reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
//===- CallSite.h - Abstract Call & Invoke instrs ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the CallSite class, which is a handy wrapper for code that
// wants to treat Call, Invoke and CallBr instructions in a generic way. When
// in non-mutation context (e.g. an analysis) ImmutableCallSite should be used.
// Finally, when some degree of customization is necessary between these two
// extremes, CallSiteBase<> can be supplied with fine-tuned parameters.
//
// NOTE: These classes are supposed to have "value semantics". So they should be
// passed by value, not by reference; they should not be "new"ed or "delete"d.
// They are efficiently copyable, assignable and constructable, with cost
// equivalent to copying a pointer (notice that they have only a single data
// member). The internal representation carries a flag which indicates which of
// the three variants is enclosed. This allows for cheaper checks when various
// accessors of CallSite are employed.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_CALLSITE_H
#define LLVM_IR_CALLSITE_H

#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstdint>
#include <iterator>

namespace llvm {

namespace Intrinsic {
enum ID : unsigned;
}

template <typename FunTy = const Function, typename BBTy = const BasicBlock,
          typename ValTy = const Value, typename UserTy = const User,
          typename UseTy = const Use, typename InstrTy = const Instruction,
          typename CallTy = const CallInst,
          typename InvokeTy = const InvokeInst,
          typename CallBrTy = const CallBrInst,
          typename IterTy = User::const_op_iterator>
class CallSiteBase {
protected:
  PointerIntPair<InstrTy *, 2, int> I;

  CallSiteBase() = default;
  CallSiteBase(CallTy *CI) : I(CI, 1) { assert(CI); }
  CallSiteBase(InvokeTy *II) : I(II, 0) { assert(II); }
  CallSiteBase(CallBrTy *CBI) : I(CBI, 2) { assert(CBI); }
  explicit CallSiteBase(ValTy *II) { *this = get(II); }

private:
  /// This static method is like a constructor. It will create an appropriate
  /// call site for a Call, Invoke or CallBr instruction, but it can also create
  /// a null initialized CallSiteBase object for something which is NOT a call
  /// site.
  static CallSiteBase get(ValTy *V) {
    if (InstrTy *II = dyn_cast<InstrTy>(V)) {
      if (II->getOpcode() == Instruction::Call)
        return CallSiteBase(static_cast<CallTy*>(II));
      if (II->getOpcode() == Instruction::Invoke)
        return CallSiteBase(static_cast<InvokeTy*>(II));
      if (II->getOpcode() == Instruction::CallBr)
        return CallSiteBase(static_cast<CallBrTy *>(II));
    }
    return CallSiteBase();
  }

public:
  /// Return true if a CallInst is enclosed.
  bool isCall() const { return I.getInt() == 1; }

  /// Return true if a InvokeInst is enclosed. !I.getInt() may also signify a
  /// NULL instruction pointer, so check that.
  bool isInvoke() const { return getInstruction() && I.getInt() == 0; }

  /// Return true if a CallBrInst is enclosed.
  bool isCallBr() const { return I.getInt() == 2; }

  InstrTy *getInstruction() const { return I.getPointer(); }
  InstrTy *operator->() const { return I.getPointer(); }
  explicit operator bool() const { return I.getPointer(); }

  /// Get the basic block containing the call site.
  BBTy* getParent() const { return getInstruction()->getParent(); }

  /// Return the pointer to function that is being called.
  ValTy *getCalledValue() const {
    assert(getInstruction() && "Not a call, invoke or callbr instruction!");
    return *getCallee();
  }

  /// Return the function being called if this is a direct call, otherwise
  /// return null (if it's an indirect call).
  FunTy *getCalledFunction() const {
    return dyn_cast<FunTy>(getCalledValue());
  }

  /// Return true if the callsite is an indirect call.
  bool isIndirectCall() const {
    const Value *V = getCalledValue();
    if (!V)
      return false;
    if (isa<FunTy>(V) || isa<Constant>(V))
      return false;
    if (const CallBase *CB = dyn_cast<CallBase>(getInstruction()))
      if (CB->isInlineAsm())
        return false;
    return true;
  }

