reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
//===- llvm/CodeGen/GlobalISel/RegisterBankInfo.h ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file declares the API for the register bank info.
/// This API is responsible for handling the register banks.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_GLOBALISEL_REGISTERBANKINFO_H
#define LLVM_CODEGEN_GLOBALISEL_REGISTERBANKINFO_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <initializer_list>
#include <memory>

namespace llvm {

class MachineInstr;
class MachineRegisterInfo;
class raw_ostream;
class RegisterBank;
class TargetInstrInfo;
class TargetRegisterClass;
class TargetRegisterInfo;

/// Holds all the information related to register banks.
class RegisterBankInfo {
public:
  /// Helper struct that represents how a value is partially mapped
  /// into a register.
  /// The StartIdx and Length represent what region of the orginal
  /// value this partial mapping covers.
  /// This can be represented as a Mask of contiguous bit starting
  /// at StartIdx bit and spanning Length bits.
  /// StartIdx is the number of bits from the less significant bits.
  struct PartialMapping {
    /// Number of bits at which this partial mapping starts in the
    /// original value.  The bits are counted from less significant
    /// bits to most significant bits.
    unsigned StartIdx;

    /// Length of this mapping in bits. This is how many bits this
    /// partial mapping covers in the original value:
    /// from StartIdx to StartIdx + Length -1.
    unsigned Length;

    /// Register bank where the partial value lives.
    const RegisterBank *RegBank;

    PartialMapping() = default;

    /// Provide a shortcut for quickly building PartialMapping.
    PartialMapping(unsigned StartIdx, unsigned Length,
                   const RegisterBank &RegBank)
        : StartIdx(StartIdx), Length(Length), RegBank(&RegBank) {}

    /// \return the index of in the original value of the most
    /// significant bit that this partial mapping covers.
    unsigned getHighBitIdx() const { return StartIdx + Length - 1; }

    /// Print this partial mapping on dbgs() stream.
    void dump() const;

    /// Print this partial mapping on \p OS;
    void print(raw_ostream &OS) const;

    /// Check that the Mask is compatible with the RegBank.
    /// Indeed, if the RegBank cannot accomadate the "active bits" of the mask,
    /// there is no way this mapping is valid.
    ///
    /// \note This method does not check anything when assertions are disabled.
    ///
    /// \return True is the check was successful.
    bool verify() const;
  };

  /// Helper struct that represents how a value is mapped through
  /// different register banks.
  ///
  /// \note: So far we do not have any users of the complex mappings
  /// (mappings with more than one partial mapping), but when we do,
  /// we would have needed to duplicate partial mappings.
  /// The alternative could be to use an array of pointers of partial
  /// mapping (i.e., PartialMapping **BreakDown) and duplicate the
  /// pointers instead.
  ///
  /// E.g.,
  /// Let say we have a 32-bit add and a <2 x 32-bit> vadd. We
  /// can expand the
  /// <2 x 32-bit> add into 2 x 32-bit add.
  ///
  /// Currently the TableGen-like file would look like:
  /// \code
  /// PartialMapping[] = {
  /// /*32-bit add*/    {0, 32, GPR}, // Scalar entry repeated for first vec elt.
  /// /*2x32-bit add*/  {0, 32, GPR}, {32, 32, GPR},
  /// /*<2x32-bit> vadd {0, 64, VPR}
  /// }; // PartialMapping duplicated.
  ///
  /// ValueMapping[] {
  ///   /*plain 32-bit add*/ {&PartialMapping[0], 1},
  ///   /*expanded vadd on 2xadd*/ {&PartialMapping[1], 2},
  ///   /*plain <2x32-bit> vadd*/ {&PartialMapping[3], 1}
  /// };
  /// \endcode
  ///
  /// With the array of pointer, we would have:
  /// \code
  /// PartialMapping[] = {
  /// /*32-bit add lower */ {0, 32, GPR},
  /// /*32-bit add upper */ {32, 32, GPR},
  /// /*<2x32-bit> vadd {0, 64, VPR}
  /// }; // No more duplication.
  ///
  /// BreakDowns[] = {
  /// /*AddBreakDown*/ &PartialMapping[0],
  /// /*2xAddBreakDown*/ &PartialMapping[0], &PartialMapping[1],
  /// /*VAddBreakDown*/ &PartialMapping[2]
  /// }; // Addresses of PartialMapping duplicated (smaller).
  ///
  /// ValueMapping[] {
  ///   /*plain 32-bit add*/ {&BreakDowns[0], 1},
  ///   /*expanded vadd on 2xadd*/ {&BreakDowns[1], 2},
  ///   /*plain <2x32-bit> vadd*/ {&BreakDowns[3], 1}
  /// };
  /// \endcode
  ///
  /// Given that a PartialMapping is actually small, the code size
  /// impact is actually a degradation. Moreover the compile time will
  /// be hit by the additional indirection.
  /// If PartialMapping gets bigger we may reconsider.
  struct ValueMapping {
    /// How the value is broken down between the different register banks.
    const PartialMapping *BreakDown;

