reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file This file implements the utility functions used by the GlobalISel
/// pipeline.
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"

#define DEBUG_TYPE "globalisel-utils"

using namespace llvm;

unsigned llvm::constrainRegToClass(MachineRegisterInfo &MRI,
                                   const TargetInstrInfo &TII,
                                   const RegisterBankInfo &RBI, unsigned Reg,
                                   const TargetRegisterClass &RegClass) {
  if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
    return MRI.createVirtualRegister(&RegClass);

  return Reg;
}

unsigned llvm::constrainOperandRegClass(
    const MachineFunction &MF, const TargetRegisterInfo &TRI,
    MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
    const RegisterBankInfo &RBI, MachineInstr &InsertPt,
    const TargetRegisterClass &RegClass, const MachineOperand &RegMO,
    unsigned OpIdx) {
  Register Reg = RegMO.getReg();
  // Assume physical registers are properly constrained.
  assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");

  unsigned ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
  // If we created a new virtual register because the class is not compatible
  // then create a copy between the new and the old register.
  if (ConstrainedReg != Reg) {
    MachineBasicBlock::iterator InsertIt(&InsertPt);
    MachineBasicBlock &MBB = *InsertPt.getParent();
    if (RegMO.isUse()) {
      BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
              TII.get(TargetOpcode::COPY), ConstrainedReg)
          .addReg(Reg);
    } else {
      assert(RegMO.isDef() && "Must be a definition");
      BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
              TII.get(TargetOpcode::COPY), Reg)
          .addReg(ConstrainedReg);
    }
  }
  return ConstrainedReg;
}

unsigned llvm::constrainOperandRegClass(
    const MachineFunction &MF, const TargetRegisterInfo &TRI,
    MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
    const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
    const MachineOperand &RegMO, unsigned OpIdx) {
  Register Reg = RegMO.getReg();
  // Assume physical registers are properly constrained.
  assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");

  const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
  // Some of the target independent instructions, like COPY, may not impose any
  // register class constraints on some of their operands: If it's a use, we can
  // skip constraining as the instruction defining the register would constrain
  // it.

  // We can't constrain unallocatable register classes, because we can't create
  // virtual registers for these classes, so we need to let targets handled this
  // case.
  if (RegClass && !RegClass->isAllocatable())
    RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI);

  if (!RegClass) {
    assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
           "Register class constraint is required unless either the "
           "instruction is target independent or the operand is a use");
    // FIXME: Just bailing out like this here could be not enough, unless we
    // expect the users of this function to do the right thing for PHIs and
    // COPY:
    //   v1 = COPY v0
    //   v2 = COPY v1
    // v1 here may end up not being constrained at all. Please notice that to
    // reproduce the issue we likely need a destination pattern of a selection
    // rule producing such extra copies, not just an input GMIR with them as
    // every existing target using selectImpl handles copies before calling it
    // and they never reach this function.
    return Reg;
  }
  return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass,
                                  RegMO, OpIdx);
}

bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
                                            const TargetInstrInfo &TII,
                                            const TargetRegisterInfo &TRI,
                                            const RegisterBankInfo &RBI) {
  assert(!isPreISelGenericOpcode(I.getOpcode()) &&
         "A selected instruction is expected");
  MachineBasicBlock &MBB = *I.getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
    MachineOperand &MO = I.getOperand(OpI);

    // There's nothing to be done on non-register operands.
    if (!MO.isReg())
      continue;

    LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
    assert(MO.isReg() && "Unsupported non-reg operand");

    Register Reg = MO.getReg();
    // Physical registers don't need to be constrained.
    if (Register::isPhysicalRegister(Reg))
      continue;

    // Register operands with a value of 0 (e.g. predicate operands) don't need
    // to be constrained.
    if (Reg == 0)
      continue;

    // If the operand is a vreg, we should constrain its regclass, and only
    // insert COPYs if that's impossible.
    // constrainOperandRegClass does that for us.
    MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(),
                                       MO, OpI));

    // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
    // done.
    if (MO.isUse()) {
      int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
      if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
        I.tieOperands(DefIdx, OpI);
    }
  }
  return true;
}

bool llvm::isTriviallyDead(const MachineInstr &MI,
                           const MachineRegisterInfo &MRI) {
  // If we can move an instruction, we can remove it.  Otherwise, it has
  // a side-effect of some sort.
  bool SawStore = false;
  if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
    return false;