  /// Set the callee to the specified value.  Unlike the function of the same
  /// name on CallBase, does not modify the type!
  void setCalledFunction(Value *V) {
    assert(getInstruction() && "Not a call, callbr, or invoke instruction!");
    assert(cast<PointerType>(V->getType())->getElementType() ==
               cast<CallBase>(getInstruction())->getFunctionType() &&
           "New callee type does not match FunctionType on call");
    *getCallee() = V;
  }

  /// Return the intrinsic ID of the intrinsic called by this CallSite,
  /// or Intrinsic::not_intrinsic if the called function is not an
  /// intrinsic, or if this CallSite is an indirect call.
  Intrinsic::ID getIntrinsicID() const {
    if (auto *F = getCalledFunction())
      return F->getIntrinsicID();
    // Don't use Intrinsic::not_intrinsic, as it will require pulling
    // Intrinsics.h into every header that uses CallSite.
    return static_cast<Intrinsic::ID>(0);
  }

  /// Determine whether the passed iterator points to the callee operand's Use.
  bool isCallee(Value::const_user_iterator UI) const {
    return isCallee(&UI.getUse());
  }

  /// Determine whether this Use is the callee operand's Use.
  bool isCallee(const Use *U) const { return getCallee() == U; }

  /// Determine whether the passed iterator points to an argument operand.
  bool isArgOperand(Value::const_user_iterator UI) const {
    return isArgOperand(&UI.getUse());
  }

  /// Determine whether the passed use points to an argument operand.
  bool isArgOperand(const Use *U) const {
    assert(getInstruction() == U->getUser());
    return arg_begin() <= U && U < arg_end();
  }

  /// Determine whether the passed iterator points to a bundle operand.
  bool isBundleOperand(Value::const_user_iterator UI) const {
    return isBundleOperand(&UI.getUse());
  }

  /// Determine whether the passed use points to a bundle operand.
  bool isBundleOperand(const Use *U) const {
    assert(getInstruction() == U->getUser());
    if (!hasOperandBundles())
      return false;
    unsigned OperandNo = U - (*this)->op_begin();
    return getBundleOperandsStartIndex() <= OperandNo &&
           OperandNo < getBundleOperandsEndIndex();
  }

  /// Determine whether the passed iterator points to a data operand.
  bool isDataOperand(Value::const_user_iterator UI) const {
    return isDataOperand(&UI.getUse());
  }

  /// Determine whether the passed use points to a data operand.
  bool isDataOperand(const Use *U) const {
    return data_operands_begin() <= U && U < data_operands_end();
  }

  ValTy *getArgument(unsigned ArgNo) const {
    assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
    return *(arg_begin() + ArgNo);
  }

  void setArgument(unsigned ArgNo, Value* newVal) {
    assert(getInstruction() && "Not a call, invoke or callbr instruction!");
    assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
    getInstruction()->setOperand(ArgNo, newVal);
  }

  /// Given a value use iterator, returns the argument that corresponds to it.
  /// Iterator must actually correspond to an argument.
  unsigned getArgumentNo(Value::const_user_iterator I) const {
    return getArgumentNo(&I.getUse());
  }

  /// Given a use for an argument, get the argument number that corresponds to
  /// it.
  unsigned getArgumentNo(const Use *U) const {
    assert(getInstruction() && "Not a call, invoke or callbr instruction!");
    assert(isArgOperand(U) && "Argument # out of range!");
    return U - arg_begin();
  }

  /// The type of iterator to use when looping over actual arguments at this
  /// call site.
  using arg_iterator = IterTy;

  iterator_range<IterTy> args() const {
    return make_range(arg_begin(), arg_end());
  }
  bool arg_empty() const { return arg_end() == arg_begin(); }
  unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); }

