reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Collect the sequence of machine instructions for a basic block.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
#define LLVM_CODEGEN_MACHINEBASICBLOCK_H

#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/ADT/simple_ilist.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundleIterator.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Printable.h"
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <string>
#include <vector>

namespace llvm {

class BasicBlock;
class MachineFunction;
class MCSymbol;
class ModuleSlotTracker;
class Pass;
class SlotIndexes;
class StringRef;
class raw_ostream;
class TargetRegisterClass;
class TargetRegisterInfo;

template <> struct ilist_traits<MachineInstr> {
private:
  friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.

  MachineBasicBlock *Parent;

  using instr_iterator =
      simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;

public:
  void addNodeToList(MachineInstr *N);
  void removeNodeFromList(MachineInstr *N);
  void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
                             instr_iterator Last);
  void deleteNode(MachineInstr *MI);
};

class MachineBasicBlock
    : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
public:
  /// Pair of physical register and lane mask.
  /// This is not simply a std::pair typedef because the members should be named
  /// clearly as they both have an integer type.
  struct RegisterMaskPair {
  public:
    MCPhysReg PhysReg;
    LaneBitmask LaneMask;

    RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
        : PhysReg(PhysReg), LaneMask(LaneMask) {}
  };

private:
  using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;

  Instructions Insts;
  const BasicBlock *BB;
  int Number;
  MachineFunction *xParent;

  /// Keep track of the predecessor / successor basic blocks.
  std::vector<MachineBasicBlock *> Predecessors;
  std::vector<MachineBasicBlock *> Successors;

  /// Keep track of the probabilities to the successors. This vector has the
  /// same order as Successors, or it is empty if we don't use it (disable
  /// optimization).
  std::vector<BranchProbability> Probs;
  using probability_iterator = std::vector<BranchProbability>::iterator;
  using const_probability_iterator =
      std::vector<BranchProbability>::const_iterator;

  Optional<uint64_t> IrrLoopHeaderWeight;

  /// Keep track of the physical registers that are livein of the basicblock.
  using LiveInVector = std::vector<RegisterMaskPair>;
  LiveInVector LiveIns;

  /// Alignment of the basic block. One if the basic block does not need to be
  /// aligned.
  Align Alignment;

  /// Indicate that this basic block is entered via an exception handler.
  bool IsEHPad = false;

  /// Indicate that this basic block is potentially the target of an indirect
  /// branch.
  bool AddressTaken = false;

  /// Indicate that this basic block needs its symbol be emitted regardless of
  /// whether the flow just falls-through to it.
  bool LabelMustBeEmitted = false;

  /// Indicate that this basic block is the entry block of an EH scope, i.e.,
  /// the block that used to have a catchpad or cleanuppad instruction in the
  /// LLVM IR.
  bool IsEHScopeEntry = false;

  /// Indicate that this basic block is the entry block of an EH funclet.
  bool IsEHFuncletEntry = false;

  /// Indicate that this basic block is the entry block of a cleanup funclet.
  bool IsCleanupFuncletEntry = false;

  /// since getSymbol is a relatively heavy-weight operation, the symbol
  /// is only computed once and is cached.
  mutable MCSymbol *CachedMCSymbol = nullptr;

  // Intrusive list support
  MachineBasicBlock() = default;

  explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);

  ~MachineBasicBlock();

  // MachineBasicBlocks are allocated and owned by MachineFunction.
  friend class MachineFunction;

public:
  /// Return the LLVM basic block that this instance corresponded to originally.
  /// Note that this may be NULL if this instance does not correspond directly
  /// to an LLVM basic block.
  const BasicBlock *getBasicBlock() const { return BB; }

  /// Return the name of the corresponding LLVM basic block, or an empty string.
  StringRef getName() const;

  /// Return a formatted string to identify this block and its parent function.
  std::string getFullName() const;

  /// Test whether this block is potentially the target of an indirect branch.
  bool hasAddressTaken() const { return AddressTaken; }