    /// Number of partial mapping to break down this value.
    unsigned NumBreakDowns;

    /// The default constructor creates an invalid (isValid() == false)
    /// instance.
    ValueMapping() : ValueMapping(nullptr, 0) {}

    /// Initialize a ValueMapping with the given parameter.
    /// \p BreakDown needs to have a life time at least as long
    /// as this instance.
    ValueMapping(const PartialMapping *BreakDown, unsigned NumBreakDowns)
        : BreakDown(BreakDown), NumBreakDowns(NumBreakDowns) {}

    /// Iterators through the PartialMappings.
    const PartialMapping *begin() const { return BreakDown; }
    const PartialMapping *end() const { return BreakDown + NumBreakDowns; }

    /// \return true if all partial mappings are the same size and register
    /// bank.
    bool partsAllUniform() const;

    /// Check if this ValueMapping is valid.
    bool isValid() const { return BreakDown && NumBreakDowns; }

    /// Verify that this mapping makes sense for a value of
    /// \p MeaningfulBitWidth.
    /// \note This method does not check anything when assertions are disabled.
    ///
    /// \return True is the check was successful.
    bool verify(unsigned MeaningfulBitWidth) const;

    /// Print this on dbgs() stream.
    void dump() const;

    /// Print this on \p OS;
    void print(raw_ostream &OS) const;
  };

  /// Helper class that represents how the value of an instruction may be
  /// mapped and what is the related cost of such mapping.
  class InstructionMapping {
    /// Identifier of the mapping.
    /// This is used to communicate between the target and the optimizers
    /// which mapping should be realized.
    unsigned ID = InvalidMappingID;

    /// Cost of this mapping.
    unsigned Cost = 0;

    /// Mapping of all the operands.
    const ValueMapping *OperandsMapping = nullptr;

    /// Number of operands.
    unsigned NumOperands = 0;

    const ValueMapping &getOperandMapping(unsigned i) {
      assert(i < getNumOperands() && "Out of bound operand");
      return OperandsMapping[i];
    }

  public:
    /// Constructor for the mapping of an instruction.
    /// \p NumOperands must be equal to number of all the operands of
    /// the related instruction.
    /// The rationale is that it is more efficient for the optimizers
    /// to be able to assume that the mapping of the ith operand is
    /// at the index i.
    InstructionMapping(unsigned ID, unsigned Cost,
                       const ValueMapping *OperandsMapping,
                       unsigned NumOperands)
        : ID(ID), Cost(Cost), OperandsMapping(OperandsMapping),
          NumOperands(NumOperands) {
    }

    /// Default constructor.
    /// Use this constructor to express that the mapping is invalid.
    InstructionMapping() = default;

    /// Get the cost.
    unsigned getCost() const { return Cost; }

    /// Get the ID.
    unsigned getID() const { return ID; }

    /// Get the number of operands.
    unsigned getNumOperands() const { return NumOperands; }

    /// Get the value mapping of the ith operand.
    /// \pre The mapping for the ith operand has been set.
    /// \pre The ith operand is a register.
    const ValueMapping &getOperandMapping(unsigned i) const {
      const ValueMapping &ValMapping =
          const_cast<InstructionMapping *>(this)->getOperandMapping(i);
      return ValMapping;
    }

    /// Set the mapping for all the operands.
    /// In other words, OpdsMapping should hold at least getNumOperands
    /// ValueMapping.
    void setOperandsMapping(const ValueMapping *OpdsMapping) {
      OperandsMapping = OpdsMapping;
    }

    /// Check whether this object is valid.
    /// This is a lightweight check for obvious wrong instance.
    bool isValid() const {
      return getID() != InvalidMappingID && OperandsMapping;
    }