  /// Given a value use iterator, return the data operand corresponding to it.
  /// Iterator must actually correspond to a data operand.
  unsigned getDataOperandNo(Value::const_user_iterator UI) const {
    return getDataOperandNo(&UI.getUse());
  }

  /// Given a use for a data operand, get the data operand number that
  /// corresponds to it.
  unsigned getDataOperandNo(const Use *U) const {
    assert(getInstruction() && "Not a call, invoke or callbr instruction!");
    assert(isDataOperand(U) && "Data operand # out of range!");
    return U - data_operands_begin();
  }

  /// Type of iterator to use when looping over data operands at this call site
  /// (see below).
  using data_operand_iterator = IterTy;

  /// data_operands_begin/data_operands_end - Return iterators iterating over
  /// the call / invoke / callbr argument list and bundle operands. For invokes,
  /// this is the set of instruction operands except the invoke target and the
  /// two successor blocks; for calls this is the set of instruction operands
  /// except the call target; for callbrs the number of labels to skip must be
  /// determined first.

  IterTy data_operands_begin() const {
    assert(getInstruction() && "Not a call or invoke instruction!");
    return cast<CallBase>(getInstruction())->data_operands_begin();
  }
  IterTy data_operands_end() const {
    assert(getInstruction() && "Not a call or invoke instruction!");
    return cast<CallBase>(getInstruction())->data_operands_end();
  }
  iterator_range<IterTy> data_ops() const {
    return make_range(data_operands_begin(), data_operands_end());
  }
  bool data_operands_empty() const {
    return data_operands_end() == data_operands_begin();
  }
  unsigned data_operands_size() const {
    return std::distance(data_operands_begin(), data_operands_end());
  }

  /// Return the type of the instruction that generated this call site.
  Type *getType() const { return (*this)->getType(); }

  /// Return the caller function for this call site.
  FunTy *getCaller() const { return (*this)->getParent()->getParent(); }

  /// Tests if this call site must be tail call optimized. Only a CallInst can
  /// be tail call optimized.
  bool isMustTailCall() const {
    return isCall() && cast<CallInst>(getInstruction())->isMustTailCall();
  }

  /// Tests if this call site is marked as a tail call.
  bool isTailCall() const {
    return isCall() && cast<CallInst>(getInstruction())->isTailCall();
  }

#define CALLSITE_DELEGATE_GETTER(METHOD)                                       \
  InstrTy *II = getInstruction();                                              \
  return isCall() ? cast<CallInst>(II)->METHOD                                 \
                  : isCallBr() ? cast<CallBrInst>(II)->METHOD                  \
                                : cast<InvokeInst>(II)->METHOD

#define CALLSITE_DELEGATE_SETTER(METHOD)                                       \
  InstrTy *II = getInstruction();                                              \
  if (isCall())                                                                \
    cast<CallInst>(II)->METHOD;                                                \
  else if (isCallBr())                                                         \
    cast<CallBrInst>(II)->METHOD;                                              \
  else                                                                         \
    cast<InvokeInst>(II)->METHOD

  unsigned getNumArgOperands() const {
    CALLSITE_DELEGATE_GETTER(getNumArgOperands());
  }

  ValTy *getArgOperand(unsigned i) const {
    CALLSITE_DELEGATE_GETTER(getArgOperand(i));
  }

  ValTy *getReturnedArgOperand() const {
    CALLSITE_DELEGATE_GETTER(getReturnedArgOperand());
  }

  bool isInlineAsm() const {
    return cast<CallBase>(getInstruction())->isInlineAsm();
  }

  /// Get the calling convention of the call.
  CallingConv::ID getCallingConv() const {
    CALLSITE_DELEGATE_GETTER(getCallingConv());
  }
  /// Set the calling convention of the call.
  void setCallingConv(CallingConv::ID CC) {
    CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
  }

  FunctionType *getFunctionType() const {
    CALLSITE_DELEGATE_GETTER(getFunctionType());
  }

  void mutateFunctionType(FunctionType *Ty) const {
    CALLSITE_DELEGATE_SETTER(mutateFunctionType(Ty));
  }

