reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
//===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/STLExtras.h"
#include "gtest/gtest.h"

#include <list>
#include <vector>

using namespace llvm;

namespace {

int f(rank<0>) { return 0; }
int f(rank<1>) { return 1; }
int f(rank<2>) { return 2; }
int f(rank<4>) { return 4; }

TEST(STLExtrasTest, Rank) {
  // We shouldn't get ambiguities and should select the overload of the same
  // rank as the argument.
  EXPECT_EQ(0, f(rank<0>()));
  EXPECT_EQ(1, f(rank<1>()));
  EXPECT_EQ(2, f(rank<2>()));

  // This overload is missing so we end up back at 2.
  EXPECT_EQ(2, f(rank<3>()));

  // But going past 3 should work fine.
  EXPECT_EQ(4, f(rank<4>()));

  // And we can even go higher and just fall back to the last overload.
  EXPECT_EQ(4, f(rank<5>()));
  EXPECT_EQ(4, f(rank<6>()));
}

TEST(STLExtrasTest, EnumerateLValue) {
  // Test that a simple LValue can be enumerated and gives correct results with
  // multiple types, including the empty container.
  std::vector<char> foo = {'a', 'b', 'c'};
  typedef std::pair<std::size_t, char> CharPairType;
  std::vector<CharPairType> CharResults;

  for (auto X : llvm::enumerate(foo)) {
    CharResults.emplace_back(X.index(), X.value());
  }
  ASSERT_EQ(3u, CharResults.size());
  EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
  EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
  EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);

  // Test a const range of a different type.
  typedef std::pair<std::size_t, int> IntPairType;
  std::vector<IntPairType> IntResults;
  const std::vector<int> bar = {1, 2, 3};
  for (auto X : llvm::enumerate(bar)) {
    IntResults.emplace_back(X.index(), X.value());
  }
  ASSERT_EQ(3u, IntResults.size());
  EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
  EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
  EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);

  // Test an empty range.
  IntResults.clear();
  const std::vector<int> baz{};
  for (auto X : llvm::enumerate(baz)) {
    IntResults.emplace_back(X.index(), X.value());
  }
  EXPECT_TRUE(IntResults.empty());
}

TEST(STLExtrasTest, EnumerateModifyLValue) {
  // Test that you can modify the underlying entries of an lvalue range through
  // the enumeration iterator.
  std::vector<char> foo = {'a', 'b', 'c'};

  for (auto X : llvm::enumerate(foo)) {
    ++X.value();
  }
  EXPECT_EQ('b', foo[0]);
  EXPECT_EQ('c', foo[1]);
  EXPECT_EQ('d', foo[2]);
}

TEST(STLExtrasTest, EnumerateRValueRef) {
  // Test that an rvalue can be enumerated.
  typedef std::pair<std::size_t, int> PairType;
  std::vector<PairType> Results;

  auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});

  for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
    Results.emplace_back(X.index(), X.value());
  }

  ASSERT_EQ(3u, Results.size());
  EXPECT_EQ(PairType(0u, 1), Results[0]);
  EXPECT_EQ(PairType(1u, 2), Results[1]);
  EXPECT_EQ(PairType(2u, 3), Results[2]);
}

TEST(STLExtrasTest, EnumerateModifyRValue) {
  // Test that when enumerating an rvalue, modification still works (even if
  // this isn't terribly useful, it at least shows that we haven't snuck an
  // extra const in there somewhere.
  typedef std::pair<std::size_t, char> PairType;
  std::vector<PairType> Results;

  for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
    ++X.value();
    Results.emplace_back(X.index(), X.value());
  }

  ASSERT_EQ(3u, Results.size());
  EXPECT_EQ(PairType(0u, '2'), Results[0]);
  EXPECT_EQ(PairType(1u, '3'), Results[1]);
  EXPECT_EQ(PairType(2u, '4'), Results[2]);
}

template <bool B> struct CanMove {};
template <> struct CanMove<false> {
  CanMove(CanMove &&) = delete;

  CanMove() = default;
  CanMove(const CanMove &) = default;
};

template <bool B> struct CanCopy {};
template <> struct CanCopy<false> {
  CanCopy(const CanCopy &) = delete;

  CanCopy() = default;
  CanCopy(CanCopy &&) = default;
};

template <bool Moveable, bool Copyable>
struct Range : CanMove<Moveable>, CanCopy<Copyable> {
  explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {}
  Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; }
  Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) {
    ++M;
  }
  ~Range() { ++D; }

  int &C;
  int &M;
  int &D;

  int *begin() { return nullptr; }
  int *end() { return nullptr; }
};

TEST(STLExtrasTest, EnumerateLifetimeSemantics) {
  // Test that when enumerating lvalues and rvalues, there are no surprise
  // copies or moves.

