1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
| //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the InstructionSelector class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64RegisterBankInfo.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/Optional.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "aarch64-isel"
using namespace llvm;
namespace {
#define GET_GLOBALISEL_PREDICATE_BITSET
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATE_BITSET
class AArch64InstructionSelector : public InstructionSelector {
public:
AArch64InstructionSelector(const AArch64TargetMachine &TM,
const AArch64Subtarget &STI,
const AArch64RegisterBankInfo &RBI);
bool select(MachineInstr &I) override;
static const char *getName() { return DEBUG_TYPE; }
void setupMF(MachineFunction &MF, GISelKnownBits &KB,
CodeGenCoverage &CoverageInfo) override {
InstructionSelector::setupMF(MF, KB, CoverageInfo);
// hasFnAttribute() is expensive to call on every BRCOND selection, so
// cache it here for each run of the selector.
ProduceNonFlagSettingCondBr =
!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
}
private:
/// tblgen-erated 'select' implementation, used as the initial selector for
/// the patterns that don't require complex C++.
bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
// A lowering phase that runs before any selection attempts.
void preISelLower(MachineInstr &I) const;
// An early selection function that runs before the selectImpl() call.
bool earlySelect(MachineInstr &I) const;
bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
/// Eliminate same-sized cross-bank copies into stores before selectImpl().
void contractCrossBankCopyIntoStore(MachineInstr &I,
MachineRegisterInfo &MRI) const;
bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF,
MachineRegisterInfo &MRI) const;
bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF,
MachineRegisterInfo &MRI) const;
bool selectCompareBranch(MachineInstr &I, MachineFunction &MF,
MachineRegisterInfo &MRI) const;
bool selectVectorASHR(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
// Helper to generate an equivalent of scalar_to_vector into a new register,
// returned via 'Dst'.
MachineInstr *emitScalarToVector(unsigned EltSize,
const TargetRegisterClass *DstRC,
Register Scalar,
MachineIRBuilder &MIRBuilder) const;
/// Emit a lane insert into \p DstReg, or a new vector register if None is
/// provided.
///
/// The lane inserted into is defined by \p LaneIdx. The vector source
/// register is given by \p SrcReg. The register containing the element is
/// given by \p EltReg.
MachineInstr *emitLaneInsert(Optional<Register> DstReg, Register SrcReg,
Register EltReg, unsigned LaneIdx,
const RegisterBank &RB,
MachineIRBuilder &MIRBuilder) const;
bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectSplitVectorUnmerge(MachineInstr &I,
MachineRegisterInfo &MRI) const;
bool selectIntrinsicWithSideEffects(MachineInstr &I,
MachineRegisterInfo &MRI) const;
bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI) const;
bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI) const;
unsigned emitConstantPoolEntry(Constant *CPVal, MachineFunction &MF) const;
MachineInstr *emitLoadFromConstantPool(Constant *CPVal,
MachineIRBuilder &MIRBuilder) const;
// Emit a vector concat operation.
MachineInstr *emitVectorConcat(Optional<Register> Dst, Register Op1,
Register Op2,
MachineIRBuilder &MIRBuilder) const;
MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
MachineOperand &Predicate,
MachineIRBuilder &MIRBuilder) const;
MachineInstr *emitADD(Register DefReg, MachineOperand &LHS, MachineOperand &RHS,
MachineIRBuilder &MIRBuilder) const;
MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS,
MachineIRBuilder &MIRBuilder) const;
MachineInstr *emitTST(const Register &LHS, const Register &RHS,
MachineIRBuilder &MIRBuilder) const;
MachineInstr *emitExtractVectorElt(Optional<Register> DstReg,
const RegisterBank &DstRB, LLT ScalarTy,
Register VecReg, unsigned LaneIdx,
MachineIRBuilder &MIRBuilder) const;
/// Helper function for selecting G_FCONSTANT. If the G_FCONSTANT can be
/// materialized using a FMOV instruction, then update MI and return it.
/// Otherwise, do nothing and return a nullptr.
MachineInstr *emitFMovForFConstant(MachineInstr &MI,
MachineRegisterInfo &MRI) const;
/// Emit a CSet for a compare.
MachineInstr *emitCSetForICMP(Register DefReg, unsigned Pred,
MachineIRBuilder &MIRBuilder) const;
// Equivalent to the i32shift_a and friends from AArch64InstrInfo.td.
// We use these manually instead of using the importer since it doesn't
// support SDNodeXForm.
ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const;
ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const;
ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const;
ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const;
ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const;
ComplexRendererFns selectArithImmed(MachineOperand &Root) const;
ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const;
ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root,
unsigned Size) const;
ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const {
return selectAddrModeUnscaled(Root, 1);
}
ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const {
return selectAddrModeUnscaled(Root, 2);
}
ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const {
return selectAddrModeUnscaled(Root, 4);
}
ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const {
return selectAddrModeUnscaled(Root, 8);
}
ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const {
return selectAddrModeUnscaled(Root, 16);
}
ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root,
unsigned Size) const;
template <int Width>
ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const {
return selectAddrModeIndexed(Root, Width / 8);
}
bool isWorthFoldingIntoExtendedReg(MachineInstr &MI,
const MachineRegisterInfo &MRI) const;
ComplexRendererFns
selectAddrModeShiftedExtendXReg(MachineOperand &Root,
unsigned SizeInBytes) const;
ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const;
ComplexRendererFns selectAddrModeXRO(MachineOperand &Root,
unsigned SizeInBytes) const;
template <int Width>
ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const {
return selectAddrModeXRO(Root, Width / 8);
}
ComplexRendererFns selectShiftedRegister(MachineOperand &Root) const;
ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const {
return selectShiftedRegister(Root);
}
ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const {
// TODO: selectShiftedRegister should allow for rotates on logical shifts.
// For now, make them the same. The only difference between the two is that
// logical shifts are allowed to fold in rotates. Otherwise, these are
// functionally the same.
return selectShiftedRegister(Root);
}
/// Instructions that accept extend modifiers like UXTW expect the register
/// being extended to be a GPR32. Narrow ExtReg to a 32-bit register using a
/// subregister copy if necessary. Return either ExtReg, or the result of the
/// new copy.
Register narrowExtendRegIfNeeded(Register ExtReg,
MachineIRBuilder &MIB) const;
ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const;
void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI) const;
void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I) const;
void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I) const;
// Materialize a GlobalValue or BlockAddress using a movz+movk sequence.
void materializeLargeCMVal(MachineInstr &I, const Value *V,
unsigned OpFlags) const;
// Optimization methods.
bool tryOptVectorShuffle(MachineInstr &I) const;
bool tryOptVectorDup(MachineInstr &MI) const;
bool tryOptSelect(MachineInstr &MI) const;
MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
MachineOperand &Predicate,
MachineIRBuilder &MIRBuilder) const;
/// Return true if \p MI is a load or store of \p NumBytes bytes.
bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const;
/// Returns true if \p MI is guaranteed to have the high-half of a 64-bit
/// register zeroed out. In other words, the result of MI has been explicitly
/// zero extended.
bool isDef32(const MachineInstr &MI) const;
const AArch64TargetMachine &TM;
const AArch64Subtarget &STI;
const AArch64InstrInfo &TII;
const AArch64RegisterInfo &TRI;
const AArch64RegisterBankInfo &RBI;
bool ProduceNonFlagSettingCondBr = false;
#define GET_GLOBALISEL_PREDICATES_DECL
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_DECL
// We declare the temporaries used by selectImpl() in the class to minimize the
// cost of constructing placeholder values.
#define GET_GLOBALISEL_TEMPORARIES_DECL
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_DECL
};
} // end anonymous namespace
#define GET_GLOBALISEL_IMPL
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_IMPL
AArch64InstructionSelector::AArch64InstructionSelector(
const AArch64TargetMachine &TM, const AArch64Subtarget &STI,
const AArch64RegisterBankInfo &RBI)
: InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
TRI(*STI.getRegisterInfo()), RBI(RBI),
#define GET_GLOBALISEL_PREDICATES_INIT
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
#include "AArch64GenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_INIT
{
}
// FIXME: This should be target-independent, inferred from the types declared
// for each class in the bank.
static const TargetRegisterClass *
getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB,
const RegisterBankInfo &RBI,
bool GetAllRegSet = false) {
if (RB.getID() == AArch64::GPRRegBankID) {
if (Ty.getSizeInBits() <= 32)
return GetAllRegSet ? &AArch64::GPR32allRegClass
: &AArch64::GPR32RegClass;
if (Ty.getSizeInBits() == 64)
return GetAllRegSet ? &AArch64::GPR64allRegClass
: &AArch64::GPR64RegClass;
return nullptr;
}
if (RB.getID() == AArch64::FPRRegBankID) {
if (Ty.getSizeInBits() <= 16)
return &AArch64::FPR16RegClass;
if (Ty.getSizeInBits() == 32)
return &AArch64::FPR32RegClass;
if (Ty.getSizeInBits() == 64)
return &AArch64::FPR64RegClass;
if (Ty.getSizeInBits() == 128)
return &AArch64::FPR128RegClass;
return nullptr;
}
return nullptr;
}
/// Given a register bank, and size in bits, return the smallest register class
/// that can represent that combination.
static const TargetRegisterClass *
getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits,
bool GetAllRegSet = false) {
unsigned RegBankID = RB.getID();
if (RegBankID == AArch64::GPRRegBankID) {
if (SizeInBits <= 32)
return GetAllRegSet ? &AArch64::GPR32allRegClass
: &AArch64::GPR32RegClass;
if (SizeInBits == 64)
return GetAllRegSet ? &AArch64::GPR64allRegClass
: &AArch64::GPR64RegClass;
}
if (RegBankID == AArch64::FPRRegBankID) {
switch (SizeInBits) {
default:
return nullptr;
case 8:
return &AArch64::FPR8RegClass;
case 16:
return &AArch64::FPR16RegClass;
case 32:
return &AArch64::FPR32RegClass;
case 64:
return &AArch64::FPR64RegClass;
case 128:
return &AArch64::FPR128RegClass;
}
}
return nullptr;
}
/// Returns the correct subregister to use for a given register class.
static bool getSubRegForClass(const TargetRegisterClass *RC,
const TargetRegisterInfo &TRI, unsigned &SubReg) {
switch (TRI.getRegSizeInBits(*RC)) {
case 8:
SubReg = AArch64::bsub;
break;
case 16:
SubReg = AArch64::hsub;
break;
case 32:
if (RC != &AArch64::FPR32RegClass)
SubReg = AArch64::sub_32;
else
SubReg = AArch64::ssub;
break;
case 64:
SubReg = AArch64::dsub;
break;
default:
LLVM_DEBUG(
dbgs() << "Couldn't find appropriate subregister for register class.");
return false;
}
return true;
}
/// Check whether \p I is a currently unsupported binary operation:
/// - it has an unsized type
/// - an operand is not a vreg
/// - all operands are not in the same bank
/// These are checks that should someday live in the verifier, but right now,
/// these are mostly limitations of the aarch64 selector.
static bool unsupportedBinOp(const MachineInstr &I,
const AArch64RegisterBankInfo &RBI,
const MachineRegisterInfo &MRI,
const AArch64RegisterInfo &TRI) {
LLT Ty = MRI.getType(I.getOperand(0).getReg());
if (!Ty.isValid()) {
LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n");
return true;
}
const RegisterBank *PrevOpBank = nullptr;
for (auto &MO : I.operands()) {
// FIXME: Support non-register operands.
if (!MO.isReg()) {
LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n");
return true;
}
// FIXME: Can generic operations have physical registers operands? If
// so, this will need to be taught about that, and we'll need to get the
// bank out of the minimal class for the register.
// Either way, this needs to be documented (and possibly verified).
if (!Register::isVirtualRegister(MO.getReg())) {
LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n");
return true;
}
const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI);
if (!OpBank) {
LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n");
return true;
}
if (PrevOpBank && OpBank != PrevOpBank) {
LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n");
return true;
}
PrevOpBank = OpBank;
}
return false;
}
/// Select the AArch64 opcode for the basic binary operation \p GenericOpc
/// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID
/// and of size \p OpSize.
/// \returns \p GenericOpc if the combination is unsupported.
static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID,
unsigned OpSize) {
switch (RegBankID) {
case AArch64::GPRRegBankID:
if (OpSize == 32) {
switch (GenericOpc) {
case TargetOpcode::G_SHL:
return AArch64::LSLVWr;
case TargetOpcode::G_LSHR:
return AArch64::LSRVWr;
case TargetOpcode::G_ASHR:
return AArch64::ASRVWr;
default:
return GenericOpc;
}
} else if (OpSize == 64) {
switch (GenericOpc) {
case TargetOpcode::G_GEP:
return AArch64::ADDXrr;
case TargetOpcode::G_SHL:
return AArch64::LSLVXr;
case TargetOpcode::G_LSHR:
return AArch64::LSRVXr;
case TargetOpcode::G_ASHR:
return AArch64::ASRVXr;
default:
return GenericOpc;
}
}
break;
case AArch64::FPRRegBankID:
switch (OpSize) {
case 32:
switch (GenericOpc) {
case TargetOpcode::G_FADD:
return AArch64::FADDSrr;
case TargetOpcode::G_FSUB:
return AArch64::FSUBSrr;
case TargetOpcode::G_FMUL:
return AArch64::FMULSrr;
case TargetOpcode::G_FDIV:
return AArch64::FDIVSrr;
default:
return GenericOpc;
}
case 64:
switch (GenericOpc) {
case TargetOpcode::G_FADD:
return AArch64::FADDDrr;
case TargetOpcode::G_FSUB:
return AArch64::FSUBDrr;
case TargetOpcode::G_FMUL:
return AArch64::FMULDrr;
case TargetOpcode::G_FDIV:
return AArch64::FDIVDrr;
case TargetOpcode::G_OR:
return AArch64::ORRv8i8;
default:
return GenericOpc;
}
}
break;
}
return GenericOpc;
}
/// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc,
/// appropriate for the (value) register bank \p RegBankID and of memory access
/// size \p OpSize. This returns the variant with the base+unsigned-immediate
/// addressing mode (e.g., LDRXui).
/// \returns \p GenericOpc if the combination is unsupported.
static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID,
unsigned OpSize) {
const bool isStore = GenericOpc == TargetOpcode::G_STORE;
switch (RegBankID) {
case AArch64::GPRRegBankID:
switch (OpSize) {
case 8:
return isStore ? AArch64::STRBBui : AArch64::LDRBBui;
case 16:
return isStore ? AArch64::STRHHui : AArch64::LDRHHui;
case 32:
return isStore ? AArch64::STRWui : AArch64::LDRWui;
case 64:
return isStore ? AArch64::STRXui : AArch64::LDRXui;
}
break;
case AArch64::FPRRegBankID:
switch (OpSize) {
case 8:
return isStore ? AArch64::STRBui : AArch64::LDRBui;
case 16:
return isStore ? AArch64::STRHui : AArch64::LDRHui;
case 32:
return isStore ? AArch64::STRSui : AArch64::LDRSui;
case 64:
return isStore ? AArch64::STRDui : AArch64::LDRDui;
}
break;
}
return GenericOpc;
}
#ifndef NDEBUG
/// Helper function that verifies that we have a valid copy at the end of
/// selectCopy. Verifies that the source and dest have the expected sizes and
/// then returns true.
static bool isValidCopy(const MachineInstr &I, const RegisterBank &DstBank,
const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) {
const Register DstReg = I.getOperand(0).getReg();
const Register SrcReg = I.getOperand(1).getReg();
const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
// Make sure the size of the source and dest line up.
assert(
(DstSize == SrcSize ||
// Copies are a mean to setup initial types, the number of
// bits may not exactly match.
(Register::isPhysicalRegister(SrcReg) && DstSize <= SrcSize) ||
// Copies are a mean to copy bits around, as long as we are
// on the same register class, that's fine. Otherwise, that
// means we need some SUBREG_TO_REG or AND & co.
(((DstSize + 31) / 32 == (SrcSize + 31) / 32) && DstSize > SrcSize)) &&
"Copy with different width?!");
// Check the size of the destination.
assert((DstSize <= 64 || DstBank.getID() == AArch64::FPRRegBankID) &&
"GPRs cannot get more than 64-bit width values");
return true;
}
#endif
/// Helper function for selectCopy. Inserts a subregister copy from
/// \p *From to \p *To, linking it up to \p I.
///
/// e.g, given I = "Dst = COPY SrcReg", we'll transform that into
///
/// CopyReg (From class) = COPY SrcReg
/// SubRegCopy (To class) = COPY CopyReg:SubReg
/// Dst = COPY SubRegCopy
static bool selectSubregisterCopy(MachineInstr &I, MachineRegisterInfo &MRI,
const RegisterBankInfo &RBI, Register SrcReg,
const TargetRegisterClass *From,
const TargetRegisterClass *To,
unsigned SubReg) {
MachineIRBuilder MIB(I);
auto Copy = MIB.buildCopy({From}, {SrcReg});
auto SubRegCopy = MIB.buildInstr(TargetOpcode::COPY, {To}, {})
.addReg(Copy.getReg(0), 0, SubReg);
MachineOperand &RegOp = I.getOperand(1);
RegOp.setReg(SubRegCopy.getReg(0));
// It's possible that the destination register won't be constrained. Make
// sure that happens.
if (!Register::isPhysicalRegister(I.getOperand(0).getReg()))
RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI);
return true;
}
/// Helper function to get the source and destination register classes for a
/// copy. Returns a std::pair containing the source register class for the
/// copy, and the destination register class for the copy. If a register class
/// cannot be determined, then it will be nullptr.
static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII,
MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) {
Register DstReg = I.getOperand(0).getReg();
Register SrcReg = I.getOperand(1).getReg();
const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
// Special casing for cross-bank copies of s1s. We can technically represent
// a 1-bit value with any size of register. The minimum size for a GPR is 32
// bits. So, we need to put the FPR on 32 bits as well.