  /// Get the parameter attributes of the call.
  AttributeList getAttributes() const {
    CALLSITE_DELEGATE_GETTER(getAttributes());
  }
  /// Set the parameter attributes of the call.
  void setAttributes(AttributeList PAL) {
    CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
  }

  void addAttribute(unsigned i, Attribute::AttrKind Kind) {
    CALLSITE_DELEGATE_SETTER(addAttribute(i, Kind));
  }

  void addAttribute(unsigned i, Attribute Attr) {
    CALLSITE_DELEGATE_SETTER(addAttribute(i, Attr));
  }

  void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
    CALLSITE_DELEGATE_SETTER(addParamAttr(ArgNo, Kind));
  }

  void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
    CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
  }

  void removeAttribute(unsigned i, StringRef Kind) {
    CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
  }

  void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
    CALLSITE_DELEGATE_SETTER(removeParamAttr(ArgNo, Kind));
  }

  /// Return true if this function has the given attribute.
  bool hasFnAttr(Attribute::AttrKind Kind) const {
    CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
  }

  /// Return true if this function has the given attribute.
  bool hasFnAttr(StringRef Kind) const {
    CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
  }

  /// Return true if this return value has the given attribute.
  bool hasRetAttr(Attribute::AttrKind Kind) const {
    CALLSITE_DELEGATE_GETTER(hasRetAttr(Kind));
  }

  /// Return true if the call or the callee has the given attribute.
  bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
    CALLSITE_DELEGATE_GETTER(paramHasAttr(ArgNo, Kind));
  }

  Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
    CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
  }

  Attribute getAttribute(unsigned i, StringRef Kind) const {
    CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
  }

  /// Return true if the data operand at index \p i directly or indirectly has
  /// the attribute \p A.
  ///
  /// Normal call, invoke or callbr arguments have per operand attributes, as
  /// specified in the attribute set attached to this instruction, while operand
  /// bundle operands may have some attributes implied by the type of its
  /// containing operand bundle.
  bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
    CALLSITE_DELEGATE_GETTER(dataOperandHasImpliedAttr(i, Kind));
  }

  /// Extract the alignment of the return value.
  unsigned getRetAlignment() const {
    CALLSITE_DELEGATE_GETTER(getRetAlignment());
  }

  /// Extract the alignment for a call or parameter (0=unknown).
  unsigned getParamAlignment(unsigned ArgNo) const {
    CALLSITE_DELEGATE_GETTER(getParamAlignment(ArgNo));
  }

  /// Extract the byval type for a call or parameter (nullptr=unknown).
  Type *getParamByValType(unsigned ArgNo) const {
    CALLSITE_DELEGATE_GETTER(getParamByValType(ArgNo));
  }

  /// Extract the number of dereferenceable bytes for a call or parameter
  /// (0=unknown).
  uint64_t getDereferenceableBytes(unsigned i) const {
    CALLSITE_DELEGATE_GETTER(getDereferenceableBytes(i));
  }

  /// Extract the number of dereferenceable_or_null bytes for a call or
  /// parameter (0=unknown).
  uint64_t getDereferenceableOrNullBytes(unsigned i) const {
    CALLSITE_DELEGATE_GETTER(getDereferenceableOrNullBytes(i));
  }

  /// Determine if the return value is marked with NoAlias attribute.
  bool returnDoesNotAlias() const {
    CALLSITE_DELEGATE_GETTER(returnDoesNotAlias());
  }

  /// Return true if the call should not be treated as a call to a builtin.
  bool isNoBuiltin() const {
    CALLSITE_DELEGATE_GETTER(isNoBuiltin());
  }

  /// Return true if the call requires strict floating point semantics.
  bool isStrictFP() const {
    CALLSITE_DELEGATE_GETTER(isStrictFP());
  }

  /// Return true if the call should not be inlined.
  bool isNoInline() const {
    CALLSITE_DELEGATE_GETTER(isNoInline());
  }
  void setIsNoInline(bool Value = true) {
    CALLSITE_DELEGATE_SETTER(setIsNoInline(Value));
  }