  // Instructions without side-effects are dead iff they only define dead vregs.
  for (auto &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;

    Register Reg = MO.getReg();
    if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
      return false;
  }
  return true;
}

void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
                              MachineOptimizationRemarkEmitter &MORE,
                              MachineOptimizationRemarkMissed &R) {
  MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);

  // Print the function name explicitly if we don't have a debug location (which
  // makes the diagnostic less useful) or if we're going to emit a raw error.
  if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
    R << (" (in function: " + MF.getName() + ")").str();

  if (TPC.isGlobalISelAbortEnabled())
    report_fatal_error(R.getMsg());
  else
    MORE.emit(R);
}

void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
                              MachineOptimizationRemarkEmitter &MORE,
                              const char *PassName, StringRef Msg,
                              const MachineInstr &MI) {
  MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
                                    MI.getDebugLoc(), MI.getParent());
  R << Msg;
  // Printing MI is expensive;  only do it if expensive remarks are enabled.
  if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
    R << ": " << ore::MNV("Inst", MI);
  reportGISelFailure(MF, TPC, MORE, R);
}

Optional<int64_t> llvm::getConstantVRegVal(unsigned VReg,
                                           const MachineRegisterInfo &MRI) {
  Optional<ValueAndVReg> ValAndVReg =
      getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false);
  assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
         "Value found while looking through instrs");
  if (!ValAndVReg)
    return None;
  return ValAndVReg->Value;
}

Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough(
    unsigned VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
    bool HandleFConstant) {
  SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
  MachineInstr *MI;
  auto IsConstantOpcode = [HandleFConstant](unsigned Opcode) {
    return Opcode == TargetOpcode::G_CONSTANT ||
           (HandleFConstant && Opcode == TargetOpcode::G_FCONSTANT);
  };
  auto GetImmediateValue = [HandleFConstant,
                            &MRI](const MachineInstr &MI) -> Optional<APInt> {
    const MachineOperand &CstVal = MI.getOperand(1);
    if (!CstVal.isImm() && !CstVal.isCImm() &&
        (!HandleFConstant || !CstVal.isFPImm()))
      return None;
    if (!CstVal.isFPImm()) {
      unsigned BitWidth =
          MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
      APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm())
                                 : CstVal.getCImm()->getValue();
      assert(Val.getBitWidth() == BitWidth &&
             "Value bitwidth doesn't match definition type");
      return Val;
    }
    return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
  };
  while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI->getOpcode()) &&
         LookThroughInstrs) {
    switch (MI->getOpcode()) {
    case TargetOpcode::G_TRUNC:
    case TargetOpcode::G_SEXT:
    case TargetOpcode::G_ZEXT:
      SeenOpcodes.push_back(std::make_pair(
          MI->getOpcode(),
          MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
      VReg = MI->getOperand(1).getReg();
      break;
    case TargetOpcode::COPY:
      VReg = MI->getOperand(1).getReg();
      if (Register::isPhysicalRegister(VReg))
        return None;
      break;
    case TargetOpcode::G_INTTOPTR:
      VReg = MI->getOperand(1).getReg();
      break;
    default:
      return None;
    }
  }
  if (!MI || !IsConstantOpcode(MI->getOpcode()))
    return None;

  Optional<APInt> MaybeVal = GetImmediateValue(*MI);
  if (!MaybeVal)
    return None;
  APInt &Val = *MaybeVal;
  while (!SeenOpcodes.empty()) {
    std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
    switch (OpcodeAndSize.first) {
    case TargetOpcode::G_TRUNC:
      Val = Val.trunc(OpcodeAndSize.second);
      break;
    case TargetOpcode::G_SEXT:
      Val = Val.sext(OpcodeAndSize.second);
      break;
    case TargetOpcode::G_ZEXT:
      Val = Val.zext(OpcodeAndSize.second);
      break;
    }
  }

  if (Val.getBitWidth() > 64)
    return None;

  return ValueAndVReg{Val.getSExtValue(), VReg};
}

const llvm::ConstantFP* llvm::getConstantFPVRegVal(unsigned VReg,
                                       const MachineRegisterInfo &MRI) {
  MachineInstr *MI = MRI.getVRegDef(VReg);
  if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
    return nullptr;
  return MI->getOperand(1).getFPImm();
}