    /// Verifiy that this mapping makes sense for \p MI.
    /// \pre \p MI must be connected to a MachineFunction.
    ///
    /// \note This method does not check anything when assertions are disabled.
    ///
    /// \return True is the check was successful.
    bool verify(const MachineInstr &MI) const;

    /// Print this on dbgs() stream.
    void dump() const;

    /// Print this on \p OS;
    void print(raw_ostream &OS) const;
  };

  /// Convenient type to represent the alternatives for mapping an
  /// instruction.
  /// \todo When we move to TableGen this should be an array ref.
  using InstructionMappings = SmallVector<const InstructionMapping *, 4>;

  /// Helper class used to get/create the virtual registers that will be used
  /// to replace the MachineOperand when applying a mapping.
  class OperandsMapper {
    /// The OpIdx-th cell contains the index in NewVRegs where the VRegs of the
    /// OpIdx-th operand starts. -1 means we do not have such mapping yet.
    /// Note: We use a SmallVector to avoid heap allocation for most cases.
    SmallVector<int, 8> OpToNewVRegIdx;

    /// Hold the registers that will be used to map MI with InstrMapping.
    SmallVector<Register, 8> NewVRegs;

    /// Current MachineRegisterInfo, used to create new virtual registers.
    MachineRegisterInfo &MRI;

    /// Instruction being remapped.
    MachineInstr &MI;

    /// New mapping of the instruction.
    const InstructionMapping &InstrMapping;

    /// Constant value identifying that the index in OpToNewVRegIdx
    /// for an operand has not been set yet.
    static const int DontKnowIdx;

    /// Get the range in NewVRegs to store all the partial
    /// values for the \p OpIdx-th operand.
    ///
    /// \return The iterator range for the space created.
    //
    /// \pre getMI().getOperand(OpIdx).isReg()
    iterator_range<SmallVectorImpl<Register>::iterator>
    getVRegsMem(unsigned OpIdx);

    /// Get the end iterator for a range starting at \p StartIdx and
    /// spannig \p NumVal in NewVRegs.
    /// \pre StartIdx + NumVal <= NewVRegs.size()
    SmallVectorImpl<Register>::const_iterator
    getNewVRegsEnd(unsigned StartIdx, unsigned NumVal) const;
    SmallVectorImpl<Register>::iterator getNewVRegsEnd(unsigned StartIdx,
                                                       unsigned NumVal);

  public:
    /// Create an OperandsMapper that will hold the information to apply \p
    /// InstrMapping to \p MI.
    /// \pre InstrMapping.verify(MI)
    OperandsMapper(MachineInstr &MI, const InstructionMapping &InstrMapping,
                   MachineRegisterInfo &MRI);

    /// \name Getters.
    /// @{
    /// The MachineInstr being remapped.
    MachineInstr &getMI() const { return MI; }

    /// The final mapping of the instruction.
    const InstructionMapping &getInstrMapping() const { return InstrMapping; }

    /// The MachineRegisterInfo we used to realize the mapping.
    MachineRegisterInfo &getMRI() const { return MRI; }
    /// @}

    /// Create as many new virtual registers as needed for the mapping of the \p
    /// OpIdx-th operand.
    /// The number of registers is determined by the number of breakdown for the
    /// related operand in the instruction mapping.
    /// The type of the new registers is a plain scalar of the right size.
    /// The proper type is expected to be set when the mapping is applied to
    /// the instruction(s) that realizes the mapping.
    ///
    /// \pre getMI().getOperand(OpIdx).isReg()
    ///
    /// \post All the partial mapping of the \p OpIdx-th operand have been
    /// assigned a new virtual register.
    void createVRegs(unsigned OpIdx);

    /// Set the virtual register of the \p PartialMapIdx-th partial mapping of
    /// the OpIdx-th operand to \p NewVReg.
    ///
    /// \pre getMI().getOperand(OpIdx).isReg()
    /// \pre getInstrMapping().getOperandMapping(OpIdx).BreakDown.size() >
    /// PartialMapIdx
    /// \pre NewReg != 0
    ///
    /// \post the \p PartialMapIdx-th register of the value mapping of the \p
    /// OpIdx-th operand has been set.
    void setVRegs(unsigned OpIdx, unsigned PartialMapIdx, Register NewVReg);

