reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H

#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Config/abi-breaking.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>

#ifdef EXPENSIVE_CHECKS
#include <random> // for std::mt19937
#endif

namespace llvm {

// Only used by compiler if both template types are the same.  Useful when
// using SFINAE to test for the existence of member functions.
template <typename T, T> struct SameType;

namespace detail {

template <typename RangeT>
using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));

template <typename RangeT>
using ValueOfRange = typename std::remove_reference<decltype(
    *std::begin(std::declval<RangeT &>()))>::type;

} // end namespace detail

//===----------------------------------------------------------------------===//
//     Extra additions to <type_traits>
//===----------------------------------------------------------------------===//

template <typename T>
struct negation : std::integral_constant<bool, !bool(T::value)> {};

template <typename...> struct conjunction : std::true_type {};
template <typename B1> struct conjunction<B1> : B1 {};
template <typename B1, typename... Bn>
struct conjunction<B1, Bn...>
    : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};

//===----------------------------------------------------------------------===//
//     Extra additions to <functional>
//===----------------------------------------------------------------------===//

template <class Ty> struct identity {
  using argument_type = Ty;

  Ty &operator()(Ty &self) const {
    return self;
  }
  const Ty &operator()(const Ty &self) const {
    return self;
  }
};

template <class Ty> struct less_ptr {
  bool operator()(const Ty* left, const Ty* right) const {
    return *left < *right;
  }
};

template <class Ty> struct greater_ptr {
  bool operator()(const Ty* left, const Ty* right) const {
    return *right < *left;
  }
};

/// An efficient, type-erasing, non-owning reference to a callable. This is
/// intended for use as the type of a function parameter that is not used
/// after the function in question returns.
///
/// This class does not own the callable, so it is not in general safe to store
/// a function_ref.
template<typename Fn> class function_ref;

template<typename Ret, typename ...Params>
class function_ref<Ret(Params...)> {
  Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
  intptr_t callable;

  template<typename Callable>
  static Ret callback_fn(intptr_t callable, Params ...params) {
    return (*reinterpret_cast<Callable*>(callable))(
        std::forward<Params>(params)...);
  }

public:
  function_ref() = default;
  function_ref(std::nullptr_t) {}

  template <typename Callable>
  function_ref(Callable &&callable,
               typename std::enable_if<
                   !std::is_same<typename std::remove_reference<Callable>::type,
                                 function_ref>::value>::type * = nullptr)
      : callback(callback_fn<typename std::remove_reference<Callable>::type>),
        callable(reinterpret_cast<intptr_t>(&callable)) {}

  Ret operator()(Params ...params) const {
    return callback(callable, std::forward<Params>(params)...);
  }

  operator bool() const { return callback; }
};

// deleter - Very very very simple method that is used to invoke operator
// delete on something.  It is used like this:
//
//   for_each(V.begin(), B.end(), deleter<Interval>);
template <class T>
inline void deleter(T *Ptr) {
  delete Ptr;
}

//===----------------------------------------------------------------------===//
//     Extra additions to <iterator>
//===----------------------------------------------------------------------===//

namespace adl_detail {

using std::begin;

template <typename ContainerTy>
auto adl_begin(ContainerTy &&container)
    -> decltype(begin(std::forward<ContainerTy>(container))) {
  return begin(std::forward<ContainerTy>(container));
}

using std::end;

template <typename ContainerTy>
auto adl_end(ContainerTy &&container)
    -> decltype(end(std::forward<ContainerTy>(container))) {
  return end(std::forward<ContainerTy>(container));
}

using std::swap;

template <typename T>
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
                                                       std::declval<T>()))) {
  swap(std::forward<T>(lhs), std::forward<T>(rhs));
}

} // end namespace adl_detail

template <typename ContainerTy>
auto adl_begin(ContainerTy &&container)
    -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
  return adl_detail::adl_begin(std::forward<ContainerTy>(container));
}

template <typename ContainerTy>
auto adl_end(ContainerTy &&container)
    -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
  return adl_detail::adl_end(std::forward<ContainerTy>(container));
}

template <typename T>
void adl_swap(T &&lhs, T &&rhs) noexcept(
    noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
  adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
}

// mapped_iterator - This is a simple iterator adapter that causes a function to
// be applied whenever operator* is invoked on the iterator.

template <typename ItTy, typename FuncTy,
          typename FuncReturnTy =
            decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
class mapped_iterator
    : public iterator_adaptor_base<
             mapped_iterator<ItTy, FuncTy>, ItTy,
             typename std::iterator_traits<ItTy>::iterator_category,
             typename std::remove_reference<FuncReturnTy>::type> {
public:
  mapped_iterator(ItTy U, FuncTy F)
    : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}