  /// Determine if the call does not access memory.
  bool doesNotAccessMemory() const {
    CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
  }
  void setDoesNotAccessMemory() {
    CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory());
  }

  /// Determine if the call does not access or only reads memory.
  bool onlyReadsMemory() const {
    CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
  }
  void setOnlyReadsMemory() {
    CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory());
  }

  /// Determine if the call does not access or only writes memory.
  bool doesNotReadMemory() const {
    CALLSITE_DELEGATE_GETTER(doesNotReadMemory());
  }
  void setDoesNotReadMemory() {
    CALLSITE_DELEGATE_SETTER(setDoesNotReadMemory());
  }

  /// Determine if the call can access memmory only using pointers based
  /// on its arguments.
  bool onlyAccessesArgMemory() const {
    CALLSITE_DELEGATE_GETTER(onlyAccessesArgMemory());
  }
  void setOnlyAccessesArgMemory() {
    CALLSITE_DELEGATE_SETTER(setOnlyAccessesArgMemory());
  }

  /// Determine if the function may only access memory that is
  /// inaccessible from the IR.
  bool onlyAccessesInaccessibleMemory() const {
    CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemory());
  }
  void setOnlyAccessesInaccessibleMemory() {
    CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemory());
  }

  /// Determine if the function may only access memory that is
  /// either inaccessible from the IR or pointed to by its arguments.
  bool onlyAccessesInaccessibleMemOrArgMem() const {
    CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemOrArgMem());
  }
  void setOnlyAccessesInaccessibleMemOrArgMem() {
    CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemOrArgMem());
  }

  /// Determine if the call cannot return.
  bool doesNotReturn() const {
    CALLSITE_DELEGATE_GETTER(doesNotReturn());
  }
  void setDoesNotReturn() {
    CALLSITE_DELEGATE_SETTER(setDoesNotReturn());
  }

  /// Determine if the call cannot unwind.
  bool doesNotThrow() const {
    CALLSITE_DELEGATE_GETTER(doesNotThrow());
  }
  void setDoesNotThrow() {
    CALLSITE_DELEGATE_SETTER(setDoesNotThrow());
  }

  /// Determine if the call can be duplicated.
  bool cannotDuplicate() const {
    CALLSITE_DELEGATE_GETTER(cannotDuplicate());
  }
  void setCannotDuplicate() {
    CALLSITE_DELEGATE_SETTER(setCannotDuplicate());
  }

  /// Determine if the call is convergent.
  bool isConvergent() const {
    CALLSITE_DELEGATE_GETTER(isConvergent());
  }
  void setConvergent() {
    CALLSITE_DELEGATE_SETTER(setConvergent());
  }
  void setNotConvergent() {
    CALLSITE_DELEGATE_SETTER(setNotConvergent());
  }

  unsigned getNumOperandBundles() const {
    CALLSITE_DELEGATE_GETTER(getNumOperandBundles());
  }

  bool hasOperandBundles() const {
    CALLSITE_DELEGATE_GETTER(hasOperandBundles());
  }

  unsigned getBundleOperandsStartIndex() const {
    CALLSITE_DELEGATE_GETTER(getBundleOperandsStartIndex());
  }

  unsigned getBundleOperandsEndIndex() const {
    CALLSITE_DELEGATE_GETTER(getBundleOperandsEndIndex());
  }

  unsigned getNumTotalBundleOperands() const {
    CALLSITE_DELEGATE_GETTER(getNumTotalBundleOperands());
  }

  OperandBundleUse getOperandBundleAt(unsigned Index) const {
    CALLSITE_DELEGATE_GETTER(getOperandBundleAt(Index));
  }

  Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
    CALLSITE_DELEGATE_GETTER(getOperandBundle(Name));
  }

  Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
    CALLSITE_DELEGATE_GETTER(getOperandBundle(ID));
  }

  unsigned countOperandBundlesOfType(uint32_t ID) const {
    CALLSITE_DELEGATE_GETTER(countOperandBundlesOfType(ID));
  }

  bool isBundleOperand(unsigned Idx) const {
    CALLSITE_DELEGATE_GETTER(isBundleOperand(Idx));
  }

  IterTy arg_begin() const {
    CALLSITE_DELEGATE_GETTER(arg_begin());
  }

  IterTy arg_end() const {
    CALLSITE_DELEGATE_GETTER(arg_end());
  }

#undef CALLSITE_DELEGATE_GETTER
#undef CALLSITE_DELEGATE_SETTER

  void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
    // Since this is actually a getter that "looks like" a setter, don't use the
    // above macros to avoid confusion.
    cast<CallBase>(getInstruction())->getOperandBundlesAsDefs(Defs);
  }

  /// Determine whether this data operand is not captured.
  bool doesNotCapture(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
  }

  /// Determine whether this argument is passed by value.
  bool isByValArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::ByVal);
  }

  /// Determine whether this argument is passed in an alloca.
  bool isInAllocaArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::InAlloca);
  }

  /// Determine whether this argument is passed by value or in an alloca.
  bool isByValOrInAllocaArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::ByVal) ||
           paramHasAttr(ArgNo, Attribute::InAlloca);
  }

  /// Determine if there are is an inalloca argument. Only the last argument can
  /// have the inalloca attribute.
  bool hasInAllocaArgument() const {
    return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
  }

  bool doesNotAccessMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  bool onlyReadsMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
           dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  bool doesNotReadMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
           dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  /// Return true if the return value is known to be not null.
  /// This may be because it has the nonnull attribute, or because at least
  /// one byte is dereferenceable and the pointer is in addrspace(0).
  bool isReturnNonNull() const {
    if (hasRetAttr(Attribute::NonNull))
      return true;
    else if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
             !NullPointerIsDefined(getCaller(),
                                   getType()->getPointerAddressSpace()))
      return true;

    return false;
  }

  /// Returns true if this CallSite passes the given Value* as an argument to
  /// the called function.
  bool hasArgument(const Value *Arg) const {
    for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E;
         ++AI)
      if (AI->get() == Arg)
        return true;
    return false;
  }

private:
  IterTy getCallee() const {
    return cast<CallBase>(getInstruction())->op_end() - 1;
  }
};

class CallSite : public CallSiteBase<Function, BasicBlock, Value, User, Use,
                                     Instruction, CallInst, InvokeInst,
                                     CallBrInst, User::op_iterator> {
public:
  CallSite() = default;
  CallSite(CallSiteBase B) : CallSiteBase(B) {}
  CallSite(CallInst *CI) : CallSiteBase(CI) {}
  CallSite(InvokeInst *II) : CallSiteBase(II) {}
  CallSite(CallBrInst *CBI) : CallSiteBase(CBI) {}
  explicit CallSite(Instruction *II) : CallSiteBase(II) {}
  explicit CallSite(Value *V) : CallSiteBase(V) {}

  bool operator==(const CallSite &CS) const { return I == CS.I; }
  bool operator!=(const CallSite &CS) const { return I != CS.I; }
  bool operator<(const CallSite &CS) const {
    return getInstruction() < CS.getInstruction();
  }

private:
  friend struct DenseMapInfo<CallSite>;

  User::op_iterator getCallee() const;
};

/// AbstractCallSite
///
/// An abstract call site is a wrapper that allows to treat direct,
/// indirect, and callback calls the same. If an abstract call site
/// represents a direct or indirect call site it behaves like a stripped
/// down version of a normal call site object. The abstract call site can
/// also represent a callback call, thus the fact that the initially
/// called function (=broker) may invoke a third one (=callback callee).
/// In this case, the abstract call site hides the middle man, hence the
/// broker function. The result is a representation of the callback call,
/// inside the broker, but in the context of the original call to the broker.
///
/// There are up to three functions involved when we talk about callback call
/// sites. The caller (1), which invokes the broker function. The broker
/// function (2), that will invoke the callee zero or more times. And finally
/// the callee (3), which is the target of the callback call.
///
/// The abstract call site will handle the mapping from parameters to arguments
/// depending on the semantic of the broker function. However, it is important
/// to note that the mapping is often partial. Thus, some arguments of the
/// call/invoke instruction are mapped to parameters of the callee while others
/// are not.
class AbstractCallSite {
public:

