reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
//===- llvm/CallingConvLower.h - Calling Conventions ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the CCState and CCValAssign classes, used for lowering
// and implementing calling conventions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
#define LLVM_CODEGEN_CALLINGCONVLOWER_H

#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Alignment.h"

namespace llvm {

class CCState;
class MVT;
class TargetMachine;
class TargetRegisterInfo;

/// CCValAssign - Represent assignment of one arg/retval to a location.
class CCValAssign {
public:
  enum LocInfo {
    Full,      // The value fills the full location.
    SExt,      // The value is sign extended in the location.
    ZExt,      // The value is zero extended in the location.
    AExt,      // The value is extended with undefined upper bits.
    SExtUpper, // The value is in the upper bits of the location and should be
               // sign extended when retrieved.
    ZExtUpper, // The value is in the upper bits of the location and should be
               // zero extended when retrieved.
    AExtUpper, // The value is in the upper bits of the location and should be
               // extended with undefined upper bits when retrieved.
    BCvt,      // The value is bit-converted in the location.
    Trunc,     // The value is truncated in the location.
    VExt,      // The value is vector-widened in the location.
               // FIXME: Not implemented yet. Code that uses AExt to mean
               // vector-widen should be fixed to use VExt instead.
    FPExt,     // The floating-point value is fp-extended in the location.
    Indirect   // The location contains pointer to the value.
    // TODO: a subset of the value is in the location.
  };

private:
  /// ValNo - This is the value number begin assigned (e.g. an argument number).
  unsigned ValNo;

  /// Loc is either a stack offset or a register number.
  unsigned Loc;

  /// isMem - True if this is a memory loc, false if it is a register loc.
  unsigned isMem : 1;

  /// isCustom - True if this arg/retval requires special handling.
  unsigned isCustom : 1;

  /// Information about how the value is assigned.
  LocInfo HTP : 6;

  /// ValVT - The type of the value being assigned.
  MVT ValVT;

  /// LocVT - The type of the location being assigned to.
  MVT LocVT;
public:

  static CCValAssign getReg(unsigned ValNo, MVT ValVT,
                            unsigned RegNo, MVT LocVT,
                            LocInfo HTP) {
    CCValAssign Ret;
    Ret.ValNo = ValNo;
    Ret.Loc = RegNo;
    Ret.isMem = false;
    Ret.isCustom = false;
    Ret.HTP = HTP;
    Ret.ValVT = ValVT;
    Ret.LocVT = LocVT;
    return Ret;
  }

  static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT,
                                  unsigned RegNo, MVT LocVT,
                                  LocInfo HTP) {
    CCValAssign Ret;
    Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP);
    Ret.isCustom = true;
    return Ret;
  }

  static CCValAssign getMem(unsigned ValNo, MVT ValVT,
                            unsigned Offset, MVT LocVT,
                            LocInfo HTP) {
    CCValAssign Ret;
    Ret.ValNo = ValNo;
    Ret.Loc = Offset;
    Ret.isMem = true;
    Ret.isCustom = false;
    Ret.HTP = HTP;
    Ret.ValVT = ValVT;
    Ret.LocVT = LocVT;
    return Ret;
  }

  static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT,
                                  unsigned Offset, MVT LocVT,
                                  LocInfo HTP) {
    CCValAssign Ret;
    Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP);
    Ret.isCustom = true;
    return Ret;
  }

  // There is no need to differentiate between a pending CCValAssign and other
  // kinds, as they are stored in a different list.
  static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
                                LocInfo HTP, unsigned ExtraInfo = 0) {
    return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
  }

  void convertToReg(unsigned RegNo) {
    Loc = RegNo;
    isMem = false;
  }

  void convertToMem(unsigned Offset) {
    Loc = Offset;
    isMem = true;
  }

  unsigned getValNo() const { return ValNo; }
  MVT getValVT() const { return ValVT; }

  bool isRegLoc() const { return !isMem; }
  bool isMemLoc() const { return isMem; }

  bool needsCustom() const { return isCustom; }

  Register getLocReg() const { assert(isRegLoc()); return Loc; }
  unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
  unsigned getExtraInfo() const { return Loc; }
  MVT getLocVT() const { return LocVT; }

  LocInfo getLocInfo() const { return HTP; }
  bool isExtInLoc() const {
    return (HTP == AExt || HTP == SExt || HTP == ZExt);
  }

  bool isUpperBitsInLoc() const {
    return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
  }
};

/// Describes a register that needs to be forwarded from the prologue to a
/// musttail call.
struct ForwardedRegister {
  ForwardedRegister(unsigned VReg, MCPhysReg PReg, MVT VT)
      : VReg(VReg), PReg(PReg), VT(VT) {}
  unsigned VReg;
  MCPhysReg PReg;
  MVT VT;
};