//
// FIXME: I'm not sure if this case holds true outside of copies. If it does,
// then we can pull it into the helpers that get the appropriate class for a
// register bank. Or make a new helper that carries along some constraint
// information.
if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1))
SrcSize = DstSize = 32;
return {getMinClassForRegBank(SrcRegBank, SrcSize, true),
getMinClassForRegBank(DstRegBank, DstSize, true)};
}
static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) {
Register DstReg = I.getOperand(0).getReg();
Register SrcReg = I.getOperand(1).getReg();
const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
// Find the correct register classes for the source and destination registers.
const TargetRegisterClass *SrcRC;
const TargetRegisterClass *DstRC;
std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI);
if (!DstRC) {
LLVM_DEBUG(dbgs() << "Unexpected dest size "
<< RBI.getSizeInBits(DstReg, MRI, TRI) << '\n');
return false;
}
// A couple helpers below, for making sure that the copy we produce is valid.
// Set to true if we insert a SUBREG_TO_REG. If we do this, then we don't want
// to verify that the src and dst are the same size, since that's handled by
// the SUBREG_TO_REG.
bool KnownValid = false;
// Returns true, or asserts if something we don't expect happens. Instead of
// returning true, we return isValidCopy() to ensure that we verify the
// result.
auto CheckCopy = [&]() {
// If we have a bitcast or something, we can't have physical registers.
assert((I.isCopy() ||
(!Register::isPhysicalRegister(I.getOperand(0).getReg()) &&
!Register::isPhysicalRegister(I.getOperand(1).getReg()))) &&
"No phys reg on generic operator!");
assert(KnownValid || isValidCopy(I, DstRegBank, MRI, TRI, RBI));
(void)KnownValid;
return true;
};
// Is this a copy? If so, then we may need to insert a subregister copy, or
// a SUBREG_TO_REG.
if (I.isCopy()) {
// Yes. Check if there's anything to fix up.
if (!SrcRC) {
LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n");
return false;
}
unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC);
unsigned DstSize = TRI.getRegSizeInBits(*DstRC);
// If we're doing a cross-bank copy on different-sized registers, we need
// to do a bit more work.
if (SrcSize > DstSize) {
// We're doing a cross-bank copy into a smaller register. We need a
// subregister copy. First, get a register class that's on the same bank
// as the destination, but the same size as the source.
const TargetRegisterClass *SubregRC =
getMinClassForRegBank(DstRegBank, SrcSize, true);
assert(SubregRC && "Didn't get a register class for subreg?");
// Get the appropriate subregister for the destination.
unsigned SubReg = 0;
if (!getSubRegForClass(DstRC, TRI, SubReg)) {
LLVM_DEBUG(dbgs() << "Couldn't determine subregister for copy.\n");
return false;
}
// Now, insert a subregister copy using the new register class.
selectSubregisterCopy(I, MRI, RBI, SrcReg, SubregRC, DstRC, SubReg);
return CheckCopy();
}
// Is this a cross-bank copy?
if (DstRegBank.getID() != SrcRegBank.getID()) {
if (DstRegBank.getID() == AArch64::GPRRegBankID && DstSize == 32 &&
SrcSize == 16) {
// Special case for FPR16 to GPR32.
// FIXME: This can probably be generalized like the above case.
Register PromoteReg =
MRI.createVirtualRegister(&AArch64::FPR32RegClass);
BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(AArch64::SUBREG_TO_REG), PromoteReg)
.addImm(0)
.addUse(SrcReg)
.addImm(AArch64::hsub);
MachineOperand &RegOp = I.getOperand(1);
RegOp.setReg(PromoteReg);
// Promise that the copy is implicitly validated by the SUBREG_TO_REG.
KnownValid = true;
}
}
// If the destination is a physical register, then there's nothing to
// change, so we're done.
if (Register::isPhysicalRegister(DstReg))
return CheckCopy();
}
// No need to constrain SrcReg. It will get constrained when we hit another
// of its use or its defs. Copies do not have constraints.
if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
<< " operand\n");
return false;
}
I.setDesc(TII.get(AArch64::COPY));
return CheckCopy();
}
static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) {
if (!DstTy.isScalar() || !SrcTy.isScalar())
return GenericOpc;
const unsigned DstSize = DstTy.getSizeInBits();
const unsigned SrcSize = SrcTy.getSizeInBits();
switch (DstSize) {
case 32:
switch (SrcSize) {
case 32:
switch (GenericOpc) {
case TargetOpcode::G_SITOFP:
return AArch64::SCVTFUWSri;
case TargetOpcode::G_UITOFP:
return AArch64::UCVTFUWSri;
case TargetOpcode::G_FPTOSI:
return AArch64::FCVTZSUWSr;
case TargetOpcode::G_FPTOUI:
return AArch64::FCVTZUUWSr;
default:
return GenericOpc;
}
case 64:
switch (GenericOpc) {
case TargetOpcode::G_SITOFP:
return AArch64::SCVTFUXSri;
case TargetOpcode::G_UITOFP:
return AArch64::UCVTFUXSri;
case TargetOpcode::G_FPTOSI:
return AArch64::FCVTZSUWDr;
case TargetOpcode::G_FPTOUI:
return AArch64::FCVTZUUWDr;
default:
return GenericOpc;
}
default:
return GenericOpc;
}
case 64:
switch (SrcSize) {
case 32:
switch (GenericOpc) {
case TargetOpcode::G_SITOFP:
return AArch64::SCVTFUWDri;
case TargetOpcode::G_UITOFP:
return AArch64::UCVTFUWDri;
case TargetOpcode::G_FPTOSI:
return AArch64::FCVTZSUXSr;
case TargetOpcode::G_FPTOUI:
return AArch64::FCVTZUUXSr;
default:
return GenericOpc;
}
case 64:
switch (GenericOpc) {
case TargetOpcode::G_SITOFP:
return AArch64::SCVTFUXDri;
case TargetOpcode::G_UITOFP:
return AArch64::UCVTFUXDri;
case TargetOpcode::G_FPTOSI:
return AArch64::FCVTZSUXDr;
case TargetOpcode::G_FPTOUI:
return AArch64::FCVTZUUXDr;
default:
return GenericOpc;
}
default:
return GenericOpc;
}
default:
return GenericOpc;
};
return GenericOpc;
}
static unsigned selectSelectOpc(MachineInstr &I, MachineRegisterInfo &MRI,
const RegisterBankInfo &RBI) {
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
bool IsFP = (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
AArch64::GPRRegBankID);
LLT Ty = MRI.getType(I.getOperand(0).getReg());
if (Ty == LLT::scalar(32))
return IsFP ? AArch64::FCSELSrrr : AArch64::CSELWr;
else if (Ty == LLT::scalar(64) || Ty == LLT::pointer(0, 64))
return IsFP ? AArch64::FCSELDrrr : AArch64::CSELXr;
return 0;
}
/// Helper function to select the opcode for a G_FCMP.
static unsigned selectFCMPOpc(MachineInstr &I, MachineRegisterInfo &MRI) {
// If this is a compare against +0.0, then we don't have to explicitly
// materialize a constant.
const ConstantFP *FPImm = getConstantFPVRegVal(I.getOperand(3).getReg(), MRI);
bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative());
unsigned OpSize = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
if (OpSize != 32 && OpSize != 64)
return 0;
unsigned CmpOpcTbl[2][2] = {{AArch64::FCMPSrr, AArch64::FCMPDrr},
{AArch64::FCMPSri, AArch64::FCMPDri}};
return CmpOpcTbl[ShouldUseImm][OpSize == 64];
}
/// Returns true if \p P is an unsigned integer comparison predicate.
static bool isUnsignedICMPPred(const CmpInst::Predicate P) {
switch (P) {
default:
return false;
case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE:
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
return true;
}
}
static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) {
switch (P) {
default:
llvm_unreachable("Unknown condition code!");
case CmpInst::ICMP_NE:
return AArch64CC::NE;
case CmpInst::ICMP_EQ:
return AArch64CC::EQ;
case CmpInst::ICMP_SGT:
return AArch64CC::GT;
case CmpInst::ICMP_SGE:
return AArch64CC::GE;
case CmpInst::ICMP_SLT:
return AArch64CC::LT;
case CmpInst::ICMP_SLE:
return AArch64CC::LE;
case CmpInst::ICMP_UGT:
return AArch64CC::HI;
case CmpInst::ICMP_UGE:
return AArch64CC::HS;
case CmpInst::ICMP_ULT:
return AArch64CC::LO;
case CmpInst::ICMP_ULE:
return AArch64CC::LS;
}
}
static void changeFCMPPredToAArch64CC(CmpInst::Predicate P,
AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2) {
CondCode2 = AArch64CC::AL;
switch (P) {
default:
llvm_unreachable("Unknown FP condition!");
case CmpInst::FCMP_OEQ:
CondCode = AArch64CC::EQ;
break;
case CmpInst::FCMP_OGT:
CondCode = AArch64CC::GT;
break;
case CmpInst::FCMP_OGE:
CondCode = AArch64CC::GE;
break;
case CmpInst::FCMP_OLT:
CondCode = AArch64CC::MI;
break;
case CmpInst::FCMP_OLE:
CondCode = AArch64CC::LS;
break;
case CmpInst::FCMP_ONE:
CondCode = AArch64CC::MI;
CondCode2 = AArch64CC::GT;
break;
case CmpInst::FCMP_ORD:
CondCode = AArch64CC::VC;
break;
case CmpInst::FCMP_UNO:
CondCode = AArch64CC::VS;
break;
case CmpInst::FCMP_UEQ:
CondCode = AArch64CC::EQ;
CondCode2 = AArch64CC::VS;
break;
case CmpInst::FCMP_UGT:
CondCode = AArch64CC::HI;
break;
case CmpInst::FCMP_UGE:
CondCode = AArch64CC::PL;
break;
case CmpInst::FCMP_ULT:
CondCode = AArch64CC::LT;
break;
case CmpInst::FCMP_ULE:
CondCode = AArch64CC::LE;
break;
case CmpInst::FCMP_UNE:
CondCode = AArch64CC::NE;
break;
}
}
bool AArch64InstructionSelector::selectCompareBranch(
MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
const Register CondReg = I.getOperand(0).getReg();
MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
MachineInstr *CCMI = MRI.getVRegDef(CondReg);
if (CCMI->getOpcode() == TargetOpcode::G_TRUNC)
CCMI = MRI.getVRegDef(CCMI->getOperand(1).getReg());
if (CCMI->getOpcode() != TargetOpcode::G_ICMP)
return false;
Register LHS = CCMI->getOperand(2).getReg();
Register RHS = CCMI->getOperand(3).getReg();
auto VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
if (!VRegAndVal)
std::swap(RHS, LHS);
VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
if (!VRegAndVal || VRegAndVal->Value != 0) {
MachineIRBuilder MIB(I);
// If we can't select a CBZ then emit a cmp + Bcc.
if (!emitIntegerCompare(CCMI->getOperand(2), CCMI->getOperand(3),
CCMI->getOperand(1), MIB))
return false;
const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(
(CmpInst::Predicate)CCMI->getOperand(1).getPredicate());
MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB);
I.eraseFromParent();
return true;
}
const RegisterBank &RB = *RBI.getRegBank(LHS, MRI, TRI);
if (RB.getID() != AArch64::GPRRegBankID)
return false;
const auto Pred = (CmpInst::Predicate)CCMI->getOperand(1).getPredicate();
if (Pred != CmpInst::ICMP_NE && Pred != CmpInst::ICMP_EQ)
return false;
const unsigned CmpWidth = MRI.getType(LHS).getSizeInBits();
unsigned CBOpc = 0;
if (CmpWidth <= 32)
CBOpc = (Pred == CmpInst::ICMP_EQ ? AArch64::CBZW : AArch64::CBNZW);
else if (CmpWidth == 64)
CBOpc = (Pred == CmpInst::ICMP_EQ ? AArch64::CBZX : AArch64::CBNZX);
else
return false;
BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CBOpc))
.addUse(LHS)
.addMBB(DestMBB)
.constrainAllUses(TII, TRI, RBI);
I.eraseFromParent();
return true;
}
bool AArch64InstructionSelector::selectVectorSHL(
MachineInstr &I, MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_SHL);
Register DstReg = I.getOperand(0).getReg();
const LLT Ty = MRI.getType(DstReg);
Register Src1Reg = I.getOperand(1).getReg();
Register Src2Reg = I.getOperand(2).getReg();
if (!Ty.isVector())
return false;
unsigned Opc = 0;
if (Ty == LLT::vector(2, 64)) {
Opc = AArch64::USHLv2i64;
} else if (Ty == LLT::vector(4, 32)) {
Opc = AArch64::USHLv4i32;
} else if (Ty == LLT::vector(2, 32)) {
Opc = AArch64::USHLv2i32;
} else {
LLVM_DEBUG(dbgs() << "Unhandled G_SHL type");
return false;
}
MachineIRBuilder MIB(I);
auto UShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Src2Reg});
constrainSelectedInstRegOperands(*UShl, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
bool AArch64InstructionSelector::selectVectorASHR(
MachineInstr &I, MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_ASHR);
Register DstReg = I.getOperand(0).getReg();
const LLT Ty = MRI.getType(DstReg);
Register Src1Reg = I.getOperand(1).getReg();
Register Src2Reg = I.getOperand(2).getReg();
if (!Ty.isVector())
return false;
// There is not a shift right register instruction, but the shift left
// register instruction takes a signed value, where negative numbers specify a
// right shift.
unsigned Opc = 0;
unsigned NegOpc = 0;
const TargetRegisterClass *RC = nullptr;
if (Ty == LLT::vector(2, 64)) {
Opc = AArch64::SSHLv2i64;
NegOpc = AArch64::NEGv2i64;
RC = &AArch64::FPR128RegClass;
} else if (Ty == LLT::vector(4, 32)) {
Opc = AArch64::SSHLv4i32;
NegOpc = AArch64::NEGv4i32;
RC = &AArch64::FPR128RegClass;
} else if (Ty == LLT::vector(2, 32)) {
Opc = AArch64::SSHLv2i32;
NegOpc = AArch64::NEGv2i32;
RC = &AArch64::FPR64RegClass;
} else {
LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type");
return false;
}
MachineIRBuilder MIB(I);
auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg});
constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI);
auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg});
constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
bool AArch64InstructionSelector::selectVaStartAAPCS(
MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
return false;
}
bool AArch64InstructionSelector::selectVaStartDarwin(
MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Register ListReg = I.getOperand(0).getReg();
Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
auto MIB =
BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri))
.addDef(ArgsAddrReg)
.addFrameIndex(FuncInfo->getVarArgsStackIndex())
.addImm(0)
.addImm(0);
constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui))
.addUse(ArgsAddrReg)
.addUse(ListReg)
.addImm(0)
.addMemOperand(*I.memoperands_begin());
constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
void AArch64InstructionSelector::materializeLargeCMVal(
MachineInstr &I, const Value *V, unsigned OpFlags) const {
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
MachineIRBuilder MIB(I);
auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {});
MovZ->addOperand(MF, I.getOperand(1));
MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 |
AArch64II::MO_NC);
MovZ->addOperand(MF, MachineOperand::CreateImm(0));
constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI);
auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset,
Register ForceDstReg) {
Register DstReg = ForceDstReg
? ForceDstReg
: MRI.createVirtualRegister(&AArch64::GPR64RegClass);
auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg);
if (auto *GV = dyn_cast<GlobalValue>(V)) {
MovI->addOperand(MF, MachineOperand::CreateGA(
GV, MovZ->getOperand(1).getOffset(), Flags));
} else {
MovI->addOperand(
MF, MachineOperand::CreateBA(cast<BlockAddress>(V),
MovZ->getOperand(1).getOffset(), Flags));
}
MovI->addOperand(MF, MachineOperand::CreateImm(Offset));
constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI);
return DstReg;
};
Register DstReg = BuildMovK(MovZ.getReg(0),
AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0);
DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0);
BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg());
return;
}
void AArch64InstructionSelector::preISelLower(MachineInstr &I) const {
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
switch (I.getOpcode()) {
case TargetOpcode::G_SHL:
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR: {
// These shifts are legalized to have 64 bit shift amounts because we want
// to take advantage of the existing imported selection patterns that assume
// the immediates are s64s. However, if the shifted type is 32 bits and for
// some reason we receive input GMIR that has an s64 shift amount that's not
// a G_CONSTANT, insert a truncate so that we can still select the s32
// register-register variant.
