more precisely, but it isn't
  // really necessary.)
  return false;
}

bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
    const SDNode *N, CombineLevel Level) const {
  if (!Subtarget->isThumb1Only())
    return true;

  if (Level == BeforeLegalizeTypes)
    return true;

  return false;
}

bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
  if (!Subtarget->hasNEON()) {
    if (Subtarget->isThumb1Only())
      return VT.getScalarSizeInBits() <= 32;
    return true;
  }
  return VT.isScalarInteger();
}

static SDValue PerformSHLSimplify(SDNode *N,
                                TargetLowering::DAGCombinerInfo &DCI,
                                const ARMSubtarget *ST) {
  // Allow the generic combiner to identify potential bswaps.
  if (DCI.isBeforeLegalize())
    return SDValue();

  // DAG combiner will fold:
  // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
  // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
  // Other code patterns that can be also be modified have the following form:
  // b + ((a << 1) | 510)
  // b + ((a << 1) & 510)
  // b + ((a << 1) ^ 510)
  // b + ((a << 1) + 510)

  // Many instructions can  perform the shift for free, but it requires both
  // the operands to be registers. If c1 << c2 is too large, a mov immediate
  // instruction will needed. So, unfold back to the original pattern if:
  // - if c1 and c2 are small enough that they don't require mov imms.
  // - the user(s) of the node can perform an shl

  // No shifted operands for 16-bit instructions.
  if (ST->isThumb() && ST->isThumb1Only())
    return SDValue();

  // Check that all the users could perform the shl themselves.
  for (auto U : N->uses()) {
    switch(U->getOpcode()) {
    default:
      return SDValue();
    case ISD::SUB:
    case ISD::ADD:
    case ISD::AND:
    case ISD::OR:
    case ISD::XOR:
    case ISD::SETCC:
    case ARMISD::CMP:
      // Check that the user isn't already using a constant because there
      // aren't any instructions that support an immediate operand and a
      // shifted operand.
      if (isa<ConstantSDNode>(U->getOperand(0)) ||
          isa<ConstantSDNode>(U->getOperand(1)))
        return SDValue();

      // Check that it's not already using a shift.
      if (U->getOperand(0).getOpcode() == ISD::SHL ||
          U->getOperand(1).getOpcode() == ISD::SHL)
        return SDValue();
      break;
    }
  }

  if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
      N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
    return SDValue();

  if (N->getOperand(0).getOpcode() != ISD::SHL)
    return SDValue();

  SDValue SHL = N->getOperand(0);

  auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
  auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
  if (!C1ShlC2 || !C2)
    return SDValue();

  APInt C2Int = C2->getAPIntValue();
  APInt C1Int = C1ShlC2->getAPIntValue();

  // Check that performing a lshr will not lose any information.
  APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
                                     C2Int.getBitWidth() - C2->getZExtValue());
  if ((C1Int & Mask) != C1Int)
    return SDValue();

  // Shift the first constant.
  C1Int.lshrInPlace(C2Int);

  // The immediates are encoded as an 8-bit value that can be rotated.
  auto LargeImm = [](const APInt &Imm) {
    unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
    return Imm.getBitWidth() - Zeros > 8;
  };

  if (LargeImm(C1Int) || LargeImm(C2Int))
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);
  SDValue X = SHL.getOperand(0);
  SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
                              DAG.getConstant(C1Int, dl, MVT::i32));
  // Shift left to compensate for the lshr of C1Int.
  SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));

  LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
             SHL.dump(); N->dump());
  LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
  return Res;
}


/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
///
static SDValue PerformADDCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const ARMSubtarget *Subtarget) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);

  // Only works one way, because it needs an immediate operand.
  if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
    return Result;

  // First try with the default operand order.
  if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
    return Result;

  // If that didn't work, try again with the operands commuted.
  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
}

/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
///
static SDValue PerformSUBCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);

  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
  if (N1.getNode()->hasOneUse())
    if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
      return Result;

  return SDValue();
}

/// PerformVMULCombine
/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
/// special multiplier accumulator forwarding.
///   vmul d3, d0, d2
///   vmla d3, d1, d2
/// is faster than
///   vadd d3, d0, d1
///   vmul d3, d3, d2
//  However, for (A + B) * (A + B),
//    vadd d2, d0, d1
//    vmul d3, d0, d2
//    vmla d3, d1, d2
//  is slower than
//    vadd d2, d0, d1
//    vmul d3, d2, d2
static SDValue PerformVMULCombine(SDNode *N,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const ARMSubtarget *Subtarget) {
  if (!Subtarget->hasVMLxForwarding())
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  unsigned Opcode = N0.getOpcode();
  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
    Opcode = N1.getOpcode();
    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
        Opcode != ISD::FADD && Opcode != ISD::FSUB)
      return SDValue();
    std::swap(N0, N1);
  }

  if (N0 == N1)
    return SDValue();

  EVT VT = N->getValueType(0);
  SDLoc DL(N);
  SDValue N00 = N0->getOperand(0);
  SDValue N01 = N0->getOperand(1);
  return DAG.getNode(Opcode, DL, VT,
                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
}

static SDValue PerformMULCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const ARMSubtarget *Subtarget) {
  SelectionDAG &DAG = DCI.DAG;

  if (Subtarget->isThumb1Only())
    return SDValue();

  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
    return SDValue();

  EVT VT = N->getValueType(0);
  if (VT.is64BitVector() || VT.is128BitVector())
    return PerformVMULCombine(N, DCI, Subtarget);
  if (VT != MVT::i32)
    return SDValue();

  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
  if (!C)
    return SDValue();

  int64_t MulAmt = C->getSExtValue();
  unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);

  ShiftAmt = ShiftAmt & (32 - 1);
  SDValue V = N->getOperand(0);
  SDLoc DL(N);

  SDValue Res;
  MulAmt >>= ShiftAmt;

  if (MulAmt >= 0) {
    if (isPowerOf2_32(MulAmt - 1)) {
      // (mul x, 2^N + 1) => (add (shl x, N), x)
      Res = DAG.getNode(ISD::ADD, DL, VT,
                        V,
                        DAG.getNode(ISD::SHL, DL, VT,
                                    V,
                                    DAG.getConstant(Log2_32(MulAmt - 1), DL,
                                                    MVT::i32)));
    } else if (isPowerOf2_32(MulAmt + 1)) {
      // (mul x, 2^N - 1) => (sub (shl x, N), x)
      Res = DAG.getNode(ISD::SUB, DL, VT,
                        DAG.getNode(ISD::SHL, DL, VT,
                                    V,
                                    DAG.getConstant(Log2_32(MulAmt + 1), DL,
                                                    MVT::i32)),
                        V);
    } else
      return SDValue();
  } else {
    uint64_t MulAmtAbs = -MulAmt;
    if (isPowerOf2_32(MulAmtAbs + 1)) {
      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
      Res = DAG.getNode(ISD::SUB, DL, VT,
                        V,
                        DAG.getNode(ISD::SHL, DL, VT,
                                    V,
                                    DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
                                                    MVT::i32)));
    } else if (isPowerOf2_32(MulAmtAbs - 1)) {
      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
      Res = DAG.getNode(ISD::ADD, DL, VT,
                        V,
                        DAG.getNode(ISD::SHL, DL, VT,
                                    V,
                                    DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
                                                    MVT::i32)));
      Res = DAG.getNode(ISD::SUB, DL, VT,
                        DAG.getConstant(0, DL, MVT::i32), Res);
    } else
      return SDValue();
  }

  if (ShiftAmt != 0)
    Res = DAG.getNode(ISD::SHL, DL, VT,
                      Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));

  // Do not add new nodes to DAG combiner worklist.
  DCI.CombineTo(N, Res, false);
  return SDValue();
}

static SDValue CombineANDShift(SDNode *N,
                               TargetLowering::DAGCombinerInfo &DCI,
                               const ARMSubtarget *Subtarget) {
  // Allow DAGCombine to pattern-match before we touch the canonical form.
  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
    return SDValue();

  if (N->getValueType(0) != MVT::i32)
    return SDValue();

  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
  if (!N1C)
    return SDValue();

  uint32_t C1 = (uint32_t)N1C->getZExtValue();
  // Don't transform uxtb/uxth.
  if (C1 == 255 || C1 == 65535)
    return SDValue();

  SDNode *N0 = N->getOperand(0).getNode();
  if (!N0->hasOneUse())
    return SDValue();

  if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
    return SDValue();

  bool LeftShift = N0->getOpcode() == ISD::SHL;

  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
  if (!N01C)
    return SDValue();

  uint32_t C2 = (uint32_t)N01C->getZExtValue();
  if (!C2 || C2 >= 32)
    return SDValue();

  // Clear irrelevant bits in the mask.
  if (LeftShift)
    C1 &= (-1U << C2);
  else
    C1 &= (-1U >> C2);

  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);

  // We have a pattern of the form "(and (shl x, c2) c1)" or
  // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
  // transform to a pair of shifts, to save materializing c1.

  // First pattern: right shift, then mask off leading bits.
  // FIXME: Use demanded bits?
  if (!LeftShift && isMask_32(C1)) {
    uint32_t C3 = countLeadingZeros(C1);
    if (C2 < C3) {
      SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
                                DAG.getConstant(C3 - C2, DL, MVT::i32));
      return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
                         DAG.getConstant(C3, DL, MVT::i32));
    }
  }

  // First pattern, reversed: left shift, then mask off trailing bits.
  if (LeftShift && isMask_32(~C1)) {
    uint32_t C3 = countTrailingZeros(C1);
    if (C2 < C3) {
      SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
                                DAG.getConstant(C3 - C2, DL, MVT::i32));
      return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
                         DAG.getConstant(C3, DL, MVT::i32));
    }
  }

  // Second pattern: left shift, then mask off leading bits.
  // FIXME: Use demanded bits?
  if (LeftShift && isShiftedMask_32(C1)) {
    uint32_t Trailing = countTrailingZeros(C1);
    uint32_t C3 = countLeadingZeros(C1);
    if (Trailing == C2 && C2 + C3 < 32) {
      SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
                                DAG.getConstant(C2 + C3, DL, MVT::i32));
      return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
                        DAG.getConstant(C3, DL, MVT::i32));
    }
  }

  // Second pattern, reversed: right shift, then mask off trailing bits.
  // FIXME: Handle other patterns of known/demanded bits.
  if (!LeftShift && isShiftedMask_32(C1)) {
    uint32_t Leading = countLeadingZeros(C1);
    uint32_t C3 = countTrailingZeros(C1);
    if (Leading == C2 && C2 + C3 < 32) {
      SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
                                DAG.getConstant(C2 + C3, DL, MVT::i32));
      return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
                         DAG.getConstant(C3, DL, MVT::i32));
    }
  }

  // FIXME: Transform "(and (shl x, c2) c1)" ->
  // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
  // c1.
  return SDValue();
}

static SDValue PerformANDCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const ARMSubtarget *Subtarget) {
  // Attempt to use immediate-form VBIC
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
  SDLoc dl(N);
  EVT VT = N->getValueType(0);
  SelectionDAG &DAG = DCI.DAG;

  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
    return SDValue();

  APInt SplatBits, SplatUndef;
  unsigned SplatBitSize;
  bool HasAnyUndefs;
  if (BVN && Subtarget->hasNEON() &&
      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
    if (SplatBitSize <= 64) {
      EVT VbicVT;
      SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
                                      SplatUndef.getZExtValue(), SplatBitSize,
                                      DAG, dl, VbicVT, VT.is128BitVector(),
                                      OtherModImm);
      if (Val.getNode()) {
        SDValue Input =
          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
      }
    }
  }

  if (!Subtarget->isThumb1Only()) {
    // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
    if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
      return Result;

    if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
      return Result;
  }

  if (Subtarget->isThumb1Only())
    if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
      return Result;

  return SDValue();
}

// Try combining OR nodes to SMULWB, SMULWT.
static SDValue PerformORCombineToSMULWBT(SDNode *OR,
                                         TargetLowering::DAGCombinerInfo &DCI,
                                         const ARMSubtarget *Subtarget) {
  if (!Subtarget->hasV6Ops() ||
      (Subtarget->isThumb() &&
       (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
    return SDValue();

  SDValue SRL = OR->getOperand(0);
  SDValue SHL = OR->getOperand(1);

  if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
    SRL = OR->getOperand(1);
    SHL = OR->getOperand(0);
  }
  if (!isSRL16(SRL) || !isSHL16(SHL))
    return SDValue();

  // The first operands to the shifts need to be the two results from the
  // same smul_lohi node.
  if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
       SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
    return SDValue();

  SDNode *SMULLOHI = SRL.getOperand(0).getNode();
  if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
      SHL.getOperand(0) != SDValue(SMULLOHI, 1))
    return SDValue();

  // Now we have:
  // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
  // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
  // For SMUWB the 16-bit value will signed extended somehow.
  // For SMULWT only the SRA is required.
  // Check both sides of SMUL_LOHI
  SDValue OpS16 = SMULLOHI->getOperand(0);
  SDValue OpS32 = SMULLOHI->getOperand(1);

  SelectionDAG &DAG = DCI.DAG;
  if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
    OpS16 = OpS32;
    OpS32 = SMULLOHI->getOperand(0);
  }

  SDLoc dl(OR);
  unsigned Opcode = 0;
  if (isS16(OpS16, DAG))
    Opcode = ARMISD::SMULWB;
  else if (isSRA16(OpS16)) {
    Opcode = ARMISD::SMULWT;
    OpS16 = OpS16->getOperand(0);
  }
  else
    return SDValue();

  SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
  DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
  return SDValue(OR, 0);
}

static SDValue PerformORCombineToBFI(SDNode *N,
                                     TargetLowering::DAGCombinerInfo &DCI,
                                     const ARMSubtarget *Subtarget) {
  // BFI is only available on V6T2+
  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
    return SDValue();

  EVT VT = N->getValueType(0);
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);
  // 1) or (and A, mask), val => ARMbfi A, val, mask
  //      iff (val & mask) == val
  //
  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
  //          && mask == ~mask2
  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
  //          && ~mask == mask2
  //  (i.e., copy a bitfield value into another bitfield of the same width)

  if (VT != MVT::i32)
    return SDValue();

  SDValue N00 = N0.getOperand(0);

  // The value and the mask need to be constants so we can verify this is
  // actually a bitfield set. If the mask is 0xffff, we can do better
  // via a movt instruction, so don't use BFI in that case.
  SDValue MaskOp = N0.getOperand(1);
  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
  if (!MaskC)
    return SDValue();
  unsigned Mask = MaskC->getZExtValue();
  if (Mask == 0xffff)
    return SDValue();
  SDValue Res;
  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  if (N1C) {
    unsigned Val = N1C->getZExtValue();
    if ((Val & ~Mask) != Val)
      return SDValue();

    if (ARM::isBitFieldInvertedMask(Mask)) {
      Val >>= countTrailingZeros(~Mask);

      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
                        DAG.getConstant(Val, DL, MVT::i32),
                        DAG.getConstant(Mask, DL, MVT::i32));

      DCI.CombineTo(N, Res, false);
      // Return value from the original node to inform the combiner than N is
      // now dead.
      return SDValue(N, 0);
    }
  } else if (N1.getOpcode() == ISD::AND) {
    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
    if (!N11C)
      return SDValue();
    unsigned Mask2 = N11C->getZExtValue();

    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
    // as is to match.
    if (ARM::isBitFieldInvertedMask(Mask) &&
        (Mask == ~Mask2)) {
      // The pack halfword instruction works better for masks that fit it,
      // so use that when it's available.
      if (Subtarget->hasDSP() &&
          (Mask == 0xffff || Mask == 0xffff0000))
        return SDValue();
      // 2a
      unsigned amt = countTrailingZeros(Mask2);
      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
                        DAG.getConstant(amt, DL, MVT::i32));
      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
                        DAG.getConstant(Mask, DL, MVT::i32));
      DCI.CombineTo(N, Res, false);
      // Return value from the original node to inform the combiner than N is
      // now dead.
      return SDValue(N, 0);
    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
               (~Mask == Mask2)) {
      // The pack halfword instruction works better for masks that fit it,
      // so use that when it's available.
      if (Subtarget->hasDSP() &&
          (Mask2 == 0xffff || Mask2 == 0xffff0000))
        return SDValue();
      // 2b
      unsigned lsb = countTrailingZeros(Mask);
      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
                        DAG.getConstant(lsb, DL, MVT::i32));
      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
                        DAG.getConstant(Mask2, DL, MVT::i32));
      DCI.CombineTo(N, Res, false);
      // Return value from the original node to inform the combiner than N is
      // now dead.
      return SDValue(N, 0);
    }
  }

  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
      ARM::isBitFieldInvertedMask(~Mask)) {
    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
    // where lsb(mask) == #shamt and masked bits of B are known zero.
    SDValue ShAmt = N00.getOperand(1);
    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
    unsigned LSB = countTrailingZeros(Mask);
    if (ShAmtC != LSB)
      return SDValue();

    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
                      DAG.getConstant(~Mask, DL, MVT::i32));

    DCI.CombineTo(N, Res, false);
    // Return value from the original node to inform the combiner than N is
    // now dead.
    return SDValue(N, 0);
  }

  return SDValue();
}

static bool isValidMVECond(unsigned CC, bool IsFloat) {
  switch (CC) {
  case ARMCC::EQ:
  case ARMCC::NE:
  case ARMCC::LE:
  case ARMCC::GT:
  case ARMCC::GE:
  case ARMCC::LT:
    return true;
  case ARMCC::HS:
  case ARMCC::HI:
    return !IsFloat;
  default:
    return false;
  };
}

static SDValue PerformORCombine_i1(SDNode *N,
                                   TargetLowering::DAGCombinerInfo &DCI,
                                   const ARMSubtarget *Subtarget) {
  // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
  // together with predicates
  EVT VT = N->getValueType(0);
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);

  ARMCC::CondCodes CondCode0 = ARMCC::AL;
  ARMCC::CondCodes CondCode1 = ARMCC::AL;
  if (N0->getOpcode() == ARMISD::VCMP)
    CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(2))
                    ->getZExtValue();
  else if (N0->getOpcode() == ARMISD::VCMPZ)
    CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(1))
                    ->getZExtValue();
  if (N1->getOpcode() == ARMISD::VCMP)
    CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(2))
                    ->getZExtValue();
  else if (N1->getOpcode() == ARMISD::VCMPZ)
    CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(1))
                    ->getZExtValue();

  if (CondCode0 == ARMCC::AL || CondCode1 == ARMCC::AL)
    return SDValue();

  unsigned Opposite0 = ARMCC::getOppositeCondition(CondCode0);
  unsigned Opposite1 = ARMCC::getOppositeCondition(CondCode1);

  if (!isValidMVECond(Opposite0,
                      N0->getOperand(0)->getValueType(0).isFloatingPoint()) ||
      !isValidMVECond(Opposite1,
                      N1->getOperand(0)->getValueType(0).isFloatingPoint()))
    return SDValue();

  SmallVector<SDValue, 4> Ops0;
  Ops0.push_back(N0->getOperand(0));
  if (N0->getOpcode() == ARMISD::VCMP)
    Ops0.push_back(N0->getOperand(1));
  Ops0.push_back(DCI.DAG.getConstant(Opposite0, SDLoc(N0), MVT::i32));
  SmallVector<SDValue, 4> Ops1;
  Ops1.push_back(N1->getOperand(0));
  if (N1->getOpcode() == ARMISD::VCMP)
    Ops1.push_back(N1->getOperand(1));
  Ops1.push_back(DCI.DAG.getConstant(Opposite1, SDLoc(N1), MVT::i32));