  ItTy getCurrent() { return this->I; }

  FuncReturnTy operator*() { return F(*this->I); }

private:
  FuncTy F;
};

// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
  return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
}

/// Helper to determine if type T has a member called rbegin().
template <typename Ty> class has_rbegin_impl {
  using yes = char[1];
  using no = char[2];

  template <typename Inner>
  static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);

  template <typename>
  static no& test(...);

public:
  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
};

/// Metafunction to determine if T& or T has a member called rbegin().
template <typename Ty>
struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
};

// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have rbegin()/rend() methods for this to work.
template <typename ContainerTy>
auto reverse(ContainerTy &&C,
             typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
                 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
  return make_range(C.rbegin(), C.rend());
}

// Returns a std::reverse_iterator wrapped around the given iterator.
template <typename IteratorTy>
std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
  return std::reverse_iterator<IteratorTy>(It);
}

// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have begin()/end() methods which return
// bidirectional iterators for this to work.
template <typename ContainerTy>
auto reverse(
    ContainerTy &&C,
    typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
    -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
                           llvm::make_reverse_iterator(std::begin(C)))) {
  return make_range(llvm::make_reverse_iterator(std::end(C)),
                    llvm::make_reverse_iterator(std::begin(C)));
}

/// An iterator adaptor that filters the elements of given inner iterators.
///
/// The predicate parameter should be a callable object that accepts the wrapped
/// iterator's reference type and returns a bool. When incrementing or
/// decrementing the iterator, it will call the predicate on each element and
/// skip any where it returns false.
///
/// \code
///   int A[] = { 1, 2, 3, 4 };
///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
///   // R contains { 1, 3 }.
/// \endcode
///
/// Note: filter_iterator_base implements support for forward iteration.
/// filter_iterator_impl exists to provide support for bidirectional iteration,
/// conditional on whether the wrapped iterator supports it.
template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
class filter_iterator_base
    : public iterator_adaptor_base<
          filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
          WrappedIteratorT,
          typename std::common_type<
              IterTag, typename std::iterator_traits<
                           WrappedIteratorT>::iterator_category>::type> {
  using BaseT = iterator_adaptor_base<
      filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
      WrappedIteratorT,
      typename std::common_type<
          IterTag, typename std::iterator_traits<
                       WrappedIteratorT>::iterator_category>::type>;

protected:
  WrappedIteratorT End;
  PredicateT Pred;

  void findNextValid() {
    while (this->I != End && !Pred(*this->I))
      BaseT::operator++();
  }

  // Construct the iterator. The begin iterator needs to know where the end
  // is, so that it can properly stop when it gets there. The end iterator only
  // needs the predicate to support bidirectional iteration.
  filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
                       PredicateT Pred)
      : BaseT(Begin), End(End), Pred(Pred) {
    findNextValid();
  }

public:
  using BaseT::operator++;

  filter_iterator_base &operator++() {
    BaseT::operator++();
    findNextValid();
    return *this;
  }
};

/// Specialization of filter_iterator_base for forward iteration only.
template <typename WrappedIteratorT, typename PredicateT,
          typename IterTag = std::forward_iterator_tag>
class filter_iterator_impl
    : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
  using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;

public:
  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
                       PredicateT Pred)
      : BaseT(Begin, End, Pred) {}
};

/// Specialization of filter_iterator_base for bidirectional iteration.
template <typename WrappedIteratorT, typename PredicateT>
class filter_iterator_impl<WrappedIteratorT, PredicateT,
                           std::bidirectional_iterator_tag>
    : public filter_iterator_base<WrappedIteratorT, PredicateT,
                                  std::bidirectional_iterator_tag> {
  using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
                                     std::bidirectional_iterator_tag>;
  void findPrevValid() {
    while (!this->Pred(*this->I))
      BaseT::operator--();
  }

public:
  using BaseT::operator--;

  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
                       PredicateT Pred)
      : BaseT(Begin, End, Pred) {}

  filter_iterator_impl &operator--() {
    BaseT::operator--();
    findPrevValid();
    return *this;
  }
};

namespace detail {

template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
  using type = std::forward_iterator_tag;
};

template <> struct fwd_or_bidi_tag_impl<true> {
  using type = std::bidirectional_iterator_tag;
};