Register SrcReg = I.getOperand(1).getReg();
Register ShiftReg = I.getOperand(2).getReg();
const LLT ShiftTy = MRI.getType(ShiftReg);
const LLT SrcTy = MRI.getType(SrcReg);
if (SrcTy.isVector())
return;
assert(!ShiftTy.isVector() && "unexpected vector shift ty");
if (SrcTy.getSizeInBits() != 32 || ShiftTy.getSizeInBits() != 64)
return;
auto *AmtMI = MRI.getVRegDef(ShiftReg);
assert(AmtMI && "could not find a vreg definition for shift amount");
if (AmtMI->getOpcode() != TargetOpcode::G_CONSTANT) {
// Insert a subregister copy to implement a 64->32 trunc
MachineIRBuilder MIB(I);
auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {})
.addReg(ShiftReg, 0, AArch64::sub_32);
MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
I.getOperand(2).setReg(Trunc.getReg(0));
}
return;
}
case TargetOpcode::G_STORE:
contractCrossBankCopyIntoStore(I, MRI);
return;
default:
return;
}
}
bool AArch64InstructionSelector::earlySelectSHL(
MachineInstr &I, MachineRegisterInfo &MRI) const {
// We try to match the immediate variant of LSL, which is actually an alias
// for a special case of UBFM. Otherwise, we fall back to the imported
// selector which will match the register variant.
assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op");
const auto &MO = I.getOperand(2);
auto VRegAndVal = getConstantVRegVal(MO.getReg(), MRI);
if (!VRegAndVal)
return false;
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
if (DstTy.isVector())
return false;
bool Is64Bit = DstTy.getSizeInBits() == 64;
auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO);
auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO);
MachineIRBuilder MIB(I);
if (!Imm1Fn || !Imm2Fn)
return false;
auto NewI =
MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri,
{I.getOperand(0).getReg()}, {I.getOperand(1).getReg()});
for (auto &RenderFn : *Imm1Fn)
RenderFn(NewI);
for (auto &RenderFn : *Imm2Fn)
RenderFn(NewI);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
}
void AArch64InstructionSelector::contractCrossBankCopyIntoStore(
MachineInstr &I, MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE");
// If we're storing a scalar, it doesn't matter what register bank that
// scalar is on. All that matters is the size.
//
// So, if we see something like this (with a 32-bit scalar as an example):
//
// %x:gpr(s32) = ... something ...
// %y:fpr(s32) = COPY %x:gpr(s32)
// G_STORE %y:fpr(s32)
//
// We can fix this up into something like this:
//
// G_STORE %x:gpr(s32)
//
// And then continue the selection process normally.
MachineInstr *Def = getDefIgnoringCopies(I.getOperand(0).getReg(), MRI);
if (!Def)
return;
Register DefDstReg = Def->getOperand(0).getReg();
LLT DefDstTy = MRI.getType(DefDstReg);
Register StoreSrcReg = I.getOperand(0).getReg();
LLT StoreSrcTy = MRI.getType(StoreSrcReg);
// If we get something strange like a physical register, then we shouldn't
// go any further.
if (!DefDstTy.isValid())
return;
// Are the source and dst types the same size?
if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits())
return;
if (RBI.getRegBank(StoreSrcReg, MRI, TRI) ==
RBI.getRegBank(DefDstReg, MRI, TRI))
return;
// We have a cross-bank copy, which is entering a store. Let's fold it.
I.getOperand(0).setReg(DefDstReg);
}
bool AArch64InstructionSelector::earlySelect(MachineInstr &I) const {
assert(I.getParent() && "Instruction should be in a basic block!");
assert(I.getParent()->getParent() && "Instruction should be in a function!");
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
switch (I.getOpcode()) {
case TargetOpcode::G_SHL:
return earlySelectSHL(I, MRI);
case TargetOpcode::G_CONSTANT: {
bool IsZero = false;
if (I.getOperand(1).isCImm())
IsZero = I.getOperand(1).getCImm()->getZExtValue() == 0;
else if (I.getOperand(1).isImm())
IsZero = I.getOperand(1).getImm() == 0;
if (!IsZero)
return false;
Register DefReg = I.getOperand(0).getReg();
LLT Ty = MRI.getType(DefReg);
if (Ty != LLT::scalar(64) && Ty != LLT::scalar(32))
return false;
if (Ty == LLT::scalar(64)) {
I.getOperand(1).ChangeToRegister(AArch64::XZR, false);
RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
} else {
I.getOperand(1).ChangeToRegister(AArch64::WZR, false);
RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI);
}
I.setDesc(TII.get(TargetOpcode::COPY));
return true;
}
default:
return false;
}
}
bool AArch64InstructionSelector::select(MachineInstr &I) {
assert(I.getParent() && "Instruction should be in a basic block!");
assert(I.getParent()->getParent() && "Instruction should be in a function!");
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned Opcode = I.getOpcode();
// G_PHI requires same handling as PHI
if (!isPreISelGenericOpcode(Opcode) || Opcode == TargetOpcode::G_PHI) {
// Certain non-generic instructions also need some special handling.
if (Opcode == TargetOpcode::LOAD_STACK_GUARD)
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) {
const Register DefReg = I.getOperand(0).getReg();
const LLT DefTy = MRI.getType(DefReg);
const RegClassOrRegBank &RegClassOrBank =
MRI.getRegClassOrRegBank(DefReg);
const TargetRegisterClass *DefRC
= RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
if (!DefRC) {
if (!DefTy.isValid()) {
LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
return false;
}
const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
DefRC = getRegClassForTypeOnBank(DefTy, RB, RBI);
if (!DefRC) {
LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
return false;
}
}
I.setDesc(TII.get(TargetOpcode::PHI));
return RBI.constrainGenericRegister(DefReg, *DefRC, MRI);
}
if (I.isCopy())
return selectCopy(I, TII, MRI, TRI, RBI);
return true;
}
if (I.getNumOperands() != I.getNumExplicitOperands()) {
LLVM_DEBUG(
dbgs() << "Generic instruction has unexpected implicit operands\n");
return false;
}
// Try to do some lowering before we start instruction selecting. These
// lowerings are purely transformations on the input G_MIR and so selection
// must continue after any modification of the instruction.
preISelLower(I);
// There may be patterns where the importer can't deal with them optimally,
// but does select it to a suboptimal sequence so our custom C++ selection
// code later never has a chance to work on it. Therefore, we have an early
// selection attempt here to give priority to certain selection routines
// over the imported ones.
if (earlySelect(I))
return true;
if (selectImpl(I, *CoverageInfo))
return true;
LLT Ty =
I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{};
MachineIRBuilder MIB(I);
switch (Opcode) {
case TargetOpcode::G_BRCOND: {
if (Ty.getSizeInBits() > 32) {
// We shouldn't need this on AArch64, but it would be implemented as an
// EXTRACT_SUBREG followed by a TBNZW because TBNZX has no encoding if the
// bit being tested is < 32.
LLVM_DEBUG(dbgs() << "G_BRCOND has type: " << Ty
<< ", expected at most 32-bits");
return false;
}
const Register CondReg = I.getOperand(0).getReg();
MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
// instructions will not be produced, as they are conditional branch
// instructions that do not set flags.
bool ProduceNonFlagSettingCondBr =
!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
if (ProduceNonFlagSettingCondBr && selectCompareBranch(I, MF, MRI))
return true;
if (ProduceNonFlagSettingCondBr) {
auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::TBNZW))
.addUse(CondReg)
.addImm(/*bit offset=*/0)
.addMBB(DestMBB);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MIB.getInstr(), TII, TRI, RBI);
} else {
auto CMP = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ANDSWri))
.addDef(AArch64::WZR)
.addUse(CondReg)
.addImm(1);
constrainSelectedInstRegOperands(*CMP.getInstr(), TII, TRI, RBI);
auto Bcc =
BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::Bcc))
.addImm(AArch64CC::EQ)
.addMBB(DestMBB);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*Bcc.getInstr(), TII, TRI, RBI);
}
}
case TargetOpcode::G_BRINDIRECT: {
I.setDesc(TII.get(AArch64::BR));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
case TargetOpcode::G_BRJT:
return selectBrJT(I, MRI);
case TargetOpcode::G_BSWAP: {
// Handle vector types for G_BSWAP directly.
Register DstReg = I.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
// We should only get vector types here; everything else is handled by the
// importer right now.
if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) {
LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n");
return false;
}
// Only handle 4 and 2 element vectors for now.
// TODO: 16-bit elements.
unsigned NumElts = DstTy.getNumElements();
if (NumElts != 4 && NumElts != 2) {
LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n");
return false;
}
// Choose the correct opcode for the supported types. Right now, that's
// v2s32, v4s32, and v2s64.
unsigned Opc = 0;
unsigned EltSize = DstTy.getElementType().getSizeInBits();
if (EltSize == 32)
Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8
: AArch64::REV32v16i8;
else if (EltSize == 64)
Opc = AArch64::REV64v16i8;
// We should always get something by the time we get here...
assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?");
I.setDesc(TII.get(Opc));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
case TargetOpcode::G_FCONSTANT:
case TargetOpcode::G_CONSTANT: {
const bool isFP = Opcode == TargetOpcode::G_FCONSTANT;
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT p0 = LLT::pointer(0, 64);
const Register DefReg = I.getOperand(0).getReg();
const LLT DefTy = MRI.getType(DefReg);
const unsigned DefSize = DefTy.getSizeInBits();
const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
// FIXME: Redundant check, but even less readable when factored out.
if (isFP) {
if (Ty != s32 && Ty != s64) {
LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
<< " constant, expected: " << s32 << " or " << s64
<< '\n');
return false;
}
if (RB.getID() != AArch64::FPRRegBankID) {
LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
<< " constant on bank: " << RB
<< ", expected: FPR\n");
return false;
}
// The case when we have 0.0 is covered by tablegen. Reject it here so we
// can be sure tablegen works correctly and isn't rescued by this code.
if (I.getOperand(1).getFPImm()->getValueAPF().isExactlyValue(0.0))
return false;
} else {
// s32 and s64 are covered by tablegen.
if (Ty != p0 && Ty != s8 && Ty != s16) {
LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
<< " constant, expected: " << s32 << ", " << s64
<< ", or " << p0 << '\n');
return false;
}
if (RB.getID() != AArch64::GPRRegBankID) {
LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
<< " constant on bank: " << RB
<< ", expected: GPR\n");
return false;
}
}
// We allow G_CONSTANT of types < 32b.
const unsigned MovOpc =
DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm;
if (isFP) {
// Either emit a FMOV, or emit a copy to emit a normal mov.
const TargetRegisterClass &GPRRC =
DefSize == 32 ? AArch64::GPR32RegClass : AArch64::GPR64RegClass;
const TargetRegisterClass &FPRRC =
DefSize == 32 ? AArch64::FPR32RegClass : AArch64::FPR64RegClass;
// Can we use a FMOV instruction to represent the immediate?
if (emitFMovForFConstant(I, MRI))
return true;
// Nope. Emit a copy and use a normal mov instead.
const Register DefGPRReg = MRI.createVirtualRegister(&GPRRC);
MachineOperand &RegOp = I.getOperand(0);
RegOp.setReg(DefGPRReg);
MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
MIB.buildCopy({DefReg}, {DefGPRReg});
if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) {
LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n");
return false;
}
MachineOperand &ImmOp = I.getOperand(1);
// FIXME: Is going through int64_t always correct?
ImmOp.ChangeToImmediate(
ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
} else if (I.getOperand(1).isCImm()) {
uint64_t Val = I.getOperand(1).getCImm()->getZExtValue();
I.getOperand(1).ChangeToImmediate(Val);
} else if (I.getOperand(1).isImm()) {
uint64_t Val = I.getOperand(1).getImm();
I.getOperand(1).ChangeToImmediate(Val);
}
I.setDesc(TII.get(MovOpc));
constrainSelectedInstRegOperands(I, TII, TRI, RBI);
return true;
}
case TargetOpcode::G_EXTRACT: {
Register DstReg = I.getOperand(0).getReg();
Register SrcReg = I.getOperand(1).getReg();
LLT SrcTy = MRI.getType(SrcReg);
LLT DstTy = MRI.getType(DstReg);
(void)DstTy;
unsigned SrcSize = SrcTy.getSizeInBits();
if (SrcTy.getSizeInBits() > 64) {
// This should be an extract of an s128, which is like a vector extract.
if (SrcTy.getSizeInBits() != 128)
return false;
// Only support extracting 64 bits from an s128 at the moment.
if (DstTy.getSizeInBits() != 64)
return false;
const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
// Check we have the right regbank always.
assert(SrcRB.getID() == AArch64::FPRRegBankID &&
DstRB.getID() == AArch64::FPRRegBankID &&
"Wrong extract regbank!");
(void)SrcRB;
// Emit the same code as a vector extract.
// Offset must be a multiple of 64.
unsigned Offset = I.getOperand(2).getImm();
if (Offset % 64 != 0)
return false;
unsigned LaneIdx = Offset / 64;
MachineIRBuilder MIB(I);
MachineInstr *Extract = emitExtractVectorElt(
DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB);
if (!Extract)
return false;
I.eraseFromParent();
return true;
}
I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri));
MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() +
Ty.getSizeInBits() - 1);
if (SrcSize < 64) {
assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 &&
"unexpected G_EXTRACT types");
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
.addReg(DstReg, 0, AArch64::sub_32);
RBI.constrainGenericRegister(I.getOperand(0).getReg(),
AArch64::GPR32RegClass, MRI);
I.getOperand(0).setReg(DstReg);
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
case TargetOpcode::G_INSERT: {
LLT SrcTy = MRI.getType(I.getOperand(2).getReg());
LLT DstTy = MRI.getType(I.getOperand(0).getReg());
unsigned DstSize = DstTy.getSizeInBits();
// Larger inserts are vectors, same-size ones should be something else by
// now (split up or turned into COPYs).
if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32)
return false;
I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri));
unsigned LSB = I.getOperand(3).getImm();
unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
I.getOperand(3).setImm((DstSize - LSB) % DstSize);
MachineInstrBuilder(MF, I).addImm(Width - 1);
if (DstSize < 64) {
assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 &&
"unexpected G_INSERT types");
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
BuildMI(MBB, I.getIterator(), I.getDebugLoc(),
TII.get(AArch64::SUBREG_TO_REG))
.addDef(SrcReg)
.addImm(0)
.addUse(I.getOperand(2).getReg())
.addImm(AArch64::sub_32);
RBI.constrainGenericRegister(I.getOperand(2).getReg(),
AArch64::GPR32RegClass, MRI);
I.getOperand(2).setReg(SrcReg);
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
case TargetOpcode::G_FRAME_INDEX: {
// allocas and G_FRAME_INDEX are only supported in addrspace(0).
if (Ty != LLT::pointer(0, 64)) {
LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty
<< ", expected: " << LLT::pointer(0, 64) << '\n');
return false;
}
I.setDesc(TII.get(AArch64::ADDXri));
// MOs for a #0 shifted immediate.
I.addOperand(MachineOperand::CreateImm(0));
I.addOperand(MachineOperand::CreateImm(0));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
case TargetOpcode::G_GLOBAL_VALUE: {
auto GV = I.getOperand(1).getGlobal();
if (GV->isThreadLocal())
return selectTLSGlobalValue(I, MRI);
unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM);
if (OpFlags & AArch64II::MO_GOT) {
I.setDesc(TII.get(AArch64::LOADgot));
I.getOperand(1).setTargetFlags(OpFlags);
} else if (TM.getCodeModel() == CodeModel::Large) {
// Materialize the global using movz/movk instructions.
materializeLargeCMVal(I, GV, OpFlags);
I.eraseFromParent();
return true;
} else if (TM.getCodeModel() == CodeModel::Tiny) {
I.setDesc(TII.get(AArch64::ADR));
I.getOperand(1).setTargetFlags(OpFlags);
} else {
I.setDesc(TII.get(AArch64::MOVaddr));
I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE);
MachineInstrBuilder MIB(MF, I);
MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(),
OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
}
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
case TargetOpcode::G_ZEXTLOAD:
case TargetOpcode::G_LOAD:
case TargetOpcode::G_STORE: {
bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD;
MachineIRBuilder MIB(I);
LLT PtrTy = MRI.getType(I.getOperand(1).getReg());
if (PtrTy != LLT::pointer(0, 64)) {
LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
<< ", expected: " << LLT::pointer(0, 64) << '\n');
return false;
}
auto &MemOp = **I.memoperands_begin();
if (MemOp.isAtomic()) {
// For now we just support s8 acquire loads to be able to compile stack
// protector code.
if (MemOp.getOrdering() == AtomicOrdering::Acquire &&
MemOp.getSize() == 1) {
I.setDesc(TII.get(AArch64::LDARB));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
LLVM_DEBUG(dbgs() << "Atomic load/store not fully supported yet\n");
return false;
}
unsigned MemSizeInBits = MemOp.getSize() * 8;
const Register PtrReg = I.getOperand(1).getReg();
#ifndef NDEBUG
const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI);
// Sanity-check the pointer register.
assert(PtrRB.getID() == AArch64::GPRRegBankID &&
"Load/Store pointer operand isn't a GPR");
assert(MRI.getType(PtrReg).isPointer() &&
"Load/Store pointer operand isn't a pointer");
#endif
const Register ValReg = I.getOperand(0).getReg();
const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI);
const unsigned NewOpc =
selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits);
if (NewOpc == I.getOpcode())
return false;
I.setDesc(TII.get(NewOpc));
uint64_t Offset = 0;
auto *PtrMI = MRI.getVRegDef(PtrReg);
// Try to fold a GEP into our unsigned immediate addressing mode.
if (PtrMI->getOpcode() == TargetOpcode::G_GEP) {
if (auto COff = getConstantVRegVal(PtrMI->getOperand(2).getReg(), MRI)) {
int64_t Imm = *COff;
const unsigned Size = MemSizeInBits / 8;
const unsigned Scale = Log2_32(Size);
if ((Imm & (Size - 1)) == 0 && Imm >= 0 && Imm < (0x1000 << Scale)) {
Register Ptr2Reg = PtrMI->getOperand(1).getReg();
I.getOperand(1).setReg(Ptr2Reg);
PtrMI = MRI.getVRegDef(Ptr2Reg);
Offset = Imm / Size;
}
}
}
// If we haven't folded anything into our addressing mode yet, try to fold
// a frame index into the base+offset.
if (!Offset && PtrMI->getOpcode() == TargetOpcode::G_FRAME_INDEX)
I.getOperand(1).ChangeToFrameIndex(PtrMI->getOperand(1).getIndex());
I.addOperand(MachineOperand::CreateImm(Offset));
// If we're storing a 0, use WZR/XZR.
if (auto CVal = getConstantVRegVal(ValReg, MRI)) {
if (*CVal == 0 && Opcode == TargetOpcode::G_STORE) {
if (I.getOpcode() == AArch64::STRWui)
I.getOperand(0).setReg(AArch64::WZR);
else if (I.getOpcode() == AArch64::STRXui)
I.getOperand(0).setReg(AArch64::XZR);
}
}
if (IsZExtLoad) {
// The zextload from a smaller type to i32 should be handled by the importer.
if (MRI.getType(ValReg).getSizeInBits() != 64)
return false;
// If we have a ZEXTLOAD then change the load's type to be a narrower reg
//and zero_extend with SUBREG_TO_REG.
Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
Register DstReg = I.getOperand(0).getReg();
I.getOperand(0).setReg(LdReg);
MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {})
.addImm(0)
.addUse(LdReg)
.addImm(AArch64::sub_32);
constrainSelectedInstRegOperands(I, TII, TRI, RBI);
return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass,
MRI);
}
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
case TargetOpcode::G_SMULH:
case TargetOpcode::G_UMULH: {
// Reject the various things we don't support yet.
if (unsupportedBinOp(I, RBI, MRI, TRI))
return false;
const Register DefReg = I.getOperand(0).getReg();
const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
if (RB.getID() != AArch64::GPRRegBankID) {
LLVM_DEBUG(dbgs() << "G_[SU]MULH on bank: " << RB << ", expected: GPR\n");
return false;
}
if (Ty != LLT::scalar(64)) {
LLVM_DEBUG(dbgs() << "G_[SU]MULH has type: " << Ty
<< ", expected: " << LLT::scalar(64) << '\n');
return false;
}
unsigned NewOpc = I.getOpcode() == TargetOpcode::G_SMULH ? AArch64::SMULHrr
: AArch64::UMULHrr;
I.setDesc(TII.get(NewOpc));
// Now that we selected an opcode, we need to constrain the register
// operands to use appropriate classes.
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_ASHR:
if (MRI.getType(I.getOperand(0).getReg()).isVector())
return selectVectorASHR(I, MRI);
LLVM_FALLTHROUGH;
case TargetOpcode::G_SHL:
if (Opcode == TargetOpcode::G_SHL &&
MRI.getType(I.getOperand(0).getReg()).isVector())
return selectVectorSHL(I, MRI);
LLVM_FALLTHROUGH;
case TargetOpcode::G_OR:
case TargetOpcode::G_LSHR: {
// Reject the various things we don't support yet.
if (unsupportedBinOp(I, RBI, MRI, TRI))
return false;
const unsigned OpSize = Ty.getSizeInBits();
const Register DefReg = I.getOperand(0).getReg();
const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize);
if (NewOpc == I.getOpcode())
return false;
I.setDesc(TII.get(NewOpc));
// FIXME: Should the type be always reset in setDesc?
// Now that we selected an opcode, we need to constrain the register
// operands to use appropriate classes.
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
case TargetOpcode::G_GEP: {
MachineIRBuilder MIRBuilder(I);
emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2),
MIRBuilder);
I.eraseFromParent();
return true;
}
case TargetOpcode::G_UADDO: {
// TODO: Support other types.
unsigned OpSize = Ty.getSizeInBits();
if (OpSize != 32 && OpSize != 64) {
LLVM_DEBUG(
dbgs()
<< "G_UADDO currently only supported for 32 and 64 b types.\n");
return false;
}
// TODO: Support vectors.
if (Ty.isVector()) {
LLVM_DEBUG(dbgs() << "G_UADDO currently only supported for scalars.\n");
return false;
}
// Add and set the set condition flag.
unsigned AddsOpc = OpSize == 32 ? AArch64::ADDSWrr : AArch64::ADDSXrr;
MachineIRBuilder MIRBuilder(I);
auto AddsMI = MIRBuilder.buildInstr(
AddsOpc, {I.getOperand(0).getReg()},
{I.getOperand(2).getReg(), I.getOperand(3).getReg()});
constrainSelectedInstRegOperands(*AddsMI, TII, TRI, RBI);
// Now, put the overflow result in the register given by the first operand
// to the G_UADDO. CSINC increments the result when the predicate is false,
// so to get the increment when it's true, we need to use the inverse. In
// this case, we want to increment when carry is set.
auto CsetMI = MIRBuilder
.buildInstr(AArch64::CSINCWr, {I.getOperand(1).getReg()},
{Register(AArch64::WZR), Register(AArch64::WZR)})
.addImm(getInvertedCondCode(AArch64CC::HS));
constrainSelectedInstRegOperands(*CsetMI, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
case TargetOpcode::G_PTR_MASK: {
uint64_t Align = I.getOperand(2).getImm();
if (Align >= 64 || Align == 0)
return false;
uint64_t Mask = ~((1ULL << Align) - 1);
I.setDesc(TII.get(AArch64::ANDXri));
I.getOperand(2).setImm(AArch64_AM::encodeLogicalImmediate(Mask, 64));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
case TargetOpcode::G_PTRTOINT:
case TargetOpcode::G_TRUNC: {
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
const Register DstReg = I.getOperand(0).getReg();
const Register SrcReg = I.getOperand(1).getReg();
const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
if (DstRB.getID() != SrcRB.getID()) {
LLVM_DEBUG(
dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n");
return false;
}
if (DstRB.getID() == AArch64::GPRRegBankID) {
const TargetRegisterClass *DstRC =
getRegClassForTypeOnBank(DstTy, DstRB, RBI);
if (!DstRC)
return false;
const TargetRegisterClass *SrcRC =
getRegClassForTypeOnBank(SrcTy, SrcRB, RBI);
if (!SrcRC)
return false;
if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n");
return false;
}
if (DstRC == SrcRC) {
// Nothing to be done
} else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) &&
SrcTy == LLT::scalar(64)) {
llvm_unreachable("TableGen can import this case");
return false;
} else if (DstRC == &AArch64::GPR32RegClass &&
SrcRC == &AArch64::GPR64RegClass) {
I.getOperand(1).setSubReg(AArch64::sub_32);
} else {
LLVM_DEBUG(
dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n");
return false;
}
I.setDesc(TII.get(TargetOpcode::COPY));
return true;
} else if (DstRB.getID() == AArch64::FPRRegBankID) {
if (DstTy == LLT::vector(4, 16) && SrcTy == LLT::vector(4, 32)) {
I.setDesc(TII.get(AArch64::XTNv4i16));
constrainSelectedInstRegOperands(I, TII, TRI, RBI);
return true;
}
if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) {
MachineIRBuilder MIB(I);
MachineInstr *Extract = emitExtractVectorElt(
DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB);
if (!Extract)
return false;
I.eraseFromParent();
return true;
}
}
return false;
}
case TargetOpcode::G_ANYEXT: {
const Register DstReg = I.getOperand(0).getReg();
const Register SrcReg = I.getOperand(1).getReg();
const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI);
if (RBDst.getID() != AArch64::GPRRegBankID) {
LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst
<< ", expected: GPR\n");
return false;
}
const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI);
if (RBSrc.getID() != AArch64::GPRRegBankID) {
LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc
<< ", expected: GPR\n");
return false;
}
const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
if (DstSize == 0) {
LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n");
return false;
}
if (DstSize != 64 && DstSize > 32) {
LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize
<< ", expected: 32 or 64\n");
return false;
}
// At this point G_ANYEXT is just like a plain COPY, but we need
// to explicitly form the 64-bit value if any.
if (DstSize > 32) {
Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass);
BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG))
.addDef(ExtSrc)
.addImm(0)
.addUse(SrcReg)
.addImm(AArch64::sub_32);
I.getOperand(1).setReg(ExtSrc);
}
return selectCopy(I, TII, MRI, TRI, RBI);
}
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_SEXT: {
unsigned Opcode = I.getOpcode();
const bool IsSigned = Opcode == TargetOpcode::G_SEXT;
const Register DefReg = I.getOperand(0).getReg();
const Register SrcReg = I.getOperand(1).getReg();
const LLT DstTy = MRI.getType(DefReg);
const LLT SrcTy = MRI.getType(SrcReg);
unsigned DstSize = DstTy.getSizeInBits();
unsigned SrcSize = SrcTy.getSizeInBits();
if (DstTy.isVector())
return false; // Should be handled by imported patterns.
assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() ==
AArch64::GPRRegBankID &&
"Unexpected ext regbank");
MachineIRBuilder MIB(I);
MachineInstr *ExtI;
// First check if we're extending the result of a load which has a dest type
// smaller than 32 bits, then this zext is redundant. GPR32 is the smallest
// GPR register on AArch64 and all loads which are smaller automatically
// zero-extend the upper bits. E.g.
// %v(s8) = G_LOAD %p, :: (load 1)
// %v2(s32) = G_ZEXT %v(s8)
if (!IsSigned) {
auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
if (LoadMI &&
RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID) {
const MachineMemOperand *MemOp = *LoadMI->memoperands_begin();
unsigned BytesLoaded = MemOp->getSize();
if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded)
return selectCopy(I, TII, MRI, TRI, RBI);
}
}
if (DstSize == 64) {
// FIXME: Can we avoid manually doing this?
if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass, MRI)) {
LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode)
<< " operand\n");
return false;
}
auto SubregToReg =
MIB.buildInstr(AArch64::SUBREG_TO_REG, {&AArch64::GPR64RegClass}, {})
.addImm(0)
.addUse(SrcReg)
.addImm(AArch64::sub_32);
ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri,
{DefReg}, {SubregToReg})
.addImm(0)
.addImm(SrcSize - 1);
} else if (DstSize <= 32) {
ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri,
{DefReg}, {SrcReg})
.addImm(0)
.addImm(SrcSize - 1);
} else {
return false;
}
constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
case TargetOpcode::G_SITOFP:
case TargetOpcode::G_UITOFP:
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI: {
const LLT DstTy = MRI.getType(I.getOperand(0).getReg()),
SrcTy = MRI.getType(I.getOperand(1).getReg());
const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy);
if (NewOpc == Opcode)
return false;
I.setDesc(TII.get(NewOpc));
constrainSelectedInstRegOperands(I, TII, TRI, RBI);
return true;
}
case TargetOpcode::G_INTTOPTR:
// The importer is currently unable to import pointer types since they
// didn't exist in SelectionDAG.
return selectCopy(I, TII, MRI, TRI, RBI);
case TargetOpcode::G_BITCAST:
// Imported SelectionDAG rules can handle every bitcast except those that
// bitcast from a type to the same type. Ideally, these shouldn't occur
// but we might not run an optimizer that deletes them. The other exception
// is bitcasts involving pointer types, as SelectionDAG has no knowledge
// of them.
return selectCopy(I, TII, MRI, TRI, RBI);
case TargetOpcode::G_SELECT: {
if (MRI.getType(I.getOperand(1).getReg()) != LLT::scalar(1)) {
LLVM_DEBUG(dbgs() << "G_SELECT cond has type: " << Ty
<< ", expected: " << LLT::scalar(1) << '\n');
return false;
}
const Register CondReg = I.getOperand(1).getReg();
const Register TReg = I.getOperand(2).getReg();
const Register FReg = I.getOperand(3).getReg();
if (tryOptSelect(I))
return true;
Register CSelOpc = selectSelectOpc(I, MRI, RBI);
MachineInstr &TstMI =
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ANDSWri))
.addDef(AArch64::WZR)
.addUse(CondReg)
.addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
MachineInstr &CSelMI = *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CSelOpc))
.addDef(I.getOperand(0).getReg())
.addUse(TReg)
.addUse(FReg)
.addImm(AArch64CC::NE);
constrainSelectedInstRegOperands(TstMI, TII, TRI, RBI);
constrainSelectedInstRegOperands(CSelMI, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
case TargetOpcode::G_ICMP: {
if (Ty.isVector())
return selectVectorICmp(I, MRI);
if (Ty != LLT::scalar(32)) {
LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty
<< ", expected: " << LLT::scalar(32) << '\n');
return false;
}
MachineIRBuilder MIRBuilder(I);
if (!emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1),
MIRBuilder))
return false;
emitCSetForICMP(I.getOperand(0).getReg(), I.getOperand(1).getPredicate(),
MIRBuilder);
I.eraseFromParent();
return true;
}
case TargetOpcode::G_FCMP: {
if (Ty != LLT::scalar(32)) {
LLVM_DEBUG(dbgs() << "G_FCMP result has type: " << Ty
<< ", expected: " << LLT::scalar(32) << '\n');
return false;
}
unsigned CmpOpc = selectFCMPOpc(I, MRI);
if (!CmpOpc)
return false;
// FIXME: regbank
AArch64CC::CondCode CC1, CC2;
changeFCMPPredToAArch64CC(
(CmpInst::Predicate)I.getOperand(1).getPredicate(), CC1, CC2);
// Partially build the compare. Decide if we need to add a use for the
// third operand based off whether or not we're comparing against 0.0.
auto CmpMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(CmpOpc))
.addUse(I.getOperand(2).getReg());
// If we don't have an immediate compare, then we need to add a use of the
// register which wasn't used for the immediate.
// Note that the immediate will always be the last operand.
if (CmpOpc != AArch64::FCMPSri && CmpOpc != AArch64::FCMPDri)
CmpMI = CmpMI.addUse(I.getOperand(3).getReg());
const Register DefReg = I.getOperand(0).getReg();
Register Def1Reg = DefReg;
if (CC2 != AArch64CC::AL)
Def1Reg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
MachineInstr &CSetMI =
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::CSINCWr))
.addDef(Def1Reg)
.addUse(AArch64::WZR)
.addUse(AArch64::WZR)
.addImm(getInvertedCondCode(CC1));
if (CC2 != AArch64CC::AL) {
Register Def2Reg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
MachineInstr &CSet2MI =
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::CSINCWr))
.addDef(Def2Reg)
.addUse(AArch64::WZR)
.addUse(AArch64::WZR)
.addImm(getInvertedCondCode(CC2));
MachineInstr &OrMI =
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ORRWrr))
.addDef(DefReg)
.addUse(Def1Reg)
.addUse(Def2Reg);
constrainSelectedInstRegOperands(OrMI, TII, TRI, RBI);
constrainSelectedInstRegOperands(CSet2MI, TII, TRI, RBI);
}
constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
constrainSelectedInstRegOperands(CSetMI, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
case TargetOpcode::G_VASTART:
return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI)
: selectVaStartAAPCS(I, MF, MRI);
case TargetOpcode::G_INTRINSIC:
return selectIntrinsic(I, MRI);
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
return selectIntrinsicWithSideEffects(I, MRI);
case TargetOpcode::G_IMPLICIT_DEF: {
I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
const Register DstReg = I.getOperand(0).getReg();
const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
const TargetRegisterClass *DstRC =
getRegClassForTypeOnBank(DstTy, DstRB, RBI);
RBI.constrainGenericRegister(DstReg, *DstRC, MRI);
return true;
}
case TargetOpcode::G_BLOCK_ADDR: {
if (TM.getCodeModel() == CodeModel::Large) {
materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0);
I.eraseFromParent();
return true;
} else {
I.setDesc(TII.get(AArch64::MOVaddrBA));
auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA),
I.getOperand(0).getReg())
.addBlockAddress(I.getOperand(1).getBlockAddress(),
/* Offset */ 0, AArch64II::MO_PAGE)
.addBlockAddress(
I.getOperand(1).getBlockAddress(), /* Offset */ 0,
AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
}
}
case TargetOpcode::G_INTRINSIC_TRUNC:
return selectIntrinsicTrunc(I, MRI);
case TargetOpcode::G_INTRINSIC_ROUND:
return selectIntrinsicRound(I, MRI);
case TargetOpcode::G_BUILD_VECTOR:
return selectBuildVector(I, MRI);
case TargetOpcode::G_MERGE_VALUES:
return selectMergeValues(I, MRI);
case TargetOpcode::G_UNMERGE_VALUES:
return selectUnmergeValues(I, MRI);
case TargetOpcode::G_SHUFFLE_VECTOR:
return selectShuffleVector(I, MRI);
case TargetOpcode::G_EXTRACT_VECTOR_ELT:
return selectExtractElt(I, MRI);
case TargetOpcode::G_INSERT_VECTOR_ELT:
return selectInsertElt(I, MRI);
case TargetOpcode::G_CONCAT_VECTORS:
return selectConcatVectors(I, MRI);
case TargetOpcode::G_JUMP_TABLE:
return selectJumpTable(I, MRI);
}
return false;
}
bool AArch64InstructionSelector::selectBrJT(MachineInstr &I,
MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT");
Register JTAddr = I.getOperand(0).getReg();
unsigned JTI = I.getOperand(1).getIndex();
Register Index = I.getOperand(2).getReg();
MachineIRBuilder MIB(I);
Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
MIB.buildInstr(AArch64::JumpTableDest32, {TargetReg, ScratchReg},
{JTAddr, Index})
.addJumpTableIndex(JTI);
// Build the indirect branch.