  SDValue NewN0 = DCI.DAG.getNode(N0->getOpcode(), SDLoc(N0), VT, Ops0);
  SDValue NewN1 = DCI.DAG.getNode(N1->getOpcode(), SDLoc(N1), VT, Ops1);
  SDValue And = DCI.DAG.getNode(ISD::AND, SDLoc(N), VT, NewN0, NewN1);
  return DCI.DAG.getNode(ISD::XOR, SDLoc(N), VT, And,
                         DCI.DAG.getAllOnesConstant(SDLoc(N), VT));
}

/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
static SDValue PerformORCombine(SDNode *N,
                                TargetLowering::DAGCombinerInfo &DCI,
                                const ARMSubtarget *Subtarget) {
  // Attempt to use immediate-form VORR
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
  SDLoc dl(N);
  EVT VT = N->getValueType(0);
  SelectionDAG &DAG = DCI.DAG;

  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
    return SDValue();

  APInt SplatBits, SplatUndef;
  unsigned SplatBitSize;
  bool HasAnyUndefs;
  if (BVN && Subtarget->hasNEON() &&
      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
    if (SplatBitSize <= 64) {
      EVT VorrVT;
      SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
                                      SplatUndef.getZExtValue(), SplatBitSize,
                                      DAG, dl, VorrVT, VT.is128BitVector(),
                                      OtherModImm);
      if (Val.getNode()) {
        SDValue Input =
          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
      }
    }
  }

  if (!Subtarget->isThumb1Only()) {
    // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
    if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
      return Result;
    if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
      return Result;
  }

  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);

  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {

    // The code below optimizes (or (and X, Y), Z).
    // The AND operand needs to have a single user to make these optimizations
    // profitable.
    if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
      return SDValue();

    APInt SplatUndef;
    unsigned SplatBitSize;
    bool HasAnyUndefs;

    APInt SplatBits0, SplatBits1;
    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
    BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
    // Ensure that the second operand of both ands are constants
    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
                                      HasAnyUndefs) && !HasAnyUndefs) {
        if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
                                          HasAnyUndefs) && !HasAnyUndefs) {
            // Ensure that the bit width of the constants are the same and that
            // the splat arguments are logical inverses as per the pattern we
            // are trying to simplify.
            if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
                SplatBits0 == ~SplatBits1) {
                // Canonicalize the vector type to make instruction selection
                // simpler.
                EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
                SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
                                             N0->getOperand(1),
                                             N0->getOperand(0),
                                             N1->getOperand(0));
                return DAG.getNode(ISD::BITCAST, dl, VT, Result);
            }
        }
    }
  }

  if (Subtarget->hasMVEIntegerOps() &&
      (VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1))
    return PerformORCombine_i1(N, DCI, Subtarget);

  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
  // reasonable.
  if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
    if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
      return Res;
  }

  if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
    return Result;

  return SDValue();
}

static SDValue PerformXORCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const ARMSubtarget *Subtarget) {
  EVT VT = N->getValueType(0);
  SelectionDAG &DAG = DCI.DAG;

  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
    return SDValue();

  if (!Subtarget->isThumb1Only()) {
    // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
    if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
      return Result;

    if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
      return Result;
  }

  return SDValue();
}

// ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
// and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
// their position in "to" (Rd).
static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
  assert(N->getOpcode() == ARMISD::BFI);

  SDValue From = N->getOperand(1);
  ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
  FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());

  // If the Base came from a SHR #C, we can deduce that it is really testing bit
  // #C in the base of the SHR.
  if (From->getOpcode() == ISD::SRL &&
      isa<ConstantSDNode>(From->getOperand(1))) {
    APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
    assert(Shift.getLimitedValue() < 32 && "Shift too large!");
    FromMask <<= Shift.getLimitedValue(31);
    From = From->getOperand(0);
  }

  return From;
}

// If A and B contain one contiguous set of bits, does A | B == A . B?
//
// Neither A nor B must be zero.
static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
  unsigned LastActiveBitInA =  A.countTrailingZeros();
  unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
  return LastActiveBitInA - 1 == FirstActiveBitInB;
}

static SDValue FindBFIToCombineWith(SDNode *N) {
  // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
  // if one exists.
  APInt ToMask, FromMask;
  SDValue From = ParseBFI(N, ToMask, FromMask);
  SDValue To = N->getOperand(0);

  // Now check for a compatible BFI to merge with. We can pass through BFIs that
  // aren't compatible, but not if they set the same bit in their destination as
  // we do (or that of any BFI we're going to combine with).
  SDValue V = To;
  APInt CombinedToMask = ToMask;
  while (V.getOpcode() == ARMISD::BFI) {
    APInt NewToMask, NewFromMask;
    SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
    if (NewFrom != From) {
      // This BFI has a different base. Keep going.
      CombinedToMask |= NewToMask;
      V = V.getOperand(0);
      continue;
    }

    // Do the written bits conflict with any we've seen so far?
    if ((NewToMask & CombinedToMask).getBoolValue())
      // Conflicting bits - bail out because going further is unsafe.
      return SDValue();

    // Are the new bits contiguous when combined with the old bits?
    if (BitsProperlyConcatenate(ToMask, NewToMask) &&
        BitsProperlyConcatenate(FromMask, NewFromMask))
      return V;
    if (BitsProperlyConcatenate(NewToMask, ToMask) &&
        BitsProperlyConcatenate(NewFromMask, FromMask))
      return V;

    // We've seen a write to some bits, so track it.
    CombinedToMask |= NewToMask;
    // Keep going...
    V = V.getOperand(0);
  }

  return SDValue();
}

static SDValue PerformBFICombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {
  SDValue N1 = N->getOperand(1);
  if (N1.getOpcode() == ISD::AND) {
    // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
    // the bits being cleared by the AND are not demanded by the BFI.
    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
    if (!N11C)
      return SDValue();
    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
    unsigned LSB = countTrailingZeros(~InvMask);
    unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
    assert(Width <
               static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
           "undefined behavior");
    unsigned Mask = (1u << Width) - 1;
    unsigned Mask2 = N11C->getZExtValue();
    if ((Mask & (~Mask2)) == 0)
      return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
                             N->getOperand(0), N1.getOperand(0),
                             N->getOperand(2));
  } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
    // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
    // Keep track of any consecutive bits set that all come from the same base
    // value. We can combine these together into a single BFI.
    SDValue CombineBFI = FindBFIToCombineWith(N);
    if (CombineBFI == SDValue())
      return SDValue();

    // We've found a BFI.
    APInt ToMask1, FromMask1;
    SDValue From1 = ParseBFI(N, ToMask1, FromMask1);

    APInt ToMask2, FromMask2;
    SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
    assert(From1 == From2);
    (void)From2;

    // First, unlink CombineBFI.
    DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
    // Then create a new BFI, combining the two together.
    APInt NewFromMask = FromMask1 | FromMask2;
    APInt NewToMask = ToMask1 | ToMask2;

    EVT VT = N->getValueType(0);
    SDLoc dl(N);

    if (NewFromMask[0] == 0)
      From1 = DCI.DAG.getNode(
        ISD::SRL, dl, VT, From1,
        DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
    return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
                           DCI.DAG.getConstant(~NewToMask, dl, VT));
  }
  return SDValue();
}

/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
/// ARMISD::VMOVRRD.
static SDValue PerformVMOVRRDCombine(SDNode *N,
                                     TargetLowering::DAGCombinerInfo &DCI,
                                     const ARMSubtarget *Subtarget) {
  // vmovrrd(vmovdrr x, y) -> x,y
  SDValue InDouble = N->getOperand(0);
  if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));

  // vmovrrd(load f64) -> (load i32), (load i32)
  SDNode *InNode = InDouble.getNode();
  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
      InNode->getValueType(0) == MVT::f64 &&
      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
      !cast<LoadSDNode>(InNode)->isVolatile()) {
    // TODO: Should this be done for non-FrameIndex operands?
    LoadSDNode *LD = cast<LoadSDNode>(InNode);

    SelectionDAG &DAG = DCI.DAG;
    SDLoc DL(LD);
    SDValue BasePtr = LD->getBasePtr();
    SDValue NewLD1 =
        DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
                    LD->getAlignment(), LD->getMemOperand()->getFlags());

    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
                                    DAG.getConstant(4, DL, MVT::i32));

    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
                                 LD->getPointerInfo().getWithOffset(4),
                                 std::min(4U, LD->getAlignment()),
                                 LD->getMemOperand()->getFlags());

    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
    if (DCI.DAG.getDataLayout().isBigEndian())
      std::swap (NewLD1, NewLD2);
    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
    return Result;
  }

  return SDValue();
}

/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
  SDValue Op0 = N->getOperand(0);
  SDValue Op1 = N->getOperand(1);
  if (Op0.getOpcode() == ISD::BITCAST)
    Op0 = Op0.getOperand(0);
  if (Op1.getOpcode() == ISD::BITCAST)
    Op1 = Op1.getOperand(0);
  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
      Op0.getNode() == Op1.getNode() &&
      Op0.getResNo() == 0 && Op1.getResNo() == 1)
    return DAG.getNode(ISD::BITCAST, SDLoc(N),
                       N->getValueType(0), Op0.getOperand(0));
  return SDValue();
}

/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
/// i64 vector to have f64 elements, since the value can then be loaded
/// directly into a VFP register.
static bool hasNormalLoadOperand(SDNode *N) {
  unsigned NumElts = N->getValueType(0).getVectorNumElements();
  for (unsigned i = 0; i < NumElts; ++i) {
    SDNode *Elt = N->getOperand(i).getNode();
    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
      return true;
  }
  return false;
}

/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
/// ISD::BUILD_VECTOR.
static SDValue PerformBUILD_VECTORCombine(SDNode *N,
                                          TargetLowering::DAGCombinerInfo &DCI,
                                          const ARMSubtarget *Subtarget) {
  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
  // into a pair of GPRs, which is fine when the value is used as a scalar,
  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
  SelectionDAG &DAG = DCI.DAG;
  if (N->getNumOperands() == 2)
    if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
      return RV;

  // Load i64 elements as f64 values so that type legalization does not split
  // them up into i32 values.
  EVT VT = N->getValueType(0);
  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
    return SDValue();
  SDLoc dl(N);
  SmallVector<SDValue, 8> Ops;
  unsigned NumElts = VT.getVectorNumElements();
  for (unsigned i = 0; i < NumElts; ++i) {
    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
    Ops.push_back(V);
    // Make the DAGCombiner fold the bitcast.
    DCI.AddToWorklist(V.getNode());
  }
  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
  SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
}

/// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
static SDValue
PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
  // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
  // At that time, we may have inserted bitcasts from integer to float.
  // If these bitcasts have survived DAGCombine, change the lowering of this
  // BUILD_VECTOR in something more vector friendly, i.e., that does not
  // force to use floating point types.

  // Make sure we can change the type of the vector.
  // This is possible iff:
  // 1. The vector is only used in a bitcast to a integer type. I.e.,
  //    1.1. Vector is used only once.
  //    1.2. Use is a bit convert to an integer type.
  // 2. The size of its operands are 32-bits (64-bits are not legal).
  EVT VT = N->getValueType(0);
  EVT EltVT = VT.getVectorElementType();

  // Check 1.1. and 2.
  if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
    return SDValue();

  // By construction, the input type must be float.
  assert(EltVT == MVT::f32 && "Unexpected type!");

  // Check 1.2.
  SDNode *Use = *N->use_begin();
  if (Use->getOpcode() != ISD::BITCAST ||
      Use->getValueType(0).isFloatingPoint())
    return SDValue();

  // Check profitability.
  // Model is, if more than half of the relevant operands are bitcast from
  // i32, turn the build_vector into a sequence of insert_vector_elt.
  // Relevant operands are everything that is not statically
  // (i.e., at compile time) bitcasted.
  unsigned NumOfBitCastedElts = 0;
  unsigned NumElts = VT.getVectorNumElements();
  unsigned NumOfRelevantElts = NumElts;
  for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
    SDValue Elt = N->getOperand(Idx);
    if (Elt->getOpcode() == ISD::BITCAST) {
      // Assume only bit cast to i32 will go away.
      if (Elt->getOperand(0).getValueType() == MVT::i32)
        ++NumOfBitCastedElts;
    } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
      // Constants are statically casted, thus do not count them as
      // relevant operands.
      --NumOfRelevantElts;
  }

  // Check if more than half of the elements require a non-free bitcast.
  if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  // Create the new vector type.
  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
  // Check if the type is legal.
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  if (!TLI.isTypeLegal(VecVT))
    return SDValue();

  // Combine:
  // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
  // => BITCAST INSERT_VECTOR_ELT
  //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
  //                      (BITCAST EN), N.
  SDValue Vec = DAG.getUNDEF(VecVT);
  SDLoc dl(N);
  for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
    SDValue V = N->getOperand(Idx);
    if (V.isUndef())
      continue;
    if (V.getOpcode() == ISD::BITCAST &&
        V->getOperand(0).getValueType() == MVT::i32)
      // Fold obvious case.
      V = V.getOperand(0);
    else {
      V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
      // Make the DAGCombiner fold the bitcasts.
      DCI.AddToWorklist(V.getNode());
    }
    SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
    Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
  }
  Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
  // Make the DAGCombiner fold the bitcasts.
  DCI.AddToWorklist(Vec.getNode());
  return Vec;
}

static SDValue
PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
  EVT VT = N->getValueType(0);
  SDValue Op = N->getOperand(0);
  SDLoc dl(N);

  // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
  if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
    // If the valuetypes are the same, we can remove the cast entirely.
    if (Op->getOperand(0).getValueType() == VT)
      return Op->getOperand(0);
    return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl,
                           Op->getOperand(0).getValueType(), Op->getOperand(0));
  }

  return SDValue();
}

/// PerformInsertEltCombine - Target-specific dag combine xforms for
/// ISD::INSERT_VECTOR_ELT.
static SDValue PerformInsertEltCombine(SDNode *N,
                                       TargetLowering::DAGCombinerInfo &DCI) {
  // Bitcast an i64 load inserted into a vector to f64.
  // Otherwise, the i64 value will be legalized to a pair of i32 values.
  EVT VT = N->getValueType(0);
  SDNode *Elt = N->getOperand(1).getNode();
  if (VT.getVectorElementType() != MVT::i64 ||
      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);
  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
                                 VT.getVectorNumElements());
  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
  // Make the DAGCombiner fold the bitcasts.
  DCI.AddToWorklist(Vec.getNode());
  DCI.AddToWorklist(V.getNode());
  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
                               Vec, V, N->getOperand(2));
  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
}

/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
/// ISD::VECTOR_SHUFFLE.
static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
  // The LLVM shufflevector instruction does not require the shuffle mask
  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
  // operands do not match the mask length, they are extended by concatenating
  // them with undef vectors.  That is probably the right thing for other
  // targets, but for NEON it is better to concatenate two double-register
  // size vector operands into a single quad-register size vector.  Do that
  // transformation here:
  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
  //   shuffle(concat(v1, v2), undef)
  SDValue Op0 = N->getOperand(0);
  SDValue Op1 = N->getOperand(1);
  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
      Op0.getNumOperands() != 2 ||
      Op1.getNumOperands() != 2)
    return SDValue();
  SDValue Concat0Op1 = Op0.getOperand(1);
  SDValue Concat1Op1 = Op1.getOperand(1);
  if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
    return SDValue();
  // Skip the transformation if any of the types are illegal.
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  EVT VT = N->getValueType(0);
  if (!TLI.isTypeLegal(VT) ||
      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
      !TLI.isTypeLegal(Concat1Op1.getValueType()))
    return SDValue();

  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
                                  Op0.getOperand(0), Op1.getOperand(0));
  // Translate the shuffle mask.
  SmallVector<int, 16> NewMask;
  unsigned NumElts = VT.getVectorNumElements();
  unsigned HalfElts = NumElts/2;
  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
  for (unsigned n = 0; n < NumElts; ++n) {
    int MaskElt = SVN->getMaskElt(n);
    int NewElt = -1;
    if (MaskElt < (int)HalfElts)
      NewElt = MaskElt;
    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
      NewElt = HalfElts + MaskElt - NumElts;
    NewMask.push_back(NewElt);
  }
  return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
                              DAG.getUNDEF(VT), NewMask);
}

/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
/// NEON load/store intrinsics, and generic vector load/stores, to merge
/// base address updates.
/// For generic load/stores, the memory type is assumed to be a vector.
/// The caller is assumed to have checked legality.
static SDValue CombineBaseUpdate(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {
  SelectionDAG &DAG = DCI.DAG;
  const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
                            N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
  const bool isStore = N->getOpcode() == ISD::STORE;
  const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
  SDValue Addr = N->getOperand(AddrOpIdx);
  MemSDNode *MemN = cast<MemSDNode>(N);
  SDLoc dl(N);

  // Search for a use of the address operand that is an increment.
  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
    SDNode *User = *UI;
    if (User->getOpcode() != ISD::ADD ||
        UI.getUse().getResNo() != Addr.getResNo())
      continue;

    // Check that the add is independent of the load/store.  Otherwise, folding
    // it would create a cycle. We can avoid searching through Addr as it's a
    // predecessor to both.
    SmallPtrSet<const SDNode *, 32> Visited;
    SmallVector<const SDNode *, 16> Worklist;
    Visited.insert(Addr.getNode());
    Worklist.push_back(N);
    Worklist.push_back(User);
    if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
        SDNode::hasPredecessorHelper(User, Visited, Worklist))
      continue;

    // Find the new opcode for the updating load/store.
    bool isLoadOp = true;
    bool isLaneOp = false;
    unsigned NewOpc = 0;
    unsigned NumVecs = 0;
    if (isIntrinsic) {
      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
      switch (IntNo) {
      default: llvm_unreachable("unexpected intrinsic for Neon base update");
      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
        NumVecs = 1; break;
      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
        NumVecs = 2; break;
      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
        NumVecs = 3; break;
      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
        NumVecs = 4; break;
      case Intrinsic::arm_neon_vld2dup:
      case Intrinsic::arm_neon_vld3dup:
      case Intrinsic::arm_neon_vld4dup:
        // TODO: Support updating VLDxDUP nodes. For now, we just skip
        // combining base updates for such intrinsics.
        continue;
      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
        NumVecs = 2; isLaneOp = true; break;
      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
        NumVecs = 3; isLaneOp = true; break;
      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
        NumVecs = 4; isLaneOp = true; break;
      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
        NumVecs = 1; isLoadOp = false; break;
      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
        NumVecs = 2; isLoadOp = false; break;
      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
        NumVecs = 3; isLoadOp = false; break;
      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
        NumVecs = 4; isLoadOp = false; break;
      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
        NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
        NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
        NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
      }
    } else {
      isLaneOp = true;
      switch (N->getOpcode()) {
      default: llvm_unreachable("unexpected opcode for Neon base update");
      case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
      case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
        NumVecs = 1; isLaneOp = false; break;
      case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
        NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
      }
    }

    // Find the size of memory referenced by the load/store.
    EVT VecTy;
    if (isLoadOp) {
      VecTy = N->getValueType(0);
    } else if (isIntrinsic) {
      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
    } else {
      assert(isStore && "Node has to be a load, a store, or an intrinsic!");
      VecTy = N->getOperand(1).getValueType();
    }

    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
    if (isLaneOp)
      NumBytes /= VecTy.getVectorNumElements();

    // If the increment is a constant, it must match the memory ref size.
    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
    ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
    if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
      // separate instructions that make it harder to use a non-constant update.
      continue;
    }

    // OK, we found an ADD we can fold into the base update.
    // Now, create a _UPD node, taking care of not breaking alignment.