  /// Set this block to reflect that it potentially is the target of an indirect
  /// branch.
  void setHasAddressTaken() { AddressTaken = true; }

  /// Test whether this block must have its label emitted.
  bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }

  /// Set this block to reflect that, regardless how we flow to it, we need
  /// its label be emitted.
  void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }

  /// Return the MachineFunction containing this basic block.
  const MachineFunction *getParent() const { return xParent; }
  MachineFunction *getParent() { return xParent; }

  using instr_iterator = Instructions::iterator;
  using const_instr_iterator = Instructions::const_iterator;
  using reverse_instr_iterator = Instructions::reverse_iterator;
  using const_reverse_instr_iterator = Instructions::const_reverse_iterator;

  using iterator = MachineInstrBundleIterator<MachineInstr>;
  using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
  using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
  using const_reverse_iterator =
      MachineInstrBundleIterator<const MachineInstr, true>;

  unsigned size() const { return (unsigned)Insts.size(); }
  bool empty() const { return Insts.empty(); }

  MachineInstr       &instr_front()       { return Insts.front(); }
  MachineInstr       &instr_back()        { return Insts.back();  }
  const MachineInstr &instr_front() const { return Insts.front(); }
  const MachineInstr &instr_back()  const { return Insts.back();  }

  MachineInstr       &front()             { return Insts.front(); }
  MachineInstr       &back()              { return *--end();      }
  const MachineInstr &front()       const { return Insts.front(); }
  const MachineInstr &back()        const { return *--end();      }

  instr_iterator                instr_begin()       { return Insts.begin();  }
  const_instr_iterator          instr_begin() const { return Insts.begin();  }
  instr_iterator                  instr_end()       { return Insts.end();    }
  const_instr_iterator            instr_end() const { return Insts.end();    }
  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }

  using instr_range = iterator_range<instr_iterator>;
  using const_instr_range = iterator_range<const_instr_iterator>;
  instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
  const_instr_range instrs() const {
    return const_instr_range(instr_begin(), instr_end());
  }

  iterator                begin()       { return instr_begin();  }
  const_iterator          begin() const { return instr_begin();  }
  iterator                end  ()       { return instr_end();    }
  const_iterator          end  () const { return instr_end();    }
  reverse_iterator rbegin() {
    return reverse_iterator::getAtBundleBegin(instr_rbegin());
  }
  const_reverse_iterator rbegin() const {
    return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
  }
  reverse_iterator rend() { return reverse_iterator(instr_rend()); }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(instr_rend());
  }

  /// Support for MachineInstr::getNextNode().
  static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
    return &MachineBasicBlock::Insts;
  }

  inline iterator_range<iterator> terminators() {
    return make_range(getFirstTerminator(), end());
  }
  inline iterator_range<const_iterator> terminators() const {
    return make_range(getFirstTerminator(), end());
  }

  /// Returns a range that iterates over the phis in the basic block.
  inline iterator_range<iterator> phis() {
    return make_range(begin(), getFirstNonPHI());
  }
  inline iterator_range<const_iterator> phis() const {
    return const_cast<MachineBasicBlock *>(this)->phis();
  }