  // With an rvalue, it should not be destroyed until the end of the scope.
  int Copies = 0;
  int Moves = 0;
  int Destructors = 0;
  {
    auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors));
    // Doesn't compile.  rvalue ranges must be moveable.
    // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
    EXPECT_EQ(0, Copies);
    EXPECT_EQ(1, Moves);
    EXPECT_EQ(1, Destructors);
  }
  EXPECT_EQ(0, Copies);
  EXPECT_EQ(1, Moves);
  EXPECT_EQ(2, Destructors);

  Copies = Moves = Destructors = 0;
  // With an lvalue, it should not be destroyed even after the end of the scope.
  // lvalue ranges need be neither copyable nor moveable.
  Range<false, false> R(Copies, Moves, Destructors);
  {
    auto Enumerator = enumerate(R);
    (void)Enumerator;
    EXPECT_EQ(0, Copies);
    EXPECT_EQ(0, Moves);
    EXPECT_EQ(0, Destructors);
  }
  EXPECT_EQ(0, Copies);
  EXPECT_EQ(0, Moves);
  EXPECT_EQ(0, Destructors);
}

TEST(STLExtrasTest, ApplyTuple) {
  auto T = std::make_tuple(1, 3, 7);
  auto U = llvm::apply_tuple(
      [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
      T);

  EXPECT_EQ(-2, std::get<0>(U));
  EXPECT_EQ(-4, std::get<1>(U));
  EXPECT_EQ(6, std::get<2>(U));

  auto V = llvm::apply_tuple(
      [](int A, int B, int C) {
        return std::make_tuple(std::make_pair(A, char('A' + A)),
                               std::make_pair(B, char('A' + B)),
                               std::make_pair(C, char('A' + C)));
      },
      T);

  EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
  EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
  EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
}

class apply_variadic {
  static int apply_one(int X) { return X + 1; }
  static char apply_one(char C) { return C + 1; }
  static StringRef apply_one(StringRef S) { return S.drop_back(); }

public:
  template <typename... Ts>
  auto operator()(Ts &&... Items)
      -> decltype(std::make_tuple(apply_one(Items)...)) {
    return std::make_tuple(apply_one(Items)...);
  }
};

TEST(STLExtrasTest, ApplyTupleVariadic) {
  auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
  auto Values = apply_tuple(apply_variadic(), Items);

  EXPECT_EQ(2, std::get<0>(Values));
  EXPECT_EQ("Tes", std::get<1>(Values));
  EXPECT_EQ('Y', std::get<2>(Values));
}

TEST(STLExtrasTest, CountAdaptor) {
  std::vector<int> v;

  v.push_back(1);
  v.push_back(2);
  v.push_back(1);
  v.push_back(4);
  v.push_back(3);
  v.push_back(2);
  v.push_back(1);

  EXPECT_EQ(3, count(v, 1));
  EXPECT_EQ(2, count(v, 2));
  EXPECT_EQ(1, count(v, 3));
  EXPECT_EQ(1, count(v, 4));
}

TEST(STLExtrasTest, for_each) {
  std::vector<int> v{0, 1, 2, 3, 4};
  int count = 0;

  llvm::for_each(v, [&count](int) { ++count; });
  EXPECT_EQ(5, count);
}

TEST(STLExtrasTest, ToVector) {
  std::vector<char> v = {'a', 'b', 'c'};
  auto Enumerated = to_vector<4>(enumerate(v));
  ASSERT_EQ(3u, Enumerated.size());
  for (size_t I = 0; I < v.size(); ++I) {
    EXPECT_EQ(I, Enumerated[I].index());
    EXPECT_EQ(v[I], Enumerated[I].value());
  }
}

TEST(STLExtrasTest, ConcatRange) {
  std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
  std::vector<int> Test;

  std::vector<int> V1234 = {1, 2, 3, 4};
  std::list<int> L56 = {5, 6};
  SmallVector<int, 2> SV78 = {7, 8};

  // Use concat across different sized ranges of different types with different
  // iterators.
  for (int &i : concat<int>(V1234, L56, SV78))
    Test.push_back(i);
  EXPECT_EQ(Expected, Test);

  // Use concat between a temporary, an L-value, and an R-value to make sure
  // complex lifetimes work well.
  Test.clear();
  for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
    Test.push_back(i);
  EXPECT_EQ(Expected, Test);
}

TEST(STLExtrasTest, PartitionAdaptor) {
  std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};

  auto I = partition(V, [](int i) { return i % 2 == 0; });
  ASSERT_EQ(V.begin() + 4, I);

  // Sort the two halves as partition may have messed with the order.
  llvm::sort(V.begin(), I);
  llvm::sort(I, V.end());

  EXPECT_EQ(2, V[0]);
  EXPECT_EQ(4, V[1]);
  EXPECT_EQ(6, V[2]);
  EXPECT_EQ(8, V[3]);
  EXPECT_EQ(1, V[4]);
  EXPECT_EQ(3, V[5]);
  EXPECT_EQ(5, V[6]);
  EXPECT_EQ(7, V[7]);
}