    /// Get all the virtual registers required to map the \p OpIdx-th operand of
    /// the instruction.
    ///
    /// This return an empty range when createVRegs or setVRegs has not been
    /// called.
    /// The iterator may be invalidated by a call to setVRegs or createVRegs.
    ///
    /// When \p ForDebug is true, we will not check that the list of new virtual
    /// registers does not contain uninitialized values.
    ///
    /// \pre getMI().getOperand(OpIdx).isReg()
    /// \pre ForDebug || All partial mappings have been set a register
    iterator_range<SmallVectorImpl<Register>::const_iterator>
    getVRegs(unsigned OpIdx, bool ForDebug = false) const;

    /// Print this operands mapper on dbgs() stream.
    void dump() const;

    /// Print this operands mapper on \p OS stream.
    void print(raw_ostream &OS, bool ForDebug = false) const;
  };

protected:
  /// Hold the set of supported register banks.
  RegisterBank **RegBanks;

  /// Total number of register banks.
  unsigned NumRegBanks;

  /// Keep dynamically allocated PartialMapping in a separate map.
  /// This shouldn't be needed when everything gets TableGen'ed.
  mutable DenseMap<unsigned, std::unique_ptr<const PartialMapping>>
      MapOfPartialMappings;

  /// Keep dynamically allocated ValueMapping in a separate map.
  /// This shouldn't be needed when everything gets TableGen'ed.
  mutable DenseMap<unsigned, std::unique_ptr<const ValueMapping>>
      MapOfValueMappings;

  /// Keep dynamically allocated array of ValueMapping in a separate map.
  /// This shouldn't be needed when everything gets TableGen'ed.
  mutable DenseMap<unsigned, std::unique_ptr<ValueMapping[]>>
      MapOfOperandsMappings;

  /// Keep dynamically allocated InstructionMapping in a separate map.
  /// This shouldn't be needed when everything gets TableGen'ed.
  mutable DenseMap<unsigned, std::unique_ptr<const InstructionMapping>>
      MapOfInstructionMappings;

  /// Getting the minimal register class of a physreg is expensive.
  /// Cache this information as we get it.
  mutable DenseMap<unsigned, const TargetRegisterClass *> PhysRegMinimalRCs;

  /// Create a RegisterBankInfo that can accommodate up to \p NumRegBanks
  /// RegisterBank instances.
  RegisterBankInfo(RegisterBank **RegBanks, unsigned NumRegBanks);

  /// This constructor is meaningless.
  /// It just provides a default constructor that can be used at link time
  /// when GlobalISel is not built.
  /// That way, targets can still inherit from this class without doing
  /// crazy gymnastic to avoid link time failures.
  /// \note That works because the constructor is inlined.
  RegisterBankInfo() {
    llvm_unreachable("This constructor should not be executed");
  }

  /// Get the register bank identified by \p ID.
  RegisterBank &getRegBank(unsigned ID) {
    assert(ID < getNumRegBanks() && "Accessing an unknown register bank");
    return *RegBanks[ID];
  }

  /// Get the MinimalPhysRegClass for Reg.
  /// \pre Reg is a physical register.
  const TargetRegisterClass &
  getMinimalPhysRegClass(Register Reg, const TargetRegisterInfo &TRI) const;

  /// Try to get the mapping of \p MI.
  /// See getInstrMapping for more details on what a mapping represents.
  ///
  /// Unlike getInstrMapping the returned InstructionMapping may be invalid
  /// (isValid() == false).
  /// This means that the target independent code is not smart enough
  /// to get the mapping of \p MI and thus, the target has to provide the
  /// information for \p MI.
  ///
  /// This implementation is able to get the mapping of:
  /// - Target specific instructions by looking at the encoding constraints.
  /// - Any instruction if all the register operands have already been assigned
  ///   a register, a register class, or a register bank.
  /// - Copies and phis if at least one of the operands has been assigned a
  ///   register, a register class, or a register bank.
  /// In other words, this method will likely fail to find a mapping for
  /// any generic opcode that has not been lowered by target specific code.
  const InstructionMapping &getInstrMappingImpl(const MachineInstr &MI) const;

  /// Get the uniquely generated PartialMapping for the
  /// given arguments.
  const PartialMapping &getPartialMapping(unsigned StartIdx, unsigned Length,
                                          const RegisterBank &RegBank) const;