    EVT AlignedVecTy = VecTy;
    unsigned Alignment = MemN->getAlignment();

    // If this is a less-than-standard-aligned load/store, change the type to
    // match the standard alignment.
    // The alignment is overlooked when selecting _UPD variants; and it's
    // easier to introduce bitcasts here than fix that.
    // There are 3 ways to get to this base-update combine:
    // - intrinsics: they are assumed to be properly aligned (to the standard
    //   alignment of the memory type), so we don't need to do anything.
    // - ARMISD::VLDx nodes: they are only generated from the aforementioned
    //   intrinsics, so, likewise, there's nothing to do.
    // - generic load/store instructions: the alignment is specified as an
    //   explicit operand, rather than implicitly as the standard alignment
    //   of the memory type (like the intrisics).  We need to change the
    //   memory type to match the explicit alignment.  That way, we don't
    //   generate non-standard-aligned ARMISD::VLDx nodes.
    if (isa<LSBaseSDNode>(N)) {
      if (Alignment == 0)
        Alignment = 1;
      if (Alignment < VecTy.getScalarSizeInBits() / 8) {
        MVT EltTy = MVT::getIntegerVT(Alignment * 8);
        assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
        assert(!isLaneOp && "Unexpected generic load/store lane.");
        unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
        AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
      }
      // Don't set an explicit alignment on regular load/stores that we want
      // to transform to VLD/VST 1_UPD nodes.
      // This matches the behavior of regular load/stores, which only get an
      // explicit alignment if the MMO alignment is larger than the standard
      // alignment of the memory type.
      // Intrinsics, however, always get an explicit alignment, set to the
      // alignment of the MMO.
      Alignment = 1;
    }

    // Create the new updating load/store node.
    // First, create an SDVTList for the new updating node's results.
    EVT Tys[6];
    unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
    unsigned n;
    for (n = 0; n < NumResultVecs; ++n)
      Tys[n] = AlignedVecTy;
    Tys[n++] = MVT::i32;
    Tys[n] = MVT::Other;
    SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));

    // Then, gather the new node's operands.
    SmallVector<SDValue, 8> Ops;
    Ops.push_back(N->getOperand(0)); // incoming chain
    Ops.push_back(N->getOperand(AddrOpIdx));
    Ops.push_back(Inc);

    if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
      // Try to match the intrinsic's signature
      Ops.push_back(StN->getValue());
    } else {
      // Loads (and of course intrinsics) match the intrinsics' signature,
      // so just add all but the alignment operand.
      for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
        Ops.push_back(N->getOperand(i));
    }

    // For all node types, the alignment operand is always the last one.
    Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));

    // If this is a non-standard-aligned STORE, the penultimate operand is the
    // stored value.  Bitcast it to the aligned type.
    if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
      SDValue &StVal = Ops[Ops.size()-2];
      StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
    }

    EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
                                           MemN->getMemOperand());

    // Update the uses.
    SmallVector<SDValue, 5> NewResults;
    for (unsigned i = 0; i < NumResultVecs; ++i)
      NewResults.push_back(SDValue(UpdN.getNode(), i));

    // If this is an non-standard-aligned LOAD, the first result is the loaded
    // value.  Bitcast it to the expected result type.
    if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
      SDValue &LdVal = NewResults[0];
      LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
    }

    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
    DCI.CombineTo(N, NewResults);
    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));

    break;
  }
  return SDValue();
}

static SDValue PerformVLDCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {
  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
    return SDValue();

  return CombineBaseUpdate(N, DCI);
}

/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
/// return true.
static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);
  // vldN-dup instructions only support 64-bit vectors for N > 1.
  if (!VT.is64BitVector())
    return false;

  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
  SDNode *VLD = N->getOperand(0).getNode();
  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
    return false;
  unsigned NumVecs = 0;
  unsigned NewOpc = 0;
  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
  if (IntNo == Intrinsic::arm_neon_vld2lane) {
    NumVecs = 2;
    NewOpc = ARMISD::VLD2DUP;
  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
    NumVecs = 3;
    NewOpc = ARMISD::VLD3DUP;
  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
    NumVecs = 4;
    NewOpc = ARMISD::VLD4DUP;
  } else {
    return false;
  }

  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
  // numbers match the load.
  unsigned VLDLaneNo =
    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
       UI != UE; ++UI) {
    // Ignore uses of the chain result.
    if (UI.getUse().getResNo() == NumVecs)
      continue;
    SDNode *User = *UI;
    if (User->getOpcode() != ARMISD::VDUPLANE ||
        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
      return false;
  }

  // Create the vldN-dup node.
  EVT Tys[5];
  unsigned n;
  for (n = 0; n < NumVecs; ++n)
    Tys[n] = VT;
  Tys[n] = MVT::Other;
  SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
                                           Ops, VLDMemInt->getMemoryVT(),
                                           VLDMemInt->getMemOperand());

  // Update the uses.
  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
       UI != UE; ++UI) {
    unsigned ResNo = UI.getUse().getResNo();
    // Ignore uses of the chain result.
    if (ResNo == NumVecs)
      continue;
    SDNode *User = *UI;
    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
  }

  // Now the vldN-lane intrinsic is dead except for its chain result.
  // Update uses of the chain.
  std::vector<SDValue> VLDDupResults;
  for (unsigned n = 0; n < NumVecs; ++n)
    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
  DCI.CombineTo(VLD, VLDDupResults);

  return true;
}

/// PerformVDUPLANECombine - Target-specific dag combine xforms for
/// ARMISD::VDUPLANE.
static SDValue PerformVDUPLANECombine(SDNode *N,
                                      TargetLowering::DAGCombinerInfo &DCI) {
  SDValue Op = N->getOperand(0);

  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
  if (CombineVLDDUP(N, DCI))
    return SDValue(N, 0);

  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
  // redundant.  Ignore bit_converts for now; element sizes are checked below.
  while (Op.getOpcode() == ISD::BITCAST)
    Op = Op.getOperand(0);
  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
    return SDValue();

  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
  unsigned EltSize = Op.getScalarValueSizeInBits();
  // The canonical VMOV for a zero vector uses a 32-bit element size.
  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  unsigned EltBits;
  if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
    EltSize = 8;
  EVT VT = N->getValueType(0);
  if (EltSize > VT.getScalarSizeInBits())
    return SDValue();

  return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
}

/// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
static SDValue PerformVDUPCombine(SDNode *N,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const ARMSubtarget *Subtarget) {
  SelectionDAG &DAG = DCI.DAG;
  SDValue Op = N->getOperand(0);

  if (!Subtarget->hasNEON())
    return SDValue();

  // Match VDUP(LOAD) -> VLD1DUP.
  // We match this pattern here rather than waiting for isel because the
  // transform is only legal for unindexed loads.
  LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
  if (LD && Op.hasOneUse() && LD->isUnindexed() &&
      LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
    SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
                      DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
    SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
    SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
                                             Ops, LD->getMemoryVT(),
                                             LD->getMemOperand());
    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
    return VLDDup;
  }

  return SDValue();
}

static SDValue PerformLOADCombine(SDNode *N,
                                  TargetLowering::DAGCombinerInfo &DCI) {
  EVT VT = N->getValueType(0);

  // If this is a legal vector load, try to combine it into a VLD1_UPD.
  if (ISD::isNormalLoad(N) && VT.isVector() &&
      DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
    return CombineBaseUpdate(N, DCI);

  return SDValue();
}

// Optimize trunc store (of multiple scalars) to shuffle and store.  First,
// pack all of the elements in one place.  Next, store to memory in fewer
// chunks.
static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
                                             SelectionDAG &DAG) {
  SDValue StVal = St->getValue();
  EVT VT = StVal.getValueType();
  if (!St->isTruncatingStore() || !VT.isVector())
    return SDValue();
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  EVT StVT = St->getMemoryVT();
  unsigned NumElems = VT.getVectorNumElements();
  assert(StVT != VT && "Cannot truncate to the same type");
  unsigned FromEltSz = VT.getScalarSizeInBits();
  unsigned ToEltSz = StVT.getScalarSizeInBits();

  // From, To sizes and ElemCount must be pow of two
  if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
    return SDValue();

  // We are going to use the original vector elt for storing.
  // Accumulated smaller vector elements must be a multiple of the store size.
  if (0 != (NumElems * FromEltSz) % ToEltSz)
    return SDValue();

  unsigned SizeRatio = FromEltSz / ToEltSz;
  assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());

  // Create a type on which we perform the shuffle.
  EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
                                   NumElems * SizeRatio);
  assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());

  SDLoc DL(St);
  SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
  SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
  for (unsigned i = 0; i < NumElems; ++i)
    ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
                                                      : i * SizeRatio;

  // Can't shuffle using an illegal type.
  if (!TLI.isTypeLegal(WideVecVT))
    return SDValue();

  SDValue Shuff = DAG.getVectorShuffle(
      WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
  // At this point all of the data is stored at the bottom of the
  // register. We now need to save it to mem.

  // Find the largest store unit
  MVT StoreType = MVT::i8;
  for (MVT Tp : MVT::integer_valuetypes()) {
    if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
      StoreType = Tp;
  }
  // Didn't find a legal store type.
  if (!TLI.isTypeLegal(StoreType))
    return SDValue();

  // Bitcast the original vector into a vector of store-size units
  EVT StoreVecVT =
      EVT::getVectorVT(*DAG.getContext(), StoreType,
                       VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
  assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
  SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
  SmallVector<SDValue, 8> Chains;
  SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
                                      TLI.getPointerTy(DAG.getDataLayout()));
  SDValue BasePtr = St->getBasePtr();

  // Perform one or more big stores into memory.
  unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
  for (unsigned I = 0; I < E; I++) {
    SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
                                 ShuffWide, DAG.getIntPtrConstant(I, DL));
    SDValue Ch =
        DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
                     St->getAlignment(), St->getMemOperand()->getFlags());
    BasePtr =
        DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
    Chains.push_back(Ch);
  }
  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
}

// Try taking a single vector store from an truncate (which would otherwise turn
// into an expensive buildvector) and splitting it into a series of narrowing
// stores.
static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
                                                 SelectionDAG &DAG) {
  if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
    return SDValue();
  SDValue Trunc = St->getValue();
  if (Trunc->getOpcode() != ISD::TRUNCATE)
    return SDValue();
  EVT FromVT = Trunc->getOperand(0).getValueType();
  EVT ToVT = Trunc.getValueType();
  if (!ToVT.isVector())
    return SDValue();
  assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
  EVT ToEltVT = ToVT.getVectorElementType();
  EVT FromEltVT = FromVT.getVectorElementType();

  unsigned NumElements = 0;
  if (FromEltVT == MVT::i32 && (ToEltVT == MVT::i16 || ToEltVT == MVT::i8))
    NumElements = 4;
  if (FromEltVT == MVT::i16 && ToEltVT == MVT::i8)
    NumElements = 8;
  if (NumElements == 0 || FromVT.getVectorNumElements() == NumElements ||
      FromVT.getVectorNumElements() % NumElements != 0)
    return SDValue();

  SDLoc DL(St);
  // Details about the old store
  SDValue Ch = St->getChain();
  SDValue BasePtr = St->getBasePtr();
  unsigned Alignment = St->getOriginalAlignment();
  MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
  AAMDNodes AAInfo = St->getAAInfo();

  EVT NewFromVT = EVT::getVectorVT(*DAG.getContext(), FromEltVT, NumElements);
  EVT NewToVT = EVT::getVectorVT(*DAG.getContext(), ToEltVT, NumElements);

  SmallVector<SDValue, 4> Stores;
  for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
    unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
    SDValue NewPtr = DAG.getObjectPtrOffset(DL, BasePtr, NewOffset);

    SDValue Extract =
        DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
                    DAG.getConstant(i * NumElements, DL, MVT::i32));
    SDValue Store = DAG.getTruncStore(
        Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
        NewToVT, Alignment, MMOFlags, AAInfo);
    Stores.push_back(Store);
  }
  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
}

/// PerformSTORECombine - Target-specific dag combine xforms for
/// ISD::STORE.
static SDValue PerformSTORECombine(SDNode *N,
                                   TargetLowering::DAGCombinerInfo &DCI,
                                   const ARMSubtarget *Subtarget) {
  StoreSDNode *St = cast<StoreSDNode>(N);
  if (St->isVolatile())
    return SDValue();
  SDValue StVal = St->getValue();
  EVT VT = StVal.getValueType();

  if (Subtarget->hasNEON())
    if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
      return Store;

  if (Subtarget->hasMVEIntegerOps())
    if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
      return NewToken;

  if (!ISD::isNormalStore(St))
    return SDValue();

  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
  // ARM stores of arguments in the same cache line.
  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
      StVal.getNode()->hasOneUse()) {
    SelectionDAG  &DAG = DCI.DAG;
    bool isBigEndian = DAG.getDataLayout().isBigEndian();
    SDLoc DL(St);
    SDValue BasePtr = St->getBasePtr();
    SDValue NewST1 = DAG.getStore(
        St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
        BasePtr, St->getPointerInfo(), St->getAlignment(),
        St->getMemOperand()->getFlags());

    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
                                    DAG.getConstant(4, DL, MVT::i32));
    return DAG.getStore(NewST1.getValue(0), DL,
                        StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
                        OffsetPtr, St->getPointerInfo(),
                        std::min(4U, St->getAlignment() / 2),
                        St->getMemOperand()->getFlags());
  }

  if (StVal.getValueType() == MVT::i64 &&
      StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {

    // Bitcast an i64 store extracted from a vector to f64.
    // Otherwise, the i64 value will be legalized to a pair of i32 values.
    SelectionDAG &DAG = DCI.DAG;
    SDLoc dl(StVal);
    SDValue IntVec = StVal.getOperand(0);
    EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
                                   IntVec.getValueType().getVectorNumElements());
    SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
    SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
                                 Vec, StVal.getOperand(1));
    dl = SDLoc(N);
    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
    // Make the DAGCombiner fold the bitcasts.
    DCI.AddToWorklist(Vec.getNode());
    DCI.AddToWorklist(ExtElt.getNode());
    DCI.AddToWorklist(V.getNode());
    return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
                        St->getPointerInfo(), St->getAlignment(),
                        St->getMemOperand()->getFlags(), St->getAAInfo());
  }

  // If this is a legal vector store, try to combine it into a VST1_UPD.
  if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
      DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
    return CombineBaseUpdate(N, DCI);

  return SDValue();
}

/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
/// can replace combinations of VMUL and VCVT (floating-point to integer)
/// when the VMUL has a constant operand that is a power of 2.
///
/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
///  vmul.f32        d16, d17, d16
///  vcvt.s32.f32    d16, d16
/// becomes:
///  vcvt.s32.f32    d16, d16, #3
static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
                                  const ARMSubtarget *Subtarget) {
  if (!Subtarget->hasNEON())
    return SDValue();

  SDValue Op = N->getOperand(0);
  if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
      Op.getOpcode() != ISD::FMUL)
    return SDValue();

  SDValue ConstVec = Op->getOperand(1);
  if (!isa<BuildVectorSDNode>(ConstVec))
    return SDValue();

  MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
  uint32_t FloatBits = FloatTy.getSizeInBits();
  MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
  uint32_t IntBits = IntTy.getSizeInBits();
  unsigned NumLanes = Op.getValueType().getVectorNumElements();
  if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
    // These instructions only exist converting from f32 to i32. We can handle
    // smaller integers by generating an extra truncate, but larger ones would
    // be lossy. We also can't handle anything other than 2 or 4 lanes, since
    // these intructions only support v2i32/v4i32 types.
    return SDValue();
  }

  BitVector UndefElements;
  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
  int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
  if (C == -1 || C == 0 || C > 32)
    return SDValue();

  SDLoc dl(N);
  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
    Intrinsic::arm_neon_vcvtfp2fxu;
  SDValue FixConv = DAG.getNode(
      ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
      DAG.getConstant(C, dl, MVT::i32));

  if (IntBits < FloatBits)
    FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);

  return FixConv;
}

/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
/// can replace combinations of VCVT (integer to floating-point) and VDIV
/// when the VDIV has a constant operand that is a power of 2.
///
/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
///  vcvt.f32.s32    d16, d16
///  vdiv.f32        d16, d17, d16
/// becomes:
///  vcvt.f32.s32    d16, d16, #3
static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
                                  const ARMSubtarget *Subtarget) {
  if (!Subtarget->hasNEON())
    return SDValue();

  SDValue Op = N->getOperand(0);
  unsigned OpOpcode = Op.getNode()->getOpcode();
  if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
    return SDValue();

  SDValue ConstVec = N->getOperand(1);
  if (!isa<BuildVectorSDNode>(ConstVec))
    return SDValue();

  MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
  uint32_t FloatBits = FloatTy.getSizeInBits();
  MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
  uint32_t IntBits = IntTy.getSizeInBits();
  unsigned NumLanes = Op.getValueType().getVectorNumElements();
  if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
    // These instructions only exist converting from i32 to f32. We can handle
    // smaller integers by generating an extra extend, but larger ones would
    // be lossy. We also can't handle anything other than 2 or 4 lanes, since
    // these intructions only support v2i32/v4i32 types.
    return SDValue();
  }

  BitVector UndefElements;
  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
  int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
  if (C == -1 || C == 0 || C > 32)
    return SDValue();

  SDLoc dl(N);
  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
  SDValue ConvInput = Op.getOperand(0);
  if (IntBits < FloatBits)
    ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
                            dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
                            ConvInput);

  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
    Intrinsic::arm_neon_vcvtfxu2fp;
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
                     Op.getValueType(),
                     DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
                     ConvInput, DAG.getConstant(C, dl, MVT::i32));
}

/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
  switch (IntNo) {
  default:
    // Don't do anything for most intrinsics.
    break;