  // Machine-CFG iterators
  using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
  using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
  using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
  using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
  using pred_reverse_iterator =
      std::vector<MachineBasicBlock *>::reverse_iterator;
  using const_pred_reverse_iterator =
      std::vector<MachineBasicBlock *>::const_reverse_iterator;
  using succ_reverse_iterator =
      std::vector<MachineBasicBlock *>::reverse_iterator;
  using const_succ_reverse_iterator =
      std::vector<MachineBasicBlock *>::const_reverse_iterator;
  pred_iterator        pred_begin()       { return Predecessors.begin(); }
  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
  pred_iterator        pred_end()         { return Predecessors.end();   }
  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
  pred_reverse_iterator        pred_rbegin()
                                          { return Predecessors.rbegin();}
  const_pred_reverse_iterator  pred_rbegin() const
                                          { return Predecessors.rbegin();}
  pred_reverse_iterator        pred_rend()
                                          { return Predecessors.rend();  }
  const_pred_reverse_iterator  pred_rend()   const
                                          { return Predecessors.rend();  }
  unsigned             pred_size()  const {
    return (unsigned)Predecessors.size();
  }
  bool                 pred_empty() const { return Predecessors.empty(); }
  succ_iterator        succ_begin()       { return Successors.begin();   }
  const_succ_iterator  succ_begin() const { return Successors.begin();   }
  succ_iterator        succ_end()         { return Successors.end();     }
  const_succ_iterator  succ_end()   const { return Successors.end();     }
  succ_reverse_iterator        succ_rbegin()
                                          { return Successors.rbegin();  }
  const_succ_reverse_iterator  succ_rbegin() const
                                          { return Successors.rbegin();  }
  succ_reverse_iterator        succ_rend()
                                          { return Successors.rend();    }
  const_succ_reverse_iterator  succ_rend()   const
                                          { return Successors.rend();    }
  unsigned             succ_size()  const {
    return (unsigned)Successors.size();
  }
  bool                 succ_empty() const { return Successors.empty();   }

  inline iterator_range<pred_iterator> predecessors() {
    return make_range(pred_begin(), pred_end());
  }
  inline iterator_range<const_pred_iterator> predecessors() const {
    return make_range(pred_begin(), pred_end());
  }
  inline iterator_range<succ_iterator> successors() {
    return make_range(succ_begin(), succ_end());
  }
  inline iterator_range<const_succ_iterator> successors() const {
    return make_range(succ_begin(), succ_end());
  }

  // LiveIn management methods.

  /// Adds the specified register as a live in. Note that it is an error to add
  /// the same register to the same set more than once unless the intention is
  /// to call sortUniqueLiveIns after all registers are added.
  void addLiveIn(MCRegister PhysReg,
                 LaneBitmask LaneMask = LaneBitmask::getAll()) {
    LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
  }
  void addLiveIn(const RegisterMaskPair &RegMaskPair) {
    LiveIns.push_back(RegMaskPair);
  }

  /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
  /// this than repeatedly calling isLiveIn before calling addLiveIn for every
  /// LiveIn insertion.
  void sortUniqueLiveIns();

  /// Clear live in list.
  void clearLiveIns();

  /// Add PhysReg as live in to this block, and ensure that there is a copy of
  /// PhysReg to a virtual register of class RC. Return the virtual register
  /// that is a copy of the live in PhysReg.
  unsigned addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC);

  /// Remove the specified register from the live in set.
  void removeLiveIn(MCPhysReg Reg,
                    LaneBitmask LaneMask = LaneBitmask::getAll());

  /// Return true if the specified register is in the live in set.
  bool isLiveIn(MCPhysReg Reg,
                LaneBitmask LaneMask = LaneBitmask::getAll()) const;

  // Iteration support for live in sets.  These sets are kept in sorted
  // order by their register number.
  using livein_iterator = LiveInVector::const_iterator;
#ifndef NDEBUG
  /// Unlike livein_begin, this method does not check that the liveness
  /// information is accurate. Still for debug purposes it may be useful
  /// to have iterators that won't assert if the liveness information
  /// is not current.
  livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
  iterator_range<livein_iterator> liveins_dbg() const {
    return make_range(livein_begin_dbg(), livein_end());
  }
#endif
  livein_iterator livein_begin() const;
  livein_iterator livein_end()   const { return LiveIns.end(); }
  bool            livein_empty() const { return LiveIns.empty(); }
  iterator_range<livein_iterator> liveins() const {
    return make_range(livein_begin(), livein_end());
  }

  /// Remove entry from the livein set and return iterator to the next.
  livein_iterator removeLiveIn(livein_iterator I);

  /// Get the clobber mask for the start of this basic block. Funclets use this
  /// to prevent register allocation across funclet transitions.
  const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;

  /// Get the clobber mask for the end of the basic block.
  /// \see getBeginClobberMask()
  const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;

  /// Return alignment of the basic block.
  Align getAlignment() const { return Alignment; }