/// Helper which sets its type member to forward_iterator_tag if the category
/// of \p IterT does not derive from bidirectional_iterator_tag, and to
/// bidirectional_iterator_tag otherwise.
template <typename IterT> struct fwd_or_bidi_tag {
  using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
      std::bidirectional_iterator_tag,
      typename std::iterator_traits<IterT>::iterator_category>::value>::type;
};

} // namespace detail

/// Defines filter_iterator to a suitable specialization of
/// filter_iterator_impl, based on the underlying iterator's category.
template <typename WrappedIteratorT, typename PredicateT>
using filter_iterator = filter_iterator_impl<
    WrappedIteratorT, PredicateT,
    typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;

/// Convenience function that takes a range of elements and a predicate,
/// and return a new filter_iterator range.
///
/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
/// lifetime of that temporary is not kept by the returned range object, and the
/// temporary is going to be dropped on the floor after the make_iterator_range
/// full expression that contains this function call.
template <typename RangeT, typename PredicateT>
iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
make_filter_range(RangeT &&Range, PredicateT Pred) {
  using FilterIteratorT =
      filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
  return make_range(
      FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
                      std::end(std::forward<RangeT>(Range)), Pred),
      FilterIteratorT(std::end(std::forward<RangeT>(Range)),
                      std::end(std::forward<RangeT>(Range)), Pred));
}

/// A pseudo-iterator adaptor that is designed to implement "early increment"
/// style loops.
///
/// This is *not a normal iterator* and should almost never be used directly. It
/// is intended primarily to be used with range based for loops and some range
/// algorithms.
///
/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
/// somewhere between them. The constraints of these iterators are:
///
/// - On construction or after being incremented, it is comparable and
///   dereferencable. It is *not* incrementable.
/// - After being dereferenced, it is neither comparable nor dereferencable, it
///   is only incrementable.
///
/// This means you can only dereference the iterator once, and you can only
/// increment it once between dereferences.
template <typename WrappedIteratorT>
class early_inc_iterator_impl
    : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
                                   WrappedIteratorT, std::input_iterator_tag> {
  using BaseT =
      iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
                            WrappedIteratorT, std::input_iterator_tag>;

  using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;

protected:
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
  bool IsEarlyIncremented = false;
#endif

public:
  early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}

  using BaseT::operator*;
  typename BaseT::reference operator*() {
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
    assert(!IsEarlyIncremented && "Cannot dereference twice!");
    IsEarlyIncremented = true;
#endif
    return *(this->I)++;
  }

  using BaseT::operator++;
  early_inc_iterator_impl &operator++() {
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
    assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
    IsEarlyIncremented = false;
#endif
    return *this;
  }

  using BaseT::operator==;
  bool operator==(const early_inc_iterator_impl &RHS) const {
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
    assert(!IsEarlyIncremented && "Cannot compare after dereferencing!");
#endif
    return BaseT::operator==(RHS);
  }
};

/// Make a range that does early increment to allow mutation of the underlying
/// range without disrupting iteration.
///
/// The underlying iterator will be incremented immediately after it is
/// dereferenced, allowing deletion of the current node or insertion of nodes to
/// not disrupt iteration provided they do not invalidate the *next* iterator --
/// the current iterator can be invalidated.
///
/// This requires a very exact pattern of use that is only really suitable to
/// range based for loops and other range algorithms that explicitly guarantee
/// to dereference exactly once each element, and to increment exactly once each
/// element.
template <typename RangeT>
iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
make_early_inc_range(RangeT &&Range) {
  using EarlyIncIteratorT =
      early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
  return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
                    EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
}

// forward declarations required by zip_shortest/zip_first
template <typename R, typename UnaryPredicate>
bool all_of(R &&range, UnaryPredicate P);

template <size_t... I> struct index_sequence;

template <class... Ts> struct index_sequence_for;

namespace detail {

using std::declval;

// We have to alias this since inlining the actual type at the usage site
// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
template<typename... Iters> struct ZipTupleType {
  using type = std::tuple<decltype(*declval<Iters>())...>;
};

template <typename ZipType, typename... Iters>
using zip_traits = iterator_facade_base<
    ZipType, typename std::common_type<std::bidirectional_iterator_tag,
                                       typename std::iterator_traits<
                                           Iters>::iterator_category...>::type,
    // ^ TODO: Implement random access methods.
    typename ZipTupleType<Iters...>::type,
    typename std::iterator_traits<typename std::tuple_element<
        0, std::tuple<Iters...>>::type>::difference_type,
    // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
    // inner iterators have the same difference_type. It would fail if, for
    // instance, the second field's difference_type were non-numeric while the
    // first is.
    typename ZipTupleType<Iters...>::type *,
    typename ZipTupleType<Iters...>::type>;