  // Vector shifts: check for immediate versions and lower them.
  // Note: This is done during DAG combining instead of DAG legalizing because
  // the build_vectors for 64-bit vector element shift counts are generally
  // not legal, and it is hard to see their values after they get legalized to
  // loads from a constant pool.
  case Intrinsic::arm_neon_vshifts:
  case Intrinsic::arm_neon_vshiftu:
  case Intrinsic::arm_neon_vrshifts:
  case Intrinsic::arm_neon_vrshiftu:
  case Intrinsic::arm_neon_vrshiftn:
  case Intrinsic::arm_neon_vqshifts:
  case Intrinsic::arm_neon_vqshiftu:
  case Intrinsic::arm_neon_vqshiftsu:
  case Intrinsic::arm_neon_vqshiftns:
  case Intrinsic::arm_neon_vqshiftnu:
  case Intrinsic::arm_neon_vqshiftnsu:
  case Intrinsic::arm_neon_vqrshiftns:
  case Intrinsic::arm_neon_vqrshiftnu:
  case Intrinsic::arm_neon_vqrshiftnsu: {
    EVT VT = N->getOperand(1).getValueType();
    int64_t Cnt;
    unsigned VShiftOpc = 0;

    switch (IntNo) {
    case Intrinsic::arm_neon_vshifts:
    case Intrinsic::arm_neon_vshiftu:
      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
        VShiftOpc = ARMISD::VSHLIMM;
        break;
      }
      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
                                                          : ARMISD::VSHRuIMM);
        break;
      }
      return SDValue();

    case Intrinsic::arm_neon_vrshifts:
    case Intrinsic::arm_neon_vrshiftu:
      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
        break;
      return SDValue();

    case Intrinsic::arm_neon_vqshifts:
    case Intrinsic::arm_neon_vqshiftu:
      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
        break;
      return SDValue();

    case Intrinsic::arm_neon_vqshiftsu:
      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
        break;
      llvm_unreachable("invalid shift count for vqshlu intrinsic");

    case Intrinsic::arm_neon_vrshiftn:
    case Intrinsic::arm_neon_vqshiftns:
    case Intrinsic::arm_neon_vqshiftnu:
    case Intrinsic::arm_neon_vqshiftnsu:
    case Intrinsic::arm_neon_vqrshiftns:
    case Intrinsic::arm_neon_vqrshiftnu:
    case Intrinsic::arm_neon_vqrshiftnsu:
      // Narrowing shifts require an immediate right shift.
      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
        break;
      llvm_unreachable("invalid shift count for narrowing vector shift "
                       "intrinsic");

    default:
      llvm_unreachable("unhandled vector shift");
    }

    switch (IntNo) {
    case Intrinsic::arm_neon_vshifts:
    case Intrinsic::arm_neon_vshiftu:
      // Opcode already set above.
      break;
    case Intrinsic::arm_neon_vrshifts:
      VShiftOpc = ARMISD::VRSHRsIMM;
      break;
    case Intrinsic::arm_neon_vrshiftu:
      VShiftOpc = ARMISD::VRSHRuIMM;
      break;
    case Intrinsic::arm_neon_vrshiftn:
      VShiftOpc = ARMISD::VRSHRNIMM;
      break;
    case Intrinsic::arm_neon_vqshifts:
      VShiftOpc = ARMISD::VQSHLsIMM;
      break;
    case Intrinsic::arm_neon_vqshiftu:
      VShiftOpc = ARMISD::VQSHLuIMM;
      break;
    case Intrinsic::arm_neon_vqshiftsu:
      VShiftOpc = ARMISD::VQSHLsuIMM;
      break;
    case Intrinsic::arm_neon_vqshiftns:
      VShiftOpc = ARMISD::VQSHRNsIMM;
      break;
    case Intrinsic::arm_neon_vqshiftnu:
      VShiftOpc = ARMISD::VQSHRNuIMM;
      break;
    case Intrinsic::arm_neon_vqshiftnsu:
      VShiftOpc = ARMISD::VQSHRNsuIMM;
      break;
    case Intrinsic::arm_neon_vqrshiftns:
      VShiftOpc = ARMISD::VQRSHRNsIMM;
      break;
    case Intrinsic::arm_neon_vqrshiftnu:
      VShiftOpc = ARMISD::VQRSHRNuIMM;
      break;
    case Intrinsic::arm_neon_vqrshiftnsu:
      VShiftOpc = ARMISD::VQRSHRNsuIMM;
      break;
    }

    SDLoc dl(N);
    return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
                       N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
  }

  case Intrinsic::arm_neon_vshiftins: {
    EVT VT = N->getOperand(1).getValueType();
    int64_t Cnt;
    unsigned VShiftOpc = 0;

    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
      VShiftOpc = ARMISD::VSLIIMM;
    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
      VShiftOpc = ARMISD::VSRIIMM;
    else {
      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
    }

    SDLoc dl(N);
    return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
                       N->getOperand(1), N->getOperand(2),
                       DAG.getConstant(Cnt, dl, MVT::i32));
  }

  case Intrinsic::arm_neon_vqrshifts:
  case Intrinsic::arm_neon_vqrshiftu:
    // No immediate versions of these to check for.
    break;
  }

  return SDValue();
}

/// PerformShiftCombine - Checks for immediate versions of vector shifts and
/// lowers them.  As with the vector shift intrinsics, this is done during DAG
/// combining instead of DAG legalizing because the build_vectors for 64-bit
/// vector element shift counts are generally not legal, and it is hard to see
/// their values after they get legalized to loads from a constant pool.
static SDValue PerformShiftCombine(SDNode *N,
                                   TargetLowering::DAGCombinerInfo &DCI,
                                   const ARMSubtarget *ST) {
  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);
  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
    // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
    // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
    SDValue N1 = N->getOperand(1);
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
      SDValue N0 = N->getOperand(0);
      if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
          DAG.MaskedValueIsZero(N0.getOperand(0),
                                APInt::getHighBitsSet(32, 16)))
        return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
    }
  }

  if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
      N->getOperand(0)->getOpcode() == ISD::AND &&
      N->getOperand(0)->hasOneUse()) {
    if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
      return SDValue();
    // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
    // usually show up because instcombine prefers to canonicalize it to
    // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
    // out of GEP lowering in some cases.
    SDValue N0 = N->getOperand(0);
    ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
    if (!ShiftAmtNode)
      return SDValue();
    uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
    ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
    if (!AndMaskNode)
      return SDValue();
    uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
    // Don't transform uxtb/uxth.
    if (AndMask == 255 || AndMask == 65535)
      return SDValue();
    if (isMask_32(AndMask)) {
      uint32_t MaskedBits = countLeadingZeros(AndMask);
      if (MaskedBits > ShiftAmt) {
        SDLoc DL(N);
        SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
                                  DAG.getConstant(MaskedBits, DL, MVT::i32));
        return DAG.getNode(
            ISD::SRL, DL, MVT::i32, SHL,
            DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
      }
    }
  }

  // Nothing to be done for scalar shifts.
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  if (!VT.isVector() || !TLI.isTypeLegal(VT))
    return SDValue();
  if (ST->hasMVEIntegerOps() && VT == MVT::v2i64)
    return SDValue();

  int64_t Cnt;

  switch (N->getOpcode()) {
  default: llvm_unreachable("unexpected shift opcode");

  case ISD::SHL:
    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
      SDLoc dl(N);
      return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
                         DAG.getConstant(Cnt, dl, MVT::i32));
    }
    break;

  case ISD::SRA:
  case ISD::SRL:
    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
      unsigned VShiftOpc =
          (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
      SDLoc dl(N);
      return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
                         DAG.getConstant(Cnt, dl, MVT::i32));
    }
  }
  return SDValue();
}

// Look for a sign/zero extend of a larger than legal load. This can be split
// into two extending loads, which are simpler to deal with than an arbitrary
// sign extend.
static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
  SDValue N0 = N->getOperand(0);
  if (N0.getOpcode() != ISD::LOAD)
    return SDValue();
  LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
  if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
      LD->getExtensionType() != ISD::NON_EXTLOAD)
    return SDValue();
  EVT FromVT = LD->getValueType(0);
  EVT ToVT = N->getValueType(0);
  if (!ToVT.isVector())
    return SDValue();
  assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
  EVT ToEltVT = ToVT.getVectorElementType();
  EVT FromEltVT = FromVT.getVectorElementType();

  unsigned NumElements = 0;
  if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
    NumElements = 4;
  if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
    NumElements = 8;
  if (NumElements == 0 ||
      FromVT.getVectorNumElements() == NumElements ||
      FromVT.getVectorNumElements() % NumElements != 0 ||
      !isPowerOf2_32(NumElements))
    return SDValue();

  SDLoc DL(LD);
  // Details about the old load
  SDValue Ch = LD->getChain();
  SDValue BasePtr = LD->getBasePtr();
  unsigned Alignment = LD->getOriginalAlignment();
  MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
  AAMDNodes AAInfo = LD->getAAInfo();

  ISD::LoadExtType NewExtType =
      N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
  SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
  EVT NewFromVT = FromVT.getHalfNumVectorElementsVT(*DAG.getContext());
  EVT NewToVT = ToVT.getHalfNumVectorElementsVT(*DAG.getContext());
  unsigned NewOffset = NewFromVT.getSizeInBits() / 8;
  SDValue NewPtr = DAG.getObjectPtrOffset(DL, BasePtr, NewOffset);

  // Split the load in half, each side of which is extended separately. This
  // is good enough, as legalisation will take it from there. They are either
  // already legal or they will be split further into something that is
  // legal.
  SDValue NewLoad1 =
      DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, BasePtr, Offset,
                  LD->getPointerInfo(), NewFromVT, Alignment, MMOFlags, AAInfo);
  SDValue NewLoad2 =
      DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
                  LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
                  Alignment, MMOFlags, AAInfo);

  SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
                                 SDValue(NewLoad1.getNode(), 1),
                                 SDValue(NewLoad2.getNode(), 1));
  DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, NewLoad1, NewLoad2);
}

/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
                                    const ARMSubtarget *ST) {
  SDValue N0 = N->getOperand(0);

  // Check for sign- and zero-extensions of vector extract operations of 8-
  // and 16-bit vector elements.  NEON supports these directly.  They are
  // handled during DAG combining because type legalization will promote them
  // to 32-bit types and it is messy to recognize the operations after that.
  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
    SDValue Vec = N0.getOperand(0);
    SDValue Lane = N0.getOperand(1);
    EVT VT = N->getValueType(0);
    EVT EltVT = N0.getValueType();
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();

    if (VT == MVT::i32 &&
        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
        TLI.isTypeLegal(Vec.getValueType()) &&
        isa<ConstantSDNode>(Lane)) {

      unsigned Opc = 0;
      switch (N->getOpcode()) {
      default: llvm_unreachable("unexpected opcode");
      case ISD::SIGN_EXTEND:
        Opc = ARMISD::VGETLANEs;
        break;
      case ISD::ZERO_EXTEND:
      case ISD::ANY_EXTEND:
        Opc = ARMISD::VGETLANEu;
        break;
      }
      return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
    }
  }

  if (ST->hasMVEIntegerOps())
    if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
      return NewLoad;

  return SDValue();
}

static const APInt *isPowerOf2Constant(SDValue V) {
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
  if (!C)
    return nullptr;
  const APInt *CV = &C->getAPIntValue();
  return CV->isPowerOf2() ? CV : nullptr;
}

SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
  // If we have a CMOV, OR and AND combination such as:
  //   if (x & CN)
  //     y |= CM;
  //
  // And:
  //   * CN is a single bit;
  //   * All bits covered by CM are known zero in y
  //
  // Then we can convert this into a sequence of BFI instructions. This will
  // always be a win if CM is a single bit, will always be no worse than the
  // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
  // three bits (due to the extra IT instruction).

  SDValue Op0 = CMOV->getOperand(0);
  SDValue Op1 = CMOV->getOperand(1);
  auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
  auto CC = CCNode->getAPIntValue().getLimitedValue();
  SDValue CmpZ = CMOV->getOperand(4);

  // The compare must be against zero.
  if (!isNullConstant(CmpZ->getOperand(1)))
    return SDValue();

  assert(CmpZ->getOpcode() == ARMISD::CMPZ);
  SDValue And = CmpZ->getOperand(0);
  if (And->getOpcode() != ISD::AND)
    return SDValue();
  const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
  if (!AndC)
    return SDValue();
  SDValue X = And->getOperand(0);

  if (CC == ARMCC::EQ) {
    // We're performing an "equal to zero" compare. Swap the operands so we
    // canonicalize on a "not equal to zero" compare.
    std::swap(Op0, Op1);
  } else {
    assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
  }

  if (Op1->getOpcode() != ISD::OR)
    return SDValue();

  ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
  if (!OrC)
    return SDValue();
  SDValue Y = Op1->getOperand(0);

  if (Op0 != Y)
    return SDValue();

  // Now, is it profitable to continue?
  APInt OrCI = OrC->getAPIntValue();
  unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
  if (OrCI.countPopulation() > Heuristic)
    return SDValue();

  // Lastly, can we determine that the bits defined by OrCI
  // are zero in Y?
  KnownBits Known = DAG.computeKnownBits(Y);
  if ((OrCI & Known.Zero) != OrCI)
    return SDValue();

  // OK, we can do the combine.
  SDValue V = Y;
  SDLoc dl(X);
  EVT VT = X.getValueType();
  unsigned BitInX = AndC->logBase2();

  if (BitInX != 0) {
    // We must shift X first.
    X = DAG.getNode(ISD::SRL, dl, VT, X,
                    DAG.getConstant(BitInX, dl, VT));
  }

  for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
       BitInY < NumActiveBits; ++BitInY) {
    if (OrCI[BitInY] == 0)
      continue;
    APInt Mask(VT.getSizeInBits(), 0);
    Mask.setBit(BitInY);
    V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
                    // Confusingly, the operand is an *inverted* mask.
                    DAG.getConstant(~Mask, dl, VT));
  }

  return V;
}

// Given N, the value controlling the conditional branch, search for the loop
// intrinsic, returning it, along with how the value is used. We need to handle
// patterns such as the following:
// (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
// (brcond (setcc (loop.decrement), 0, eq), exit)
// (brcond (setcc (loop.decrement), 0, ne), header)
static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
                                   bool &Negate) {
  switch (N->getOpcode()) {
  default:
    break;
  case ISD::XOR: {
    if (!isa<ConstantSDNode>(N.getOperand(1)))
      return SDValue();
    if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
      return SDValue();
    Negate = !Negate;
    return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
  }
  case ISD::SETCC: {
    auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
    if (!Const)
      return SDValue();
    if (Const->isNullValue())
      Imm = 0;
    else if (Const->isOne())
      Imm = 1;
    else
      return SDValue();
    CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
    return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
  }
  case ISD::INTRINSIC_W_CHAIN: {
    unsigned IntOp = cast<ConstantSDNode>(N.getOperand(1))->getZExtValue();
    if (IntOp != Intrinsic::test_set_loop_iterations &&
        IntOp != Intrinsic::loop_decrement_reg)
      return SDValue();
    return N;
  }
  }
  return SDValue();
}

static SDValue PerformHWLoopCombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    const ARMSubtarget *ST) {

  // The hwloop intrinsics that we're interested are used for control-flow,
  // either for entering or exiting the loop:
  // - test.set.loop.iterations will test whether its operand is zero. If it
  //   is zero, the proceeding branch should not enter the loop.
  // - loop.decrement.reg also tests whether its operand is zero. If it is
  //   zero, the proceeding branch should not branch back to the beginning of
  //   the loop.
  // So here, we need to check that how the brcond is using the result of each
  // of the intrinsics to ensure that we're branching to the right place at the
  // right time.

  ISD::CondCode CC;
  SDValue Cond;
  int Imm = 1;
  bool Negate = false;
  SDValue Chain = N->getOperand(0);
  SDValue Dest;

  if (N->getOpcode() == ISD::BRCOND) {
    CC = ISD::SETEQ;
    Cond = N->getOperand(1);
    Dest = N->getOperand(2);
  } else {
    assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
    CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
    Cond = N->getOperand(2);
    Dest = N->getOperand(4);
    if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
      if (!Const->isOne() && !Const->isNullValue())
        return SDValue();
      Imm = Const->getZExtValue();
    } else
      return SDValue();
  }

  SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
  if (!Int)
    return SDValue();

  if (Negate)
    CC = ISD::getSetCCInverse(CC, true);

  auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
    return (CC == ISD::SETEQ && Imm == 0) ||
           (CC == ISD::SETNE && Imm == 1) ||
           (CC == ISD::SETLT && Imm == 1) ||
           (CC == ISD::SETULT && Imm == 1);
  };

  auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
    return (CC == ISD::SETEQ && Imm == 1) ||
           (CC == ISD::SETNE && Imm == 0) ||
           (CC == ISD::SETGT && Imm == 0) ||
           (CC == ISD::SETUGT && Imm == 0) ||
           (CC == ISD::SETGE && Imm == 1) ||
           (CC == ISD::SETUGE && Imm == 1);
  };

  assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
         "unsupported condition");

  SDLoc dl(Int);
  SelectionDAG &DAG = DCI.DAG;
  SDValue Elements = Int.getOperand(2);
  unsigned IntOp = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
  assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
          && "expected single br user");
  SDNode *Br = *N->use_begin();
  SDValue OtherTarget = Br->getOperand(1);

  // Update the unconditional branch to branch to the given Dest.
  auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
    SDValue NewBrOps[] = { Br->getOperand(0), Dest };
    SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
    DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
  };

  if (IntOp == Intrinsic::test_set_loop_iterations) {
    SDValue Res;
    // We expect this 'instruction' to branch when the counter is zero.
    if (IsTrueIfZero(CC, Imm)) {
      SDValue Ops[] = { Chain, Elements, Dest };
      Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
    } else {
      // The logic is the reverse of what we need for WLS, so find the other
      // basic block target: the target of the proceeding br.
      UpdateUncondBr(Br, Dest, DAG);

      SDValue Ops[] = { Chain, Elements, OtherTarget };
      Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
    }
    DAG.ReplaceAllUsesOfValueWith(Int.getValue(1), Int.getOperand(0));
    return Res;
  } else {
    SDValue Size = DAG.getTargetConstant(
      cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl, MVT::i32);
    SDValue Args[] = { Int.getOperand(0), Elements, Size, };
    SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
                                  DAG.getVTList(MVT::i32, MVT::Other), Args);
    DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());

    // We expect this instruction to branch when the count is not zero.
    SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;

    // Update the unconditional branch to target the loop preheader if we've
    // found the condition has been reversed.
    if (Target == OtherTarget)
      UpdateUncondBr(Br, Dest, DAG);

    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                        SDValue(LoopDec.getNode(), 1), Chain);

    SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
    return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
  }
  return SDValue();
}

/// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
SDValue
ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
  SDValue Cmp = N->getOperand(4);
  if (Cmp.getOpcode() != ARMISD::CMPZ)
    // Only looking at NE cases.
    return SDValue();

  EVT VT = N->getValueType(0);
  SDLoc dl(N);
  SDValue LHS = Cmp.getOperand(0);
  SDValue RHS = Cmp.getOperand(1);
  SDValue Chain = N->getOperand(0);
  SDValue BB = N->getOperand(1);
  SDValue ARMcc = N->getOperand(2);
  ARMCC::CondCodes CC =
    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();

  // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
  // -> (brcond Chain BB CC CPSR Cmp)
  if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
      LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
      LHS->getOperand(0)->hasOneUse()) {
    auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
    auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
    auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
    auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
    if ((LHS00C && LHS00C->getZExtValue() == 0) &&
        (LHS01C && LHS01C->getZExtValue() == 1) &&
        (LHS1C && LHS1C->getZExtValue() == 1) &&
        (RHSC && RHSC->getZExtValue() == 0)) {
      return DAG.getNode(
          ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
          LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
    }
  }

  return SDValue();
}

/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
SDValue
ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
  SDValue Cmp = N->getOperand(4);
  if (Cmp.getOpcode() != ARMISD::CMPZ)
    // Only looking at EQ and NE cases.
    return SDValue();

  EVT VT = N->getValueType(0);
  SDLoc dl(N);
  SDValue LHS = Cmp.getOperand(0);
  SDValue RHS = Cmp.getOperand(1);
  SDValue FalseVal = N->getOperand(0);
  SDValue TrueVal = N->getOperand(1);
  SDValue ARMcc = N->getOperand(2);
  ARMCC::CondCodes CC =
    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();

  // BFI is only available on V6T2+.
  if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
    SDValue R = PerformCMOVToBFICombine(N, DAG);
    if (R)
      return R;
  }