MIB.buildInstr(AArch64::BR, {}, {TargetReg});
I.eraseFromParent();
return true;
}
bool AArch64InstructionSelector::selectJumpTable(
MachineInstr &I, MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table");
assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!");
Register DstReg = I.getOperand(0).getReg();
unsigned JTI = I.getOperand(1).getIndex();
// We generate a MOVaddrJT which will get expanded to an ADRP + ADD later.
MachineIRBuilder MIB(I);
auto MovMI =
MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {})
.addJumpTableIndex(JTI, AArch64II::MO_PAGE)
.addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
}
bool AArch64InstructionSelector::selectTLSGlobalValue(
MachineInstr &I, MachineRegisterInfo &MRI) const {
if (!STI.isTargetMachO())
return false;
MachineFunction &MF = *I.getParent()->getParent();
MF.getFrameInfo().setAdjustsStack(true);
const GlobalValue &GV = *I.getOperand(1).getGlobal();
MachineIRBuilder MIB(I);
MIB.buildInstr(AArch64::LOADgot, {AArch64::X0}, {})
.addGlobalAddress(&GV, 0, AArch64II::MO_TLS);
auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass},
{Register(AArch64::X0)})
.addImm(0);
// TLS calls preserve all registers except those that absolutely must be
// trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
// silly).
MIB.buildInstr(AArch64::BLR, {}, {Load})
.addDef(AArch64::X0, RegState::Implicit)
.addRegMask(TRI.getTLSCallPreservedMask());
MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0));
RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass,
MRI);
I.eraseFromParent();
return true;
}
bool AArch64InstructionSelector::selectIntrinsicTrunc(
MachineInstr &I, MachineRegisterInfo &MRI) const {
const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
// Select the correct opcode.
unsigned Opc = 0;
if (!SrcTy.isVector()) {
switch (SrcTy.getSizeInBits()) {
default:
case 16:
Opc = AArch64::FRINTZHr;
break;
case 32:
Opc = AArch64::FRINTZSr;
break;
case 64:
Opc = AArch64::FRINTZDr;
break;
}
} else {
unsigned NumElts = SrcTy.getNumElements();
switch (SrcTy.getElementType().getSizeInBits()) {
default:
break;
case 16:
if (NumElts == 4)
Opc = AArch64::FRINTZv4f16;
else if (NumElts == 8)
Opc = AArch64::FRINTZv8f16;
break;
case 32:
if (NumElts == 2)
Opc = AArch64::FRINTZv2f32;
else if (NumElts == 4)
Opc = AArch64::FRINTZv4f32;
break;
case 64:
if (NumElts == 2)
Opc = AArch64::FRINTZv2f64;
break;
}
}
if (!Opc) {
// Didn't get an opcode above, bail.
LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_TRUNC!\n");
return false;
}
// Legalization would have set us up perfectly for this; we just need to
// set the opcode and move on.
I.setDesc(TII.get(Opc));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
bool AArch64InstructionSelector::selectIntrinsicRound(
MachineInstr &I, MachineRegisterInfo &MRI) const {
const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
// Select the correct opcode.
unsigned Opc = 0;
if (!SrcTy.isVector()) {
switch (SrcTy.getSizeInBits()) {
default:
case 16:
Opc = AArch64::FRINTAHr;
break;
case 32:
Opc = AArch64::FRINTASr;
break;
case 64:
Opc = AArch64::FRINTADr;
break;
}
} else {
unsigned NumElts = SrcTy.getNumElements();
switch (SrcTy.getElementType().getSizeInBits()) {
default:
break;
case 16:
if (NumElts == 4)
Opc = AArch64::FRINTAv4f16;
else if (NumElts == 8)
Opc = AArch64::FRINTAv8f16;
break;
case 32:
if (NumElts == 2)
Opc = AArch64::FRINTAv2f32;
else if (NumElts == 4)
Opc = AArch64::FRINTAv4f32;
break;
case 64:
if (NumElts == 2)
Opc = AArch64::FRINTAv2f64;
break;
}
}
if (!Opc) {
// Didn't get an opcode above, bail.
LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_ROUND!\n");
return false;
}
// Legalization would have set us up perfectly for this; we just need to
// set the opcode and move on.
I.setDesc(TII.get(Opc));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
bool AArch64InstructionSelector::selectVectorICmp(
MachineInstr &I, MachineRegisterInfo &MRI) const {
Register DstReg = I.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
Register SrcReg = I.getOperand(2).getReg();
Register Src2Reg = I.getOperand(3).getReg();
LLT SrcTy = MRI.getType(SrcReg);
unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
unsigned NumElts = DstTy.getNumElements();
// First index is element size, 0 == 8b, 1 == 16b, 2 == 32b, 3 == 64b
// Second index is num elts, 0 == v2, 1 == v4, 2 == v8, 3 == v16
// Third index is cc opcode:
// 0 == eq
// 1 == ugt
// 2 == uge
// 3 == ult
// 4 == ule
// 5 == sgt
// 6 == sge
// 7 == slt
// 8 == sle
// ne is done by negating 'eq' result.
// This table below assumes that for some comparisons the operands will be
// commuted.
// ult op == commute + ugt op
// ule op == commute + uge op
// slt op == commute + sgt op
// sle op == commute + sge op
unsigned PredIdx = 0;
bool SwapOperands = false;
CmpInst::Predicate Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate();
switch (Pred) {
case CmpInst::ICMP_NE:
case CmpInst::ICMP_EQ:
PredIdx = 0;
break;
case CmpInst::ICMP_UGT:
PredIdx = 1;
break;
case CmpInst::ICMP_UGE:
PredIdx = 2;
break;
case CmpInst::ICMP_ULT:
PredIdx = 3;
SwapOperands = true;
break;
case CmpInst::ICMP_ULE:
PredIdx = 4;
SwapOperands = true;
break;
case CmpInst::ICMP_SGT:
PredIdx = 5;
break;
case CmpInst::ICMP_SGE:
PredIdx = 6;
break;
case CmpInst::ICMP_SLT:
PredIdx = 7;
SwapOperands = true;
break;
case CmpInst::ICMP_SLE:
PredIdx = 8;
SwapOperands = true;
break;
default:
llvm_unreachable("Unhandled icmp predicate");
return false;
}
// This table obviously should be tablegen'd when we have our GISel native
// tablegen selector.
static const unsigned OpcTable[4][4][9] = {
{
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */},
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */},
{AArch64::CMEQv8i8, AArch64::CMHIv8i8, AArch64::CMHSv8i8,
AArch64::CMHIv8i8, AArch64::CMHSv8i8, AArch64::CMGTv8i8,
AArch64::CMGEv8i8, AArch64::CMGTv8i8, AArch64::CMGEv8i8},
{AArch64::CMEQv16i8, AArch64::CMHIv16i8, AArch64::CMHSv16i8,
AArch64::CMHIv16i8, AArch64::CMHSv16i8, AArch64::CMGTv16i8,
AArch64::CMGEv16i8, AArch64::CMGTv16i8, AArch64::CMGEv16i8}
},
{
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */},
{AArch64::CMEQv4i16, AArch64::CMHIv4i16, AArch64::CMHSv4i16,
AArch64::CMHIv4i16, AArch64::CMHSv4i16, AArch64::CMGTv4i16,
AArch64::CMGEv4i16, AArch64::CMGTv4i16, AArch64::CMGEv4i16},
{AArch64::CMEQv8i16, AArch64::CMHIv8i16, AArch64::CMHSv8i16,
AArch64::CMHIv8i16, AArch64::CMHSv8i16, AArch64::CMGTv8i16,
AArch64::CMGEv8i16, AArch64::CMGTv8i16, AArch64::CMGEv8i16},
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */}
},
{
{AArch64::CMEQv2i32, AArch64::CMHIv2i32, AArch64::CMHSv2i32,
AArch64::CMHIv2i32, AArch64::CMHSv2i32, AArch64::CMGTv2i32,
AArch64::CMGEv2i32, AArch64::CMGTv2i32, AArch64::CMGEv2i32},
{AArch64::CMEQv4i32, AArch64::CMHIv4i32, AArch64::CMHSv4i32,
AArch64::CMHIv4i32, AArch64::CMHSv4i32, AArch64::CMGTv4i32,
AArch64::CMGEv4i32, AArch64::CMGTv4i32, AArch64::CMGEv4i32},
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */},
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */}
},
{
{AArch64::CMEQv2i64, AArch64::CMHIv2i64, AArch64::CMHSv2i64,
AArch64::CMHIv2i64, AArch64::CMHSv2i64, AArch64::CMGTv2i64,
AArch64::CMGEv2i64, AArch64::CMGTv2i64, AArch64::CMGEv2i64},
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */},
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */},
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
0 /* invalid */}
},
};
unsigned EltIdx = Log2_32(SrcEltSize / 8);
unsigned NumEltsIdx = Log2_32(NumElts / 2);
unsigned Opc = OpcTable[EltIdx][NumEltsIdx][PredIdx];
if (!Opc) {
LLVM_DEBUG(dbgs() << "Could not map G_ICMP to cmp opcode");
return false;
}
const RegisterBank &VecRB = *RBI.getRegBank(SrcReg, MRI, TRI);
const TargetRegisterClass *SrcRC =
getRegClassForTypeOnBank(SrcTy, VecRB, RBI, true);
if (!SrcRC) {
LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
return false;
}
unsigned NotOpc = Pred == ICmpInst::ICMP_NE ? AArch64::NOTv8i8 : 0;
if (SrcTy.getSizeInBits() == 128)
NotOpc = NotOpc ? AArch64::NOTv16i8 : 0;
if (SwapOperands)
std::swap(SrcReg, Src2Reg);
MachineIRBuilder MIB(I);
auto Cmp = MIB.buildInstr(Opc, {SrcRC}, {SrcReg, Src2Reg});
constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
// Invert if we had a 'ne' cc.
if (NotOpc) {
Cmp = MIB.buildInstr(NotOpc, {DstReg}, {Cmp});
constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
} else {
MIB.buildCopy(DstReg, Cmp.getReg(0));
}
RBI.constrainGenericRegister(DstReg, *SrcRC, MRI);
I.eraseFromParent();
return true;
}
MachineInstr *AArch64InstructionSelector::emitScalarToVector(
unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar,
MachineIRBuilder &MIRBuilder) const {
auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {});
auto BuildFn = [&](unsigned SubregIndex) {
auto Ins =
MIRBuilder
.buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar})
.addImm(SubregIndex);
constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI);
constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI);
return &*Ins;
};
switch (EltSize) {
case 16:
return BuildFn(AArch64::hsub);
case 32:
return BuildFn(AArch64::ssub);
case 64:
return BuildFn(AArch64::dsub);
default:
return nullptr;
}
}
bool AArch64InstructionSelector::selectMergeValues(
MachineInstr &I, MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode");
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation");
const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
if (I.getNumOperands() != 3)
return false;
// Merging 2 s64s into an s128.
if (DstTy == LLT::scalar(128)) {
if (SrcTy.getSizeInBits() != 64)
return false;
MachineIRBuilder MIB(I);
Register DstReg = I.getOperand(0).getReg();
Register Src1Reg = I.getOperand(1).getReg();
Register Src2Reg = I.getOperand(2).getReg();
auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {});
MachineInstr *InsMI =
emitLaneInsert(None, Tmp.getReg(0), Src1Reg, /* LaneIdx */ 0, RB, MIB);
if (!InsMI)
return false;
MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(),
Src2Reg, /* LaneIdx */ 1, RB, MIB);
if (!Ins2MI)
return false;
constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
if (RB.getID() != AArch64::GPRRegBankID)
return false;
if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32)
return false;
auto *DstRC = &AArch64::GPR64RegClass;
Register SubToRegDef = MRI.createVirtualRegister(DstRC);
MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(TargetOpcode::SUBREG_TO_REG))
.addDef(SubToRegDef)
.addImm(0)
.addUse(I.getOperand(1).getReg())
.addImm(AArch64::sub_32);
Register SubToRegDef2 = MRI.createVirtualRegister(DstRC);
// Need to anyext the second scalar before we can use bfm
MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(TargetOpcode::SUBREG_TO_REG))
.addDef(SubToRegDef2)
.addImm(0)
.addUse(I.getOperand(2).getReg())
.addImm(AArch64::sub_32);
MachineInstr &BFM =
*BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri))
.addDef(I.getOperand(0).getReg())
.addUse(SubToRegDef)
.addUse(SubToRegDef2)
.addImm(32)
.addImm(31);
constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI);
constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI);
constrainSelectedInstRegOperands(BFM, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg,
const unsigned EltSize) {
// Choose a lane copy opcode and subregister based off of the size of the
// vector's elements.
switch (EltSize) {
case 16:
CopyOpc = AArch64::CPYi16;
ExtractSubReg = AArch64::hsub;
break;
case 32:
CopyOpc = AArch64::CPYi32;
ExtractSubReg = AArch64::ssub;
break;
case 64:
CopyOpc = AArch64::CPYi64;
ExtractSubReg = AArch64::dsub;
break;
default:
// Unknown size, bail out.
LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n");
return false;
}
return true;
}
MachineInstr *AArch64InstructionSelector::emitExtractVectorElt(
Optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy,
Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const {
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
unsigned CopyOpc = 0;
unsigned ExtractSubReg = 0;
if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) {
LLVM_DEBUG(
dbgs() << "Couldn't determine lane copy opcode for instruction.\n");
return nullptr;
}
const TargetRegisterClass *DstRC =
getRegClassForTypeOnBank(ScalarTy, DstRB, RBI, true);
if (!DstRC) {
LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n");
return nullptr;
}
const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI);
const LLT &VecTy = MRI.getType(VecReg);
const TargetRegisterClass *VecRC =
getRegClassForTypeOnBank(VecTy, VecRB, RBI, true);
if (!VecRC) {
LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
return nullptr;
}
// The register that we're going to copy into.
Register InsertReg = VecReg;
if (!DstReg)
DstReg = MRI.createVirtualRegister(DstRC);
// If the lane index is 0, we just use a subregister COPY.
if (LaneIdx == 0) {
auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {})
.addReg(VecReg, 0, ExtractSubReg);
RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
return &*Copy;
}
// Lane copies require 128-bit wide registers. If we're dealing with an
// unpacked vector, then we need to move up to that width. Insert an implicit
// def and a subregister insert to get us there.
if (VecTy.getSizeInBits() != 128) {
MachineInstr *ScalarToVector = emitScalarToVector(
VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder);
if (!ScalarToVector)
return nullptr;
InsertReg = ScalarToVector->getOperand(0).getReg();
}
MachineInstr *LaneCopyMI =
MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx);
constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI);
// Make sure that we actually constrain the initial copy.
RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
return LaneCopyMI;
}
bool AArch64InstructionSelector::selectExtractElt(
MachineInstr &I, MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT &&
"unexpected opcode!");
Register DstReg = I.getOperand(0).getReg();
const LLT NarrowTy = MRI.getType(DstReg);
const Register SrcReg = I.getOperand(1).getReg();
const LLT WideTy = MRI.getType(SrcReg);
(void)WideTy;
assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() &&
"source register size too small!");
assert(NarrowTy.isScalar() && "cannot extract vector into vector!");
// Need the lane index to determine the correct copy opcode.
MachineOperand &LaneIdxOp = I.getOperand(2);
assert(LaneIdxOp.isReg() && "Lane index operand was not a register?");
if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n");
return false;
}
// Find the index to extract from.
auto VRegAndVal = getConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI);
if (!VRegAndVal)
return false;
unsigned LaneIdx = VRegAndVal->Value;
MachineIRBuilder MIRBuilder(I);
const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg,
LaneIdx, MIRBuilder);
if (!Extract)
return false;
I.eraseFromParent();
return true;
}
bool AArch64InstructionSelector::selectSplitVectorUnmerge(
MachineInstr &I, MachineRegisterInfo &MRI) const {
unsigned NumElts = I.getNumOperands() - 1;
Register SrcReg = I.getOperand(NumElts).getReg();
const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
const LLT SrcTy = MRI.getType(SrcReg);
assert(NarrowTy.isVector() && "Expected an unmerge into vectors");
if (SrcTy.getSizeInBits() > 128) {
LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge");
return false;
}
MachineIRBuilder MIB(I);
// We implement a split vector operation by treating the sub-vectors as
// scalars and extracting them.
const RegisterBank &DstRB =
*RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI);
for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) {
Register Dst = I.getOperand(OpIdx).getReg();
MachineInstr *Extract =
emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB);
if (!Extract)
return false;
}
I.eraseFromParent();
return true;
}
bool AArch64InstructionSelector::selectUnmergeValues(
MachineInstr &I, MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"unexpected opcode");
// TODO: Handle unmerging into GPRs and from scalars to scalars.
if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
AArch64::FPRRegBankID ||
RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
AArch64::FPRRegBankID) {
LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar "
"currently unsupported.\n");
return false;
}
// The last operand is the vector source register, and every other operand is
// a register to unpack into.
unsigned NumElts = I.getNumOperands() - 1;
Register SrcReg = I.getOperand(NumElts).getReg();
const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
const LLT WideTy = MRI.getType(SrcReg);
(void)WideTy;
assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) &&
"can only unmerge from vector or s128 types!");
assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() &&
"source register size too small!");
if (!NarrowTy.isScalar())
return selectSplitVectorUnmerge(I, MRI);
MachineIRBuilder MIB(I);
// Choose a lane copy opcode and subregister based off of the size of the
// vector's elements.
unsigned CopyOpc = 0;
unsigned ExtractSubReg = 0;
if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits()))
return false;
// Set up for the lane copies.