  /// Set alignment of the basic block.
  void setAlignment(Align A) { Alignment = A; }

  /// Returns true if the block is a landing pad. That is this basic block is
  /// entered via an exception handler.
  bool isEHPad() const { return IsEHPad; }

  /// Indicates the block is a landing pad.  That is this basic block is entered
  /// via an exception handler.
  void setIsEHPad(bool V = true) { IsEHPad = V; }

  bool hasEHPadSuccessor() const;

  /// Returns true if this is the entry block of an EH scope, i.e., the block
  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
  bool isEHScopeEntry() const { return IsEHScopeEntry; }

  /// Indicates if this is the entry block of an EH scope, i.e., the block that
  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
  void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }

  /// Returns true if this is the entry block of an EH funclet.
  bool isEHFuncletEntry() const { return IsEHFuncletEntry; }

  /// Indicates if this is the entry block of an EH funclet.
  void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }

  /// Returns true if this is the entry block of a cleanup funclet.
  bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }

  /// Indicates if this is the entry block of a cleanup funclet.
  void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }

  /// Returns true if it is legal to hoist instructions into this block.
  bool isLegalToHoistInto() const;

  // Code Layout methods.

  /// Move 'this' block before or after the specified block.  This only moves
  /// the block, it does not modify the CFG or adjust potential fall-throughs at
  /// the end of the block.
  void moveBefore(MachineBasicBlock *NewAfter);
  void moveAfter(MachineBasicBlock *NewBefore);

  /// Update the terminator instructions in block to account for changes to the
  /// layout. If the block previously used a fallthrough, it may now need a
  /// branch, and if it previously used branching it may now be able to use a
  /// fallthrough.
  void updateTerminator();

  // Machine-CFG mutators

  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
  /// of Succ is automatically updated. PROB parameter is stored in
  /// Probabilities list. The default probability is set as unknown. Mixing
  /// known and unknown probabilities in successor list is not allowed. When all
  /// successors have unknown probabilities, 1 / N is returned as the
  /// probability for each successor, where N is the number of successors.
  ///
  /// Note that duplicate Machine CFG edges are not allowed.
  void addSuccessor(MachineBasicBlock *Succ,
                    BranchProbability Prob = BranchProbability::getUnknown());

  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
  /// of Succ is automatically updated. The probability is not provided because
  /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
  /// won't be used. Using this interface can save some space.
  void addSuccessorWithoutProb(MachineBasicBlock *Succ);

  /// Set successor probability of a given iterator.
  void setSuccProbability(succ_iterator I, BranchProbability Prob);

  /// Normalize probabilities of all successors so that the sum of them becomes
  /// one. This is usually done when the current update on this MBB is done, and
  /// the sum of its successors' probabilities is not guaranteed to be one. The
  /// user is responsible for the correct use of this function.
  /// MBB::removeSuccessor() has an option to do this automatically.
  void normalizeSuccProbs() {
    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
  }

  /// Validate successors' probabilities and check if the sum of them is
  /// approximate one. This only works in DEBUG mode.
  void validateSuccProbs() const;

  /// Remove successor from the successors list of this MachineBasicBlock. The
  /// Predecessors list of Succ is automatically updated.
  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
  /// after the successor is removed.
  void removeSuccessor(MachineBasicBlock *Succ,
                       bool NormalizeSuccProbs = false);

  /// Remove specified successor from the successors list of this
  /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
  /// after the successor is removed.
  /// Return the iterator to the element after the one removed.
  succ_iterator removeSuccessor(succ_iterator I,
                                bool NormalizeSuccProbs = false);

  /// Replace successor OLD with NEW and update probability info.
  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);

  /// Copy a successor (and any probability info) from original block to this
  /// block's. Uses an iterator into the original blocks successors.
  ///
  /// This is useful when doing a partial clone of successors. Afterward, the
  /// probabilities may need to be normalized.
  void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);

  /// Split the old successor into old plus new and updates the probability
  /// info.
  void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
                      bool NormalizeSuccProbs = false);