  // Simplify
  //   mov     r1, r0
  //   cmp     r1, x
  //   mov     r0, y
  //   moveq   r0, x
  // to
  //   cmp     r0, x
  //   movne   r0, y
  //
  //   mov     r1, r0
  //   cmp     r1, x
  //   mov     r0, x
  //   movne   r0, y
  // to
  //   cmp     r0, x
  //   movne   r0, y
  /// FIXME: Turn this into a target neutral optimization?
  SDValue Res;
  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
                      N->getOperand(3), Cmp);
  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
    SDValue ARMcc;
    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
                      N->getOperand(3), NewCmp);
  }

  // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
  // -> (cmov F T CC CPSR Cmp)
  if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
    auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
    auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
    auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
    if ((LHS0C && LHS0C->getZExtValue() == 0) &&
        (LHS1C && LHS1C->getZExtValue() == 1) &&
        (RHSC && RHSC->getZExtValue() == 0)) {
      return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
                         LHS->getOperand(2), LHS->getOperand(3),
                         LHS->getOperand(4));
    }
  }

  if (!VT.isInteger())
      return SDValue();

  // Materialize a boolean comparison for integers so we can avoid branching.
  if (isNullConstant(FalseVal)) {
    if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
      if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
        // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
        // right 5 bits will make that 32 be 1, otherwise it will be 0.
        // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
        SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
        Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
                          DAG.getConstant(5, dl, MVT::i32));
      } else {
        // CMOV 0, 1, ==, (CMPZ x, y) ->
        //     (ADDCARRY (SUB x, y), t:0, t:1)
        // where t = (SUBCARRY 0, (SUB x, y), 0)
        //
        // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
        // x != y. In other words, a carry C == 1 when x == y, C == 0
        // otherwise.
        // The final ADDCARRY computes
        //     x - y + (0 - (x - y)) + C == C
        SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
        SDVTList VTs = DAG.getVTList(VT, MVT::i32);
        SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
        // ISD::SUBCARRY returns a borrow but we want the carry here
        // actually.
        SDValue Carry =
            DAG.getNode(ISD::SUB, dl, MVT::i32,
                        DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
        Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
      }
    } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
               (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
      // This seems pointless but will allow us to combine it further below.
      // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
      SDValue Sub =
          DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
      SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
                                          Sub.getValue(1), SDValue());
      Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
                        N->getOperand(3), CPSRGlue.getValue(1));
      FalseVal = Sub;
    }
  } else if (isNullConstant(TrueVal)) {
    if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
        (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
      // This seems pointless but will allow us to combine it further below
      // Note that we change == for != as this is the dual for the case above.
      // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
      SDValue Sub =
          DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
      SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
                                          Sub.getValue(1), SDValue());
      Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
                        DAG.getConstant(ARMCC::NE, dl, MVT::i32),
                        N->getOperand(3), CPSRGlue.getValue(1));
      FalseVal = Sub;
    }
  }

  // On Thumb1, the DAG above may be further combined if z is a power of 2
  // (z == 2 ^ K).
  // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
  // t1 = (USUBO (SUB x, y), 1)
  // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
  // Result = if K != 0 then (SHL t2:0, K) else t2:0
  //
  // This also handles the special case of comparing against zero; it's
  // essentially, the same pattern, except there's no SUBS:
  // CMOV x, z, !=, (CMPZ x, 0) ->
  // t1 = (USUBO x, 1)
  // t2 = (SUBCARRY x, t1:0, t1:1)
  // Result = if K != 0 then (SHL t2:0, K) else t2:0
  const APInt *TrueConst;
  if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
      ((FalseVal.getOpcode() == ARMISD::SUBS &&
        FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
       (FalseVal == LHS && isNullConstant(RHS))) &&
      (TrueConst = isPowerOf2Constant(TrueVal))) {
    SDVTList VTs = DAG.getVTList(VT, MVT::i32);
    unsigned ShiftAmount = TrueConst->logBase2();
    if (ShiftAmount)
      TrueVal = DAG.getConstant(1, dl, VT);
    SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
    Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));

    if (ShiftAmount)
      Res = DAG.getNode(ISD::SHL, dl, VT, Res,
                        DAG.getConstant(ShiftAmount, dl, MVT::i32));
  }

  if (Res.getNode()) {
    KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
    // Capture demanded bits information that would be otherwise lost.
    if (Known.Zero == 0xfffffffe)
      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
                        DAG.getValueType(MVT::i1));
    else if (Known.Zero == 0xffffff00)
      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
                        DAG.getValueType(MVT::i8));
    else if (Known.Zero == 0xffff0000)
      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
                        DAG.getValueType(MVT::i16));
  }

  return Res;
}

SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
                                             DAGCombinerInfo &DCI) const {
  switch (N->getOpcode()) {
  default: break;
  case ISD::ABS:        return PerformABSCombine(N, DCI, Subtarget);
  case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
  case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
  case ISD::SUB:        return PerformSUBCombine(N, DCI);
  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
  case ISD::BRCOND:
  case ISD::BR_CC:      return PerformHWLoopCombine(N, DCI, Subtarget);
  case ARMISD::ADDC:
  case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
  case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
  case ISD::STORE:      return PerformSTORECombine(N, DCI, Subtarget);
  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
  case ARMISD::VDUP: return PerformVDUPCombine(N, DCI, Subtarget);
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
    return PerformVCVTCombine(N, DCI.DAG, Subtarget);
  case ISD::FDIV:
    return PerformVDIVCombine(N, DCI.DAG, Subtarget);
  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
  case ISD::SHL:
  case ISD::SRA:
  case ISD::SRL:
    return PerformShiftCombine(N, DCI, Subtarget);
  case ISD::SIGN_EXTEND:
  case ISD::ZERO_EXTEND:
  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
  case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
  case ISD::LOAD:       return PerformLOADCombine(N, DCI);
  case ARMISD::VLD1DUP:
  case ARMISD::VLD2DUP:
  case ARMISD::VLD3DUP:
  case ARMISD::VLD4DUP:
    return PerformVLDCombine(N, DCI);
  case ARMISD::BUILD_VECTOR:
    return PerformARMBUILD_VECTORCombine(N, DCI);
  case ARMISD::PREDICATE_CAST:
    return PerformPREDICATE_CASTCombine(N, DCI);
  case ARMISD::SMULWB: {
    unsigned BitWidth = N->getValueType(0).getSizeInBits();
    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
    if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
      return SDValue();
    break;
  }
  case ARMISD::SMULWT: {
    unsigned BitWidth = N->getValueType(0).getSizeInBits();
    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
    if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
      return SDValue();
    break;
  }
  case ARMISD::SMLALBB:
  case ARMISD::QADD16b:
  case ARMISD::QSUB16b: {
    unsigned BitWidth = N->getValueType(0).getSizeInBits();
    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
    if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
        (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
      return SDValue();
    break;
  }
  case ARMISD::SMLALBT: {
    unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
    APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
    unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
    APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
    if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
        (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
      return SDValue();
    break;
  }
  case ARMISD::SMLALTB: {
    unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
    APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
    unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
    APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
    if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
        (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
      return SDValue();
    break;
  }
  case ARMISD::SMLALTT: {
    unsigned BitWidth = N->getValueType(0).getSizeInBits();
    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
    if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
        (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
      return SDValue();
    break;
  }
  case ARMISD::QADD8b:
  case ARMISD::QSUB8b: {
    unsigned BitWidth = N->getValueType(0).getSizeInBits();
    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
    if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
        (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
      return SDValue();
    break;
  }
  case ISD::INTRINSIC_VOID:
  case ISD::INTRINSIC_W_CHAIN:
    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
    case Intrinsic::arm_neon_vld1:
    case Intrinsic::arm_neon_vld1x2:
    case Intrinsic::arm_neon_vld1x3:
    case Intrinsic::arm_neon_vld1x4:
    case Intrinsic::arm_neon_vld2:
    case Intrinsic::arm_neon_vld3:
    case Intrinsic::arm_neon_vld4:
    case Intrinsic::arm_neon_vld2lane:
    case Intrinsic::arm_neon_vld3lane:
    case Intrinsic::arm_neon_vld4lane:
    case Intrinsic::arm_neon_vld2dup:
    case Intrinsic::arm_neon_vld3dup:
    case Intrinsic::arm_neon_vld4dup:
    case Intrinsic::arm_neon_vst1:
    case Intrinsic::arm_neon_vst1x2:
    case Intrinsic::arm_neon_vst1x3:
    case Intrinsic::arm_neon_vst1x4:
    case Intrinsic::arm_neon_vst2:
    case Intrinsic::arm_neon_vst3:
    case Intrinsic::arm_neon_vst4:
    case Intrinsic::arm_neon_vst2lane:
    case Intrinsic::arm_neon_vst3lane:
    case Intrinsic::arm_neon_vst4lane:
      return PerformVLDCombine(N, DCI);
    default: break;
    }
    break;
  }
  return SDValue();
}

bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
                                                          EVT VT) const {
  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
}

bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
                                                       unsigned Alignment,
                                                       MachineMemOperand::Flags,
                                                       bool *Fast) const {
  // Depends what it gets converted into if the type is weird.
  if (!VT.isSimple())
    return false;

  // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
  bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
  auto Ty = VT.getSimpleVT().SimpleTy;

  if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
    // Unaligned access can use (for example) LRDB, LRDH, LDR
    if (AllowsUnaligned) {
      if (Fast)
        *Fast = Subtarget->hasV7Ops();
      return true;
    }
  }

  if (Ty == MVT::f64 || Ty == MVT::v2f64) {
    // For any little-endian targets with neon, we can support unaligned ld/st
    // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
    // A big-endian target may also explicitly support unaligned accesses
    if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
      if (Fast)
        *Fast = true;
      return true;
    }
  }

  if (!Subtarget->hasMVEIntegerOps())
    return false;

  // These are for predicates
  if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1)) {
    if (Fast)
      *Fast = true;
    return true;
  }

  // These are for truncated stores/narrowing loads. They are fine so long as
  // the alignment is at least the size of the item being loaded
  if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
      Alignment >= VT.getScalarSizeInBits() / 8) {
    if (Fast)
      *Fast = true;
    return true;
  }

  // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
  // VSTRW.U32 all store the vector register in exactly the same format, and
  // differ only in the range of their immediate offset field and the required
  // alignment. So there is always a store that can be used, regardless of
  // actual type.
  //
  // For big endian, that is not the case. But can still emit a (VSTRB.U8;
  // VREV64.8) pair and get the same effect. This will likely be better than
  // aligning the vector through the stack.
  if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
      Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
      Ty == MVT::v2f64) {
    if (Fast)
      *Fast = true;
    return true;
  }

  return false;
}

static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
                       unsigned AlignCheck) {
  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
          (DstAlign == 0 || DstAlign % AlignCheck == 0));
}

EVT ARMTargetLowering::getOptimalMemOpType(
    uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
    bool ZeroMemset, bool MemcpyStrSrc,
    const AttributeList &FuncAttributes) const {
  // See if we can use NEON instructions for this...
  if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
      !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
    bool Fast;
    if (Size >= 16 &&
        (memOpAlign(SrcAlign, DstAlign, 16) ||
         (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1,
                                         MachineMemOperand::MONone, &Fast) &&
          Fast))) {
      return MVT::v2f64;
    } else if (Size >= 8 &&
               (memOpAlign(SrcAlign, DstAlign, 8) ||
                (allowsMisalignedMemoryAccesses(
                     MVT::f64, 0, 1, MachineMemOperand::MONone, &Fast) &&
                 Fast))) {
      return MVT::f64;
    }
  }

  // Let the target-independent logic figure it out.
  return MVT::Other;
}

// 64-bit integers are split into their high and low parts and held in two
// different registers, so the trunc is free since the low register can just
// be used.
bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
  if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
    return false;
  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBits = DstTy->getPrimitiveSizeInBits();
  return (SrcBits == 64 && DestBits == 32);
}

bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
  if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
      !DstVT.isInteger())
    return false;
  unsigned SrcBits = SrcVT.getSizeInBits();
  unsigned DestBits = DstVT.getSizeInBits();
  return (SrcBits == 64 && DestBits == 32);
}

bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
  if (Val.getOpcode() != ISD::LOAD)
    return false;

  EVT VT1 = Val.getValueType();
  if (!VT1.isSimple() || !VT1.isInteger() ||
      !VT2.isSimple() || !VT2.isInteger())
    return false;

  switch (VT1.getSimpleVT().SimpleTy) {
  default: break;
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
    // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
    return true;
  }

  return false;
}

bool ARMTargetLowering::isFNegFree(EVT VT) const {
  if (!VT.isSimple())
    return false;

  // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
  // negate values directly (fneg is free). So, we don't want to let the DAG
  // combiner rewrite fneg into xors and some other instructions.  For f16 and
  // FullFP16 argument passing, some bitcast nodes may be introduced,
  // triggering this DAG combine rewrite, so we are avoiding that with this.
  switch (VT.getSimpleVT().SimpleTy) {
  default: break;
  case MVT::f16:
    return Subtarget->hasFullFP16();
  }

  return false;
}

/// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
/// of the vector elements.
static bool areExtractExts(Value *Ext1, Value *Ext2) {
  auto areExtDoubled = [](Instruction *Ext) {
    return Ext->getType()->getScalarSizeInBits() ==
           2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
  };

  if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
      !match(Ext2, m_ZExtOrSExt(m_Value())) ||
      !areExtDoubled(cast<Instruction>(Ext1)) ||
      !areExtDoubled(cast<Instruction>(Ext2)))
    return false;

  return true;
}

/// Check if sinking \p I's operands to I's basic block is profitable, because
/// the operands can be folded into a target instruction, e.g.
/// sext/zext can be folded into vsubl.
bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
                                           SmallVectorImpl<Use *> &Ops) const {
  if (!I->getType()->isVectorTy())
    return false;

  if (Subtarget->hasNEON()) {
    switch (I->getOpcode()) {
    case Instruction::Sub:
    case Instruction::Add: {
      if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
        return false;
      Ops.push_back(&I->getOperandUse(0));
      Ops.push_back(&I->getOperandUse(1));
      return true;
    }
    default:
      return false;
    }
  }

  if (!Subtarget->hasMVEIntegerOps())
    return false;

  auto IsSinker = [](Instruction *I, int Operand) {
    switch (I->getOpcode()) {
    case Instruction::Add:
    case Instruction::Mul:
      return true;
    case Instruction::Sub:
      return Operand == 1;
    default:
      return false;
    }
  };

  int Op = 0;
  if (!isa<ShuffleVectorInst>(I->getOperand(Op)))
    Op = 1;
  if (!IsSinker(I, Op))
    return false;
  if (!match(I->getOperand(Op),
             m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_ZeroInt()),
                             m_Undef(), m_Zero()))) {
    return false;
  }
  Instruction *Shuffle = cast<Instruction>(I->getOperand(Op));
  // All uses of the shuffle should be sunk to avoid duplicating it across gpr
  // and vector registers
  for (Use &U : Shuffle->uses()) {
    Instruction *Insn = cast<Instruction>(U.getUser());
    if (!IsSinker(Insn, U.getOperandNo()))
      return false;
  }
  Ops.push_back(&Shuffle->getOperandUse(0));
  Ops.push_back(&I->getOperandUse(Op));
  return true;
}

bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
  EVT VT = ExtVal.getValueType();

  if (!isTypeLegal(VT))
    return false;

  if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
    if (Ld->isExpandingLoad())
      return false;
  }

  // Don't create a loadext if we can fold the extension into a wide/long
  // instruction.
  // If there's more than one user instruction, the loadext is desirable no
  // matter what.  There can be two uses by the same instruction.
  if (ExtVal->use_empty() ||
      !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
    return true;

  SDNode *U = *ExtVal->use_begin();
  if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
       U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
    return false;

  return true;
}

bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
    return false;

  if (!isTypeLegal(EVT::getEVT(Ty1)))
    return false;

  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");

  // Assuming the caller doesn't have a zeroext or signext return parameter,
  // truncation all the way down to i1 is valid.
  return true;
}

int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
                                                const AddrMode &AM, Type *Ty,
                                                unsigned AS) const {
  if (isLegalAddressingMode(DL, AM, Ty, AS)) {
    if (Subtarget->hasFPAO())
      return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
    return 0;
  }
  return -1;
}

static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
  if (V < 0)
    return false;

  unsigned Scale = 1;
  switch (VT.getSimpleVT().SimpleTy) {
  case MVT::i1:
  case MVT::i8:
    // Scale == 1;
    break;
  case MVT::i16:
    // Scale == 2;
    Scale = 2;
    break;
  default:
    // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
    // Scale == 4;
    Scale = 4;
    break;
  }

  if ((V & (Scale - 1)) != 0)
    return false;
  return isUInt<5>(V / Scale);
}

static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
                                      const ARMSubtarget *Subtarget) {
  if (!VT.isInteger() && !VT.isFloatingPoint())
    return false;
  if (VT.isVector() && Subtarget->hasNEON())
    return false;
  if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
      !Subtarget->hasMVEFloatOps())
    return false;

  bool IsNeg = false;
  if (V < 0) {
    IsNeg = true;
    V = -V;
  }

  unsigned NumBytes = std::max(VT.getSizeInBits() / 8, 1U);

  // MVE: size * imm7
  if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
    switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
    case MVT::i32:
    case MVT::f32:
      return isShiftedUInt<7,2>(V);
    case MVT::i16:
    case MVT::f16:
      return isShiftedUInt<7,1>(V);
    case MVT::i8:
      return isUInt<7>(V);
    default:
      return false;
    }
  }

  // half VLDR: 2 * imm8
  if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
    return isShiftedUInt<8, 1>(V);
  // VLDR and LDRD: 4 * imm8
  if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
    return isShiftedUInt<8, 2>(V);

  if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
    // + imm12 or - imm8
    if (IsNeg)
      return isUInt<8>(V);
    return isUInt<12>(V);
  }

  return false;
}

/// isLegalAddressImmediate - Return true if the integer value can be used
/// as the offset of the target addressing mode for load / store of the
/// given type.
static bool isLegalAddressImmediate(int64_t V, EVT VT,
                                    const ARMSubtarget *Subtarget) {
  if (V == 0)
    return true;

  if (!VT.isSimple())
    return false;

  if (Subtarget->isThumb1Only())
    return isLegalT1AddressImmediate(V, VT);
  else if (Subtarget->isThumb2())
    return isLegalT2AddressImmediate(V, VT, Subtarget);

  // ARM mode.
  if (V < 0)
    V = - V;
  switch (VT.getSimpleVT().SimpleTy) {
  default: return false;
  case MVT::i1:
  case MVT::i8:
  case MVT::i32:
    // +- imm12
    return isUInt<12>(V);
  case MVT::i16:
    // +- imm8
    return isUInt<8>(V);
  case MVT::f32:
  case MVT::f64:
    if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
      return false;
    return isShiftedUInt<8, 2>(V);
  }
}

bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
                                                      EVT VT) const {
  int Scale = AM.Scale;
  if (Scale < 0)
    return false;

  switch (VT.getSimpleVT().SimpleTy) {
  default: return false;
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
    if (Scale == 1)
      return true;
    // r + r << imm
    Scale = Scale & ~1;
    return Scale == 2 || Scale == 4 || Scale == 8;
  case MVT::i64:
    // FIXME: What are we trying to model here? ldrd doesn't have an r + r
    // version in Thumb mode.
    // r + r
    if (Scale == 1)
      return true;
    // r * 2 (this can be lowered to r + r).
    if (!AM.HasBaseReg && Scale == 2)
      return true;
    return false;
  case MVT::isVoid:
    // Note, we allow "void" uses (basically, uses that aren't loads or
    // stores), because arm allows folding a scale into many arithmetic
    // operations.  This should be made more precise and revisited later.

