reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
//===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of classes that represent "derived
// types".  These are things like "arrays of x" or "structure of x, y, z" or
// "function returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_DERIVEDTYPES_H
#define LLVM_IR_DERIVEDTYPES_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TypeSize.h"
#include <cassert>
#include <cstdint>

namespace llvm {

class Value;
class APInt;
class LLVMContext;

/// Class to represent integer types. Note that this class is also used to
/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
/// Int64Ty.
/// Integer representation type
class IntegerType : public Type {
  friend class LLVMContextImpl;

protected:
  explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
    setSubclassData(NumBits);
  }

public:
  /// This enum is just used to hold constants we need for IntegerType.
  enum {
    MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
    MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
      ///< Note that bit width is stored in the Type classes SubclassData field
      ///< which has 24 bits. This yields a maximum bit width of 16,777,215
      ///< bits.
  };

  /// This static method is the primary way of constructing an IntegerType.
  /// If an IntegerType with the same NumBits value was previously instantiated,
  /// that instance will be returned. Otherwise a new one will be created. Only
  /// one instance with a given NumBits value is ever created.
  /// Get or create an IntegerType instance.
  static IntegerType *get(LLVMContext &C, unsigned NumBits);

  /// Returns type twice as wide the input type.
  IntegerType *getExtendedType() const {
    return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits());
  }

  /// Get the number of bits in this IntegerType
  unsigned getBitWidth() const { return getSubclassData(); }

  /// Return a bitmask with ones set for all of the bits that can be set by an
  /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
  uint64_t getBitMask() const {
    return ~uint64_t(0UL) >> (64-getBitWidth());
  }

  /// Return a uint64_t with just the most significant bit set (the sign bit, if
  /// the value is treated as a signed number).
  uint64_t getSignBit() const {
    return 1ULL << (getBitWidth()-1);
  }

  /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
  /// @returns a bit mask with ones set for all the bits of this type.
  /// Get a bit mask for this type.
  APInt getMask() const;

  /// This method determines if the width of this IntegerType is a power-of-2
  /// in terms of 8 bit bytes.
  /// @returns true if this is a power-of-2 byte width.
  /// Is this a power-of-2 byte-width IntegerType ?
  bool isPowerOf2ByteWidth() const;

  /// Methods for support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Type *T) {
    return T->getTypeID() == IntegerTyID;
  }
};

unsigned Type::getIntegerBitWidth() const {
  return cast<IntegerType>(this)->getBitWidth();
}

/// Class to represent function types
///
class FunctionType : public Type {
  FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);

public:
  FunctionType(const FunctionType &) = delete;
  FunctionType &operator=(const FunctionType &) = delete;

  /// This static method is the primary way of constructing a FunctionType.
  static FunctionType *get(Type *Result,
                           ArrayRef<Type*> Params, bool isVarArg);

  /// Create a FunctionType taking no parameters.
  static FunctionType *get(Type *Result, bool isVarArg);

  /// Return true if the specified type is valid as a return type.
  static bool isValidReturnType(Type *RetTy);

  /// Return true if the specified type is valid as an argument type.
  static bool isValidArgumentType(Type *ArgTy);

  bool isVarArg() const { return getSubclassData()!=0; }
  Type *getReturnType() const { return ContainedTys[0]; }

  using param_iterator = Type::subtype_iterator;

  param_iterator param_begin() const { return ContainedTys + 1; }
  param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
  ArrayRef<Type *> params() const {
    return makeArrayRef(param_begin(), param_end());
  }

  /// Parameter type accessors.
  Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }

  /// Return the number of fixed parameters this function type requires.
  /// This does not consider varargs.
  unsigned getNumParams() const { return NumContainedTys - 1; }

  /// Methods for support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Type *T) {
    return T->getTypeID() == FunctionTyID;
  }
};
static_assert(alignof(FunctionType) >= alignof(Type *),
              "Alignment sufficient for objects appended to FunctionType");

bool Type::isFunctionVarArg() const {
  return cast<FunctionType>(this)->isVarArg();
}