TEST(STLExtrasTest, EraseIf) {
  std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};

  erase_if(V, [](int i) { return i % 2 == 0; });
  EXPECT_EQ(4u, V.size());
  EXPECT_EQ(1, V[0]);
  EXPECT_EQ(3, V[1]);
  EXPECT_EQ(5, V[2]);
  EXPECT_EQ(7, V[3]);
}

namespace some_namespace {
struct some_struct {
  std::vector<int> data;
  std::string swap_val;
};

std::vector<int>::const_iterator begin(const some_struct &s) {
  return s.data.begin();
}

std::vector<int>::const_iterator end(const some_struct &s) {
  return s.data.end();
}

void swap(some_struct &lhs, some_struct &rhs) {
  // make swap visible as non-adl swap would even seem to
  // work with std::swap which defaults to moving
  lhs.swap_val = "lhs";
  rhs.swap_val = "rhs";
}
} // namespace some_namespace

TEST(STLExtrasTest, ADLTest) {
  some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
  some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};

  EXPECT_EQ(*adl_begin(s), 1);
  EXPECT_EQ(*(adl_end(s) - 1), 5);

  adl_swap(s, s2);
  EXPECT_EQ(s.swap_val, "lhs");
  EXPECT_EQ(s2.swap_val, "rhs");

  int count = 0;
  llvm::for_each(s, [&count](int) { ++count; });
  EXPECT_EQ(5, count);
}

TEST(STLExtrasTest, EmptyTest) {
  std::vector<void*> V;
  EXPECT_TRUE(llvm::empty(V));
  V.push_back(nullptr);
  EXPECT_FALSE(llvm::empty(V));

  std::initializer_list<int> E = {};
  std::initializer_list<int> NotE = {7, 13, 42};
  EXPECT_TRUE(llvm::empty(E));
  EXPECT_FALSE(llvm::empty(NotE));

  auto R0 = make_range(V.begin(), V.begin());
  EXPECT_TRUE(llvm::empty(R0));
  auto R1 = make_range(V.begin(), V.end());
  EXPECT_FALSE(llvm::empty(R1));
}

TEST(STLExtrasTest, EarlyIncrementTest) {
  std::list<int> L = {1, 2, 3, 4};

  auto EIR = make_early_inc_range(L);

  auto I = EIR.begin();
  auto EI = EIR.end();
  EXPECT_NE(I, EI);

  EXPECT_EQ(1, *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
  // Repeated dereferences are not allowed.
  EXPECT_DEATH(*I, "Cannot dereference");
  // Comparison after dereference is not allowed.
  EXPECT_DEATH((void)(I == EI), "Cannot compare");
  EXPECT_DEATH((void)(I != EI), "Cannot compare");
#endif
#endif

  ++I;
  EXPECT_NE(I, EI);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
  // You cannot increment prior to dereference.
  EXPECT_DEATH(++I, "Cannot increment");
#endif
#endif
  EXPECT_EQ(2, *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
  // Repeated dereferences are not allowed.
  EXPECT_DEATH(*I, "Cannot dereference");
#endif
#endif

  // Inserting shouldn't break anything. We should be able to keep dereferencing
  // the currrent iterator and increment. The increment to go to the "next"
  // iterator from before we inserted.
  L.insert(std::next(L.begin(), 2), -1);
  ++I;
  EXPECT_EQ(3, *I);

  // Erasing the front including the current doesn't break incrementing.
  L.erase(L.begin(), std::prev(L.end()));
  ++I;
  EXPECT_EQ(4, *I);
  ++I;
  EXPECT_EQ(EIR.end(), I);
}

TEST(STLExtrasTest, splat) {
  std::vector<int> V;
  EXPECT_FALSE(is_splat(V));

  V.push_back(1);
  EXPECT_TRUE(is_splat(V));

  V.push_back(1);
  V.push_back(1);
  EXPECT_TRUE(is_splat(V));

  V.push_back(2);
  EXPECT_FALSE(is_splat(V));
}

TEST(STLExtrasTest, to_address) {
  int *V1 = new int;
  EXPECT_EQ(V1, to_address(V1));

  // Check fancy pointer overload for unique_ptr
  std::unique_ptr<int> V2 = std::make_unique<int>(0);
  EXPECT_EQ(V2.get(), to_address(V2));

  V2.reset(V1);
  EXPECT_EQ(V1, to_address(V2));
  V2.release();

  // Check fancy pointer overload for shared_ptr
  std::shared_ptr<int> V3 = std::make_shared<int>(0);
  std::shared_ptr<int> V4 = V3;
  EXPECT_EQ(V3.get(), V4.get());
  EXPECT_EQ(V3.get(), to_address(V3));
  EXPECT_EQ(V4.get(), to_address(V4));

  V3.reset(V1);
  EXPECT_EQ(V1, to_address(V3));
}

TEST(STLExtrasTest, partition_point) {
  std::vector<int> V = {1, 3, 5, 7, 9};

  // Range version.
  EXPECT_EQ(V.begin() + 3,
            partition_point(V, [](unsigned X) { return X < 7; }));
  EXPECT_EQ(V.begin(), partition_point(V, [](unsigned X) { return X < 1; }));
  EXPECT_EQ(V.end(), partition_point(V, [](unsigned X) { return X < 50; }));
}

} // namespace