template <typename ZipType, typename... Iters>
struct zip_common : public zip_traits<ZipType, Iters...> {
  using Base = zip_traits<ZipType, Iters...>;
  using value_type = typename Base::value_type;

  std::tuple<Iters...> iterators;

protected:
  template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
    return value_type(*std::get<Ns>(iterators)...);
  }

  template <size_t... Ns>
  decltype(iterators) tup_inc(index_sequence<Ns...>) const {
    return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
  }

  template <size_t... Ns>
  decltype(iterators) tup_dec(index_sequence<Ns...>) const {
    return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
  }

public:
  zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}

  value_type operator*() { return deref(index_sequence_for<Iters...>{}); }

  const value_type operator*() const {
    return deref(index_sequence_for<Iters...>{});
  }

  ZipType &operator++() {
    iterators = tup_inc(index_sequence_for<Iters...>{});
    return *reinterpret_cast<ZipType *>(this);
  }

  ZipType &operator--() {
    static_assert(Base::IsBidirectional,
                  "All inner iterators must be at least bidirectional.");
    iterators = tup_dec(index_sequence_for<Iters...>{});
    return *reinterpret_cast<ZipType *>(this);
  }
};

template <typename... Iters>
struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
  using Base = zip_common<zip_first<Iters...>, Iters...>;

  bool operator==(const zip_first<Iters...> &other) const {
    return std::get<0>(this->iterators) == std::get<0>(other.iterators);
  }

  zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
};

template <typename... Iters>
class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
  template <size_t... Ns>
  bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
    return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
                                              std::get<Ns>(other.iterators)...},
                  identity<bool>{});
  }

public:
  using Base = zip_common<zip_shortest<Iters...>, Iters...>;

  zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}

  bool operator==(const zip_shortest<Iters...> &other) const {
    return !test(other, index_sequence_for<Iters...>{});
  }
};

template <template <typename...> class ItType, typename... Args> class zippy {
public:
  using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
  using iterator_category = typename iterator::iterator_category;
  using value_type = typename iterator::value_type;
  using difference_type = typename iterator::difference_type;
  using pointer = typename iterator::pointer;
  using reference = typename iterator::reference;

private:
  std::tuple<Args...> ts;

  template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
    return iterator(std::begin(std::get<Ns>(ts))...);
  }
  template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
    return iterator(std::end(std::get<Ns>(ts))...);
  }

public:
  zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}

  iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
  iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
};

} // end namespace detail

/// zip iterator for two or more iteratable types.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
                                                       Args &&... args) {
  return detail::zippy<detail::zip_shortest, T, U, Args...>(
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}

/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
/// be the shortest.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
                                                          Args &&... args) {
  return detail::zippy<detail::zip_first, T, U, Args...>(
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}

/// Iterator wrapper that concatenates sequences together.
///
/// This can concatenate different iterators, even with different types, into
/// a single iterator provided the value types of all the concatenated
/// iterators expose `reference` and `pointer` types that can be converted to
/// `ValueT &` and `ValueT *` respectively. It doesn't support more
/// interesting/customized pointer or reference types.
///
/// Currently this only supports forward or higher iterator categories as
/// inputs and always exposes a forward iterator interface.
template <typename ValueT, typename... IterTs>
class concat_iterator
    : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
                                  std::forward_iterator_tag, ValueT> {
  using BaseT = typename concat_iterator::iterator_facade_base;

  /// We store both the current and end iterators for each concatenated
  /// sequence in a tuple of pairs.
  ///
  /// Note that something like iterator_range seems nice at first here, but the
  /// range properties are of little benefit and end up getting in the way
  /// because we need to do mutation on the current iterators.
  std::tuple<IterTs...> Begins;
  std::tuple<IterTs...> Ends;

  /// Attempts to increment a specific iterator.
  ///
  /// Returns true if it was able to increment the iterator. Returns false if
  /// the iterator is already at the end iterator.
  template <size_t Index> bool incrementHelper() {
    auto &Begin = std::get<Index>(Begins);
    auto &End = std::get<Index>(Ends);
    if (Begin == End)
      return false;

    ++Begin;
    return true;
  }

  /// Increments the first non-end iterator.
  ///
  /// It is an error to call this with all iterators at the end.
  template <size_t... Ns> void increment(index_sequence<Ns...>) {
    // Build a sequence of functions to increment each iterator if possible.
    bool (concat_iterator::*IncrementHelperFns[])() = {
        &concat_iterator::incrementHelper<Ns>...};