Type *Type::getFunctionParamType(unsigned i) const {
  return cast<FunctionType>(this)->getParamType(i);
}

unsigned Type::getFunctionNumParams() const {
  return cast<FunctionType>(this)->getNumParams();
}

/// A handy container for a FunctionType+Callee-pointer pair, which can be
/// passed around as a single entity. This assists in replacing the use of
/// PointerType::getElementType() to access the function's type, since that's
/// slated for removal as part of the [opaque pointer types] project.
class FunctionCallee {
public:
  // Allow implicit conversion from types which have a getFunctionType member
  // (e.g. Function and InlineAsm).
  template <typename T, typename U = decltype(&T::getFunctionType)>
  FunctionCallee(T *Fn)
      : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}

  FunctionCallee(FunctionType *FnTy, Value *Callee)
      : FnTy(FnTy), Callee(Callee) {
    assert((FnTy == nullptr) == (Callee == nullptr));
  }

  FunctionCallee(std::nullptr_t) {}

  FunctionCallee() = default;

  FunctionType *getFunctionType() { return FnTy; }

  Value *getCallee() { return Callee; }

  explicit operator bool() { return Callee; }

private:
  FunctionType *FnTy = nullptr;
  Value *Callee = nullptr;
};

/// Common super class of ArrayType, StructType and VectorType.
class CompositeType : public Type {
protected:
  explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}

public:
  /// Given an index value into the type, return the type of the element.
  Type *getTypeAtIndex(const Value *V) const;
  Type *getTypeAtIndex(unsigned Idx) const;
  bool indexValid(const Value *V) const;
  bool indexValid(unsigned Idx) const;

  /// Methods for support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Type *T) {
    return T->getTypeID() == ArrayTyID ||
           T->getTypeID() == StructTyID ||
           T->getTypeID() == VectorTyID;
  }
};

/// Class to represent struct types. There are two different kinds of struct
/// types: Literal structs and Identified structs.
///
/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
/// always have a body when created.  You can get one of these by using one of
/// the StructType::get() forms.
///
/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
/// uniqued.  The names for identified structs are managed at the LLVMContext
/// level, so there can only be a single identified struct with a given name in
/// a particular LLVMContext.  Identified structs may also optionally be opaque
/// (have no body specified).  You get one of these by using one of the
/// StructType::create() forms.
///
/// Independent of what kind of struct you have, the body of a struct type are
/// laid out in memory consecutively with the elements directly one after the
/// other (if the struct is packed) or (if not packed) with padding between the
/// elements as defined by DataLayout (which is required to match what the code
/// generator for a target expects).
///
class StructType : public CompositeType {
  StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}

  enum {
    /// This is the contents of the SubClassData field.
    SCDB_HasBody = 1,
    SCDB_Packed = 2,
    SCDB_IsLiteral = 4,
    SCDB_IsSized = 8
  };

  /// For a named struct that actually has a name, this is a pointer to the
  /// symbol table entry (maintained by LLVMContext) for the struct.
  /// This is null if the type is an literal struct or if it is a identified
  /// type that has an empty name.
  void *SymbolTableEntry = nullptr;

public:
  StructType(const StructType &) = delete;
  StructType &operator=(const StructType &) = delete;

  /// This creates an identified struct.
  static StructType *create(LLVMContext &Context, StringRef Name);
  static StructType *create(LLVMContext &Context);

  static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
                            bool isPacked = false);
  static StructType *create(ArrayRef<Type *> Elements);
  static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
                            StringRef Name, bool isPacked = false);
  static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
  template <class... Tys>
  static typename std::enable_if<are_base_of<Type, Tys...>::value,
                                 StructType *>::type
  create(StringRef Name, Type *elt1, Tys *... elts) {
    assert(elt1 && "Cannot create a struct type with no elements with this");
    SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
    return create(StructFields, Name);
  }