MachineBasicBlock &MBB = *I.getParent();
// Stores the registers we'll be copying from.
SmallVector<Register, 4> InsertRegs;
// We'll use the first register twice, so we only need NumElts-1 registers.
unsigned NumInsertRegs = NumElts - 1;
// If our elements fit into exactly 128 bits, then we can copy from the source
// directly. Otherwise, we need to do a bit of setup with some subregister
// inserts.
if (NarrowTy.getSizeInBits() * NumElts == 128) {
InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg);
} else {
// No. We have to perform subregister inserts. For each insert, create an
// implicit def and a subregister insert, and save the register we create.
for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) {
Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
MachineInstr &ImpDefMI =
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
ImpDefReg);
// Now, create the subregister insert from SrcReg.
Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
MachineInstr &InsMI =
*BuildMI(MBB, I, I.getDebugLoc(),
TII.get(TargetOpcode::INSERT_SUBREG), InsertReg)
.addUse(ImpDefReg)
.addUse(SrcReg)
.addImm(AArch64::dsub);
constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI);
constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI);
// Save the register so that we can copy from it after.
InsertRegs.push_back(InsertReg);
}
}
// Now that we've created any necessary subregister inserts, we can
// create the copies.
//
// Perform the first copy separately as a subregister copy.
Register CopyTo = I.getOperand(0).getReg();
auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {})
.addReg(InsertRegs[0], 0, ExtractSubReg);
constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI);
// Now, perform the remaining copies as vector lane copies.
unsigned LaneIdx = 1;
for (Register InsReg : InsertRegs) {
Register CopyTo = I.getOperand(LaneIdx).getReg();
MachineInstr &CopyInst =
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo)
.addUse(InsReg)
.addImm(LaneIdx);
constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI);
++LaneIdx;
}
// Separately constrain the first copy's destination. Because of the
// limitation in constrainOperandRegClass, we can't guarantee that this will
// actually be constrained. So, do it ourselves using the second operand.
const TargetRegisterClass *RC =
MRI.getRegClassOrNull(I.getOperand(1).getReg());
if (!RC) {
LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n");
return false;
}
RBI.constrainGenericRegister(CopyTo, *RC, MRI);
I.eraseFromParent();
return true;
}
bool AArch64InstructionSelector::selectConcatVectors(
MachineInstr &I, MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
"Unexpected opcode");
Register Dst = I.getOperand(0).getReg();
Register Op1 = I.getOperand(1).getReg();
Register Op2 = I.getOperand(2).getReg();
MachineIRBuilder MIRBuilder(I);
MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIRBuilder);
if (!ConcatMI)
return false;
I.eraseFromParent();
return true;
}
unsigned
AArch64InstructionSelector::emitConstantPoolEntry(Constant *CPVal,
MachineFunction &MF) const {
Type *CPTy = CPVal->getType();
unsigned Align = MF.getDataLayout().getPrefTypeAlignment(CPTy);
if (Align == 0)
Align = MF.getDataLayout().getTypeAllocSize(CPTy);
MachineConstantPool *MCP = MF.getConstantPool();
return MCP->getConstantPoolIndex(CPVal, Align);
}
MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool(
Constant *CPVal, MachineIRBuilder &MIRBuilder) const {
unsigned CPIdx = emitConstantPoolEntry(CPVal, MIRBuilder.getMF());
auto Adrp =
MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {})
.addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE);
MachineInstr *LoadMI = nullptr;
switch (MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType())) {
case 16:
LoadMI =
&*MIRBuilder
.buildInstr(AArch64::LDRQui, {&AArch64::FPR128RegClass}, {Adrp})
.addConstantPoolIndex(CPIdx, 0,
AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
break;
case 8:
LoadMI = &*MIRBuilder
.buildInstr(AArch64::LDRDui, {&AArch64::FPR64RegClass}, {Adrp})
.addConstantPoolIndex(
CPIdx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
break;
default:
LLVM_DEBUG(dbgs() << "Could not load from constant pool of type "
<< *CPVal->getType());
return nullptr;
}
constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI);
constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI);
return LoadMI;
}
/// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given
/// size and RB.
static std::pair<unsigned, unsigned>
getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) {
unsigned Opc, SubregIdx;
if (RB.getID() == AArch64::GPRRegBankID) {
if (EltSize == 32) {
Opc = AArch64::INSvi32gpr;
SubregIdx = AArch64::ssub;
} else if (EltSize == 64) {
Opc = AArch64::INSvi64gpr;
SubregIdx = AArch64::dsub;
} else {
llvm_unreachable("invalid elt size!");
}
} else {
if (EltSize == 8) {
Opc = AArch64::INSvi8lane;
SubregIdx = AArch64::bsub;
} else if (EltSize == 16) {
Opc = AArch64::INSvi16lane;
SubregIdx = AArch64::hsub;
} else if (EltSize == 32) {
Opc = AArch64::INSvi32lane;
SubregIdx = AArch64::ssub;
} else if (EltSize == 64) {
Opc = AArch64::INSvi64lane;
SubregIdx = AArch64::dsub;
} else {
llvm_unreachable("invalid elt size!");
}
}
return std::make_pair(Opc, SubregIdx);
}
MachineInstr *
AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS,
MachineOperand &RHS,
MachineIRBuilder &MIRBuilder) const {
assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
static const unsigned OpcTable[2][2]{{AArch64::ADDXrr, AArch64::ADDXri},
{AArch64::ADDWrr, AArch64::ADDWri}};
bool Is32Bit = MRI.getType(LHS.getReg()).getSizeInBits() == 32;
auto ImmFns = selectArithImmed(RHS);
unsigned Opc = OpcTable[Is32Bit][ImmFns.hasValue()];
auto AddMI = MIRBuilder.buildInstr(Opc, {DefReg}, {LHS.getReg()});
// If we matched a valid constant immediate, add those operands.
if (ImmFns) {
for (auto &RenderFn : *ImmFns)
RenderFn(AddMI);
} else {
AddMI.addUse(RHS.getReg());
}
constrainSelectedInstRegOperands(*AddMI, TII, TRI, RBI);
return &*AddMI;
}
MachineInstr *
AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS,
MachineIRBuilder &MIRBuilder) const {
assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
static const unsigned OpcTable[2][2]{{AArch64::ADDSXrr, AArch64::ADDSXri},
{AArch64::ADDSWrr, AArch64::ADDSWri}};
bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32);
auto ImmFns = selectArithImmed(RHS);
unsigned Opc = OpcTable[Is32Bit][ImmFns.hasValue()];
Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
auto CmpMI = MIRBuilder.buildInstr(Opc, {ZReg}, {LHS.getReg()});
// If we matched a valid constant immediate, add those operands.
if (ImmFns) {
for (auto &RenderFn : *ImmFns)
RenderFn(CmpMI);
} else {
CmpMI.addUse(RHS.getReg());
}
constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
return &*CmpMI;
}
MachineInstr *
AArch64InstructionSelector::emitTST(const Register &LHS, const Register &RHS,
MachineIRBuilder &MIRBuilder) const {
MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
unsigned RegSize = MRI.getType(LHS).getSizeInBits();
bool Is32Bit = (RegSize == 32);
static const unsigned OpcTable[2][2]{{AArch64::ANDSXrr, AArch64::ANDSXri},
{AArch64::ANDSWrr, AArch64::ANDSWri}};
Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
// We might be able to fold in an immediate into the TST. We need to make sure
// it's a logical immediate though, since ANDS requires that.
auto ValAndVReg = getConstantVRegValWithLookThrough(RHS, MRI);
bool IsImmForm = ValAndVReg.hasValue() &&
AArch64_AM::isLogicalImmediate(ValAndVReg->Value, RegSize);
unsigned Opc = OpcTable[Is32Bit][IsImmForm];
auto TstMI = MIRBuilder.buildInstr(Opc, {ZReg}, {LHS});
if (IsImmForm)
TstMI.addImm(
AArch64_AM::encodeLogicalImmediate(ValAndVReg->Value, RegSize));
else
TstMI.addUse(RHS);
constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
return &*TstMI;
}
MachineInstr *AArch64InstructionSelector::emitIntegerCompare(
MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
MachineIRBuilder &MIRBuilder) const {
assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
// Fold the compare if possible.
MachineInstr *FoldCmp =
tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder);
if (FoldCmp)
return FoldCmp;
// Can't fold into a CMN. Just emit a normal compare.
unsigned CmpOpc = 0;
Register ZReg;
LLT CmpTy = MRI.getType(LHS.getReg());
assert((CmpTy.isScalar() || CmpTy.isPointer()) &&
"Expected scalar or pointer");
if (CmpTy == LLT::scalar(32)) {
CmpOpc = AArch64::SUBSWrr;
ZReg = AArch64::WZR;
} else if (CmpTy == LLT::scalar(64) || CmpTy.isPointer()) {
CmpOpc = AArch64::SUBSXrr;
ZReg = AArch64::XZR;
} else {
return nullptr;
}
// Try to match immediate forms.
auto ImmFns = selectArithImmed(RHS);
if (ImmFns)
CmpOpc = CmpOpc == AArch64::SUBSWrr ? AArch64::SUBSWri : AArch64::SUBSXri;
auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addDef(ZReg).addUse(LHS.getReg());
// If we matched a valid constant immediate, add those operands.
if (ImmFns) {
for (auto &RenderFn : *ImmFns)
RenderFn(CmpMI);
} else {
CmpMI.addUse(RHS.getReg());
}
// Make sure that we can constrain the compare that we emitted.
constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
return &*CmpMI;
}
MachineInstr *AArch64InstructionSelector::emitVectorConcat(
Optional<Register> Dst, Register Op1, Register Op2,
MachineIRBuilder &MIRBuilder) const {
// We implement a vector concat by:
// 1. Use scalar_to_vector to insert the lower vector into the larger dest
// 2. Insert the upper vector into the destination's upper element
// TODO: some of this code is common with G_BUILD_VECTOR handling.
MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
const LLT Op1Ty = MRI.getType(Op1);
const LLT Op2Ty = MRI.getType(Op2);
if (Op1Ty != Op2Ty) {
LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys");
return nullptr;
}
assert(Op1Ty.isVector() && "Expected a vector for vector concat");
if (Op1Ty.getSizeInBits() >= 128) {
LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors");
return nullptr;
}
// At the moment we just support 64 bit vector concats.
if (Op1Ty.getSizeInBits() != 64) {
LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors");
return nullptr;
}
const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits());
const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI);
const TargetRegisterClass *DstRC =
getMinClassForRegBank(FPRBank, Op1Ty.getSizeInBits() * 2);
MachineInstr *WidenedOp1 =
emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder);
MachineInstr *WidenedOp2 =
emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder);
if (!WidenedOp1 || !WidenedOp2) {
LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value");
return nullptr;
}
// Now do the insert of the upper element.
unsigned InsertOpc, InsSubRegIdx;
std::tie(InsertOpc, InsSubRegIdx) =
getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits());
if (!Dst)
Dst = MRI.createVirtualRegister(DstRC);
auto InsElt =
MIRBuilder
.buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()})
.addImm(1) /* Lane index */
.addUse(WidenedOp2->getOperand(0).getReg())
.addImm(0);
constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
return &*InsElt;
}
MachineInstr *AArch64InstructionSelector::emitFMovForFConstant(
MachineInstr &I, MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_FCONSTANT &&
"Expected a G_FCONSTANT!");
MachineOperand &ImmOp = I.getOperand(1);
unsigned DefSize = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();
// Only handle 32 and 64 bit defs for now.
if (DefSize != 32 && DefSize != 64)
return nullptr;
// Don't handle null values using FMOV.
if (ImmOp.getFPImm()->isNullValue())
return nullptr;
// Get the immediate representation for the FMOV.
const APFloat &ImmValAPF = ImmOp.getFPImm()->getValueAPF();
int Imm = DefSize == 32 ? AArch64_AM::getFP32Imm(ImmValAPF)
: AArch64_AM::getFP64Imm(ImmValAPF);
// If this is -1, it means the immediate can't be represented as the requested
// floating point value. Bail.
if (Imm == -1)
return nullptr;
// Update MI to represent the new FMOV instruction, constrain it, and return.
ImmOp.ChangeToImmediate(Imm);
unsigned MovOpc = DefSize == 32 ? AArch64::FMOVSi : AArch64::FMOVDi;
I.setDesc(TII.get(MovOpc));
constrainSelectedInstRegOperands(I, TII, TRI, RBI);
return &I;
}
MachineInstr *
AArch64InstructionSelector::emitCSetForICMP(Register DefReg, unsigned Pred,
MachineIRBuilder &MIRBuilder) const {
// CSINC increments the result when the predicate is false. Invert it.
const AArch64CC::CondCode InvCC = changeICMPPredToAArch64CC(
CmpInst::getInversePredicate((CmpInst::Predicate)Pred));
auto I =
MIRBuilder
.buildInstr(AArch64::CSINCWr, {DefReg}, {Register(AArch64::WZR), Register(AArch64::WZR)})
.addImm(InvCC);
constrainSelectedInstRegOperands(*I, TII, TRI, RBI);
return &*I;
}
bool AArch64InstructionSelector::tryOptSelect(MachineInstr &I) const {
MachineIRBuilder MIB(I);
MachineRegisterInfo &MRI = *MIB.getMRI();
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
// We want to recognize this pattern:
//
// $z = G_FCMP pred, $x, $y
// ...
// $w = G_SELECT $z, $a, $b
//
// Where the value of $z is *only* ever used by the G_SELECT (possibly with
// some copies/truncs in between.)
//
// If we see this, then we can emit something like this:
//
// fcmp $x, $y
// fcsel $w, $a, $b, pred
//
// Rather than emitting both of the rather long sequences in the standard
// G_FCMP/G_SELECT select methods.
// First, check if the condition is defined by a compare.
MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg());
while (CondDef) {
// We can only fold if all of the defs have one use.
if (!MRI.hasOneUse(CondDef->getOperand(0).getReg()))
return false;
// We can skip over G_TRUNC since the condition is 1-bit.
// Truncating/extending can have no impact on the value.
unsigned Opc = CondDef->getOpcode();
if (Opc != TargetOpcode::COPY && Opc != TargetOpcode::G_TRUNC)
break;
// Can't see past copies from physregs.
if (Opc == TargetOpcode::COPY &&
Register::isPhysicalRegister(CondDef->getOperand(1).getReg()))
return false;
CondDef = MRI.getVRegDef(CondDef->getOperand(1).getReg());
}
// Is the condition defined by a compare?
if (!CondDef)
return false;
unsigned CondOpc = CondDef->getOpcode();
if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP)
return false;
AArch64CC::CondCode CondCode;
if (CondOpc == TargetOpcode::G_ICMP) {
CondCode = changeICMPPredToAArch64CC(
(CmpInst::Predicate)CondDef->getOperand(1).getPredicate());
if (!emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3),
CondDef->getOperand(1), MIB)) {
LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n");
return false;
}
} else {
// Get the condition code for the select.
AArch64CC::CondCode CondCode2;
changeFCMPPredToAArch64CC(
(CmpInst::Predicate)CondDef->getOperand(1).getPredicate(), CondCode,
CondCode2);
// changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two
// instructions to emit the comparison.
// TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be
// unnecessary.
if (CondCode2 != AArch64CC::AL)
return false;
// Make sure we'll be able to select the compare.
unsigned CmpOpc = selectFCMPOpc(*CondDef, MRI);
if (!CmpOpc)
return false;
// Emit a new compare.
auto Cmp = MIB.buildInstr(CmpOpc, {}, {CondDef->getOperand(2).getReg()});
if (CmpOpc != AArch64::FCMPSri && CmpOpc != AArch64::FCMPDri)
Cmp.addUse(CondDef->getOperand(3).getReg());
constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
}
// Emit the select.
unsigned CSelOpc = selectSelectOpc(I, MRI, RBI);
auto CSel =
MIB.buildInstr(CSelOpc, {I.getOperand(0).getReg()},
{I.getOperand(2).getReg(), I.getOperand(3).getReg()})
.addImm(CondCode);
constrainSelectedInstRegOperands(*CSel, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare(
MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
MachineIRBuilder &MIRBuilder) const {
assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() &&
"Unexpected MachineOperand");
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
// We want to find this sort of thing:
// x = G_SUB 0, y
// G_ICMP z, x
//
// In this case, we can fold the G_SUB into the G_ICMP using a CMN instead.
// e.g:
//
// cmn z, y
// Helper lambda to detect the subtract followed by the compare.