  /// Transfers all the successors from MBB to this machine basic block (i.e.,
  /// copies all the successors FromMBB and remove all the successors from
  /// FromMBB).
  void transferSuccessors(MachineBasicBlock *FromMBB);

  /// Transfers all the successors, as in transferSuccessors, and update PHI
  /// operands in the successor blocks which refer to FromMBB to refer to this.
  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);

  /// Return true if any of the successors have probabilities attached to them.
  bool hasSuccessorProbabilities() const { return !Probs.empty(); }

  /// Return true if the specified MBB is a predecessor of this block.
  bool isPredecessor(const MachineBasicBlock *MBB) const;

  /// Return true if the specified MBB is a successor of this block.
  bool isSuccessor(const MachineBasicBlock *MBB) const;

  /// Return true if the specified MBB will be emitted immediately after this
  /// block, such that if this block exits by falling through, control will
  /// transfer to the specified MBB. Note that MBB need not be a successor at
  /// all, for example if this block ends with an unconditional branch to some
  /// other block.
  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;

  /// Return the fallthrough block if the block can implicitly
  /// transfer control to the block after it by falling off the end of
  /// it.  This should return null if it can reach the block after
  /// it, but it uses an explicit branch to do so (e.g., a table
  /// jump).  Non-null return  is a conservative answer.
  MachineBasicBlock *getFallThrough();

  /// Return true if the block can implicitly transfer control to the
  /// block after it by falling off the end of it.  This should return
  /// false if it can reach the block after it, but it uses an
  /// explicit branch to do so (e.g., a table jump).  True is a
  /// conservative answer.
  bool canFallThrough();

  /// Returns a pointer to the first instruction in this block that is not a
  /// PHINode instruction. When adding instructions to the beginning of the
  /// basic block, they should be added before the returned value, not before
  /// the first instruction, which might be PHI.
  /// Returns end() is there's no non-PHI instruction.
  iterator getFirstNonPHI();

  /// Return the first instruction in MBB after I that is not a PHI or a label.
  /// This is the correct point to insert lowered copies at the beginning of a
  /// basic block that must be before any debugging information.
  iterator SkipPHIsAndLabels(iterator I);

  /// Return the first instruction in MBB after I that is not a PHI, label or
  /// debug.  This is the correct point to insert copies at the beginning of a
  /// basic block.
  iterator SkipPHIsLabelsAndDebug(iterator I);

  /// Returns an iterator to the first terminator instruction of this basic
  /// block. If a terminator does not exist, it returns end().
  iterator getFirstTerminator();
  const_iterator getFirstTerminator() const {
    return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
  }

  /// Same getFirstTerminator but it ignores bundles and return an
  /// instr_iterator instead.
  instr_iterator getFirstInstrTerminator();

  /// Returns an iterator to the first non-debug instruction in the basic block,
  /// or end().
  iterator getFirstNonDebugInstr();
  const_iterator getFirstNonDebugInstr() const {
    return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
  }

  /// Returns an iterator to the last non-debug instruction in the basic block,
  /// or end().
  iterator getLastNonDebugInstr();
  const_iterator getLastNonDebugInstr() const {
    return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
  }

  /// Convenience function that returns true if the block ends in a return
  /// instruction.
  bool isReturnBlock() const {
    return !empty() && back().isReturn();
  }

  /// Convenience function that returns true if the bock ends in a EH scope
  /// return instruction.
  bool isEHScopeReturnBlock() const {
    return !empty() && back().isEHScopeReturn();
  }

  /// Split the critical edge from this block to the given successor block, and
  /// return the newly created block, or null if splitting is not possible.
  ///
  /// This function updates LiveVariables, MachineDominatorTree, and
  /// MachineLoopInfo, as applicable.
  MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);

  /// Check if the edge between this block and the given successor \p
  /// Succ, can be split. If this returns true a subsequent call to
  /// SplitCriticalEdge is guaranteed to return a valid basic block if
  /// no changes occurred in the meantime.
  bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;

  void pop_front() { Insts.pop_front(); }
  void pop_back() { Insts.pop_back(); }
  void push_back(MachineInstr *MI) { Insts.push_back(MI); }