  /// This static method is the primary way to create a literal StructType.
  static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
                         bool isPacked = false);

  /// Create an empty structure type.
  static StructType *get(LLVMContext &Context, bool isPacked = false);

  /// This static method is a convenience method for creating structure types by
  /// specifying the elements as arguments. Note that this method always returns
  /// a non-packed struct, and requires at least one element type.
  template <class... Tys>
  static typename std::enable_if<are_base_of<Type, Tys...>::value,
                                 StructType *>::type
  get(Type *elt1, Tys *... elts) {
    assert(elt1 && "Cannot create a struct type with no elements with this");
    LLVMContext &Ctx = elt1->getContext();
    SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
    return llvm::StructType::get(Ctx, StructFields);
  }

  bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }

  /// Return true if this type is uniqued by structural equivalence, false if it
  /// is a struct definition.
  bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }

  /// Return true if this is a type with an identity that has no body specified
  /// yet. These prints as 'opaque' in .ll files.
  bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }

  /// isSized - Return true if this is a sized type.
  bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;

  /// Return true if this is a named struct that has a non-empty name.
  bool hasName() const { return SymbolTableEntry != nullptr; }

  /// Return the name for this struct type if it has an identity.
  /// This may return an empty string for an unnamed struct type.  Do not call
  /// this on an literal type.
  StringRef getName() const;

  /// Change the name of this type to the specified name, or to a name with a
  /// suffix if there is a collision. Do not call this on an literal type.
  void setName(StringRef Name);

  /// Specify a body for an opaque identified type.
  void setBody(ArrayRef<Type*> Elements, bool isPacked = false);

  template <typename... Tys>
  typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
  setBody(Type *elt1, Tys *... elts) {
    assert(elt1 && "Cannot create a struct type with no elements with this");
    SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
    setBody(StructFields);
  }

  /// Return true if the specified type is valid as a element type.
  static bool isValidElementType(Type *ElemTy);

  // Iterator access to the elements.
  using element_iterator = Type::subtype_iterator;

  element_iterator element_begin() const { return ContainedTys; }
  element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
  ArrayRef<Type *> const elements() const {
    return makeArrayRef(element_begin(), element_end());
  }

  /// Return true if this is layout identical to the specified struct.
  bool isLayoutIdentical(StructType *Other) const;

  /// Random access to the elements
  unsigned getNumElements() const { return NumContainedTys; }
  Type *getElementType(unsigned N) const {
    assert(N < NumContainedTys && "Element number out of range!");
    return ContainedTys[N];
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Type *T) {
    return T->getTypeID() == StructTyID;
  }
};

StringRef Type::getStructName() const {
  return cast<StructType>(this)->getName();
}

unsigned Type::getStructNumElements() const {
  return cast<StructType>(this)->getNumElements();
}

Type *Type::getStructElementType(unsigned N) const {
  return cast<StructType>(this)->getElementType(N);
}

/// This is the superclass of the array and vector type classes. Both of these
/// represent "arrays" in memory. The array type represents a specifically sized
/// array, and the vector type represents a specifically sized array that allows
/// for use of SIMD instructions. SequentialType holds the common features of
/// both, which stem from the fact that both lay their components out in memory
/// identically.
class SequentialType : public CompositeType {
  Type *ContainedType;               ///< Storage for the single contained type.
  uint64_t NumElements;

protected:
  SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
    : CompositeType(ElType->getContext(), TID), ContainedType(ElType),
      NumElements(NumElements) {
    ContainedTys = &ContainedType;
    NumContainedTys = 1;
  }

public:
  SequentialType(const SequentialType &) = delete;
  SequentialType &operator=(const SequentialType &) = delete;

  /// For scalable vectors, this will return the minimum number of elements
  /// in the vector.
  uint64_t getNumElements() const { return NumElements; }
  Type *getElementType() const { return ContainedType; }

  /// Methods for support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Type *T) {
    return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
  }
};