// Takes in the def of the LHS or RHS, and checks if it's a subtract from 0.
auto IsCMN = [&](MachineInstr *DefMI, const AArch64CC::CondCode &CC) {
if (!DefMI || DefMI->getOpcode() != TargetOpcode::G_SUB)
return false;
// Need to make sure NZCV is the same at the end of the transformation.
if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
return false;
// We want to match against SUBs.
if (DefMI->getOpcode() != TargetOpcode::G_SUB)
return false;
// Make sure that we're getting
// x = G_SUB 0, y
auto ValAndVReg =
getConstantVRegValWithLookThrough(DefMI->getOperand(1).getReg(), MRI);
if (!ValAndVReg || ValAndVReg->Value != 0)
return false;
// This can safely be represented as a CMN.
return true;
};
// Check if the RHS or LHS of the G_ICMP is defined by a SUB
MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI);
MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI);
CmpInst::Predicate P = (CmpInst::Predicate)Predicate.getPredicate();
const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(P);
// Given this:
//
// x = G_SUB 0, y
// G_ICMP x, z
//
// Produce this:
//
// cmn y, z
if (IsCMN(LHSDef, CC))
return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder);
// Same idea here, but with the RHS of the compare instead:
//
// Given this:
//
// x = G_SUB 0, y
// G_ICMP z, x
//
// Produce this:
//
// cmn z, y
if (IsCMN(RHSDef, CC))
return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder);
// Given this:
//
// z = G_AND x, y
// G_ICMP z, 0
//
// Produce this if the compare is signed:
//
// tst x, y
if (!isUnsignedICMPPred(P) && LHSDef &&
LHSDef->getOpcode() == TargetOpcode::G_AND) {
// Make sure that the RHS is 0.
auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI);
if (!ValAndVReg || ValAndVReg->Value != 0)
return nullptr;
return emitTST(LHSDef->getOperand(1).getReg(),
LHSDef->getOperand(2).getReg(), MIRBuilder);
}
return nullptr;
}
bool AArch64InstructionSelector::tryOptVectorDup(MachineInstr &I) const {
// Try to match a vector splat operation into a dup instruction.
// We're looking for this pattern:
// %scalar:gpr(s64) = COPY $x0
// %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
// %cst0:gpr(s32) = G_CONSTANT i32 0
// %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
// %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
// %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef,
// %zerovec(<2 x s32>)
//
// ...into:
// %splat = DUP %scalar
// We use the regbank of the scalar to determine which kind of dup to use.
MachineIRBuilder MIB(I);
MachineRegisterInfo &MRI = *MIB.getMRI();
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
using namespace TargetOpcode;
using namespace MIPatternMatch;
// Begin matching the insert.
auto *InsMI =
getOpcodeDef(G_INSERT_VECTOR_ELT, I.getOperand(1).getReg(), MRI);
if (!InsMI)
return false;
// Match the undef vector operand.
auto *UndefMI =
getOpcodeDef(G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(), MRI);
if (!UndefMI)
return false;
// Match the scalar being splatted.
Register ScalarReg = InsMI->getOperand(2).getReg();
const RegisterBank *ScalarRB = RBI.getRegBank(ScalarReg, MRI, TRI);
// Match the index constant 0.
int64_t Index = 0;
if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ICst(Index)) || Index)
return false;
// The shuffle's second operand doesn't matter if the mask is all zero.
const Constant *Mask = I.getOperand(3).getShuffleMask();
if (!isa<ConstantAggregateZero>(Mask))
return false;
// We're done, now find out what kind of splat we need.
LLT VecTy = MRI.getType(I.getOperand(0).getReg());
LLT EltTy = VecTy.getElementType();
if (VecTy.getSizeInBits() != 128 || EltTy.getSizeInBits() < 32) {
LLVM_DEBUG(dbgs() << "Could not optimize splat pattern < 128b yet");
return false;
}
bool IsFP = ScalarRB->getID() == AArch64::FPRRegBankID;
static const unsigned OpcTable[2][2] = {
{AArch64::DUPv4i32gpr, AArch64::DUPv2i64gpr},
{AArch64::DUPv4i32lane, AArch64::DUPv2i64lane}};
unsigned Opc = OpcTable[IsFP][EltTy.getSizeInBits() == 64];
// For FP splats, we need to widen the scalar reg via undef too.
if (IsFP) {
MachineInstr *Widen = emitScalarToVector(
EltTy.getSizeInBits(), &AArch64::FPR128RegClass, ScalarReg, MIB);
if (!Widen)
return false;
ScalarReg = Widen->getOperand(0).getReg();
}
auto Dup = MIB.buildInstr(Opc, {I.getOperand(0).getReg()}, {ScalarReg});
if (IsFP)
Dup.addImm(0);
constrainSelectedInstRegOperands(*Dup, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
bool AArch64InstructionSelector::tryOptVectorShuffle(MachineInstr &I) const {
if (TM.getOptLevel() == CodeGenOpt::None)
return false;
if (tryOptVectorDup(I))
return true;
return false;
}
bool AArch64InstructionSelector::selectShuffleVector(
MachineInstr &I, MachineRegisterInfo &MRI) const {
if (tryOptVectorShuffle(I))
return true;
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
Register Src1Reg = I.getOperand(1).getReg();
const LLT Src1Ty = MRI.getType(Src1Reg);
Register Src2Reg = I.getOperand(2).getReg();
const LLT Src2Ty = MRI.getType(Src2Reg);
const Constant *ShuffleMask = I.getOperand(3).getShuffleMask();
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
LLVMContext &Ctx = MF.getFunction().getContext();
SmallVector<int, 8> Mask;
ShuffleVectorInst::getShuffleMask(ShuffleMask, Mask);
// G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if
// it's originated from a <1 x T> type. Those should have been lowered into
// G_BUILD_VECTOR earlier.
if (!Src1Ty.isVector() || !Src2Ty.isVector()) {
LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n");
return false;
}
unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8;
SmallVector<Constant *, 64> CstIdxs;
for (int Val : Mask) {
// For now, any undef indexes we'll just assume to be 0. This should be
// optimized in future, e.g. to select DUP etc.
Val = Val < 0 ? 0 : Val;
for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
unsigned Offset = Byte + Val * BytesPerElt;
CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset));
}
}
MachineIRBuilder MIRBuilder(I);
// Use a constant pool to load the index vector for TBL.
Constant *CPVal = ConstantVector::get(CstIdxs);
MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIRBuilder);
if (!IndexLoad) {
LLVM_DEBUG(dbgs() << "Could not load from a constant pool");
return false;
}
if (DstTy.getSizeInBits() != 128) {
assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty");
// This case can be done with TBL1.
MachineInstr *Concat = emitVectorConcat(None, Src1Reg, Src2Reg, MIRBuilder);
if (!Concat) {
LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1");
return false;
}
// The constant pool load will be 64 bits, so need to convert to FPR128 reg.
IndexLoad =
emitScalarToVector(64, &AArch64::FPR128RegClass,
IndexLoad->getOperand(0).getReg(), MIRBuilder);
auto TBL1 = MIRBuilder.buildInstr(
AArch64::TBLv16i8One, {&AArch64::FPR128RegClass},
{Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()});
constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI);
auto Copy =
MIRBuilder
.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
.addReg(TBL1.getReg(0), 0, AArch64::dsub);
RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI);
I.eraseFromParent();
return true;
}
// For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive
// Q registers for regalloc.
auto RegSeq = MIRBuilder
.buildInstr(TargetOpcode::REG_SEQUENCE,
{&AArch64::QQRegClass}, {Src1Reg})
.addImm(AArch64::qsub0)
.addUse(Src2Reg)
.addImm(AArch64::qsub1);
auto TBL2 =
MIRBuilder.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0).getReg()},
{RegSeq, IndexLoad->getOperand(0).getReg()});
constrainSelectedInstRegOperands(*RegSeq, TII, TRI, RBI);
constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI);
I.eraseFromParent();
return true;
}
MachineInstr *AArch64InstructionSelector::emitLaneInsert(
Optional<Register> DstReg, Register SrcReg, Register EltReg,
unsigned LaneIdx, const RegisterBank &RB,
MachineIRBuilder &MIRBuilder) const {
MachineInstr *InsElt = nullptr;
const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
// Create a register to define with the insert if one wasn't passed in.
if (!DstReg)
DstReg = MRI.createVirtualRegister(DstRC);
unsigned EltSize = MRI.getType(EltReg).getSizeInBits();
unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first;
if (RB.getID() == AArch64::FPRRegBankID) {
auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder);
InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
.addImm(LaneIdx)
.addUse(InsSub->getOperand(0).getReg())
.addImm(0);
} else {
InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
.addImm(LaneIdx)
.addUse(EltReg);
}
constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
return InsElt;
}
bool AArch64InstructionSelector::selectInsertElt(
MachineInstr &I, MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);
// Get information on the destination.
Register DstReg = I.getOperand(0).getReg();
const LLT DstTy = MRI.getType(DstReg);
unsigned VecSize = DstTy.getSizeInBits();
// Get information on the element we want to insert into the destination.
Register EltReg = I.getOperand(2).getReg();
const LLT EltTy = MRI.getType(EltReg);
unsigned EltSize = EltTy.getSizeInBits();
if (EltSize < 16 || EltSize > 64)
return false; // Don't support all element types yet.
// Find the definition of the index. Bail out if it's not defined by a
// G_CONSTANT.
Register IdxReg = I.getOperand(3).getReg();
auto VRegAndVal = getConstantVRegValWithLookThrough(IdxReg, MRI);
if (!VRegAndVal)
return false;
unsigned LaneIdx = VRegAndVal->Value;
// Perform the lane insert.
Register SrcReg = I.getOperand(1).getReg();
const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
MachineIRBuilder MIRBuilder(I);
if (VecSize < 128) {
// If the vector we're inserting into is smaller than 128 bits, widen it
// to 128 to do the insert.
MachineInstr *ScalarToVec = emitScalarToVector(
VecSize, &AArch64::FPR128RegClass, SrcReg, MIRBuilder);
if (!ScalarToVec)
return false;
SrcReg = ScalarToVec->getOperand(0).getReg();
}
// Create an insert into a new FPR128 register.
// Note that if our vector is already 128 bits, we end up emitting an extra
// register.
MachineInstr *InsMI =
emitLaneInsert(None, SrcReg, EltReg, LaneIdx, EltRB, MIRBuilder);
if (VecSize < 128) {
// If we had to widen to perform the insert, then we have to demote back to
// the original size to get the result we want.
Register DemoteVec = InsMI->getOperand(0).getReg();
const TargetRegisterClass *RC =
getMinClassForRegBank(*RBI.getRegBank(DemoteVec, MRI, TRI), VecSize);
if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
return false;
}
unsigned SubReg = 0;
if (!getSubRegForClass(RC, TRI, SubReg))
return false;
if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << VecSize
<< "\n");
return false;
}
MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
.addReg(DemoteVec, 0, SubReg);
RBI.constrainGenericRegister(DstReg, *RC, MRI);
} else {
// No widening needed.
InsMI->getOperand(0).setReg(DstReg);
constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
}
I.eraseFromParent();
return true;
}
bool AArch64InstructionSelector::selectBuildVector(
MachineInstr &I, MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
// Until we port more of the optimized selections, for now just use a vector
// insert sequence.
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
const LLT EltTy = MRI.getType(I.getOperand(1).getReg());
unsigned EltSize = EltTy.getSizeInBits();
if (EltSize < 16 || EltSize > 64)
return false; // Don't support all element types yet.
const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
MachineIRBuilder MIRBuilder(I);
const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
MachineInstr *ScalarToVec =
emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC,
I.getOperand(1).getReg(), MIRBuilder);
if (!ScalarToVec)
return false;
Register DstVec = ScalarToVec->getOperand(0).getReg();
unsigned DstSize = DstTy.getSizeInBits();
// Keep track of the last MI we inserted. Later on, we might be able to save
// a copy using it.
MachineInstr *PrevMI = nullptr;
for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) {
// Note that if we don't do a subregister copy, we can end up making an
// extra register.
PrevMI = &*emitLaneInsert(None, DstVec, I.getOperand(i).getReg(), i - 1, RB,
MIRBuilder);
DstVec = PrevMI->getOperand(0).getReg();
}
// If DstTy's size in bits is less than 128, then emit a subregister copy
// from DstVec to the last register we've defined.
if (DstSize < 128) {
// Force this to be FPR using the destination vector.
const TargetRegisterClass *RC =
getMinClassForRegBank(*RBI.getRegBank(DstVec, MRI, TRI), DstSize);
if (!RC)
return false;
if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
return false;
}
unsigned SubReg = 0;
if (!getSubRegForClass(RC, TRI, SubReg))
return false;
if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize
<< "\n");
return false;
}
Register Reg = MRI.createVirtualRegister(RC);
Register DstReg = I.getOperand(0).getReg();
MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
.addReg(DstVec, 0, SubReg);
MachineOperand &RegOp = I.getOperand(1);
RegOp.setReg(Reg);
RBI.constrainGenericRegister(DstReg, *RC, MRI);
} else {
// We don't need a subregister copy. Save a copy by re-using the
// destination register on the final insert.
assert(PrevMI && "PrevMI was null?");
PrevMI->getOperand(0).setReg(I.getOperand(0).getReg());
constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI);
}
I.eraseFromParent();
return true;
}
/// Helper function to find an intrinsic ID on an a MachineInstr. Returns the
/// ID if it exists, and 0 otherwise.
static unsigned findIntrinsicID(MachineInstr &I) {
auto IntrinOp = find_if(I.operands(), [&](const MachineOperand &Op) {
return Op.isIntrinsicID();
});
if (IntrinOp == I.operands_end())
return 0;
return IntrinOp->getIntrinsicID();
}
bool AArch64InstructionSelector::selectIntrinsicWithSideEffects(
MachineInstr &I, MachineRegisterInfo &MRI) const {
// Find the intrinsic ID.
unsigned IntrinID = findIntrinsicID(I);
if (!IntrinID)
return false;
MachineIRBuilder MIRBuilder(I);
// Select the instruction.
switch (IntrinID) {
default:
return false;
case Intrinsic::trap:
MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(1);
break;
case Intrinsic::debugtrap:
if (!STI.isTargetWindows())
return false;
MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(0xF000);
break;
}
I.eraseFromParent();
return true;
}
bool AArch64InstructionSelector::selectIntrinsic(
MachineInstr &I, MachineRegisterInfo &MRI) const {
unsigned IntrinID = findIntrinsicID(I);
if (!IntrinID)
return false;
MachineIRBuilder MIRBuilder(I);
switch (IntrinID) {
default:
break;
case Intrinsic::aarch64_crypto_sha1h:
Register DstReg = I.getOperand(0).getReg();
Register SrcReg = I.getOperand(2).getReg();
// FIXME: Should this be an assert?
if (MRI.getType(DstReg).getSizeInBits() != 32 ||
MRI.getType(SrcReg).getSizeInBits() != 32)
return false;
// The operation has to happen on FPRs. Set up some new FPR registers for
// the source and destination if they are on GPRs.
if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
MIRBuilder.buildCopy({SrcReg}, {I.getOperand(2)});
// Make sure the copy ends up getting constrained properly.
RBI.constrainGenericRegister(I.getOperand(2).getReg(),
AArch64::GPR32RegClass, MRI);
}
if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID)
DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
// Actually insert the instruction.
auto SHA1Inst = MIRBuilder.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg});
constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI);
// Did we create a new register for the destination?
if (DstReg != I.getOperand(0).getReg()) {
// Yep. Copy the result of the instruction back into the original
// destination.
MIRBuilder.buildCopy({I.getOperand(0)}, {DstReg});
RBI.constrainGenericRegister(I.getOperand(0).getReg(),
AArch64::GPR32RegClass, MRI);
}
I.eraseFromParent();
return true;
}
return false;
}
static Optional<uint64_t> getImmedFromMO(const MachineOperand &Root) {
auto &MI = *Root.getParent();
auto &MBB = *MI.getParent();
auto &MF = *MBB.getParent();
auto &MRI = MF.getRegInfo();
uint64_t Immed;
if (Root.isImm())
Immed = Root.getImm();
else if (Root.isCImm())
Immed = Root.getCImm()->getZExtValue();
else if (Root.isReg()) {
auto ValAndVReg =
getConstantVRegValWithLookThrough(Root.getReg(), MRI, true);
if (!ValAndVReg)
return None;
Immed = ValAndVReg->Value;
} else
return None;
return Immed;
}
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const {
auto MaybeImmed = getImmedFromMO(Root);
if (MaybeImmed == None || *MaybeImmed > 31)
return None;
uint64_t Enc = (32 - *MaybeImmed) & 0x1f;
return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
}
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const {
auto MaybeImmed = getImmedFromMO(Root);
if (MaybeImmed == None || *MaybeImmed > 31)
return None;
uint64_t Enc = 31 - *MaybeImmed;
return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
}
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const {
auto MaybeImmed = getImmedFromMO(Root);
if (MaybeImmed == None || *MaybeImmed > 63)
return None;
uint64_t Enc = (64 - *MaybeImmed) & 0x3f;
return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
}
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const {
auto MaybeImmed = getImmedFromMO(Root);
if (MaybeImmed == None || *MaybeImmed > 63)
return None;
uint64_t Enc = 63 - *MaybeImmed;
return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
}
/// Helper to select an immediate value that can be represented as a 12-bit
/// value shifted left by either 0 or 12. If it is possible to do so, return
/// the immediate and shift value. If not, return None.