  /// Insert MI into the instruction list before I, possibly inside a bundle.
  ///
  /// If the insertion point is inside a bundle, MI will be added to the bundle,
  /// otherwise MI will not be added to any bundle. That means this function
  /// alone can't be used to prepend or append instructions to bundles. See
  /// MIBundleBuilder::insert() for a more reliable way of doing that.
  instr_iterator insert(instr_iterator I, MachineInstr *M);

  /// Insert a range of instructions into the instruction list before I.
  template<typename IT>
  void insert(iterator I, IT S, IT E) {
    assert((I == end() || I->getParent() == this) &&
           "iterator points outside of basic block");
    Insts.insert(I.getInstrIterator(), S, E);
  }

  /// Insert MI into the instruction list before I.
  iterator insert(iterator I, MachineInstr *MI) {
    assert((I == end() || I->getParent() == this) &&
           "iterator points outside of basic block");
    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
           "Cannot insert instruction with bundle flags");
    return Insts.insert(I.getInstrIterator(), MI);
  }

  /// Insert MI into the instruction list after I.
  iterator insertAfter(iterator I, MachineInstr *MI) {
    assert((I == end() || I->getParent() == this) &&
           "iterator points outside of basic block");
    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
           "Cannot insert instruction with bundle flags");
    return Insts.insertAfter(I.getInstrIterator(), MI);
  }

  /// If I is bundled then insert MI into the instruction list after the end of
  /// the bundle, otherwise insert MI immediately after I.
  instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) {
    assert((I == instr_end() || I->getParent() == this) &&
           "iterator points outside of basic block");
    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
           "Cannot insert instruction with bundle flags");
    while (I->isBundledWithSucc())
      ++I;
    return Insts.insertAfter(I, MI);
  }

  /// Remove an instruction from the instruction list and delete it.
  ///
  /// If the instruction is part of a bundle, the other instructions in the
  /// bundle will still be bundled after removing the single instruction.
  instr_iterator erase(instr_iterator I);

  /// Remove an instruction from the instruction list and delete it.
  ///
  /// If the instruction is part of a bundle, the other instructions in the
  /// bundle will still be bundled after removing the single instruction.
  instr_iterator erase_instr(MachineInstr *I) {
    return erase(instr_iterator(I));
  }

  /// Remove a range of instructions from the instruction list and delete them.
  iterator erase(iterator I, iterator E) {
    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
  }

  /// Remove an instruction or bundle from the instruction list and delete it.
  ///
  /// If I points to a bundle of instructions, they are all erased.
  iterator erase(iterator I) {
    return erase(I, std::next(I));
  }

  /// Remove an instruction from the instruction list and delete it.
  ///
  /// If I is the head of a bundle of instructions, the whole bundle will be
  /// erased.
  iterator erase(MachineInstr *I) {
    return erase(iterator(I));
  }

  /// Remove the unbundled instruction from the instruction list without
  /// deleting it.
  ///
  /// This function can not be used to remove bundled instructions, use
  /// remove_instr to remove individual instructions from a bundle.
  MachineInstr *remove(MachineInstr *I) {
    assert(!I->isBundled() && "Cannot remove bundled instructions");
    return Insts.remove(instr_iterator(I));
  }

  /// Remove the possibly bundled instruction from the instruction list
  /// without deleting it.
  ///
  /// If the instruction is part of a bundle, the other instructions in the
  /// bundle will still be bundled after removing the single instruction.
  MachineInstr *remove_instr(MachineInstr *I);

  void clear() {
    Insts.clear();
  }

  /// Take an instruction from MBB 'Other' at the position From, and insert it
  /// into this MBB right before 'Where'.
  ///
  /// If From points to a bundle of instructions, the whole bundle is moved.
  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
    // The range splice() doesn't allow noop moves, but this one does.
    if (Where != From)
      splice(Where, Other, From, std::next(From));
  }