llvm::MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
                                               const MachineRegisterInfo &MRI) {
  auto *DefMI = MRI.getVRegDef(Reg);
  auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
  if (!DstTy.isValid())
    return nullptr;
  while (DefMI->getOpcode() == TargetOpcode::COPY) {
    Register SrcReg = DefMI->getOperand(1).getReg();
    auto SrcTy = MRI.getType(SrcReg);
    if (!SrcTy.isValid() || SrcTy != DstTy)
      break;
    DefMI = MRI.getVRegDef(SrcReg);
  }
  return DefMI;
}

llvm::MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
                                       const MachineRegisterInfo &MRI) {
  MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
  return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
}

APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
  if (Size == 32)
    return APFloat(float(Val));
  if (Size == 64)
    return APFloat(Val);
  if (Size != 16)
    llvm_unreachable("Unsupported FPConstant size");
  bool Ignored;
  APFloat APF(Val);
  APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
  return APF;
}

Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const unsigned Op1,
                                        const unsigned Op2,
                                        const MachineRegisterInfo &MRI) {
  auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
  auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI);
  if (MaybeOp1Cst && MaybeOp2Cst) {
    LLT Ty = MRI.getType(Op1);
    APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
    APInt C2(Ty.getSizeInBits(), *MaybeOp2Cst, true);
    switch (Opcode) {
    default:
      break;
    case TargetOpcode::G_ADD:
      return C1 + C2;
    case TargetOpcode::G_AND:
      return C1 & C2;
    case TargetOpcode::G_ASHR:
      return C1.ashr(C2);
    case TargetOpcode::G_LSHR:
      return C1.lshr(C2);
    case TargetOpcode::G_MUL:
      return C1 * C2;
    case TargetOpcode::G_OR:
      return C1 | C2;
    case TargetOpcode::G_SHL:
      return C1 << C2;
    case TargetOpcode::G_SUB:
      return C1 - C2;
    case TargetOpcode::G_XOR:
      return C1 ^ C2;
    case TargetOpcode::G_UDIV:
      if (!C2.getBoolValue())
        break;
      return C1.udiv(C2);
    case TargetOpcode::G_SDIV:
      if (!C2.getBoolValue())
        break;
      return C1.sdiv(C2);
    case TargetOpcode::G_UREM:
      if (!C2.getBoolValue())
        break;
      return C1.urem(C2);
    case TargetOpcode::G_SREM:
      if (!C2.getBoolValue())
        break;
      return C1.srem(C2);
    }
  }
  return None;
}

bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
                           bool SNaN) {
  const MachineInstr *DefMI = MRI.getVRegDef(Val);
  if (!DefMI)
    return false;

  if (DefMI->getFlag(MachineInstr::FmNoNans))
    return true;

  if (SNaN) {
    // FP operations quiet. For now, just handle the ones inserted during
    // legalization.
    switch (DefMI->getOpcode()) {
    case TargetOpcode::G_FPEXT:
    case TargetOpcode::G_FPTRUNC:
    case TargetOpcode::G_FCANONICALIZE:
      return true;
    default:
      return false;
    }
  }

  return false;
}

Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const unsigned Op1,
                                        uint64_t Imm,
                                        const MachineRegisterInfo &MRI) {
  auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
  if (MaybeOp1Cst) {
    LLT Ty = MRI.getType(Op1);
    APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
    switch (Opcode) {
    default:
      break;
    case TargetOpcode::G_SEXT_INREG:
      return C1.trunc(Imm).sext(C1.getBitWidth());
    }
  }
  return None;
}

void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
  AU.addPreserved<StackProtector>();
}

MVT llvm::getMVTForLLT(LLT Ty) {
  if (!Ty.isVector())
    return MVT::getIntegerVT(Ty.getSizeInBits());

  return MVT::getVectorVT(
      MVT::getIntegerVT(Ty.getElementType().getSizeInBits()),
      Ty.getNumElements());
}

LLT llvm::getLLTForMVT(MVT Ty) {
  if (!Ty.isVector())
    return LLT::scalar(Ty.getSizeInBits());

  return LLT::vector(Ty.getVectorNumElements(),
                     Ty.getVectorElementType().getSizeInBits());
}