/// Class to represent array types.
class ArrayType : public SequentialType {
  ArrayType(Type *ElType, uint64_t NumEl);

public:
  ArrayType(const ArrayType &) = delete;
  ArrayType &operator=(const ArrayType &) = delete;

  /// This static method is the primary way to construct an ArrayType
  static ArrayType *get(Type *ElementType, uint64_t NumElements);

  /// Return true if the specified type is valid as a element type.
  static bool isValidElementType(Type *ElemTy);

  /// Methods for support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Type *T) {
    return T->getTypeID() == ArrayTyID;
  }
};

uint64_t Type::getArrayNumElements() const {
  return cast<ArrayType>(this)->getNumElements();
}

/// Class to represent vector types.
class VectorType : public SequentialType {
  /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
  /// minimum number of elements of type Ty contained within the vector, and
  /// 'vscale x' indicates that the total element count is an integer multiple
  /// of 'n', where the multiple is either guaranteed to be one, or is
  /// statically unknown at compile time.
  ///
  /// If the multiple is known to be 1, then the extra term is discarded in
  /// textual IR:
  ///
  /// <4 x i32>          - a vector containing 4 i32s
  /// <vscale x 4 x i32> - a vector containing an unknown integer multiple
  ///                      of 4 i32s

  VectorType(Type *ElType, unsigned NumEl, bool Scalable = false);
  VectorType(Type *ElType, ElementCount EC);

  // If true, the total number of elements is an unknown multiple of the
  // minimum 'NumElements' from SequentialType. Otherwise the total number
  // of elements is exactly equal to 'NumElements'.
  bool Scalable;

public:
  VectorType(const VectorType &) = delete;
  VectorType &operator=(const VectorType &) = delete;

  /// This static method is the primary way to construct an VectorType.
  static VectorType *get(Type *ElementType, ElementCount EC);
  static VectorType *get(Type *ElementType, unsigned NumElements,
                         bool Scalable = false) {
    return VectorType::get(ElementType, {NumElements, Scalable});
  }

  /// This static method gets a VectorType with the same number of elements as
  /// the input type, and the element type is an integer type of the same width
  /// as the input element type.
  static VectorType *getInteger(VectorType *VTy) {
    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    assert(EltBits && "Element size must be of a non-zero size");
    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
    return VectorType::get(EltTy, VTy->getElementCount());
  }

  /// This static method is like getInteger except that the element types are
  /// twice as wide as the elements in the input type.
  static VectorType *getExtendedElementVectorType(VectorType *VTy) {
    assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints.");
    auto *EltTy = cast<IntegerType>(VTy->getElementType());
    return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount());
  }

  // This static method gets a VectorType with the same number of elements as
  // the input type, and the element type is an integer or float type which
  // is half as wide as the elements in the input type.
  static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
    Type *EltTy;
    if (VTy->getElementType()->isFloatingPointTy()) {
      switch(VTy->getElementType()->getTypeID()) {
      case DoubleTyID:
        EltTy = Type::getFloatTy(VTy->getContext());
        break;
      case FloatTyID:
        EltTy = Type::getHalfTy(VTy->getContext());
        break;
      default:
        llvm_unreachable("Cannot create narrower fp vector element type");
      }
    } else {
      unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
      assert((EltBits & 1) == 0 &&
             "Cannot truncate vector element with odd bit-width");
      EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
    }
    return VectorType::get(EltTy, VTy->getElementCount());
  }

  // This static method returns a VectorType with a smaller number of elements
  // of a larger type than the input element type. For example, a <16 x i8>
  // subdivided twice would return <4 x i32>
  static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) {
    for (int i = 0; i < NumSubdivs; ++i) {
      VTy = VectorType::getDoubleElementsVectorType(VTy);
      VTy = VectorType::getTruncatedElementVectorType(VTy);
    }
    return VTy;
  }