    // Loop over them, and stop as soon as we succeed at incrementing one.
    for (auto &IncrementHelperFn : IncrementHelperFns)
      if ((this->*IncrementHelperFn)())
        return;

    llvm_unreachable("Attempted to increment an end concat iterator!");
  }

  /// Returns null if the specified iterator is at the end. Otherwise,
  /// dereferences the iterator and returns the address of the resulting
  /// reference.
  template <size_t Index> ValueT *getHelper() const {
    auto &Begin = std::get<Index>(Begins);
    auto &End = std::get<Index>(Ends);
    if (Begin == End)
      return nullptr;

    return &*Begin;
  }

  /// Finds the first non-end iterator, dereferences, and returns the resulting
  /// reference.
  ///
  /// It is an error to call this with all iterators at the end.
  template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
    // Build a sequence of functions to get from iterator if possible.
    ValueT *(concat_iterator::*GetHelperFns[])() const = {
        &concat_iterator::getHelper<Ns>...};

    // Loop over them, and return the first result we find.
    for (auto &GetHelperFn : GetHelperFns)
      if (ValueT *P = (this->*GetHelperFn)())
        return *P;

    llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
  }

public:
  /// Constructs an iterator from a squence of ranges.
  ///
  /// We need the full range to know how to switch between each of the
  /// iterators.
  template <typename... RangeTs>
  explicit concat_iterator(RangeTs &&... Ranges)
      : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}

  using BaseT::operator++;

  concat_iterator &operator++() {
    increment(index_sequence_for<IterTs...>());
    return *this;
  }

  ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }

  bool operator==(const concat_iterator &RHS) const {
    return Begins == RHS.Begins && Ends == RHS.Ends;
  }
};

namespace detail {

/// Helper to store a sequence of ranges being concatenated and access them.
///
/// This is designed to facilitate providing actual storage when temporaries
/// are passed into the constructor such that we can use it as part of range
/// based for loops.
template <typename ValueT, typename... RangeTs> class concat_range {
public:
  using iterator =
      concat_iterator<ValueT,
                      decltype(std::begin(std::declval<RangeTs &>()))...>;

private:
  std::tuple<RangeTs...> Ranges;

  template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
    return iterator(std::get<Ns>(Ranges)...);
  }
  template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
    return iterator(make_range(std::end(std::get<Ns>(Ranges)),
                               std::end(std::get<Ns>(Ranges)))...);
  }

public:
  concat_range(RangeTs &&... Ranges)
      : Ranges(std::forward<RangeTs>(Ranges)...) {}

  iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
  iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
};

} // end namespace detail

/// Concatenated range across two or more ranges.
///
/// The desired value type must be explicitly specified.
template <typename ValueT, typename... RangeTs>
detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
  static_assert(sizeof...(RangeTs) > 1,
                "Need more than one range to concatenate!");
  return detail::concat_range<ValueT, RangeTs...>(
      std::forward<RangeTs>(Ranges)...);
}

//===----------------------------------------------------------------------===//
//     Extra additions to <utility>
//===----------------------------------------------------------------------===//

/// Function object to check whether the first component of a std::pair
/// compares less than the first component of another std::pair.
struct less_first {
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    return lhs.first < rhs.first;
  }
};

/// Function object to check whether the second component of a std::pair
/// compares less than the second component of another std::pair.
struct less_second {
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    return lhs.second < rhs.second;
  }
};

/// \brief Function object to apply a binary function to the first component of
/// a std::pair.
template<typename FuncTy>
struct on_first {
  FuncTy func;

  template <typename T>
  auto operator()(const T &lhs, const T &rhs) const
      -> decltype(func(lhs.first, rhs.first)) {
    return func(lhs.first, rhs.first);
  }
};

// A subset of N3658. More stuff can be added as-needed.