  /// \name Methods to get a uniquely generated ValueMapping.
  /// @{

  /// The most common ValueMapping consists of a single PartialMapping.
  /// Feature a method for that.
  const ValueMapping &getValueMapping(unsigned StartIdx, unsigned Length,
                                      const RegisterBank &RegBank) const;

  /// Get the ValueMapping for the given arguments.
  const ValueMapping &getValueMapping(const PartialMapping *BreakDown,
                                      unsigned NumBreakDowns) const;
  /// @}

  /// \name Methods to get a uniquely generated array of ValueMapping.
  /// @{

  /// Get the uniquely generated array of ValueMapping for the
  /// elements of between \p Begin and \p End.
  ///
  /// Elements that are nullptr will be replaced by
  /// invalid ValueMapping (ValueMapping::isValid == false).
  ///
  /// \pre The pointers on ValueMapping between \p Begin and \p End
  /// must uniquely identify a ValueMapping. Otherwise, there is no
  /// guarantee that the return instance will be unique, i.e., another
  /// OperandsMapping could have the same content.
  template <typename Iterator>
  const ValueMapping *getOperandsMapping(Iterator Begin, Iterator End) const;

  /// Get the uniquely generated array of ValueMapping for the
  /// elements of \p OpdsMapping.
  ///
  /// Elements of \p OpdsMapping that are nullptr will be replaced by
  /// invalid ValueMapping (ValueMapping::isValid == false).
  const ValueMapping *getOperandsMapping(
      const SmallVectorImpl<const ValueMapping *> &OpdsMapping) const;

  /// Get the uniquely generated array of ValueMapping for the
  /// given arguments.
  ///
  /// Arguments that are nullptr will be replaced by invalid
  /// ValueMapping (ValueMapping::isValid == false).
  const ValueMapping *getOperandsMapping(
      std::initializer_list<const ValueMapping *> OpdsMapping) const;
  /// @}

  /// \name Methods to get a uniquely generated InstructionMapping.
  /// @{

private:
  /// Method to get a uniquely generated InstructionMapping.
  const InstructionMapping &
  getInstructionMappingImpl(bool IsInvalid, unsigned ID = InvalidMappingID,
                            unsigned Cost = 0,
                            const ValueMapping *OperandsMapping = nullptr,
                            unsigned NumOperands = 0) const;

public:
  /// Method to get a uniquely generated InstructionMapping.
  const InstructionMapping &
  getInstructionMapping(unsigned ID, unsigned Cost,
                        const ValueMapping *OperandsMapping,
                        unsigned NumOperands) const {
    return getInstructionMappingImpl(/*IsInvalid*/ false, ID, Cost,
                                     OperandsMapping, NumOperands);
  }

  /// Method to get a uniquely generated invalid InstructionMapping.
  const InstructionMapping &getInvalidInstructionMapping() const {
    return getInstructionMappingImpl(/*IsInvalid*/ true);
  }
  /// @}

  /// Get the register bank for the \p OpIdx-th operand of \p MI form
  /// the encoding constraints, if any.
  ///
  /// \return A register bank that covers the register class of the
  /// related encoding constraints or nullptr if \p MI did not provide
  /// enough information to deduce it.
  const RegisterBank *
  getRegBankFromConstraints(const MachineInstr &MI, unsigned OpIdx,
                            const TargetInstrInfo &TII,
                            const TargetRegisterInfo &TRI) const;

  /// Helper method to apply something that is like the default mapping.
  /// Basically, that means that \p OpdMapper.getMI() is left untouched
  /// aside from the reassignment of the register operand that have been
  /// remapped.
  ///
  /// The type of all the new registers that have been created by the
  /// mapper are properly remapped to the type of the original registers
  /// they replace. In other words, the semantic of the instruction does
  /// not change, only the register banks.
  ///
  /// If the mapping of one of the operand spans several registers, this
  /// method will abort as this is not like a default mapping anymore.
  ///
  /// \pre For OpIdx in {0..\p OpdMapper.getMI().getNumOperands())
  ///        the range OpdMapper.getVRegs(OpIdx) is empty or of size 1.
  static void applyDefaultMapping(const OperandsMapper &OpdMapper);

  /// See ::applyMapping.
  virtual void applyMappingImpl(const OperandsMapper &OpdMapper) const {
    llvm_unreachable("The target has to implement that part");
  }

public:
  virtual ~RegisterBankInfo() = default;