  /// This static method returns a VectorType with half as many elements as the
  /// input type and the same element type.
  static VectorType *getHalfElementsVectorType(VectorType *VTy) {
    auto EltCnt = VTy->getElementCount();
    assert ((EltCnt.Min & 1) == 0 &&
            "Cannot halve vector with odd number of elements.");
    return VectorType::get(VTy->getElementType(), EltCnt/2);
  }

  /// This static method returns a VectorType with twice as many elements as the
  /// input type and the same element type.
  static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
    auto EltCnt = VTy->getElementCount();
    assert((VTy->getNumElements() * 2ull) <= UINT_MAX &&
           "Too many elements in vector");
    return VectorType::get(VTy->getElementType(), EltCnt*2);
  }

  /// Return true if the specified type is valid as a element type.
  static bool isValidElementType(Type *ElemTy);

  /// Return an ElementCount instance to represent the (possibly scalable)
  /// number of elements in the vector.
  ElementCount getElementCount() const {
    uint64_t MinimumEltCnt = getNumElements();
    assert(MinimumEltCnt <= UINT_MAX && "Too many elements in vector");
    return { (unsigned)MinimumEltCnt, Scalable };
  }

  /// Returns whether or not this is a scalable vector (meaning the total
  /// element count is a multiple of the minimum).
  bool isScalable() const {
    return Scalable;
  }

  /// Return the minimum number of bits in the Vector type.
  /// Returns zero when the vector is a vector of pointers.
  unsigned getBitWidth() const {
    return getNumElements() * getElementType()->getPrimitiveSizeInBits();
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Type *T) {
    return T->getTypeID() == VectorTyID;
  }
};

unsigned Type::getVectorNumElements() const {
  return cast<VectorType>(this)->getNumElements();
}

bool Type::getVectorIsScalable() const {
  return cast<VectorType>(this)->isScalable();
}

ElementCount Type::getVectorElementCount() const {
  return cast<VectorType>(this)->getElementCount();
}

/// Class to represent pointers.
class PointerType : public Type {
  explicit PointerType(Type *ElType, unsigned AddrSpace);

  Type *PointeeTy;

public:
  PointerType(const PointerType &) = delete;
  PointerType &operator=(const PointerType &) = delete;

  /// This constructs a pointer to an object of the specified type in a numbered
  /// address space.
  static PointerType *get(Type *ElementType, unsigned AddressSpace);

  /// This constructs a pointer to an object of the specified type in the
  /// generic address space (address space zero).
  static PointerType *getUnqual(Type *ElementType) {
    return PointerType::get(ElementType, 0);
  }

  Type *getElementType() const { return PointeeTy; }

  /// Return true if the specified type is valid as a element type.
  static bool isValidElementType(Type *ElemTy);

  /// Return true if we can load or store from a pointer to this type.
  static bool isLoadableOrStorableType(Type *ElemTy);

  /// Return the address space of the Pointer type.
  inline unsigned getAddressSpace() const { return getSubclassData(); }

  /// Implement support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Type *T) {
    return T->getTypeID() == PointerTyID;
  }
};

Type *Type::getExtendedType() const {
  assert(
      isIntOrIntVectorTy() &&
      "Original type expected to be a vector of integers or a scalar integer.");
  if (auto *VTy = dyn_cast<VectorType>(this))
    return VectorType::getExtendedElementVectorType(
        const_cast<VectorType *>(VTy));
  return cast<IntegerType>(this)->getExtendedType();
}

Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const {
  assert(
      isIntOrIntVectorTy() &&
      "Original type expected to be a vector of integers or a scalar integer.");
  Type *NewType = getIntNTy(getContext(), NewBitWidth);
  if (isVectorTy())
    NewType = VectorType::get(NewType, getVectorElementCount());
  return NewType;
}

unsigned Type::getPointerAddressSpace() const {
  return cast<PointerType>(getScalarType())->getAddressSpace();
}

} // end namespace llvm

#endif // LLVM_IR_DERIVEDTYPES_H