  /// The encoding of a callback with regards to the underlying instruction.
  struct CallbackInfo {

    /// For direct/indirect calls the parameter encoding is empty. If it is not,
    /// the abstract call site represents a callback. In that case, the first
    /// element of the encoding vector represents which argument of the call
    /// site CS is the callback callee. The remaining elements map parameters
    /// (identified by their position) to the arguments that will be passed
    /// through (also identified by position but in the call site instruction).
    ///
    /// NOTE that we use LLVM argument numbers (starting at 0) and not
    /// clang/source argument numbers (starting at 1). The -1 entries represent
    /// unknown values that are passed to the callee.
    using ParameterEncodingTy = SmallVector<int, 0>;
    ParameterEncodingTy ParameterEncoding;

  };

private:

  /// The underlying call site:
  ///   caller -> callee,             if this is a direct or indirect call site
  ///   caller -> broker function,    if this is a callback call site
  CallSite CS;

  /// The encoding of a callback with regards to the underlying instruction.
  CallbackInfo CI;

public:
  /// Sole constructor for abstract call sites (ACS).
  ///
  /// An abstract call site can only be constructed through a llvm::Use because
  /// each operand (=use) of an instruction could potentially be a different
  /// abstract call site. Furthermore, even if the value of the llvm::Use is the
  /// same, and the user is as well, the abstract call sites might not be.
  ///
  /// If a use is not associated with an abstract call site the constructed ACS
  /// will evaluate to false if converted to a boolean.
  ///
  /// If the use is the callee use of a call or invoke instruction, the
  /// constructed abstract call site will behave as a llvm::CallSite would.
  ///
  /// If the use is not a callee use of a call or invoke instruction, the
  /// callback metadata is used to determine the argument <-> parameter mapping
  /// as well as the callee of the abstract call site.
  AbstractCallSite(const Use *U);

  /// Conversion operator to conveniently check for a valid/initialized ACS.
  explicit operator bool() const { return (bool)CS; }

  /// Return the underlying instruction.
  Instruction *getInstruction() const { return CS.getInstruction(); }

  /// Return the call site abstraction for the underlying instruction.
  CallSite getCallSite() const { return CS; }

  /// Return true if this ACS represents a direct call.
  bool isDirectCall() const {
    return !isCallbackCall() && !CS.isIndirectCall();
  }

  /// Return true if this ACS represents an indirect call.
  bool isIndirectCall() const {
    return !isCallbackCall() && CS.isIndirectCall();
  }

  /// Return true if this ACS represents a callback call.
  bool isCallbackCall() const {
    // For a callback call site the callee is ALWAYS stored first in the
    // transitive values vector. Thus, a non-empty vector indicates a callback.
    return !CI.ParameterEncoding.empty();
  }

  /// Return true if @p UI is the use that defines the callee of this ACS.
  bool isCallee(Value::const_user_iterator UI) const {
    return isCallee(&UI.getUse());
  }

  /// Return true if @p U is the use that defines the callee of this ACS.
  bool isCallee(const Use *U) const {
    if (isDirectCall())
      return CS.isCallee(U);

    assert(!CI.ParameterEncoding.empty() &&
           "Callback without parameter encoding!");

    return (int)CS.getArgumentNo(U) == CI.ParameterEncoding[0];
  }

  /// Return the number of parameters of the callee.
  unsigned getNumArgOperands() const {
    if (isDirectCall())
      return CS.getNumArgOperands();
    // Subtract 1 for the callee encoding.
    return CI.ParameterEncoding.size() - 1;
  }