  /// Get the register bank identified by \p ID.
  const RegisterBank &getRegBank(unsigned ID) const {
    return const_cast<RegisterBankInfo *>(this)->getRegBank(ID);
  }

  /// Get the register bank of \p Reg.
  /// If Reg has not been assigned a register, a register class,
  /// or a register bank, then this returns nullptr.
  ///
  /// \pre Reg != 0 (NoRegister)
  const RegisterBank *getRegBank(Register Reg, const MachineRegisterInfo &MRI,
                                 const TargetRegisterInfo &TRI) const;

  /// Get the total number of register banks.
  unsigned getNumRegBanks() const { return NumRegBanks; }

  /// Get a register bank that covers \p RC.
  ///
  /// \pre \p RC is a user-defined register class (as opposed as one
  /// generated by TableGen).
  ///
  /// \note The mapping RC -> RegBank could be built while adding the
  /// coverage for the register banks. However, we do not do it, because,
  /// at least for now, we only need this information for register classes
  /// that are used in the description of instruction. In other words,
  /// there are just a handful of them and we do not want to waste space.
  ///
  /// \todo This should be TableGen'ed.
  virtual const RegisterBank &
  getRegBankFromRegClass(const TargetRegisterClass &RC) const {
    llvm_unreachable("The target must override this method");
  }

  /// Get the cost of a copy from \p B to \p A, or put differently,
  /// get the cost of A = COPY B. Since register banks may cover
  /// different size, \p Size specifies what will be the size in bits
  /// that will be copied around.
  ///
  /// \note Since this is a copy, both registers have the same size.
  virtual unsigned copyCost(const RegisterBank &A, const RegisterBank &B,
                            unsigned Size) const {
    // Optimistically assume that copies are coalesced. I.e., when
    // they are on the same bank, they are free.
    // Otherwise assume a non-zero cost of 1. The targets are supposed
    // to override that properly anyway if they care.
    return &A != &B;
  }

  /// \returns true if emitting a copy from \p Src to \p Dst is impossible.
  bool cannotCopy(const RegisterBank &Dst, const RegisterBank &Src,
                  unsigned Size) const {
    return copyCost(Dst, Src, Size) == std::numeric_limits<unsigned>::max();
  }

  /// Get the cost of using \p ValMapping to decompose a register. This is
  /// similar to ::copyCost, except for cases where multiple copy-like
  /// operations need to be inserted. If the register is used as a source
  /// operand and already has a bank assigned, \p CurBank is non-null.
  virtual unsigned getBreakDownCost(const ValueMapping &ValMapping,
                                    const RegisterBank *CurBank = nullptr) const {
    return std::numeric_limits<unsigned>::max();
  }

  /// Constrain the (possibly generic) virtual register \p Reg to \p RC.
  ///
  /// \pre \p Reg is a virtual register that either has a bank or a class.
  /// \returns The constrained register class, or nullptr if there is none.
  /// \note This is a generic variant of MachineRegisterInfo::constrainRegClass
  /// \note Use MachineRegisterInfo::constrainRegAttrs instead for any non-isel
  /// purpose, including non-select passes of GlobalISel
  static const TargetRegisterClass *
  constrainGenericRegister(Register Reg, const TargetRegisterClass &RC,
                           MachineRegisterInfo &MRI);

  /// Identifier used when the related instruction mapping instance
  /// is generated by target independent code.
  /// Make sure not to use that identifier to avoid possible collision.
  static const unsigned DefaultMappingID;

  /// Identifier used when the related instruction mapping instance
  /// is generated by the default constructor.
  /// Make sure not to use that identifier.
  static const unsigned InvalidMappingID;

  /// Get the mapping of the different operands of \p MI
  /// on the register bank.
  /// This mapping should be the direct translation of \p MI.
  /// In other words, when \p MI is mapped with the returned mapping,
  /// only the register banks of the operands of \p MI need to be updated.
  /// In particular, neither the opcode nor the type of \p MI needs to be
  /// updated for this direct mapping.
  ///
  /// The target independent implementation gives a mapping based on
  /// the register classes for the target specific opcode.
  /// It uses the ID RegisterBankInfo::DefaultMappingID for that mapping.
  /// Make sure you do not use that ID for the alternative mapping
  /// for MI. See getInstrAlternativeMappings for the alternative
  /// mappings.
  ///
  /// For instance, if \p MI is a vector add, the mapping should
  /// not be a scalarization of the add.
  ///
  /// \post returnedVal.verify(MI).
  ///
  /// \note If returnedVal does not verify MI, this would probably mean
  /// that the target does not support that instruction.
  virtual const InstructionMapping &
  getInstrMapping(const MachineInstr &MI) const;