/// CCAssignFn - This function assigns a location for Val, updating State to
/// reflect the change.  It returns 'true' if it failed to handle Val.
typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
                        MVT LocVT, CCValAssign::LocInfo LocInfo,
                        ISD::ArgFlagsTy ArgFlags, CCState &State);

/// CCCustomFn - This function assigns a location for Val, possibly updating
/// all args to reflect changes and indicates if it handled it. It must set
/// isCustom if it handles the arg and returns true.
typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
                        MVT &LocVT, CCValAssign::LocInfo &LocInfo,
                        ISD::ArgFlagsTy &ArgFlags, CCState &State);

/// CCState - This class holds information needed while lowering arguments and
/// return values.  It captures which registers are already assigned and which
/// stack slots are used.  It provides accessors to allocate these values.
class CCState {
private:
  CallingConv::ID CallingConv;
  bool IsVarArg;
  bool AnalyzingMustTailForwardedRegs = false;
  MachineFunction &MF;
  const TargetRegisterInfo &TRI;
  SmallVectorImpl<CCValAssign> &Locs;
  LLVMContext &Context;

  unsigned StackOffset;
  Align MaxStackArgAlign;
  SmallVector<uint32_t, 16> UsedRegs;
  SmallVector<CCValAssign, 4> PendingLocs;
  SmallVector<ISD::ArgFlagsTy, 4> PendingArgFlags;

  // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
  //
  // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
  // tracking.
  // Or, in another words it tracks byval parameters that are stored in
  // general purpose registers.
  //
  // For 4 byte stack alignment,
  // instance index means byval parameter number in formal
  // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
  // then, for function "foo":
  //
  // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
  //
  // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
  // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
  //
  // In case of 8 bytes stack alignment,
  // ByValRegs may also contain information about wasted registers.
  // In function shown above, r3 would be wasted according to AAPCS rules.
  // And in that case ByValRegs[1].Waste would be "true".
  // ByValRegs vector size still would be 2,
  // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
  //
  // Supposed use-case for this collection:
  // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
  // 2. HandleByVal fillups ByValRegs.
  // 3. Argument analysis (LowerFormatArguments, for example). After
  // some byval argument was analyzed, InRegsParamsProcessed is increased.
  struct ByValInfo {
    ByValInfo(unsigned B, unsigned E, bool IsWaste = false) :
      Begin(B), End(E), Waste(IsWaste) {}
    // First register allocated for current parameter.
    unsigned Begin;

    // First after last register allocated for current parameter.
    unsigned End;

    // Means that current range of registers doesn't belong to any
    // parameters. It was wasted due to stack alignment rules.
    // For more information see:
    // AAPCS, 5.5 Parameter Passing, Stage C, C.3.
    bool Waste;
  };
  SmallVector<ByValInfo, 4 > ByValRegs;

  // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
  // during argument analysis.
  unsigned InRegsParamsProcessed;

public:
  CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
          SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);

  void addLoc(const CCValAssign &V) {
    Locs.push_back(V);
  }

  LLVMContext &getContext() const { return Context; }
  MachineFunction &getMachineFunction() const { return MF; }
  CallingConv::ID getCallingConv() const { return CallingConv; }
  bool isVarArg() const { return IsVarArg; }

  /// getNextStackOffset - Return the next stack offset such that all stack
  /// slots satisfy their alignment requirements.
  unsigned getNextStackOffset() const {
    return StackOffset;
  }

  /// getAlignedCallFrameSize - Return the size of the call frame needed to
  /// be able to store all arguments and such that the alignment requirement
  /// of each of the arguments is satisfied.
  unsigned getAlignedCallFrameSize() const {
    return alignTo(StackOffset, MaxStackArgAlign);
  }

  /// isAllocated - Return true if the specified register (or an alias) is
  /// allocated.
  bool isAllocated(unsigned Reg) const {
    return UsedRegs[Reg/32] & (1 << (Reg&31));
  }

  /// AnalyzeFormalArguments - Analyze an array of argument values,
  /// incorporating info about the formals into this state.
  void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
                              CCAssignFn Fn);

  /// The function will invoke AnalyzeFormalArguments.
  void AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
                        CCAssignFn Fn) {
    AnalyzeFormalArguments(Ins, Fn);
  }

  /// AnalyzeReturn - Analyze the returned values of a return,
  /// incorporating info about the result values into this state.
  void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
                     CCAssignFn Fn);