  /// Return the operand index of the underlying instruction associated with @p
  /// Arg.
  int getCallArgOperandNo(Argument &Arg) const {
    return getCallArgOperandNo(Arg.getArgNo());
  }

  /// Return the operand index of the underlying instruction associated with
  /// the function parameter number @p ArgNo or -1 if there is none.
  int getCallArgOperandNo(unsigned ArgNo) const {
    if (isDirectCall())
      return ArgNo;
    // Add 1 for the callee encoding.
    return CI.ParameterEncoding[ArgNo + 1];
  }

  /// Return the operand of the underlying instruction associated with @p Arg.
  Value *getCallArgOperand(Argument &Arg) const {
    return getCallArgOperand(Arg.getArgNo());
  }

  /// Return the operand of the underlying instruction associated with the
  /// function parameter number @p ArgNo or nullptr if there is none.
  Value *getCallArgOperand(unsigned ArgNo) const {
    if (isDirectCall())
      return CS.getArgOperand(ArgNo);
    // Add 1 for the callee encoding.
    return CI.ParameterEncoding[ArgNo + 1] >= 0
               ? CS.getArgOperand(CI.ParameterEncoding[ArgNo + 1])
               : nullptr;
  }

  /// Return the operand index of the underlying instruction associated with the
  /// callee of this ACS. Only valid for callback calls!
  int getCallArgOperandNoForCallee() const {
    assert(isCallbackCall());
    assert(CI.ParameterEncoding.size() && CI.ParameterEncoding[0] > 0);
    return CI.ParameterEncoding[0];
  }

  /// Return the use of the callee value in the underlying instruction. Only
  /// valid for callback calls!
  const Use &getCalleeUseForCallback() const {
    int CalleeArgIdx = getCallArgOperandNoForCallee();
    assert(CalleeArgIdx >= 0 &&
           unsigned(CalleeArgIdx) < getInstruction()->getNumOperands());
    return getInstruction()->getOperandUse(CalleeArgIdx);
  }

  /// Return the pointer to function that is being called.
  Value *getCalledValue() const {
    if (isDirectCall())
      return CS.getCalledValue();
    return CS.getArgOperand(getCallArgOperandNoForCallee());
  }

  /// Return the function being called if this is a direct call, otherwise
  /// return null (if it's an indirect call).
  Function *getCalledFunction() const {
    Value *V = getCalledValue();
    return V ? dyn_cast<Function>(V->stripPointerCasts()) : nullptr;
  }
};

template <> struct DenseMapInfo<CallSite> {
  using BaseInfo = DenseMapInfo<decltype(CallSite::I)>;

  static CallSite getEmptyKey() {
    CallSite CS;
    CS.I = BaseInfo::getEmptyKey();
    return CS;
  }

  static CallSite getTombstoneKey() {
    CallSite CS;
    CS.I = BaseInfo::getTombstoneKey();
    return CS;
  }

  static unsigned getHashValue(const CallSite &CS) {
    return BaseInfo::getHashValue(CS.I);
  }

  static bool isEqual(const CallSite &LHS, const CallSite &RHS) {
    return LHS == RHS;
  }
};

/// Establish a view to a call site for examination.
class ImmutableCallSite : public CallSiteBase<> {
public:
  ImmutableCallSite() = default;
  ImmutableCallSite(const CallInst *CI) : CallSiteBase(CI) {}
  ImmutableCallSite(const InvokeInst *II) : CallSiteBase(II) {}
  ImmutableCallSite(const CallBrInst *CBI) : CallSiteBase(CBI) {}
  explicit ImmutableCallSite(const Instruction *II) : CallSiteBase(II) {}
  explicit ImmutableCallSite(const Value *V) : CallSiteBase(V) {}
  ImmutableCallSite(CallSite CS) : CallSiteBase(CS.getInstruction()) {}
};

} // end namespace llvm

#endif // LLVM_IR_CALLSITE_H