  /// Get the alternative mappings for \p MI.
  /// Alternative in the sense different from getInstrMapping.
  virtual InstructionMappings
  getInstrAlternativeMappings(const MachineInstr &MI) const;

  /// Get the possible mapping for \p MI.
  /// A mapping defines where the different operands may live and at what cost.
  /// For instance, let us consider:
  /// v0(16) = G_ADD <2 x i8> v1, v2
  /// The possible mapping could be:
  ///
  /// {/*ID*/VectorAdd, /*Cost*/1, /*v0*/{(0xFFFF, VPR)}, /*v1*/{(0xFFFF, VPR)},
  ///                              /*v2*/{(0xFFFF, VPR)}}
  /// {/*ID*/ScalarAddx2, /*Cost*/2, /*v0*/{(0x00FF, GPR),(0xFF00, GPR)},
  ///                                /*v1*/{(0x00FF, GPR),(0xFF00, GPR)},
  ///                                /*v2*/{(0x00FF, GPR),(0xFF00, GPR)}}
  ///
  /// \note The first alternative of the returned mapping should be the
  /// direct translation of \p MI current form.
  ///
  /// \post !returnedVal.empty().
  InstructionMappings getInstrPossibleMappings(const MachineInstr &MI) const;

  /// Apply \p OpdMapper.getInstrMapping() to \p OpdMapper.getMI().
  /// After this call \p OpdMapper.getMI() may not be valid anymore.
  /// \p OpdMapper.getInstrMapping().getID() carries the information of
  /// what has been chosen to map \p OpdMapper.getMI(). This ID is set
  /// by the various getInstrXXXMapping method.
  ///
  /// Therefore, getting the mapping and applying it should be kept in
  /// sync.
  void applyMapping(const OperandsMapper &OpdMapper) const {
    // The only mapping we know how to handle is the default mapping.
    if (OpdMapper.getInstrMapping().getID() == DefaultMappingID)
      return applyDefaultMapping(OpdMapper);
    // For other mapping, the target needs to do the right thing.
    // If that means calling applyDefaultMapping, fine, but this
    // must be explicitly stated.
    applyMappingImpl(OpdMapper);
  }

  /// Get the size in bits of \p Reg.
  /// Utility method to get the size of any registers. Unlike
  /// MachineRegisterInfo::getSize, the register does not need to be a
  /// virtual register.
  ///
  /// \pre \p Reg != 0 (NoRegister).
  unsigned getSizeInBits(Register Reg, const MachineRegisterInfo &MRI,
                         const TargetRegisterInfo &TRI) const;

  /// Check that information hold by this instance make sense for the
  /// given \p TRI.
  ///
  /// \note This method does not check anything when assertions are disabled.
  ///
  /// \return True is the check was successful.
  bool verify(const TargetRegisterInfo &TRI) const;
};

inline raw_ostream &
operator<<(raw_ostream &OS,
           const RegisterBankInfo::PartialMapping &PartMapping) {
  PartMapping.print(OS);
  return OS;
}

inline raw_ostream &
operator<<(raw_ostream &OS, const RegisterBankInfo::ValueMapping &ValMapping) {
  ValMapping.print(OS);
  return OS;
}

inline raw_ostream &
operator<<(raw_ostream &OS,
           const RegisterBankInfo::InstructionMapping &InstrMapping) {
  InstrMapping.print(OS);
  return OS;
}

inline raw_ostream &
operator<<(raw_ostream &OS, const RegisterBankInfo::OperandsMapper &OpdMapper) {
  OpdMapper.print(OS, /*ForDebug*/ false);
  return OS;
}

/// Hashing function for PartialMapping.
/// It is required for the hashing of ValueMapping.
hash_code hash_value(const RegisterBankInfo::PartialMapping &PartMapping);

} // end namespace llvm

#endif // LLVM_CODEGEN_GLOBALISEL_REGISTERBANKINFO_H