  /// Take a block of instructions from MBB 'Other' in the range [From, To),
  /// and insert them into this MBB right before 'Where'.
  ///
  /// The instruction at 'Where' must not be included in the range of
  /// instructions to move.
  void splice(iterator Where, MachineBasicBlock *Other,
              iterator From, iterator To) {
    Insts.splice(Where.getInstrIterator(), Other->Insts,
                 From.getInstrIterator(), To.getInstrIterator());
  }

  /// This method unlinks 'this' from the containing function, and returns it,
  /// but does not delete it.
  MachineBasicBlock *removeFromParent();

  /// This method unlinks 'this' from the containing function and deletes it.
  void eraseFromParent();

  /// Given a machine basic block that branched to 'Old', change the code and
  /// CFG so that it branches to 'New' instead.
  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);

  /// Update all phi nodes in this basic block to refer to basic block \p New
  /// instead of basic block \p Old.
  void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New);

  /// Various pieces of code can cause excess edges in the CFG to be inserted.
  /// If we have proven that MBB can only branch to DestA and DestB, remove any
  /// other MBB successors from the CFG. DestA and DestB can be null. Besides
  /// DestA and DestB, retain other edges leading to LandingPads (currently
  /// there can be only one; we don't check or require that here). Note it is
  /// possible that DestA and/or DestB are LandingPads.
  bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
                            MachineBasicBlock *DestB,
                            bool IsCond);

  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
  /// and DBG_LABEL instructions.  Return UnknownLoc if there is none.
  DebugLoc findDebugLoc(instr_iterator MBBI);
  DebugLoc findDebugLoc(iterator MBBI) {
    return findDebugLoc(MBBI.getInstrIterator());
  }

  /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
  /// instructions.  Return UnknownLoc if there is none.
  DebugLoc findPrevDebugLoc(instr_iterator MBBI);
  DebugLoc findPrevDebugLoc(iterator MBBI) {
    return findPrevDebugLoc(MBBI.getInstrIterator());
  }

  /// Find and return the merged DebugLoc of the branch instructions of the
  /// block. Return UnknownLoc if there is none.
  DebugLoc findBranchDebugLoc();

  /// Possible outcome of a register liveness query to computeRegisterLiveness()
  enum LivenessQueryResult {
    LQR_Live,   ///< Register is known to be (at least partially) live.
    LQR_Dead,   ///< Register is known to be fully dead.
    LQR_Unknown ///< Register liveness not decidable from local neighborhood.
  };

  /// Return whether (physical) register \p Reg has been defined and not
  /// killed as of just before \p Before.
  ///
  /// Search is localised to a neighborhood of \p Neighborhood instructions
  /// before (searching for defs or kills) and \p Neighborhood instructions
  /// after (searching just for defs) \p Before.
  ///
  /// \p Reg must be a physical register.
  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
                                              unsigned Reg,
                                              const_iterator Before,
                                              unsigned Neighborhood = 10) const;

  // Debugging methods.
  void dump() const;
  void print(raw_ostream &OS, const SlotIndexes * = nullptr,
             bool IsStandalone = true) const;
  void print(raw_ostream &OS, ModuleSlotTracker &MST,
             const SlotIndexes * = nullptr, bool IsStandalone = true) const;

  // Printing method used by LoopInfo.
  void printAsOperand(raw_ostream &OS, bool PrintType = true) const;

  /// MachineBasicBlocks are uniquely numbered at the function level, unless
  /// they're not in a MachineFunction yet, in which case this will return -1.
  int getNumber() const { return Number; }
  void setNumber(int N) { Number = N; }

  /// Return the MCSymbol for this basic block.
  MCSymbol *getSymbol() const;

  Optional<uint64_t> getIrrLoopHeaderWeight() const {
    return IrrLoopHeaderWeight;
  }

  void setIrrLoopHeaderWeight(uint64_t Weight) {
    IrrLoopHeaderWeight = Weight;
  }

private:
  /// Return probability iterator corresponding to the I successor iterator.
  probability_iterator getProbabilityIterator(succ_iterator I);
  const_probability_iterator
  getProbabilityIterator(const_succ_iterator I) const;

  friend class MachineBranchProbabilityInfo;
  friend class MIPrinter;