  /// CheckReturn - Analyze the return values of a function, returning
  /// true if the return can be performed without sret-demotion, and
  /// false otherwise.
  bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
                   CCAssignFn Fn);

  /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
  /// incorporating info about the passed values into this state.
  void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
                           CCAssignFn Fn);

  /// AnalyzeCallOperands - Same as above except it takes vectors of types
  /// and argument flags.
  void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
                           SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
                           CCAssignFn Fn);

  /// The function will invoke AnalyzeCallOperands.
  void AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> &Outs,
                        CCAssignFn Fn) {
    AnalyzeCallOperands(Outs, Fn);
  }

  /// AnalyzeCallResult - Analyze the return values of a call,
  /// incorporating info about the passed values into this state.
  void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
                         CCAssignFn Fn);

  /// A shadow allocated register is a register that was allocated
  /// but wasn't added to the location list (Locs).
  /// \returns true if the register was allocated as shadow or false otherwise.
  bool IsShadowAllocatedReg(unsigned Reg) const;

  /// AnalyzeCallResult - Same as above except it's specialized for calls which
  /// produce a single value.
  void AnalyzeCallResult(MVT VT, CCAssignFn Fn);

  /// getFirstUnallocated - Return the index of the first unallocated register
  /// in the set, or Regs.size() if they are all allocated.
  unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
    for (unsigned i = 0; i < Regs.size(); ++i)
      if (!isAllocated(Regs[i]))
        return i;
    return Regs.size();
  }

  /// AllocateReg - Attempt to allocate one register.  If it is not available,
  /// return zero.  Otherwise, return the register, marking it and any aliases
  /// as allocated.
  unsigned AllocateReg(unsigned Reg) {
    if (isAllocated(Reg)) return 0;
    MarkAllocated(Reg);
    return Reg;
  }

  /// Version of AllocateReg with extra register to be shadowed.
  unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) {
    if (isAllocated(Reg)) return 0;
    MarkAllocated(Reg);
    MarkAllocated(ShadowReg);
    return Reg;
  }

  /// AllocateReg - Attempt to allocate one of the specified registers.  If none
  /// are available, return zero.  Otherwise, return the first one available,
  /// marking it and any aliases as allocated.
  unsigned AllocateReg(ArrayRef<MCPhysReg> Regs) {
    unsigned FirstUnalloc = getFirstUnallocated(Regs);
    if (FirstUnalloc == Regs.size())
      return 0;    // Didn't find the reg.

    // Mark the register and any aliases as allocated.
    unsigned Reg = Regs[FirstUnalloc];
    MarkAllocated(Reg);
    return Reg;
  }

  /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
  /// registers. If this is not possible, return zero. Otherwise, return the first
  /// register of the block that were allocated, marking the entire block as allocated.
  unsigned AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
    if (RegsRequired > Regs.size())
      return 0;

    for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
         ++StartIdx) {
      bool BlockAvailable = true;
      // Check for already-allocated regs in this block
      for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
        if (isAllocated(Regs[StartIdx + BlockIdx])) {
          BlockAvailable = false;
          break;
        }
      }
      if (BlockAvailable) {
        // Mark the entire block as allocated
        for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
          MarkAllocated(Regs[StartIdx + BlockIdx]);
        }
        return Regs[StartIdx];
      }
    }
    // No block was available
    return 0;
  }

  /// Version of AllocateReg with list of registers to be shadowed.
  unsigned AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
    unsigned FirstUnalloc = getFirstUnallocated(Regs);
    if (FirstUnalloc == Regs.size())
      return 0;    // Didn't find the reg.

    // Mark the register and any aliases as allocated.
    unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
    MarkAllocated(Reg);
    MarkAllocated(ShadowReg);
    return Reg;
  }

  /// AllocateStack - Allocate a chunk of stack space with the specified size
  /// and alignment.
  unsigned AllocateStack(unsigned Size, unsigned Alignment) {
    const Align CheckedAlignment(Alignment);
    StackOffset = alignTo(StackOffset, CheckedAlignment);
    unsigned Result = StackOffset;
    StackOffset += Size;
    MaxStackArgAlign = std::max(CheckedAlignment, MaxStackArgAlign);
    ensureMaxAlignment(CheckedAlignment);
    return Result;
  }

  void ensureMaxAlignment(Align Alignment) {
    if (!AnalyzingMustTailForwardedRegs)
      MF.getFrameInfo().ensureMaxAlignment(Alignment.value());
  }

  /// Version of AllocateStack with extra register to be shadowed.
  unsigned AllocateStack(unsigned Size, unsigned Align, unsigned ShadowReg) {
    MarkAllocated(ShadowReg);
    return AllocateStack(Size, Align);
  }