/// Represents a compile-time sequence of integers.
template <class T, T... I> struct integer_sequence {
  using value_type = T;

  static constexpr size_t size() { return sizeof...(I); }
};

/// Alias for the common case of a sequence of size_ts.
template <size_t... I>
struct index_sequence : integer_sequence<std::size_t, I...> {};

template <std::size_t N, std::size_t... I>
struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
template <std::size_t... I>
struct build_index_impl<0, I...> : index_sequence<I...> {};

/// Creates a compile-time integer sequence for a parameter pack.
template <class... Ts>
struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};

/// Utility type to build an inheritance chain that makes it easy to rank
/// overload candidates.
template <int N> struct rank : rank<N - 1> {};
template <> struct rank<0> {};

/// traits class for checking whether type T is one of any of the given
/// types in the variadic list.
template <typename T, typename... Ts> struct is_one_of {
  static const bool value = false;
};

template <typename T, typename U, typename... Ts>
struct is_one_of<T, U, Ts...> {
  static const bool value =
      std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
};

/// traits class for checking whether type T is a base class for all
///  the given types in the variadic list.
template <typename T, typename... Ts> struct are_base_of {
  static const bool value = true;
};

template <typename T, typename U, typename... Ts>
struct are_base_of<T, U, Ts...> {
  static const bool value =
      std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
};

//===----------------------------------------------------------------------===//
//     Extra additions for arrays
//===----------------------------------------------------------------------===//

/// Find the length of an array.
template <class T, std::size_t N>
constexpr inline size_t array_lengthof(T (&)[N]) {
  return N;
}

/// Adapt std::less<T> for array_pod_sort.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
  if (std::less<T>()(*reinterpret_cast<const T*>(P1),
                     *reinterpret_cast<const T*>(P2)))
    return -1;
  if (std::less<T>()(*reinterpret_cast<const T*>(P2),
                     *reinterpret_cast<const T*>(P1)))
    return 1;
  return 0;
}

/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
             (const void*, const void*) {
  return array_pod_sort_comparator<T>;
}

/// array_pod_sort - This sorts an array with the specified start and end
/// extent.  This is just like std::sort, except that it calls qsort instead of
/// using an inlined template.  qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat.  This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with std::less and can be moved with memcpy.  If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
  // Don't inefficiently call qsort with one element or trigger undefined
  // behavior with an empty sequence.
  auto NElts = End - Start;
  if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
  std::mt19937 Generator(std::random_device{}());
  std::shuffle(Start, End, Generator);
#endif
  qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
}

template <class IteratorTy>
inline void array_pod_sort(
    IteratorTy Start, IteratorTy End,
    int (*Compare)(
        const typename std::iterator_traits<IteratorTy>::value_type *,
        const typename std::iterator_traits<IteratorTy>::value_type *)) {
  // Don't inefficiently call qsort with one element or trigger undefined
  // behavior with an empty sequence.
  auto NElts = End - Start;
  if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
  std::mt19937 Generator(std::random_device{}());
  std::shuffle(Start, End, Generator);
#endif
  qsort(&*Start, NElts, sizeof(*Start),
        reinterpret_cast<int (*)(const void *, const void *)>(Compare));
}

// Provide wrappers to std::sort which shuffle the elements before sorting
// to help uncover non-deterministic behavior (PR35135).
template <typename IteratorTy>
inline void sort(IteratorTy Start, IteratorTy End) {
#ifdef EXPENSIVE_CHECKS
  std::mt19937 Generator(std::random_device{}());
  std::shuffle(Start, End, Generator);
#endif
  std::sort(Start, End);
}

template <typename Container> inline void sort(Container &&C) {
  llvm::sort(adl_begin(C), adl_end(C));
}

template <typename IteratorTy, typename Compare>
inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
#ifdef EXPENSIVE_CHECKS
  std::mt19937 Generator(std::random_device{}());
  std::shuffle(Start, End, Generator);
#endif
  std::sort(Start, End, Comp);
}

template <typename Container, typename Compare>
inline void sort(Container &&C, Compare Comp) {
  llvm::sort(adl_begin(C), adl_end(C), Comp);
}

//===----------------------------------------------------------------------===//
//     Extra additions to <algorithm>
//===----------------------------------------------------------------------===//

/// For a container of pointers, deletes the pointers and then clears the
/// container.
template<typename Container>
void DeleteContainerPointers(Container &C) {
  for (auto V : C)
    delete V;
  C.clear();
}

/// In a container of pairs (usually a map) whose second element is a pointer,
/// deletes the second elements and then clears the container.
template<typename Container>
void DeleteContainerSeconds(Container &C) {
  for (auto &V : C)
    delete V.second;
  C.clear();
}

/// Get the size of a range. This is a wrapper function around std::distance
/// which is only enabled when the operation is O(1).
template <typename R>
auto size(R &&Range, typename std::enable_if<
                         std::is_same<typename std::iterator_traits<decltype(
                                          Range.begin())>::iterator_category,
                                      std::random_access_iterator_tag>::value,
                         void>::type * = nullptr)
    -> decltype(std::distance(Range.begin(), Range.end())) {
  return std::distance(Range.begin(), Range.end());
}