  /// Return probability of the edge from this block to MBB. This method should
  /// NOT be called directly, but by using getEdgeProbability method from
  /// MachineBranchProbabilityInfo class.
  BranchProbability getSuccProbability(const_succ_iterator Succ) const;

  // Methods used to maintain doubly linked list of blocks...
  friend struct ilist_callback_traits<MachineBasicBlock>;

  // Machine-CFG mutators

  /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
  /// unless you know what you're doing, because it doesn't update Pred's
  /// successors list. Use Pred->addSuccessor instead.
  void addPredecessor(MachineBasicBlock *Pred);

  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
  /// unless you know what you're doing, because it doesn't update Pred's
  /// successors list. Use Pred->removeSuccessor instead.
  void removePredecessor(MachineBasicBlock *Pred);
};

raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);

/// Prints a machine basic block reference.
///
/// The format is:
///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
///
/// Usage: OS << printMBBReference(MBB) << '\n';
Printable printMBBReference(const MachineBasicBlock &MBB);

// This is useful when building IndexedMaps keyed on basic block pointers.
struct MBB2NumberFunctor {
  using argument_type = const MachineBasicBlock *;
  unsigned operator()(const MachineBasicBlock *MBB) const {
    return MBB->getNumber();
  }
};

//===--------------------------------------------------------------------===//
// GraphTraits specializations for machine basic block graphs (machine-CFGs)
//===--------------------------------------------------------------------===//

// Provide specializations of GraphTraits to be able to treat a
// MachineFunction as a graph of MachineBasicBlocks.
//

template <> struct GraphTraits<MachineBasicBlock *> {
  using NodeRef = MachineBasicBlock *;
  using ChildIteratorType = MachineBasicBlock::succ_iterator;

  static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
};

template <> struct GraphTraits<const MachineBasicBlock *> {
  using NodeRef = const MachineBasicBlock *;
  using ChildIteratorType = MachineBasicBlock::const_succ_iterator;

  static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
};

// Provide specializations of GraphTraits to be able to treat a
// MachineFunction as a graph of MachineBasicBlocks and to walk it
// in inverse order.  Inverse order for a function is considered
// to be when traversing the predecessor edges of a MBB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
  using NodeRef = MachineBasicBlock *;
  using ChildIteratorType = MachineBasicBlock::pred_iterator;

  static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
    return G.Graph;
  }

  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
};

template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
  using NodeRef = const MachineBasicBlock *;
  using ChildIteratorType = MachineBasicBlock::const_pred_iterator;

  static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
    return G.Graph;
  }

  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
};

/// MachineInstrSpan provides an interface to get an iteration range
/// containing the instruction it was initialized with, along with all
/// those instructions inserted prior to or following that instruction
/// at some point after the MachineInstrSpan is constructed.
class MachineInstrSpan {
  MachineBasicBlock &MBB;
  MachineBasicBlock::iterator I, B, E;

public:
  MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
      : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
        E(std::next(I)) {
    assert(I == BB->end() || I->getParent() == BB);
  }

  MachineBasicBlock::iterator begin() {
    return B == MBB.end() ? MBB.begin() : std::next(B);
  }
  MachineBasicBlock::iterator end() { return E; }
  bool empty() { return begin() == end(); }

  MachineBasicBlock::iterator getInitial() { return I; }
};

/// Increment \p It until it points to a non-debug instruction or to \p End
/// and return the resulting iterator. This function should only be used
/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
/// const_instr_iterator} and the respective reverse iterators.
template<typename IterT>
inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
  while (It != End && It->isDebugInstr())
    It++;
  return It;
}

/// Decrement \p It until it points to a non-debug instruction or to \p Begin
/// and return the resulting iterator. This function should only be used
/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
/// const_instr_iterator} and the respective reverse iterators.
template<class IterT>
inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
  while (It != Begin && It->isDebugInstr())
    It--;
  return It;
}

} // end namespace llvm

#endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H