  /// Version of AllocateStack with list of extra registers to be shadowed.
  /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
  unsigned AllocateStack(unsigned Size, unsigned Align,
                         ArrayRef<MCPhysReg> ShadowRegs) {
    for (unsigned i = 0; i < ShadowRegs.size(); ++i)
      MarkAllocated(ShadowRegs[i]);
    return AllocateStack(Size, Align);
  }

  // HandleByVal - Allocate a stack slot large enough to pass an argument by
  // value. The size and alignment information of the argument is encoded in its
  // parameter attribute.
  void HandleByVal(unsigned ValNo, MVT ValVT,
                   MVT LocVT, CCValAssign::LocInfo LocInfo,
                   int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags);

  // Returns count of byval arguments that are to be stored (even partly)
  // in registers.
  unsigned getInRegsParamsCount() const { return ByValRegs.size(); }

  // Returns count of byval in-regs arguments proceed.
  unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }

  // Get information about N-th byval parameter that is stored in registers.
  // Here "ByValParamIndex" is N.
  void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
                          unsigned& BeginReg, unsigned& EndReg) const {
    assert(InRegsParamRecordIndex < ByValRegs.size() &&
           "Wrong ByVal parameter index");

    const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
    BeginReg = info.Begin;
    EndReg = info.End;
  }

  // Add information about parameter that is kept in registers.
  void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
    ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
  }

  // Goes either to next byval parameter (excluding "waste" record), or
  // to the end of collection.
  // Returns false, if end is reached.
  bool nextInRegsParam() {
    unsigned e = ByValRegs.size();
    if (InRegsParamsProcessed < e)
      ++InRegsParamsProcessed;
    return InRegsParamsProcessed < e;
  }

  // Clear byval registers tracking info.
  void clearByValRegsInfo() {
    InRegsParamsProcessed = 0;
    ByValRegs.clear();
  }

  // Rewind byval registers tracking info.
  void rewindByValRegsInfo() {
    InRegsParamsProcessed = 0;
  }

  // Get list of pending assignments
  SmallVectorImpl<CCValAssign> &getPendingLocs() {
    return PendingLocs;
  }

  // Get a list of argflags for pending assignments.
  SmallVectorImpl<ISD::ArgFlagsTy> &getPendingArgFlags() {
    return PendingArgFlags;
  }

  /// Compute the remaining unused register parameters that would be used for
  /// the given value type. This is useful when varargs are passed in the
  /// registers that normal prototyped parameters would be passed in, or for
  /// implementing perfect forwarding.
  void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
                                   CCAssignFn Fn);

  /// Compute the set of registers that need to be preserved and forwarded to
  /// any musttail calls.
  void analyzeMustTailForwardedRegisters(
      SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
      CCAssignFn Fn);

  /// Returns true if the results of the two calling conventions are compatible.
  /// This is usually part of the check for tailcall eligibility.
  static bool resultsCompatible(CallingConv::ID CalleeCC,
                                CallingConv::ID CallerCC, MachineFunction &MF,
                                LLVMContext &C,
                                const SmallVectorImpl<ISD::InputArg> &Ins,
                                CCAssignFn CalleeFn, CCAssignFn CallerFn);

  /// The function runs an additional analysis pass over function arguments.
  /// It will mark each argument with the attribute flag SecArgPass.
  /// After running, it will sort the locs list.
  template <class T>
  void AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> &Args,
                                  CCAssignFn Fn) {
    unsigned NumFirstPassLocs = Locs.size();

    /// Creates similar argument list to \p Args in which each argument is
    /// marked using SecArgPass flag.
    SmallVector<T, 16> SecPassArg;
    // SmallVector<ISD::InputArg, 16> SecPassArg;
    for (auto Arg : Args) {
      Arg.Flags.setSecArgPass();
      SecPassArg.push_back(Arg);
    }

    // Run the second argument pass
    AnalyzeArguments(SecPassArg, Fn);

    // Sort the locations of the arguments according to their original position.
    SmallVector<CCValAssign, 16> TmpArgLocs;
    TmpArgLocs.swap(Locs);
    auto B = TmpArgLocs.begin(), E = TmpArgLocs.end();
    std::merge(B, B + NumFirstPassLocs, B + NumFirstPassLocs, E,
               std::back_inserter(Locs),
               [](const CCValAssign &A, const CCValAssign &B) -> bool {
                 return A.getValNo() < B.getValNo();
               });
  }

private:
  /// MarkAllocated - Mark a register and all of its aliases as allocated.
  void MarkAllocated(unsigned Reg);
};

} // end namespace llvm

#endif // LLVM_CODEGEN_CALLINGCONVLOWER_H