    // Allow r << imm, but the imm has to be a multiple of two.
    if (Scale & 1) return false;
    return isPowerOf2_32(Scale);
  }
}

bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
                                                      EVT VT) const {
  const int Scale = AM.Scale;

  // Negative scales are not supported in Thumb1.
  if (Scale < 0)
    return false;

  // Thumb1 addressing modes do not support register scaling excepting the
  // following cases:
  // 1. Scale == 1 means no scaling.
  // 2. Scale == 2 this can be lowered to r + r if there is no base register.
  return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
}

/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                              const AddrMode &AM, Type *Ty,
                                              unsigned AS, Instruction *I) const {
  EVT VT = getValueType(DL, Ty, true);
  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
    return false;

  // Can never fold addr of global into load/store.
  if (AM.BaseGV)
    return false;

  switch (AM.Scale) {
  case 0:  // no scale reg, must be "r+i" or "r", or "i".
    break;
  default:
    // ARM doesn't support any R+R*scale+imm addr modes.
    if (AM.BaseOffs)
      return false;

    if (!VT.isSimple())
      return false;

    if (Subtarget->isThumb1Only())
      return isLegalT1ScaledAddressingMode(AM, VT);

    if (Subtarget->isThumb2())
      return isLegalT2ScaledAddressingMode(AM, VT);

    int Scale = AM.Scale;
    switch (VT.getSimpleVT().SimpleTy) {
    default: return false;
    case MVT::i1:
    case MVT::i8:
    case MVT::i32:
      if (Scale < 0) Scale = -Scale;
      if (Scale == 1)
        return true;
      // r + r << imm
      return isPowerOf2_32(Scale & ~1);
    case MVT::i16:
    case MVT::i64:
      // r +/- r
      if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
        return true;
      // r * 2 (this can be lowered to r + r).
      if (!AM.HasBaseReg && Scale == 2)
        return true;
      return false;

    case MVT::isVoid:
      // Note, we allow "void" uses (basically, uses that aren't loads or
      // stores), because arm allows folding a scale into many arithmetic
      // operations.  This should be made more precise and revisited later.

      // Allow r << imm, but the imm has to be a multiple of two.
      if (Scale & 1) return false;
      return isPowerOf2_32(Scale);
    }
  }
  return true;
}

/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
  // Thumb2 and ARM modes can use cmn for negative immediates.
  if (!Subtarget->isThumb())
    return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
           ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
  if (Subtarget->isThumb2())
    return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
           ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
  // Thumb1 doesn't have cmn, and only 8-bit immediates.
  return Imm >= 0 && Imm <= 255;
}

/// isLegalAddImmediate - Return true if the specified immediate is a legal add
/// *or sub* immediate, that is the target has add or sub instructions which can
/// add a register with the immediate without having to materialize the
/// immediate into a register.
bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
  // Same encoding for add/sub, just flip the sign.
  int64_t AbsImm = std::abs(Imm);
  if (!Subtarget->isThumb())
    return ARM_AM::getSOImmVal(AbsImm) != -1;
  if (Subtarget->isThumb2())
    return ARM_AM::getT2SOImmVal(AbsImm) != -1;
  // Thumb1 only has 8-bit unsigned immediate.
  return AbsImm >= 0 && AbsImm <= 255;
}

static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
                                      bool isSEXTLoad, SDValue &Base,
                                      SDValue &Offset, bool &isInc,
                                      SelectionDAG &DAG) {
  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
    return false;

  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
    // AddressingMode 3
    Base = Ptr->getOperand(0);
    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
      int RHSC = (int)RHS->getZExtValue();
      if (RHSC < 0 && RHSC > -256) {
        assert(Ptr->getOpcode() == ISD::ADD);
        isInc = false;
        Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
        return true;
      }
    }
    isInc = (Ptr->getOpcode() == ISD::ADD);
    Offset = Ptr->getOperand(1);
    return true;
  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
    // AddressingMode 2
    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
      int RHSC = (int)RHS->getZExtValue();
      if (RHSC < 0 && RHSC > -0x1000) {
        assert(Ptr->getOpcode() == ISD::ADD);
        isInc = false;
        Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
        Base = Ptr->getOperand(0);
        return true;
      }
    }

    if (Ptr->getOpcode() == ISD::ADD) {
      isInc = true;
      ARM_AM::ShiftOpc ShOpcVal=
        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
      if (ShOpcVal != ARM_AM::no_shift) {
        Base = Ptr->getOperand(1);
        Offset = Ptr->getOperand(0);
      } else {
        Base = Ptr->getOperand(0);
        Offset = Ptr->getOperand(1);
      }
      return true;
    }

    isInc = (Ptr->getOpcode() == ISD::ADD);
    Base = Ptr->getOperand(0);
    Offset = Ptr->getOperand(1);
    return true;
  }

  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
  return false;
}

static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
                                     bool isSEXTLoad, SDValue &Base,
                                     SDValue &Offset, bool &isInc,
                                     SelectionDAG &DAG) {
  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
    return false;

  Base = Ptr->getOperand(0);
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
    int RHSC = (int)RHS->getZExtValue();
    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
      assert(Ptr->getOpcode() == ISD::ADD);
      isInc = false;
      Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
      return true;
    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
      isInc = Ptr->getOpcode() == ISD::ADD;
      Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
      return true;
    }
  }

  return false;
}

static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, unsigned Align,
                                      bool isSEXTLoad, bool isLE, SDValue &Base,
                                      SDValue &Offset, bool &isInc,
                                      SelectionDAG &DAG) {
  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
    return false;
  if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
    return false;

  ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
  int RHSC = (int)RHS->getZExtValue();

  auto IsInRange = [&](int RHSC, int Limit, int Scale) {
    if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
      assert(Ptr->getOpcode() == ISD::ADD);
      isInc = false;
      Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
      return true;
    } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
      isInc = Ptr->getOpcode() == ISD::ADD;
      Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
      return true;
    }
    return false;
  };

  // Try to find a matching instruction based on s/zext, Alignment, Offset and
  // (in BE) type.
  Base = Ptr->getOperand(0);
  if (VT == MVT::v4i16) {
    if (Align >= 2 && IsInRange(RHSC, 0x80, 2))
      return true;
  } else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
    if (IsInRange(RHSC, 0x80, 1))
      return true;
  } else if (Align >= 4 && (isLE || VT == MVT::v4i32 || VT == MVT::v4f32) &&
             IsInRange(RHSC, 0x80, 4))
    return true;
  else if (Align >= 2 && (isLE || VT == MVT::v8i16 || VT == MVT::v8f16) &&
           IsInRange(RHSC, 0x80, 2))
    return true;
  else if ((isLE || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
    return true;
  return false;
}

/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
                                             SDValue &Offset,
                                             ISD::MemIndexedMode &AM,
                                             SelectionDAG &DAG) const {
  if (Subtarget->isThumb1Only())
    return false;

  EVT VT;
  SDValue Ptr;
  unsigned Align;
  bool isSEXTLoad = false;
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    Ptr = LD->getBasePtr();
    VT = LD->getMemoryVT();
    Align = LD->getAlignment();
    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    Ptr = ST->getBasePtr();
    VT = ST->getMemoryVT();
    Align = ST->getAlignment();
  } else
    return false;

  bool isInc;
  bool isLegal = false;
  if (VT.isVector())
    isLegal = Subtarget->hasMVEIntegerOps() &&
              getMVEIndexedAddressParts(Ptr.getNode(), VT, Align, isSEXTLoad,
                                        Subtarget->isLittle(), Base, Offset,
                                        isInc, DAG);
  else {
    if (Subtarget->isThumb2())
      isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
                                         Offset, isInc, DAG);
    else
      isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
                                          Offset, isInc, DAG);
  }
  if (!isLegal)
    return false;

  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
  return true;
}

/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
                                                   SDValue &Base,
                                                   SDValue &Offset,
                                                   ISD::MemIndexedMode &AM,
                                                   SelectionDAG &DAG) const {
  EVT VT;
  SDValue Ptr;
  unsigned Align;
  bool isSEXTLoad = false, isNonExt;
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    VT = LD->getMemoryVT();
    Ptr = LD->getBasePtr();
    Align = LD->getAlignment();
    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
    isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    VT = ST->getMemoryVT();
    Ptr = ST->getBasePtr();
    Align = ST->getAlignment();
    isNonExt = !ST->isTruncatingStore();
  } else
    return false;

  if (Subtarget->isThumb1Only()) {
    // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
    // must be non-extending/truncating, i32, with an offset of 4.
    assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
    if (Op->getOpcode() != ISD::ADD || !isNonExt)
      return false;
    auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
    if (!RHS || RHS->getZExtValue() != 4)
      return false;

    Offset = Op->getOperand(1);
    Base = Op->getOperand(0);
    AM = ISD::POST_INC;
    return true;
  }

  bool isInc;
  bool isLegal = false;
  if (VT.isVector())
    isLegal = Subtarget->hasMVEIntegerOps() &&
              getMVEIndexedAddressParts(Op, VT, Align, isSEXTLoad,
                                        Subtarget->isLittle(), Base, Offset,
                                        isInc, DAG);
  else {
    if (Subtarget->isThumb2())
      isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
                                         isInc, DAG);
    else
      isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
                                          isInc, DAG);
  }
  if (!isLegal)
    return false;

  if (Ptr != Base) {
    // Swap base ptr and offset to catch more post-index load / store when
    // it's legal. In Thumb2 mode, offset must be an immediate.
    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
        !Subtarget->isThumb2())
      std::swap(Base, Offset);

    // Post-indexed load / store update the base pointer.
    if (Ptr != Base)
      return false;
  }

  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
  return true;
}

void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
                                                      KnownBits &Known,
                                                      const APInt &DemandedElts,
                                                      const SelectionDAG &DAG,
                                                      unsigned Depth) const {
  unsigned BitWidth = Known.getBitWidth();
  Known.resetAll();
  switch (Op.getOpcode()) {
  default: break;
  case ARMISD::ADDC:
  case ARMISD::ADDE:
  case ARMISD::SUBC:
  case ARMISD::SUBE:
    // Special cases when we convert a carry to a boolean.
    if (Op.getResNo() == 0) {
      SDValue LHS = Op.getOperand(0);
      SDValue RHS = Op.getOperand(1);
      // (ADDE 0, 0, C) will give us a single bit.
      if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
          isNullConstant(RHS)) {
        Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
        return;
      }
    }
    break;
  case ARMISD::CMOV: {
    // Bits are known zero/one if known on the LHS and RHS.
    Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
    if (Known.isUnknown())
      return;

    KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
    Known.Zero &= KnownRHS.Zero;
    Known.One  &= KnownRHS.One;
    return;
  }
  case ISD::INTRINSIC_W_CHAIN: {
    ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
    Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
    switch (IntID) {
    default: return;
    case Intrinsic::arm_ldaex:
    case Intrinsic::arm_ldrex: {
      EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
      unsigned MemBits = VT.getScalarSizeInBits();
      Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
      return;
    }
    }
  }
  case ARMISD::BFI: {
    // Conservatively, we can recurse down the first operand
    // and just mask out all affected bits.
    Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);

    // The operand to BFI is already a mask suitable for removing the bits it
    // sets.
    ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
    const APInt &Mask = CI->getAPIntValue();
    Known.Zero &= Mask;
    Known.One &= Mask;
    return;
  }
  case ARMISD::VGETLANEs:
  case ARMISD::VGETLANEu: {
    const SDValue &SrcSV = Op.getOperand(0);
    EVT VecVT = SrcSV.getValueType();
    assert(VecVT.isVector() && "VGETLANE expected a vector type");
    const unsigned NumSrcElts = VecVT.getVectorNumElements();
    ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
    assert(Pos->getAPIntValue().ult(NumSrcElts) &&
           "VGETLANE index out of bounds");
    unsigned Idx = Pos->getZExtValue();
    APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
    Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);

    EVT VT = Op.getValueType();
    const unsigned DstSz = VT.getScalarSizeInBits();
    const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
    (void)SrcSz;
    assert(SrcSz == Known.getBitWidth());
    assert(DstSz > SrcSz);
    if (Op.getOpcode() == ARMISD::VGETLANEs)
      Known = Known.sext(DstSz);
    else {
      Known = Known.zext(DstSz, true /* extended bits are known zero */);
    }
    assert(DstSz == Known.getBitWidth());
    break;
  }
  }
}

bool
ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op,
                                                const APInt &DemandedAPInt,
                                                TargetLoweringOpt &TLO) const {
  // Delay optimization, so we don't have to deal with illegal types, or block
  // optimizations.
  if (!TLO.LegalOps)
    return false;

  // Only optimize AND for now.
  if (Op.getOpcode() != ISD::AND)
    return false;

  EVT VT = Op.getValueType();

  // Ignore vectors.
  if (VT.isVector())
    return false;

  assert(VT == MVT::i32 && "Unexpected integer type");

  // Make sure the RHS really is a constant.
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
  if (!C)
    return false;

  unsigned Mask = C->getZExtValue();

  unsigned Demanded = DemandedAPInt.getZExtValue();
  unsigned ShrunkMask = Mask & Demanded;
  unsigned ExpandedMask = Mask | ~Demanded;

  // If the mask is all zeros, let the target-independent code replace the
  // result with zero.
  if (ShrunkMask == 0)
    return false;

  // If the mask is all ones, erase the AND. (Currently, the target-independent
  // code won't do this, so we have to do it explicitly to avoid an infinite
  // loop in obscure cases.)
  if (ExpandedMask == ~0U)
    return TLO.CombineTo(Op, Op.getOperand(0));

  auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
    return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
  };
  auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
    if (NewMask == Mask)
      return true;
    SDLoc DL(Op);
    SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
    SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
    return TLO.CombineTo(Op, NewOp);
  };

  // Prefer uxtb mask.
  if (IsLegalMask(0xFF))
    return UseMask(0xFF);

  // Prefer uxth mask.
  if (IsLegalMask(0xFFFF))
    return UseMask(0xFFFF);

  // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
  // FIXME: Prefer a contiguous sequence of bits for other optimizations.
  if (ShrunkMask < 256)
    return UseMask(ShrunkMask);

  // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
  // FIXME: Prefer a contiguous sequence of bits for other optimizations.
  if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
    return UseMask(ExpandedMask);

  // Potential improvements:
  //
  // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
  // We could try to prefer Thumb1 immediates which can be lowered to a
  // two-instruction sequence.
  // We could try to recognize more legal ARM/Thumb2 immediates here.

  return false;
}


//===----------------------------------------------------------------------===//
//                           ARM Inline Assembly Support
//===----------------------------------------------------------------------===//

bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
  // Looking for "rev" which is V6+.
  if (!Subtarget->hasV6Ops())
    return false;

  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
  std::string AsmStr = IA->getAsmString();
  SmallVector<StringRef, 4> AsmPieces;
  SplitString(AsmStr, AsmPieces, ";\n");

  switch (AsmPieces.size()) {
  default: return false;
  case 1:
    AsmStr = AsmPieces[0];
    AsmPieces.clear();
    SplitString(AsmStr, AsmPieces, " \t,");

    // rev $0, $1
    if (AsmPieces.size() == 3 &&
        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
      if (Ty && Ty->getBitWidth() == 32)
        return IntrinsicLowering::LowerToByteSwap(CI);
    }
    break;
  }

  return false;
}

const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
  // At this point, we have to lower this constraint to something else, so we
  // lower it to an "r" or "w". However, by doing this we will force the result
  // to be in register, while the X constraint is much more permissive.
  //
  // Although we are correct (we are free to emit anything, without
  // constraints), we might break use cases that would expect us to be more
  // efficient and emit something else.
  if (!Subtarget->hasVFP2Base())
    return "r";
  if (ConstraintVT.isFloatingPoint())
    return "w";
  if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
     (ConstraintVT.getSizeInBits() == 64 ||
      ConstraintVT.getSizeInBits() == 128))
    return "w";

  return "r";
}

/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
ARMTargetLowering::ConstraintType
ARMTargetLowering::getConstraintType(StringRef Constraint) const {
  unsigned S = Constraint.size();
  if (S == 1) {
    switch (Constraint[0]) {
    default:  break;
    case 'l': return C_RegisterClass;
    case 'w': return C_RegisterClass;
    case 'h': return C_RegisterClass;
    case 'x': return C_RegisterClass;
    case 't': return C_RegisterClass;
    case 'j': return C_Immediate; // Constant for movw.
    // An address with a single base register. Due to the way we
    // currently handle addresses it is the same as an 'r' memory constraint.
    case 'Q': return C_Memory;
    }
  } else if (S == 2) {
    switch (Constraint[0]) {
    default: break;
    case 'T': return C_RegisterClass;
    // All 'U+' constraints are addresses.
    case 'U': return C_Memory;
    }
  }
  return TargetLowering::getConstraintType(Constraint);
}

/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
ARMTargetLowering::getSingleConstraintMatchWeight(
    AsmOperandInfo &info, const char *constraint) const {
  ConstraintWeight weight = CW_Invalid;
  Value *CallOperandVal = info.CallOperandVal;
    // If we don't have a value, we can't do a match,
    // but allow it at the lowest weight.
  if (!CallOperandVal)
    return CW_Default;
  Type *type = CallOperandVal->getType();
  // Look at the constraint type.
  switch (*constraint) {
  default:
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    break;
  case 'l':
    if (type->isIntegerTy()) {
      if (Subtarget->isThumb())
        weight = CW_SpecificReg;
      else
        weight = CW_Register;
    }
    break;
  case 'w':
    if (type->isFloatingPointTy())
      weight = CW_Register;
    break;
  }
  return weight;
}

using RCPair = std::pair<unsigned, const TargetRegisterClass *>;

RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
  switch (Constraint.size()) {
  case 1:
    // GCC ARM Constraint Letters
    switch (Constraint[0]) {
    case 'l': // Low regs or general regs.
      if (Subtarget->isThumb())
        return RCPair(0U, &ARM::tGPRRegClass);
      return RCPair(0U, &ARM::GPRRegClass);
    case 'h': // High regs or no regs.
      if (Subtarget->isThumb())
        return RCPair(0U, &ARM::hGPRRegClass);
      break;
    case 'r':
      if (Subtarget->isThumb1Only())
        return RCPair(0U, &ARM::tGPRRegClass);
      return RCPair(0U, &ARM::GPRRegClass);
    case 'w':
      if (VT == MVT::Other)
        break;
      if (VT == MVT::f32)
        return RCPair(0U, &ARM::SPRRegClass);
      if (VT.getSizeInBits() == 64)
        return RCPair(0U, &ARM::DPRRegClass);
      if (VT.getSizeInBits() == 128)
        return RCPair(0U, &ARM::QPRRegClass);
      break;
    case 'x':
      if (VT == MVT::Other)
        break;
      if (VT == MVT::f32)
        return RCPair(0U, &ARM::SPR_8RegClass);
      if (VT.getSizeInBits() == 64)
        return RCPair(0U, &ARM::DPR_8RegClass);
      if (VT.getSizeInBits() == 128)
        return RCPair(0U, &ARM::QPR_8RegClass);
      break;
    case 't':
      if (VT == MVT::Other)
        break;
      if (VT == MVT::f32 || VT == MVT::i32)
        return RCPair(0U, &ARM::SPRRegClass);
      if (VT.getSizeInBits() == 64)
        return RCPair(0U, &ARM::DPR_VFP2RegClass);
      if (VT.getSizeInBits() == 128)
        return RCPair(0U, &ARM::QPR_VFP2RegClass);
      break;
    }
    break;

  case 2:
    if (Constraint[0] == 'T') {
      switch (Constraint[1]) {
      default:
        break;
      case 'e':
        return RCPair(0U, &ARM::tGPREvenRegClass);
      case 'o':
        return RCPair(0U, &ARM::tGPROddRegClass);
      }
    }
    break;

  default:
    break;
  }

  if (StringRef("{cc}").equals_lower(Constraint))
    return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);