/// Provide wrappers to std::for_each which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
  return std::for_each(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::all_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool all_of(R &&Range, UnaryPredicate P) {
  return std::all_of(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::any_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool any_of(R &&Range, UnaryPredicate P) {
  return std::any_of(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::none_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool none_of(R &&Range, UnaryPredicate P) {
  return std::none_of(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::find which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename T>
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
  return std::find(adl_begin(Range), adl_end(Range), Val);
}

/// Provide wrappers to std::find_if which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
  return std::find_if(adl_begin(Range), adl_end(Range), P);
}

template <typename R, typename UnaryPredicate>
auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
  return std::find_if_not(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::remove_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
  return std::remove_if(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::copy_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt, typename UnaryPredicate>
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
  return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
}

template <typename R, typename OutputIt>
OutputIt copy(R &&Range, OutputIt Out) {
  return std::copy(adl_begin(Range), adl_end(Range), Out);
}

/// Wrapper function around std::find to detect if an element exists
/// in a container.
template <typename R, typename E>
bool is_contained(R &&Range, const E &Element) {
  return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
}

/// Wrapper function around std::count to count the number of times an element
/// \p Element occurs in the given range \p Range.
template <typename R, typename E>
auto count(R &&Range, const E &Element) ->
    typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
  return std::count(adl_begin(Range), adl_end(Range), Element);
}

/// Wrapper function around std::count_if to count the number of times an
/// element satisfying a given predicate occurs in a range.
template <typename R, typename UnaryPredicate>
auto count_if(R &&Range, UnaryPredicate P) ->
    typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
  return std::count_if(adl_begin(Range), adl_end(Range), P);
}

/// Wrapper function around std::transform to apply a function to a range and
/// store the result elsewhere.
template <typename R, typename OutputIt, typename UnaryPredicate>
OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
  return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
}

/// Provide wrappers to std::partition which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
  return std::partition(adl_begin(Range), adl_end(Range), P);
}

/// Provide wrappers to std::lower_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename ForwardIt>
auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
  return std::lower_bound(adl_begin(Range), adl_end(Range), I);
}

template <typename R, typename ForwardIt, typename Compare>
auto lower_bound(R &&Range, ForwardIt I, Compare C)
    -> decltype(adl_begin(Range)) {
  return std::lower_bound(adl_begin(Range), adl_end(Range), I, C);
}

/// Provide wrappers to std::upper_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename ForwardIt>
auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
  return std::upper_bound(adl_begin(Range), adl_end(Range), I);
}

template <typename R, typename ForwardIt, typename Compare>
auto upper_bound(R &&Range, ForwardIt I, Compare C)
    -> decltype(adl_begin(Range)) {
  return std::upper_bound(adl_begin(Range), adl_end(Range), I, C);
}
/// Wrapper function around std::equal to detect if all elements
/// in a container are same.
template <typename R>
bool is_splat(R &&Range) {
  size_t range_size = size(Range);
  return range_size != 0 && (range_size == 1 ||
         std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
}

/// Given a range of type R, iterate the entire range and return a
/// SmallVector with elements of the vector.  This is useful, for example,
/// when you want to iterate a range and then sort the results.
template <unsigned Size, typename R>
SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
to_vector(R &&Range) {
  return {adl_begin(Range), adl_end(Range)};
}

/// Provide a container algorithm similar to C++ Library Fundamentals v2's
/// `erase_if` which is equivalent to:
///
///   C.erase(remove_if(C, pred), C.end());
///
/// This version works for any container with an erase method call accepting
/// two iterators.
template <typename Container, typename UnaryPredicate>
void erase_if(Container &C, UnaryPredicate P) {
  C.erase(remove_if(C, P), C.end());
}

//===----------------------------------------------------------------------===//
//     Extra additions to <memory>
//===----------------------------------------------------------------------===//

// Implement make_unique according to N3656.