///
/// Used by selectArithImmed and selectNegArithImmed.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::select12BitValueWithLeftShift(
uint64_t Immed) const {
unsigned ShiftAmt;
if (Immed >> 12 == 0) {
ShiftAmt = 0;
} else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
ShiftAmt = 12;
Immed = Immed >> 12;
} else
return None;
unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
return {{
[=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); },
}};
}
/// SelectArithImmed - Select an immediate value that can be represented as
/// a 12-bit value shifted left by either 0 or 12. If so, return true with
/// Val set to the 12-bit value and Shift set to the shifter operand.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const {
// This function is called from the addsub_shifted_imm ComplexPattern,
// which lists [imm] as the list of opcode it's interested in, however
// we still need to check whether the operand is actually an immediate
// here because the ComplexPattern opcode list is only used in
// root-level opcode matching.
auto MaybeImmed = getImmedFromMO(Root);
if (MaybeImmed == None)
return None;
return select12BitValueWithLeftShift(*MaybeImmed);
}
/// SelectNegArithImmed - As above, but negates the value before trying to
/// select it.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const {
// We need a register here, because we need to know if we have a 64 or 32
// bit immediate.
if (!Root.isReg())
return None;
auto MaybeImmed = getImmedFromMO(Root);
if (MaybeImmed == None)
return None;
uint64_t Immed = *MaybeImmed;
// This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
// have the opposite effect on the C flag, so this pattern mustn't match under
// those circumstances.
if (Immed == 0)
return None;
// Check if we're dealing with a 32-bit type on the root or a 64-bit type on
// the root.
MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
if (MRI.getType(Root.getReg()).getSizeInBits() == 32)
Immed = ~((uint32_t)Immed) + 1;
else
Immed = ~Immed + 1ULL;
if (Immed & 0xFFFFFFFFFF000000ULL)
return None;
Immed &= 0xFFFFFFULL;
return select12BitValueWithLeftShift(Immed);
}
/// Return true if it is worth folding MI into an extended register. That is,
/// if it's safe to pull it into the addressing mode of a load or store as a
/// shift.
bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg(
MachineInstr &MI, const MachineRegisterInfo &MRI) const {
// Always fold if there is one use, or if we're optimizing for size.
Register DefReg = MI.getOperand(0).getReg();
if (MRI.hasOneUse(DefReg) ||
MI.getParent()->getParent()->getFunction().hasMinSize())
return true;
// It's better to avoid folding and recomputing shifts when we don't have a
// fastpath.
if (!STI.hasLSLFast())
return false;
// We have a fastpath, so folding a shift in and potentially computing it
// many times may be beneficial. Check if this is only used in memory ops.
// If it is, then we should fold.
return all_of(MRI.use_instructions(DefReg),
[](MachineInstr &Use) { return Use.mayLoadOrStore(); });
}
/// This is used for computing addresses like this:
///
/// ldr x1, [x2, x3, lsl #3]
///
/// Where x2 is the base register, and x3 is an offset register. The shift-left
/// is a constant value specific to this load instruction. That is, we'll never
/// see anything other than a 3 here (which corresponds to the size of the
/// element being loaded.)
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectAddrModeShiftedExtendXReg(
MachineOperand &Root, unsigned SizeInBytes) const {
if (!Root.isReg())
return None;
MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
// Make sure that the memory op is a valid size.
int64_t LegalShiftVal = Log2_32(SizeInBytes);
if (LegalShiftVal == 0)
return None;
// We want to find something like this:
//
// val = G_CONSTANT LegalShiftVal
// shift = G_SHL off_reg val
// ptr = G_GEP base_reg shift
// x = G_LOAD ptr
//
// And fold it into this addressing mode:
//
// ldr x, [base_reg, off_reg, lsl #LegalShiftVal]
// Check if we can find the G_GEP.
MachineInstr *Gep = getOpcodeDef(TargetOpcode::G_GEP, Root.getReg(), MRI);
if (!Gep || !isWorthFoldingIntoExtendedReg(*Gep, MRI))
return None;
// Now, try to match an opcode which will match our specific offset.
// We want a G_SHL or a G_MUL.
MachineInstr *OffsetInst = getDefIgnoringCopies(Gep->getOperand(2).getReg(), MRI);
if (!OffsetInst)
return None;
unsigned OffsetOpc = OffsetInst->getOpcode();
if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL)
return None;
if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
return None;
// Now, try to find the specific G_CONSTANT. Start by assuming that the
// register we will offset is the LHS, and the register containing the
// constant is the RHS.
Register OffsetReg = OffsetInst->getOperand(1).getReg();
Register ConstantReg = OffsetInst->getOperand(2).getReg();
auto ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
if (!ValAndVReg) {
// We didn't get a constant on the RHS. If the opcode is a shift, then
// we're done.
if (OffsetOpc == TargetOpcode::G_SHL)
return None;
// If we have a G_MUL, we can use either register. Try looking at the RHS.
std::swap(OffsetReg, ConstantReg);
ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
if (!ValAndVReg)
return None;
}
// The value must fit into 3 bits, and must be positive. Make sure that is
// true.
int64_t ImmVal = ValAndVReg->Value;
// Since we're going to pull this into a shift, the constant value must be
// a power of 2. If we got a multiply, then we need to check this.
if (OffsetOpc == TargetOpcode::G_MUL) {
if (!isPowerOf2_32(ImmVal))
return None;
// Got a power of 2. So, the amount we'll shift is the log base-2 of that.
ImmVal = Log2_32(ImmVal);
}
if ((ImmVal & 0x7) != ImmVal)
return None;
// We are only allowed to shift by LegalShiftVal. This shift value is built
// into the instruction, so we can't just use whatever we want.
if (ImmVal != LegalShiftVal)
return None;
// We can use the LHS of the GEP as the base, and the LHS of the shift as an
// offset. Signify that we are shifting by setting the shift flag to 1.
return {{[=](MachineInstrBuilder &MIB) {
MIB.addUse(Gep->getOperand(1).getReg());
},
[=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); },
[=](MachineInstrBuilder &MIB) {
// Need to add both immediates here to make sure that they are both
// added to the instruction.
MIB.addImm(0);
MIB.addImm(1);
}}};
}
/// This is used for computing addresses like this:
///
/// ldr x1, [x2, x3]
///
/// Where x2 is the base register, and x3 is an offset register.
///
/// When possible (or profitable) to fold a G_GEP into the address calculation,
/// this will do so. Otherwise, it will return None.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectAddrModeRegisterOffset(
MachineOperand &Root) const {
MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
// We need a GEP.
MachineInstr *Gep = MRI.getVRegDef(Root.getReg());
if (!Gep || Gep->getOpcode() != TargetOpcode::G_GEP)
return None;
// If this is used more than once, let's not bother folding.
// TODO: Check if they are memory ops. If they are, then we can still fold
// without having to recompute anything.
if (!MRI.hasOneUse(Gep->getOperand(0).getReg()))
return None;
// Base is the GEP's LHS, offset is its RHS.
return {{[=](MachineInstrBuilder &MIB) {
MIB.addUse(Gep->getOperand(1).getReg());
},
[=](MachineInstrBuilder &MIB) {
MIB.addUse(Gep->getOperand(2).getReg());
},
[=](MachineInstrBuilder &MIB) {
// Need to add both immediates here to make sure that they are both
// added to the instruction.
MIB.addImm(0);
MIB.addImm(0);
}}};
}
/// This is intended to be equivalent to selectAddrModeXRO in
/// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root,
unsigned SizeInBytes) const {
MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
// If we have a constant offset, then we probably don't want to match a
// register offset.
if (isBaseWithConstantOffset(Root, MRI))
return None;
// Try to fold shifts into the addressing mode.
auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes);
if (AddrModeFns)
return AddrModeFns;
// If that doesn't work, see if it's possible to fold in registers from
// a GEP.
return selectAddrModeRegisterOffset(Root);
}
/// Select a "register plus unscaled signed 9-bit immediate" address. This
/// should only match when there is an offset that is not valid for a scaled
/// immediate addressing mode. The "Size" argument is the size in bytes of the
/// memory reference, which is needed here to know what is valid for a scaled
/// immediate.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root,
unsigned Size) const {
MachineRegisterInfo &MRI =
Root.getParent()->getParent()->getParent()->getRegInfo();
if (!Root.isReg())
return None;
if (!isBaseWithConstantOffset(Root, MRI))
return None;
MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
if (!RootDef)
return None;
MachineOperand &OffImm = RootDef->getOperand(2);
if (!OffImm.isReg())
return None;
MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg());
if (!RHS || RHS->getOpcode() != TargetOpcode::G_CONSTANT)
return None;
int64_t RHSC;
MachineOperand &RHSOp1 = RHS->getOperand(1);
if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64)
return None;
RHSC = RHSOp1.getCImm()->getSExtValue();
// If the offset is valid as a scaled immediate, don't match here.
if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Log2_32(Size)))
return None;
if (RHSC >= -256 && RHSC < 256) {
MachineOperand &Base = RootDef->getOperand(1);
return {{
[=](MachineInstrBuilder &MIB) { MIB.add(Base); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); },
}};
}
return None;
}
/// Select a "register plus scaled unsigned 12-bit immediate" address. The
/// "Size" argument is the size in bytes of the memory reference, which
/// determines the scale.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root,
unsigned Size) const {
MachineRegisterInfo &MRI =
Root.getParent()->getParent()->getParent()->getRegInfo();
if (!Root.isReg())
return None;
MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
if (!RootDef)
return None;
if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
return {{
[=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
}};
}
if (isBaseWithConstantOffset(Root, MRI)) {
MachineOperand &LHS = RootDef->getOperand(1);
MachineOperand &RHS = RootDef->getOperand(2);
MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg());
MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg());
if (LHSDef && RHSDef) {
int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue();
unsigned Scale = Log2_32(Size);
if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
return {{
[=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
}};
return {{
[=](MachineInstrBuilder &MIB) { MIB.add(LHS); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
}};
}
}
}
// Before falling back to our general case, check if the unscaled
// instructions can handle this. If so, that's preferable.
if (selectAddrModeUnscaled(Root, Size).hasValue())
return None;
return {{
[=](MachineInstrBuilder &MIB) { MIB.add(Root); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
}};
}
/// Given a shift instruction, return the correct shift type for that
/// instruction.
static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) {
// TODO: Handle AArch64_AM::ROR
switch (MI.getOpcode()) {
default:
return AArch64_AM::InvalidShiftExtend;
case TargetOpcode::G_SHL:
return AArch64_AM::LSL;
case TargetOpcode::G_LSHR:
return AArch64_AM::LSR;
case TargetOpcode::G_ASHR:
return AArch64_AM::ASR;
}
}
/// Select a "shifted register" operand. If the value is not shifted, set the
/// shift operand to a default value of "lsl 0".
///
/// TODO: Allow shifted register to be rotated in logical instructions.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root) const {
if (!Root.isReg())
return None;
MachineRegisterInfo &MRI =
Root.getParent()->getParent()->getParent()->getRegInfo();
// Check if the operand is defined by an instruction which corresponds to
// a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc.
//
// TODO: Handle AArch64_AM::ROR for logical instructions.
MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg());
if (!ShiftInst)
return None;
AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst);
if (ShType == AArch64_AM::InvalidShiftExtend)
return None;
if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI))
return None;
// Need an immediate on the RHS.
MachineOperand &ShiftRHS = ShiftInst->getOperand(2);
auto Immed = getImmedFromMO(ShiftRHS);
if (!Immed)
return None;
// We have something that we can fold. Fold in the shift's LHS and RHS into
// the instruction.
MachineOperand &ShiftLHS = ShiftInst->getOperand(1);
Register ShiftReg = ShiftLHS.getReg();
unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits();
unsigned Val = *Immed & (NumBits - 1);
unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val);
return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}};
}
/// Get the correct ShiftExtendType for an extend instruction.
static AArch64_AM::ShiftExtendType
getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI) {
unsigned Opc = MI.getOpcode();
// Handle explicit extend instructions first.
if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) {
unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
assert(Size != 64 && "Extend from 64 bits?");
switch (Size) {
case 8:
return AArch64_AM::SXTB;
case 16:
return AArch64_AM::SXTH;
case 32:
return AArch64_AM::SXTW;
default:
return AArch64_AM::InvalidShiftExtend;
}
}
if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) {
unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
assert(Size != 64 && "Extend from 64 bits?");
switch (Size) {
case 8:
return AArch64_AM::UXTB;
case 16:
return AArch64_AM::UXTH;
case 32:
return AArch64_AM::UXTW;
default:
return AArch64_AM::InvalidShiftExtend;
}
}
// Don't have an explicit extend. Try to handle a G_AND with a constant mask
// on the RHS.
if (Opc != TargetOpcode::G_AND)
return AArch64_AM::InvalidShiftExtend;
Optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2));
if (!MaybeAndMask)
return AArch64_AM::InvalidShiftExtend;
uint64_t AndMask = *MaybeAndMask;
switch (AndMask) {
default:
return AArch64_AM::InvalidShiftExtend;
case 0xFF:
return AArch64_AM::UXTB;
case 0xFFFF:
return AArch64_AM::UXTH;
case 0xFFFFFFFF:
return AArch64_AM::UXTW;
}
}
Register AArch64InstructionSelector::narrowExtendRegIfNeeded(
Register ExtReg, MachineIRBuilder &MIB) const {
MachineRegisterInfo &MRI = *MIB.getMRI();
if (MRI.getType(ExtReg).getSizeInBits() == 32)
return ExtReg;
// Insert a copy to move ExtReg to GPR32.
Register NarrowReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
auto Copy = MIB.buildCopy({NarrowReg}, {ExtReg});
// Select the copy into a subregister copy.
selectCopy(*Copy, TII, MRI, TRI, RBI);
return Copy.getReg(0);
}
/// Select an "extended register" operand. This operand folds in an extend
/// followed by an optional left shift.
InstructionSelector::ComplexRendererFns
AArch64InstructionSelector::selectArithExtendedRegister(
MachineOperand &Root) const {
if (!Root.isReg())
return None;
MachineRegisterInfo &MRI =
Root.getParent()->getParent()->getParent()->getRegInfo();
uint64_t ShiftVal = 0;
Register ExtReg;
AArch64_AM::ShiftExtendType Ext;
MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI);
if (!RootDef)
return None;
if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI))
return None;
// Check if we can fold a shift and an extend.
if (RootDef->getOpcode() == TargetOpcode::G_SHL) {
// Look for a constant on the RHS of the shift.
MachineOperand &RHS = RootDef->getOperand(2);
Optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS);
if (!MaybeShiftVal)
return None;
ShiftVal = *MaybeShiftVal;
if (ShiftVal > 4)
return None;
// Look for a valid extend instruction on the LHS of the shift.
MachineOperand &LHS = RootDef->getOperand(1);
MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI);
if (!ExtDef)
return None;
Ext = getExtendTypeForInst(*ExtDef, MRI);
if (Ext == AArch64_AM::InvalidShiftExtend)
return None;
ExtReg = ExtDef->getOperand(1).getReg();
} else {
// Didn't get a shift. Try just folding an extend.
Ext = getExtendTypeForInst(*RootDef, MRI);
if (Ext == AArch64_AM::InvalidShiftExtend)
return None;
ExtReg = RootDef->getOperand(1).getReg();
// If we have a 32 bit instruction which zeroes out the high half of a
// register, we get an implicit zero extend for free. Check if we have one.
// FIXME: We actually emit the extend right now even though we don't have
// to.
if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) {
MachineInstr *ExtInst = MRI.getVRegDef(ExtReg);
if (ExtInst && isDef32(*ExtInst))
return None;
}
}
// We require a GPR32 here. Narrow the ExtReg if needed using a subregister
// copy.
MachineIRBuilder MIB(*RootDef);
ExtReg = narrowExtendRegIfNeeded(ExtReg, MIB);
return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
[=](MachineInstrBuilder &MIB) {
MIB.addImm(getArithExtendImm(Ext, ShiftVal));
}}};
}
void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB,
const MachineInstr &MI) const {
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && "Expected G_CONSTANT");
Optional<int64_t> CstVal = getConstantVRegVal(MI.getOperand(0).getReg(), MRI);
assert(CstVal && "Expected constant value");
MIB.addImm(CstVal.getValue());
}
void AArch64InstructionSelector::renderLogicalImm32(
MachineInstrBuilder &MIB, const MachineInstr &I) const {
assert(I.getOpcode() == TargetOpcode::G_CONSTANT && "Expected G_CONSTANT");
uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32);
MIB.addImm(Enc);
}
void AArch64InstructionSelector::renderLogicalImm64(
MachineInstrBuilder &MIB, const MachineInstr &I) const {
assert(I.getOpcode() == TargetOpcode::G_CONSTANT && "Expected G_CONSTANT");
uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64);
MIB.addImm(Enc);
}
bool AArch64InstructionSelector::isLoadStoreOfNumBytes(
const MachineInstr &MI, unsigned NumBytes) const {
if (!MI.mayLoadOrStore())
return false;
assert(MI.hasOneMemOperand() &&
"Expected load/store to have only one mem op!");
return (*MI.memoperands_begin())->getSize() == NumBytes;
}
bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const {
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32)
return false;
// Only return true if we know the operation will zero-out the high half of
// the 64-bit register. Truncates can be subregister copies, which don't
// zero out the high bits. Copies and other copy-like instructions can be
// fed by truncates, or could be lowered as subregister copies.
switch (MI.getOpcode()) {
default:
return true;
case TargetOpcode::COPY:
case TargetOpcode::G_BITCAST:
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_PHI:
return false;
}
}
namespace llvm {
InstructionSelector *
createAArch64InstructionSelector(const AArch64TargetMachine &TM,
AArch64Subtarget &Subtarget,
AArch64RegisterBankInfo &RBI) {
return new AArch64InstructionSelector(TM, Subtarget, RBI);
}
}
|