  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}

/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector.  If it is invalid, don't add anything to Ops.
void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
                                                     std::string &Constraint,
                                                     std::vector<SDValue>&Ops,
                                                     SelectionDAG &DAG) const {
  SDValue Result;

  // Currently only support length 1 constraints.
  if (Constraint.length() != 1) return;

  char ConstraintLetter = Constraint[0];
  switch (ConstraintLetter) {
  default: break;
  case 'j':
  case 'I': case 'J': case 'K': case 'L':
  case 'M': case 'N': case 'O':
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
    if (!C)
      return;

    int64_t CVal64 = C->getSExtValue();
    int CVal = (int) CVal64;
    // None of these constraints allow values larger than 32 bits.  Check
    // that the value fits in an int.
    if (CVal != CVal64)
      return;

    switch (ConstraintLetter) {
      case 'j':
        // Constant suitable for movw, must be between 0 and
        // 65535.
        if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
          if (CVal >= 0 && CVal <= 65535)
            break;
        return;
      case 'I':
        if (Subtarget->isThumb1Only()) {
          // This must be a constant between 0 and 255, for ADD
          // immediates.
          if (CVal >= 0 && CVal <= 255)
            break;
        } else if (Subtarget->isThumb2()) {
          // A constant that can be used as an immediate value in a
          // data-processing instruction.
          if (ARM_AM::getT2SOImmVal(CVal) != -1)
            break;
        } else {
          // A constant that can be used as an immediate value in a
          // data-processing instruction.
          if (ARM_AM::getSOImmVal(CVal) != -1)
            break;
        }
        return;

      case 'J':
        if (Subtarget->isThumb1Only()) {
          // This must be a constant between -255 and -1, for negated ADD
          // immediates. This can be used in GCC with an "n" modifier that
          // prints the negated value, for use with SUB instructions. It is
          // not useful otherwise but is implemented for compatibility.
          if (CVal >= -255 && CVal <= -1)
            break;
        } else {
          // This must be a constant between -4095 and 4095. It is not clear
          // what this constraint is intended for. Implemented for
          // compatibility with GCC.
          if (CVal >= -4095 && CVal <= 4095)
            break;
        }
        return;

      case 'K':
        if (Subtarget->isThumb1Only()) {
          // A 32-bit value where only one byte has a nonzero value. Exclude
          // zero to match GCC. This constraint is used by GCC internally for
          // constants that can be loaded with a move/shift combination.
          // It is not useful otherwise but is implemented for compatibility.
          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
            break;
        } else if (Subtarget->isThumb2()) {
          // A constant whose bitwise inverse can be used as an immediate
          // value in a data-processing instruction. This can be used in GCC
          // with a "B" modifier that prints the inverted value, for use with
          // BIC and MVN instructions. It is not useful otherwise but is
          // implemented for compatibility.
          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
            break;
        } else {
          // A constant whose bitwise inverse can be used as an immediate
          // value in a data-processing instruction. This can be used in GCC
          // with a "B" modifier that prints the inverted value, for use with
          // BIC and MVN instructions. It is not useful otherwise but is
          // implemented for compatibility.
          if (ARM_AM::getSOImmVal(~CVal) != -1)
            break;
        }
        return;

      case 'L':
        if (Subtarget->isThumb1Only()) {
          // This must be a constant between -7 and 7,
          // for 3-operand ADD/SUB immediate instructions.
          if (CVal >= -7 && CVal < 7)
            break;
        } else if (Subtarget->isThumb2()) {
          // A constant whose negation can be used as an immediate value in a
          // data-processing instruction. This can be used in GCC with an "n"
          // modifier that prints the negated value, for use with SUB
          // instructions. It is not useful otherwise but is implemented for
          // compatibility.
          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
            break;
        } else {
          // A constant whose negation can be used as an immediate value in a
          // data-processing instruction. This can be used in GCC with an "n"
          // modifier that prints the negated value, for use with SUB
          // instructions. It is not useful otherwise but is implemented for
          // compatibility.
          if (ARM_AM::getSOImmVal(-CVal) != -1)
            break;
        }
        return;

      case 'M':
        if (Subtarget->isThumb1Only()) {
          // This must be a multiple of 4 between 0 and 1020, for
          // ADD sp + immediate.
          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
            break;
        } else {
          // A power of two or a constant between 0 and 32.  This is used in
          // GCC for the shift amount on shifted register operands, but it is
          // useful in general for any shift amounts.
          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
            break;
        }
        return;

      case 'N':
        if (Subtarget->isThumb1Only()) {
          // This must be a constant between 0 and 31, for shift amounts.
          if (CVal >= 0 && CVal <= 31)
            break;
        }
        return;

      case 'O':
        if (Subtarget->isThumb1Only()) {
          // This must be a multiple of 4 between -508 and 508, for
          // ADD/SUB sp = sp + immediate.
          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
            break;
        }
        return;
    }
    Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
    break;
  }

  if (Result.getNode()) {
    Ops.push_back(Result);
    return;
  }
  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}

static RTLIB::Libcall getDivRemLibcall(
    const SDNode *N, MVT::SimpleValueType SVT) {
  assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
          N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
         "Unhandled Opcode in getDivRemLibcall");
  bool isSigned = N->getOpcode() == ISD::SDIVREM ||
                  N->getOpcode() == ISD::SREM;
  RTLIB::Libcall LC;
  switch (SVT) {
  default: llvm_unreachable("Unexpected request for libcall!");
  case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
  case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
  case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
  case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
  }
  return LC;
}

static TargetLowering::ArgListTy getDivRemArgList(
    const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
  assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
          N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
         "Unhandled Opcode in getDivRemArgList");
  bool isSigned = N->getOpcode() == ISD::SDIVREM ||
                  N->getOpcode() == ISD::SREM;
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    EVT ArgVT = N->getOperand(i).getValueType();
    Type *ArgTy = ArgVT.getTypeForEVT(*Context);
    Entry.Node = N->getOperand(i);
    Entry.Ty = ArgTy;
    Entry.IsSExt = isSigned;
    Entry.IsZExt = !isSigned;
    Args.push_back(Entry);
  }
  if (Subtarget->isTargetWindows() && Args.size() >= 2)
    std::swap(Args[0], Args[1]);
  return Args;
}

SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
  assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
          Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
          Subtarget->isTargetWindows()) &&
         "Register-based DivRem lowering only");
  unsigned Opcode = Op->getOpcode();
  assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
         "Invalid opcode for Div/Rem lowering");
  bool isSigned = (Opcode == ISD::SDIVREM);
  EVT VT = Op->getValueType(0);
  Type *Ty = VT.getTypeForEVT(*DAG.getContext());
  SDLoc dl(Op);

  // If the target has hardware divide, use divide + multiply + subtract:
  //     div = a / b
  //     rem = a - b * div
  //     return {div, rem}
  // This should be lowered into UDIV/SDIV + MLS later on.
  bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
                                        : Subtarget->hasDivideInARMMode();
  if (hasDivide && Op->getValueType(0).isSimple() &&
      Op->getSimpleValueType(0) == MVT::i32) {
    unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
    const SDValue Dividend = Op->getOperand(0);
    const SDValue Divisor = Op->getOperand(1);
    SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
    SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
    SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);

    SDValue Values[2] = {Div, Rem};
    return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
  }

  RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
                                       VT.getSimpleVT().SimpleTy);
  SDValue InChain = DAG.getEntryNode();

  TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
                                                    DAG.getContext(),
                                                    Subtarget);

  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
                                         getPointerTy(DAG.getDataLayout()));

  Type *RetTy = StructType::get(Ty, Ty);

  if (Subtarget->isTargetWindows())
    InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);

  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(dl).setChain(InChain)
    .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
    .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);

  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
  return CallInfo.first;
}

// Lowers REM using divmod helpers
// see RTABI section 4.2/4.3
SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
  // Build return types (div and rem)
  std::vector<Type*> RetTyParams;
  Type *RetTyElement;

  switch (N->getValueType(0).getSimpleVT().SimpleTy) {
  default: llvm_unreachable("Unexpected request for libcall!");
  case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
  case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
  case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
  case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
  }

  RetTyParams.push_back(RetTyElement);
  RetTyParams.push_back(RetTyElement);
  ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
  Type *RetTy = StructType::get(*DAG.getContext(), ret);

  RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
                                                             SimpleTy);
  SDValue InChain = DAG.getEntryNode();
  TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
                                                    Subtarget);
  bool isSigned = N->getOpcode() == ISD::SREM;
  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
                                         getPointerTy(DAG.getDataLayout()));

  if (Subtarget->isTargetWindows())
    InChain = WinDBZCheckDenominator(DAG, N, InChain);

  // Lower call
  CallLoweringInfo CLI(DAG);
  CLI.setChain(InChain)
     .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
     .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);

  // Return second (rem) result operand (first contains div)
  SDNode *ResNode = CallResult.first.getNode();
  assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
  return ResNode->getOperand(1);
}

SDValue
ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
  assert(Subtarget->isTargetWindows() && "unsupported target platform");
  SDLoc DL(Op);

  // Get the inputs.
  SDValue Chain = Op.getOperand(0);
  SDValue Size  = Op.getOperand(1);

  if (DAG.getMachineFunction().getFunction().hasFnAttribute(
          "no-stack-arg-probe")) {
    unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
    SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
    Chain = SP.getValue(1);
    SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
    if (Align)
      SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
                       DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
    Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
    SDValue Ops[2] = { SP, Chain };
    return DAG.getMergeValues(Ops, DL);
  }

  SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
                              DAG.getConstant(2, DL, MVT::i32));

  SDValue Flag;
  Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
  Flag = Chain.getValue(1);

  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);

  SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
  Chain = NewSP.getValue(1);

  SDValue Ops[2] = { NewSP, Chain };
  return DAG.getMergeValues(Ops, DL);
}

SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
  SDValue SrcVal = Op.getOperand(0);
  const unsigned DstSz = Op.getValueType().getSizeInBits();
  const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
  assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
         "Unexpected type for custom-lowering FP_EXTEND");

  assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
         "With both FP DP and 16, any FP conversion is legal!");

  assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
         "With FP16, 16 to 32 conversion is legal!");

  // Either we are converting from 16 -> 64, without FP16 and/or
  // FP.double-precision or without Armv8-fp. So we must do it in two
  // steps.
  // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
  // without FP16. So we must do a function call.
  SDLoc Loc(Op);
  RTLIB::Libcall LC;
  MakeLibCallOptions CallOptions;
  if (SrcSz == 16) {
    // Instruction from 16 -> 32
    if (Subtarget->hasFP16())
      SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f32, SrcVal);
    // Lib call from 16 -> 32
    else {
      LC = RTLIB::getFPEXT(MVT::f16, MVT::f32);
      assert(LC != RTLIB::UNKNOWN_LIBCALL &&
             "Unexpected type for custom-lowering FP_EXTEND");
      SrcVal =
        makeLibCall(DAG, LC, MVT::f32, SrcVal, CallOptions, Loc).first;
    }
  }

  if (DstSz != 64)
    return SrcVal;
  // For sure now SrcVal is 32 bits
  if (Subtarget->hasFP64()) // Instruction from 32 -> 64
    return DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f64, SrcVal);

  LC = RTLIB::getFPEXT(MVT::f32, MVT::f64);
  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
         "Unexpected type for custom-lowering FP_EXTEND");
  return makeLibCall(DAG, LC, MVT::f64, SrcVal, CallOptions, Loc).first;
}

SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
  SDValue SrcVal = Op.getOperand(0);
  EVT SrcVT = SrcVal.getValueType();
  EVT DstVT = Op.getValueType();
  const unsigned DstSz = Op.getValueType().getSizeInBits();
  const unsigned SrcSz = SrcVT.getSizeInBits();
  (void)DstSz;
  assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
         "Unexpected type for custom-lowering FP_ROUND");

  assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
         "With both FP DP and 16, any FP conversion is legal!");

  SDLoc Loc(Op);

  // Instruction from 32 -> 16 if hasFP16 is valid
  if (SrcSz == 32 && Subtarget->hasFP16())
    return Op;

  // Lib call from 32 -> 16 / 64 -> [32, 16]
  RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
         "Unexpected type for custom-lowering FP_ROUND");
  MakeLibCallOptions CallOptions;
  return makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions, Loc).first;
}

void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
                                 SelectionDAG &DAG) const {
  assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
  MVT HalfT = MVT::i32;
  SDLoc dl(N);
  SDValue Hi, Lo, Tmp;

  if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
      !isOperationLegalOrCustom(ISD::UADDO, HalfT))
    return ;

  unsigned OpTypeBits = HalfT.getScalarSizeInBits();
  SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);

  Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
                   DAG.getConstant(0, dl, HalfT));
  Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
                   DAG.getConstant(1, dl, HalfT));

  Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
                    DAG.getConstant(OpTypeBits - 1, dl,
                    getShiftAmountTy(HalfT, DAG.getDataLayout())));
  Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
  Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
                   SDValue(Lo.getNode(), 1));
  Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
  Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);

  Results.push_back(Lo);
  Results.push_back(Hi);
}

bool
ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
  // The ARM target isn't yet aware of offsets.
  return false;
}

bool ARM::isBitFieldInvertedMask(unsigned v) {
  if (v == 0xffffffff)
    return false;

  // there can be 1's on either or both "outsides", all the "inside"
  // bits must be 0's
  return isShiftedMask_32(~v);
}

/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
                                     bool ForCodeSize) const {
  if (!Subtarget->hasVFP3Base())
    return false;
  if (VT == MVT::f16 && Subtarget->hasFullFP16())
    return ARM_AM::getFP16Imm(Imm) != -1;
  if (VT == MVT::f32)
    return ARM_AM::getFP32Imm(Imm) != -1;
  if (VT == MVT::f64 && Subtarget->hasFP64())
    return ARM_AM::getFP64Imm(Imm) != -1;
  return false;
}

/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
/// specified in the intrinsic calls.
bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
                                           const CallInst &I,
                                           MachineFunction &MF,
                                           unsigned Intrinsic) const {
  switch (Intrinsic) {
  case Intrinsic::arm_neon_vld1:
  case Intrinsic::arm_neon_vld2:
  case Intrinsic::arm_neon_vld3:
  case Intrinsic::arm_neon_vld4:
  case Intrinsic::arm_neon_vld2lane:
  case Intrinsic::arm_neon_vld3lane:
  case Intrinsic::arm_neon_vld4lane:
  case Intrinsic::arm_neon_vld2dup:
  case Intrinsic::arm_neon_vld3dup:
  case Intrinsic::arm_neon_vld4dup: {
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    // Conservatively set memVT to the entire set of vectors loaded.
    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
    uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
    Info.align = MaybeAlign(cast<ConstantInt>(AlignArg)->getZExtValue());
    // volatile loads with NEON intrinsics not supported
    Info.flags = MachineMemOperand::MOLoad;
    return true;
  }
  case Intrinsic::arm_neon_vld1x2:
  case Intrinsic::arm_neon_vld1x3:
  case Intrinsic::arm_neon_vld1x4: {
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    // Conservatively set memVT to the entire set of vectors loaded.
    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
    uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
    Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
    Info.offset = 0;
    Info.align.reset();
    // volatile loads with NEON intrinsics not supported
    Info.flags = MachineMemOperand::MOLoad;
    return true;
  }
  case Intrinsic::arm_neon_vst1:
  case Intrinsic::arm_neon_vst2:
  case Intrinsic::arm_neon_vst3:
  case Intrinsic::arm_neon_vst4:
  case Intrinsic::arm_neon_vst2lane:
  case Intrinsic::arm_neon_vst3lane:
  case Intrinsic::arm_neon_vst4lane: {
    Info.opc = ISD::INTRINSIC_VOID;
    // Conservatively set memVT to the entire set of vectors stored.
    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
    unsigned NumElts = 0;
    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
      Type *ArgTy = I.getArgOperand(ArgI)->getType();
      if (!ArgTy->isVectorTy())
        break;
      NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
    }
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
    Info.align = MaybeAlign(cast<ConstantInt>(AlignArg)->getZExtValue());
    // volatile stores with NEON intrinsics not supported
    Info.flags = MachineMemOperand::MOStore;
    return true;
  }
  case Intrinsic::arm_neon_vst1x2:
  case Intrinsic::arm_neon_vst1x3:
  case Intrinsic::arm_neon_vst1x4: {
    Info.opc = ISD::INTRINSIC_VOID;
    // Conservatively set memVT to the entire set of vectors stored.
    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
    unsigned NumElts = 0;
    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
      Type *ArgTy = I.getArgOperand(ArgI)->getType();
      if (!ArgTy->isVectorTy())
        break;
      NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
    }
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align.reset();
    // volatile stores with NEON intrinsics not supported
    Info.flags = MachineMemOperand::MOStore;
    return true;
  }
  case Intrinsic::arm_ldaex:
  case Intrinsic::arm_ldrex: {
    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(PtrTy->getElementType());
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
    return true;
  }
  case Intrinsic::arm_stlex:
  case Intrinsic::arm_strex: {
    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(PtrTy->getElementType());
    Info.ptrVal = I.getArgOperand(1);
    Info.offset = 0;
    Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
    return true;
  }
  case Intrinsic::arm_stlexd:
  case Intrinsic::arm_strexd:
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::i64;
    Info.ptrVal = I.getArgOperand(2);
    Info.offset = 0;
    Info.align = Align(8);
    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
    return true;

  case Intrinsic::arm_ldaexd:
  case Intrinsic::arm_ldrexd:
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::i64;
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align = Align(8);
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
    return true;

  default:
    break;
  }

  return false;
}

/// Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                                          Type *Ty) const {
  assert(Ty->isIntegerTy());

  unsigned Bits = Ty->getPrimitiveSizeInBits();
  if (Bits == 0 || Bits > 32)
    return false;
  return true;
}

bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
                                                unsigned Index) const {
  if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
    return false;

  return (Index == 0 || Index == ResVT.getVectorNumElements());
}

Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
                                        ARM_MB::MemBOpt Domain) const {
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();

  // First, if the target has no DMB, see what fallback we can use.
  if (!Subtarget->hasDataBarrier()) {
    // Some ARMv6 cpus can support data barriers with an mcr instruction.
    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
    // here.
    if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
      Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
      Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
                        Builder.getInt32(0), Builder.getInt32(7),
                        Builder.getInt32(10), Builder.getInt32(5)};
      return Builder.CreateCall(MCR, args);
    } else {
      // Instead of using barriers, atomic accesses on these subtargets use
      // libcalls.
      llvm_unreachable("makeDMB on a target so old that it has no barriers");
    }
  } else {
    Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
    // Only a full system barrier exists in the M-class architectures.
    Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
    Constant *CDomain = Builder.getInt32(Domain);
    return Builder.CreateCall(DMB, CDomain);
  }
}

// Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
                                                 Instruction *Inst,
                                                 AtomicOrdering Ord) const {
  switch (Ord) {
  case AtomicOrdering::NotAtomic:
  case AtomicOrdering::Unordered:
    llvm_unreachable("Invalid fence: unordered/non-atomic");
  case AtomicOrdering::Monotonic:
  case AtomicOrdering::Acquire:
    return nullptr; // Nothing to do
  case AtomicOrdering::SequentiallyConsistent:
    if (!Inst->hasAtomicStore())
      return nullptr; // Nothing to do
    LLVM_FALLTHROUGH;
  case AtomicOrdering::Release:
  case AtomicOrdering::AcquireRelease:
    if (Subtarget->preferISHSTBarriers())
      return makeDMB(Builder, ARM_MB::ISHST);
    // FIXME: add a comment with a link to documentation justifying this.
    else
      return makeDMB(Builder, ARM_MB::ISH);
  }
  llvm_unreachable("Unknown fence ordering in emitLeadingFence");
}

Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
                                                  Instruction *Inst,
                                                  AtomicOrdering Ord) const {
  switch (Ord) {
  case AtomicOrdering::NotAtomic:
  case AtomicOrdering::Unordered:
    llvm_unreachable("Invalid fence: unordered/not-atomic");
  case AtomicOrdering::Monotonic:
  case AtomicOrdering::Release:
    return nullptr; // Nothing to do
  case AtomicOrdering::Acquire:
  case AtomicOrdering::AcquireRelease:
  case AtomicOrdering::SequentiallyConsistent:
    return makeDMB(Builder, ARM_MB::ISH);
  }
  llvm_unreachable("Unknown fence ordering in emitTrailingFence");
}

// Loads and stores less than 64-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
// anything for those.
bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
  unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
  return (Size == 64) && !Subtarget->isMClass();
}

// Loads and stores less than 64-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
// anything for those.
// FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
// guarantee, see DDI0406C ARM architecture reference manual,
// sections A8.8.72-74 LDRD)
TargetLowering::AtomicExpansionKind
ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
  unsigned Size = LI->getType()->getPrimitiveSizeInBits();
  return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
                                                  : AtomicExpansionKind::None;
}

// For the real atomic operations, we have ldrex/strex up to 32 bits,
// and up to 64 bits on the non-M profiles
TargetLowering::AtomicExpansionKind
ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
  if (AI->isFloatingPointOperation())
    return AtomicExpansionKind::CmpXChg;

  unsigned Size = AI->getType()->getPrimitiveSizeInBits();
  bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
  return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
             ? AtomicExpansionKind::LLSC
             : AtomicExpansionKind::None;
}

TargetLowering::AtomicExpansionKind
ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
  // At -O0, fast-regalloc cannot cope with the live vregs necessary to
  // implement cmpxchg without spilling. If the address being exchanged is also
  // on the stack and close enough to the spill slot, this can lead to a
  // situation where the monitor always gets cleared and the atomic operation
  // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
  bool HasAtomicCmpXchg =
      !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
  if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg)
    return AtomicExpansionKind::LLSC;
  return AtomicExpansionKind::None;
}

bool ARMTargetLowering::shouldInsertFencesForAtomic(
    const Instruction *I) const {
  return InsertFencesForAtomic;
}

// This has so far only been implemented for MachO.
bool ARMTargetLowering::useLoadStackGuardNode() const {
  return Subtarget->isTargetMachO();
}

void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
  if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
    return TargetLowering::insertSSPDeclarations(M);

  // MSVC CRT has a global variable holding security cookie.
  M.getOrInsertGlobal("__security_cookie",
                      Type::getInt8PtrTy(M.getContext()));

  // MSVC CRT has a function to validate security cookie.
  FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
      "__security_check_cookie", Type::getVoidTy(M.getContext()),
      Type::getInt8PtrTy(M.getContext()));
  if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
    F->addAttribute(1, Attribute::AttrKind::InReg);
}

Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
  // MSVC CRT has a global variable holding security cookie.
  if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
    return M.getGlobalVariable("__security_cookie");
  return TargetLowering::getSDagStackGuard(M);
}

Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
  // MSVC CRT has a function to validate security cookie.
  if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
    return M.getFunction("__security_check_cookie");
  return TargetLowering::getSSPStackGuardCheck(M);
}

bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
                                                  unsigned &Cost) const {
  // If we do not have NEON, vector types are not natively supported.
  if (!Subtarget->hasNEON())
    return false;

  // Floating point values and vector values map to the same register file.
  // Therefore, although we could do a store extract of a vector type, this is
  // better to leave at float as we have more freedom in the addressing mode for
  // those.
  if (VectorTy->isFPOrFPVectorTy())
    return false;

  // If the index is unknown at compile time, this is very expensive to lower
  // and it is not possible to combine the store with the extract.
  if (!isa<ConstantInt>(Idx))
    return false;

  assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
  unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
  // We can do a store + vector extract on any vector that fits perfectly in a D
  // or Q register.
  if (BitWidth == 64 || BitWidth == 128) {
    Cost = 0;
    return true;
  }
  return false;
}

bool ARMTargetLowering::isCheapToSpeculateCttz() const {
  return Subtarget->hasV6T2Ops();
}

bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
  return Subtarget->hasV6T2Ops();
}

bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
  return !Subtarget->hasMinSize();
}

Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
                                         AtomicOrdering Ord) const {
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
  Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
  bool IsAcquire = isAcquireOrStronger(Ord);

  // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
  // intrinsic must return {i32, i32} and we have to recombine them into a
  // single i64 here.
  if (ValTy->getPrimitiveSizeInBits() == 64) {
    Intrinsic::ID Int =
        IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
    Function *Ldrex = Intrinsic::getDeclaration(M, Int);

    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
    Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");

    Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
    Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
    if (!Subtarget->isLittle())
      std::swap (Lo, Hi);
    Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
    Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
    return Builder.CreateOr(
        Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
  }

  Type *Tys[] = { Addr->getType() };
  Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
  Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);

  return Builder.CreateTruncOrBitCast(
      Builder.CreateCall(Ldrex, Addr),
      cast<PointerType>(Addr->getType())->getElementType());
}

void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
    IRBuilder<> &Builder) const {
  if (!Subtarget->hasV7Ops())
    return;
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
  Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
}

Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
                                               Value *Addr,
                                               AtomicOrdering Ord) const {
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
  bool IsRelease = isReleaseOrStronger(Ord);

  // Since the intrinsics must have legal type, the i64 intrinsics take two
  // parameters: "i32, i32". We must marshal Val into the appropriate form
  // before the call.
  if (Val->getType()->getPrimitiveSizeInBits() == 64) {
    Intrinsic::ID Int =
        IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
    Function *Strex = Intrinsic::getDeclaration(M, Int);
    Type *Int32Ty = Type::getInt32Ty(M->getContext());

    Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
    Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
    if (!Subtarget->isLittle())
      std::swap(Lo, Hi);
    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
    return Builder.CreateCall(Strex, {Lo, Hi, Addr});
  }

  Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
  Type *Tys[] = { Addr->getType() };
  Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);

  return Builder.CreateCall(
      Strex, {Builder.CreateZExtOrBitCast(
                  Val, Strex->getFunctionType()->getParamType(0)),
              Addr});
}


bool ARMTargetLowering::alignLoopsWithOptSize() const {
  return Subtarget->isMClass();
}

/// A helper function for determining the number of interleaved accesses we
/// will generate when lowering accesses of the given type.
unsigned
ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
                                             const DataLayout &DL) const {
  return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
}

bool ARMTargetLowering::isLegalInterleavedAccessType(
    VectorType *VecTy, const DataLayout &DL) const {

  unsigned VecSize = DL.getTypeSizeInBits(VecTy);
  unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());

  // Ensure the vector doesn't have f16 elements. Even though we could do an
  // i16 vldN, we can't hold the f16 vectors and will end up converting via
  // f32.
  if (VecTy->getElementType()->isHalfTy())
    return false;

  // Ensure the number of vector elements is greater than 1.
  if (VecTy->getNumElements() < 2)
    return false;

  // Ensure the element type is legal.
  if (ElSize != 8 && ElSize != 16 && ElSize != 32)
    return false;

  // Ensure the total vector size is 64 or a multiple of 128. Types larger than
  // 128 will be split into multiple interleaved accesses.
  return VecSize == 64 || VecSize % 128 == 0;
}

unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
  if (Subtarget->hasNEON())
    return 4;
  return TargetLoweringBase::getMaxSupportedInterleaveFactor();
}

/// Lower an interleaved load into a vldN intrinsic.
///
/// E.g. Lower an interleaved load (Factor = 2):
///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
///
///      Into:
///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
bool ARMTargetLowering::lowerInterleavedLoad(
    LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
    ArrayRef<unsigned> Indices, unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");
  assert(!Shuffles.empty() && "Empty shufflevector input");
  assert(Shuffles.size() == Indices.size() &&
         "Unmatched number of shufflevectors and indices");

  VectorType *VecTy = Shuffles[0]->getType();
  Type *EltTy = VecTy->getVectorElementType();

  const DataLayout &DL = LI->getModule()->getDataLayout();

  // Skip if we do not have NEON and skip illegal vector types. We can
  // "legalize" wide vector types into multiple interleaved accesses as long as
  // the vector types are divisible by 128.
  if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
    return false;

  unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);

  // A pointer vector can not be the return type of the ldN intrinsics. Need to
  // load integer vectors first and then convert to pointer vectors.
  if (EltTy->isPointerTy())
    VecTy =
        VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());

  IRBuilder<> Builder(LI);

  // The base address of the load.
  Value *BaseAddr = LI->getPointerOperand();

  if (NumLoads > 1) {
    // If we're going to generate more than one load, reset the sub-vector type
    // to something legal.
    VecTy = VectorType::get(VecTy->getVectorElementType(),
                            VecTy->getVectorNumElements() / NumLoads);

    // We will compute the pointer operand of each load from the original base
    // address using GEPs. Cast the base address to a pointer to the scalar
    // element type.
    BaseAddr = Builder.CreateBitCast(
        BaseAddr, VecTy->getVectorElementType()->getPointerTo(
                      LI->getPointerAddressSpace()));
  }

  assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");

  Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
  Type *Tys[] = {VecTy, Int8Ptr};
  static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
                                            Intrinsic::arm_neon_vld3,
                                            Intrinsic::arm_neon_vld4};
  Function *VldnFunc =
      Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);

  // Holds sub-vectors extracted from the load intrinsic return values. The
  // sub-vectors are associated with the shufflevector instructions they will
  // replace.
  DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;

  for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
    // If we're generating more than one load, compute the base address of
    // subsequent loads as an offset from the previous.
    if (LoadCount > 0)
      BaseAddr =
          Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
                                     VecTy->getVectorNumElements() * Factor);

    SmallVector<Value *, 2> Ops;
    Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
    Ops.push_back(Builder.getInt32(LI->getAlignment()));

    CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");

    // Replace uses of each shufflevector with the corresponding vector loaded
    // by ldN.
    for (unsigned i = 0; i < Shuffles.size(); i++) {
      ShuffleVectorInst *SV = Shuffles[i];
      unsigned Index = Indices[i];

      Value *SubVec = Builder.CreateExtractValue(VldN, Index);

      // Convert the integer vector to pointer vector if the element is pointer.
      if (EltTy->isPointerTy())
        SubVec = Builder.CreateIntToPtr(
            SubVec, VectorType::get(SV->getType()->getVectorElementType(),
                                    VecTy->getVectorNumElements()));

      SubVecs[SV].push_back(SubVec);
    }
  }

  // Replace uses of the shufflevector instructions with the sub-vectors
  // returned by the load intrinsic. If a shufflevector instruction is
  // associated with more than one sub-vector, those sub-vectors will be
  // concatenated into a single wide vector.
  for (ShuffleVectorInst *SVI : Shuffles) {
    auto &SubVec = SubVecs[SVI];
    auto *WideVec =
        SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
    SVI->replaceAllUsesWith(WideVec);
  }

  return true;
}

/// Lower an interleaved store into a vstN intrinsic.
///
/// E.g. Lower an interleaved store (Factor = 3):
///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
///
///      Into:
///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
///
/// Note that the new shufflevectors will be removed and we'll only generate one
/// vst3 instruction in CodeGen.
///
/// Example for a more general valid mask (Factor 3). Lower:
///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
///        store <12 x i32> %i.vec, <12 x i32>* %ptr
///
///      Into:
///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
                                              ShuffleVectorInst *SVI,
                                              unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");

  VectorType *VecTy = SVI->getType();
  assert(VecTy->getVectorNumElements() % Factor == 0 &&
         "Invalid interleaved store");

  unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
  Type *EltTy = VecTy->getVectorElementType();
  VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);

  const DataLayout &DL = SI->getModule()->getDataLayout();

  // Skip if we do not have NEON and skip illegal vector types. We can
  // "legalize" wide vector types into multiple interleaved accesses as long as
  // the vector types are divisible by 128.
  if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
    return false;

  unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);

  Value *Op0 = SVI->getOperand(0);
  Value *Op1 = SVI->getOperand(1);
  IRBuilder<> Builder(SI);

  // StN intrinsics don't support pointer vectors as arguments. Convert pointer
  // vectors to integer vectors.
  if (EltTy->isPointerTy()) {
    Type *IntTy = DL.getIntPtrType(EltTy);

    // Convert to the corresponding integer vector.
    Type *IntVecTy =
        VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
    Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
    Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);

    SubVecTy = VectorType::get(IntTy, LaneLen);
  }

  // The base address of the store.
  Value *BaseAddr = SI->getPointerOperand();

  if (NumStores > 1) {
    // If we're going to generate more than one store, reset the lane length
    // and sub-vector type to something legal.
    LaneLen /= NumStores;
    SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);

    // We will compute the pointer operand of each store from the original base
    // address using GEPs. Cast the base address to a pointer to the scalar
    // element type.
    BaseAddr = Builder.CreateBitCast(
        BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
                      SI->getPointerAddressSpace()));
  }

  assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");

  auto Mask = SVI->getShuffleMask();

  Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
  Type *Tys[] = {Int8Ptr, SubVecTy};
  static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
                                             Intrinsic::arm_neon_vst3,
                                             Intrinsic::arm_neon_vst4};

  for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
    // If we generating more than one store, we compute the base address of
    // subsequent stores as an offset from the previous.
    if (StoreCount > 0)
      BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
                                            BaseAddr, LaneLen * Factor);

    SmallVector<Value *, 6> Ops;
    Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));

    Function *VstNFunc =
        Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);

    // Split the shufflevector operands into sub vectors for the new vstN call.
    for (unsigned i = 0; i < Factor; i++) {
      unsigned IdxI = StoreCount * LaneLen * Factor + i;
      if (Mask[IdxI] >= 0) {
        Ops.push_back(Builder.CreateShuffleVector(
            Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
      } else {
        unsigned StartMask = 0;
        for (unsigned j = 1; j < LaneLen; j++) {
          unsigned IdxJ = StoreCount * LaneLen * Factor + j;
          if (Mask[IdxJ * Factor + IdxI] >= 0) {
            StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
            break;
          }
        }
        // Note: If all elements in a chunk are undefs, StartMask=0!
        // Note: Filling undef gaps with random elements is ok, since
        // those elements were being written anyway (with undefs).
        // In the case of all undefs we're defaulting to using elems from 0
        // Note: StartMask cannot be negative, it's checked in
        // isReInterleaveMask
        Ops.push_back(Builder.CreateShuffleVector(
            Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
      }
    }

    Ops.push_back(Builder.getInt32(SI->getAlignment()));
    Builder.CreateCall(VstNFunc, Ops);
  }
  return true;
}

enum HABaseType {
  HA_UNKNOWN = 0,
  HA_FLOAT,
  HA_DOUBLE,
  HA_VECT64,
  HA_VECT128
};

static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
                                   uint64_t &Members) {
  if (auto *ST = dyn_cast<StructType>(Ty)) {
    for (unsigned i = 0; i < ST->getNumElements(); ++i) {
      uint64_t SubMembers = 0;
      if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
        return false;
      Members += SubMembers;
    }
  } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
    uint64_t SubMembers = 0;
    if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
      return false;
    Members += SubMembers * AT->getNumElements();
  } else if (Ty->isFloatTy()) {
    if (Base != HA_UNKNOWN && Base != HA_FLOAT)
      return false;
    Members = 1;
    Base = HA_FLOAT;
  } else if (Ty->isDoubleTy()) {
    if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
      return false;
    Members = 1;
    Base = HA_DOUBLE;
  } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
    Members = 1;
    switch (Base) {
    case HA_FLOAT:
    case HA_DOUBLE:
      return false;
    case HA_VECT64:
      return VT->getBitWidth() == 64;
    case HA_VECT128:
      return VT->getBitWidth() == 128;
    case HA_UNKNOWN:
      switch (VT->getBitWidth()) {
      case 64:
        Base = HA_VECT64;
        return true;
      case 128:
        Base = HA_VECT128;
        return true;
      default:
        return false;
      }
    }
  }

  return (Members > 0 && Members <= 4);
}

/// Return the correct alignment for the current calling convention.
Align ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
                                                       DataLayout DL) const {
  const Align ABITypeAlign(DL.getABITypeAlignment(ArgTy));
  if (!ArgTy->isVectorTy())
    return ABITypeAlign;

  // Avoid over-aligning vector parameters. It would require realigning the
  // stack and waste space for no real benefit.
  return std::min(ABITypeAlign, DL.getStackAlignment());
}

/// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
/// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
/// passing according to AAPCS rules.
bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
    Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
  if (getEffectiveCallingConv(CallConv, isVarArg) !=
      CallingConv::ARM_AAPCS_VFP)
    return false;

  HABaseType Base = HA_UNKNOWN;
  uint64_t Members = 0;
  bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
  LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());

  bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
  return IsHA || IsIntArray;
}

unsigned ARMTargetLowering::getExceptionPointerRegister(
    const Constant *PersonalityFn) const {
  // Platforms which do not use SjLj EH may return values in these registers
  // via the personality function.
  return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
}

unsigned ARMTargetLowering::getExceptionSelectorRegister(
    const Constant *PersonalityFn) const {
  // Platforms which do not use SjLj EH may return values in these registers
  // via the personality function.
  return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
}

void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
  // Update IsSplitCSR in ARMFunctionInfo.
  ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
  AFI->setIsSplitCSR(true);
}

void ARMTargetLowering::insertCopiesSplitCSR(
    MachineBasicBlock *Entry,
    const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
  const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
  const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
  if (!IStart)
    return;

  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
  MachineBasicBlock::iterator MBBI = Entry->begin();
  for (const MCPhysReg *I = IStart; *I; ++I) {
    const TargetRegisterClass *RC = nullptr;
    if (ARM::GPRRegClass.contains(*I))
      RC = &ARM::GPRRegClass;
    else if (ARM::DPRRegClass.contains(*I))
      RC = &ARM::DPRRegClass;
    else
      llvm_unreachable("Unexpected register class in CSRsViaCopy!");

    Register NewVR = MRI->createVirtualRegister(RC);
    // Create copy from CSR to a virtual register.
    // FIXME: this currently does not emit CFI pseudo-instructions, it works
    // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
    // nounwind. If we want to generalize this later, we may need to emit
    // CFI pseudo-instructions.
    assert(Entry->getParent()->getFunction().hasFnAttribute(
               Attribute::NoUnwind) &&
           "Function should be nounwind in insertCopiesSplitCSR!");
    Entry->addLiveIn(*I);
    BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
        .addReg(*I);

    // Insert the copy-back instructions right before the terminator.
    for (auto *Exit : Exits)
      BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
              TII->get(TargetOpcode::COPY), *I)
          .addReg(NewVR);
  }
}

void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
  MF.getFrameInfo().computeMaxCallFrameSize(MF);
  TargetLoweringBase::finalizeLowering(MF);
}