/// Constructs a `new T()` with the given args and returns a
///        `unique_ptr<T>` which owns the object.
///
/// Example:
///
///     auto p = make_unique<int>();
///     auto p = make_unique<std::tuple<int, int>>(0, 1);
template <class T, class... Args>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Args &&... args) {
  return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}

/// Constructs a `new T[n]` with the given args and returns a
///        `unique_ptr<T[]>` which owns the object.
///
/// \param n size of the new array.
///
/// Example:
///
///     auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
template <class T>
typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
                        std::unique_ptr<T>>::type
make_unique(size_t n) {
  return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}

/// This function isn't used and is only here to provide better compile errors.
template <class T, class... Args>
typename std::enable_if<std::extent<T>::value != 0>::type
make_unique(Args &&...) = delete;

struct FreeDeleter {
  void operator()(void* v) {
    ::free(v);
  }
};

template<typename First, typename Second>
struct pair_hash {
  size_t operator()(const std::pair<First, Second> &P) const {
    return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
  }
};

/// A functor like C++14's std::less<void> in its absence.
struct less {
  template <typename A, typename B> bool operator()(A &&a, B &&b) const {
    return std::forward<A>(a) < std::forward<B>(b);
  }
};

/// A functor like C++14's std::equal<void> in its absence.
struct equal {
  template <typename A, typename B> bool operator()(A &&a, B &&b) const {
    return std::forward<A>(a) == std::forward<B>(b);
  }
};

/// Binary functor that adapts to any other binary functor after dereferencing
/// operands.
template <typename T> struct deref {
  T func;

  // Could be further improved to cope with non-derivable functors and
  // non-binary functors (should be a variadic template member function
  // operator()).
  template <typename A, typename B>
  auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
    assert(lhs);
    assert(rhs);
    return func(*lhs, *rhs);
  }
};

namespace detail {

template <typename R> class enumerator_iter;

template <typename R> struct result_pair {
  friend class enumerator_iter<R>;

  result_pair() = default;
  result_pair(std::size_t Index, IterOfRange<R> Iter)
      : Index(Index), Iter(Iter) {}

  result_pair<R> &operator=(const result_pair<R> &Other) {
    Index = Other.Index;
    Iter = Other.Iter;
    return *this;
  }

  std::size_t index() const { return Index; }
  const ValueOfRange<R> &value() const { return *Iter; }
  ValueOfRange<R> &value() { return *Iter; }

private:
  std::size_t Index = std::numeric_limits<std::size_t>::max();
  IterOfRange<R> Iter;
};

template <typename R>
class enumerator_iter
    : public iterator_facade_base<
          enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
          typename std::iterator_traits<IterOfRange<R>>::difference_type,
          typename std::iterator_traits<IterOfRange<R>>::pointer,
          typename std::iterator_traits<IterOfRange<R>>::reference> {
  using result_type = result_pair<R>;

public:
  explicit enumerator_iter(IterOfRange<R> EndIter)
      : Result(std::numeric_limits<size_t>::max(), EndIter) {}

  enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
      : Result(Index, Iter) {}

  result_type &operator*() { return Result; }
  const result_type &operator*() const { return Result; }

  enumerator_iter<R> &operator++() {
    assert(Result.Index != std::numeric_limits<size_t>::max());
    ++Result.Iter;
    ++Result.Index;
    return *this;
  }

  bool operator==(const enumerator_iter<R> &RHS) const {
    // Don't compare indices here, only iterators.  It's possible for an end
    // iterator to have different indices depending on whether it was created
    // by calling std::end() versus incrementing a valid iterator.
    return Result.Iter == RHS.Result.Iter;
  }

  enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
    Result = Other.Result;
    return *this;
  }

private:
  result_type Result;
};

template <typename R> class enumerator {
public:
  explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}

  enumerator_iter<R> begin() {
    return enumerator_iter<R>(0, std::begin(TheRange));
  }

  enumerator_iter<R> end() {
    return enumerator_iter<R>(std::end(TheRange));
  }

private:
  R TheRange;
};

} // end namespace detail

/// Given an input range, returns a new range whose values are are pair (A,B)
/// such that A is the 0-based index of the item in the sequence, and B is
/// the value from the original sequence.  Example:
///
/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
/// for (auto X : enumerate(Items)) {
///   printf("Item %d - %c\n", X.index(), X.value());
/// }
///
/// Output:
///   Item 0 - A
///   Item 1 - B
///   Item 2 - C
///   Item 3 - D
///
template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
  return detail::enumerator<R>(std::forward<R>(TheRange));
}

namespace detail {

template <typename F, typename Tuple, std::size_t... I>
auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
    -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
  return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}

} // end namespace detail

/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
/// return the result.
template <typename F, typename Tuple>
auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
    std::forward<F>(f), std::forward<Tuple>(t),
    build_index_impl<
        std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
  using Indices = build_index_impl<
      std::tuple_size<typename std::decay<Tuple>::type>::value>;

  return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
                                  Indices{});
}

} // end namespace llvm

#endif // LLVM_ADT_STLEXTRAS_H