reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
//===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops that contain branches on loop-invariant conditions
// to multiple loops.  For example, it turns the left into the right code:
//
//  for (...)                  if (lic)
//    A                          for (...)
//    if (lic)                     A; B; C
//      B                      else
//    C                          for (...)
//                                 A; C
//
// This can increase the size of the code exponentially (doubling it every time
// a loop is unswitched) so we only unswitch if the resultant code will be
// smaller than a threshold.
//
// This pass expects LICM to be run before it to hoist invariant conditions out
// of the loop, to make the unswitching opportunity obvious.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <map>
#include <set>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "loop-unswitch"

STATISTIC(NumBranches, "Number of branches unswitched");
STATISTIC(NumSwitches, "Number of switches unswitched");
STATISTIC(NumGuards,   "Number of guards unswitched");
STATISTIC(NumSelects , "Number of selects unswitched");
STATISTIC(NumTrivial , "Number of unswitches that are trivial");
STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
STATISTIC(TotalInsts,  "Total number of instructions analyzed");

// The specific value of 100 here was chosen based only on intuition and a
// few specific examples.
static cl::opt<unsigned>
Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
          cl::init(100), cl::Hidden);

namespace {

  class LUAnalysisCache {
    using UnswitchedValsMap =
        DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
    using UnswitchedValsIt = UnswitchedValsMap::iterator;

    struct LoopProperties {
      unsigned CanBeUnswitchedCount;
      unsigned WasUnswitchedCount;
      unsigned SizeEstimation;
      UnswitchedValsMap UnswitchedVals;
    };

    // Here we use std::map instead of DenseMap, since we need to keep valid
    // LoopProperties pointer for current loop for better performance.
    using LoopPropsMap = std::map<const Loop *, LoopProperties>;
    using LoopPropsMapIt = LoopPropsMap::iterator;

    LoopPropsMap LoopsProperties;
    UnswitchedValsMap *CurLoopInstructions = nullptr;
    LoopProperties *CurrentLoopProperties = nullptr;

    // A loop unswitching with an estimated cost above this threshold
    // is not performed. MaxSize is turned into unswitching quota for
    // the current loop, and reduced correspondingly, though note that
    // the quota is returned by releaseMemory() when the loop has been
    // processed, so that MaxSize will return to its previous
    // value. So in most cases MaxSize will equal the Threshold flag
    // when a new loop is processed. An exception to that is that
    // MaxSize will have a smaller value while processing nested loops
    // that were introduced due to loop unswitching of an outer loop.
    //
    // FIXME: The way that MaxSize works is subtle and depends on the
    // pass manager processing loops and calling releaseMemory() in a
    // specific order. It would be good to find a more straightforward
    // way of doing what MaxSize does.
    unsigned MaxSize;

  public:
    LUAnalysisCache() : MaxSize(Threshold) {}

    // Analyze loop. Check its size, calculate is it possible to unswitch
    // it. Returns true if we can unswitch this loop.
    bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
                   AssumptionCache *AC);

    // Clean all data related to given loop.
    void forgetLoop(const Loop *L);

    // Mark case value as unswitched.
    // Since SI instruction can be partly unswitched, in order to avoid
    // extra unswitching in cloned loops keep track all unswitched values.
    void setUnswitched(const SwitchInst *SI, const Value *V);

    // Check was this case value unswitched before or not.
    bool isUnswitched(const SwitchInst *SI, const Value *V);

    // Returns true if another unswitching could be done within the cost
    // threshold.
    bool CostAllowsUnswitching();

    // Clone all loop-unswitch related loop properties.
    // Redistribute unswitching quotas.
    // Note, that new loop data is stored inside the VMap.
    void cloneData(const Loop *NewLoop, const Loop *OldLoop,
                   const ValueToValueMapTy &VMap);
  };

  class LoopUnswitch : public LoopPass {
    LoopInfo *LI;  // Loop information
    LPPassManager *LPM;
    AssumptionCache *AC;

    // Used to check if second loop needs processing after
    // RewriteLoopBodyWithConditionConstant rewrites first loop.
    std::vector<Loop*> LoopProcessWorklist;

    LUAnalysisCache BranchesInfo;

    bool OptimizeForSize;
    bool redoLoop = false;

    Loop *currentLoop = nullptr;
    DominatorTree *DT = nullptr;
    MemorySSA *MSSA = nullptr;
    std::unique_ptr<MemorySSAUpdater> MSSAU;
    BasicBlock *loopHeader = nullptr;
    BasicBlock *loopPreheader = nullptr;

    bool SanitizeMemory;
    SimpleLoopSafetyInfo SafetyInfo;

    // LoopBlocks contains all of the basic blocks of the loop, including the
    // preheader of the loop, the body of the loop, and the exit blocks of the
    // loop, in that order.
    std::vector<BasicBlock*> LoopBlocks;
    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
    std::vector<BasicBlock*> NewBlocks;

    bool hasBranchDivergence;

  public:
    static char ID; // Pass ID, replacement for typeid

    explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
        : LoopPass(ID), OptimizeForSize(Os),
          hasBranchDivergence(hasBranchDivergence) {
        initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
    bool processCurrentLoop();
    bool isUnreachableDueToPreviousUnswitching(BasicBlock *);

    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG.
    ///
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<AssumptionCacheTracker>();
      AU.addRequired<TargetTransformInfoWrapperPass>();
      if (EnableMSSALoopDependency) {
        AU.addRequired<MemorySSAWrapperPass>();
        AU.addPreserved<MemorySSAWrapperPass>();
      }
      if (hasBranchDivergence)
        AU.addRequired<LegacyDivergenceAnalysis>();
      getLoopAnalysisUsage(AU);
    }

  private:
    void releaseMemory() override {
      BranchesInfo.forgetLoop(currentLoop);
    }

    void initLoopData() {
      loopHeader = currentLoop->getHeader();
      loopPreheader = currentLoop->getLoopPreheader();
    }

    /// Split all of the edges from inside the loop to their exit blocks.
    /// Update the appropriate Phi nodes as we do so.
    void SplitExitEdges(Loop *L,
                        const SmallVectorImpl<BasicBlock *> &ExitBlocks);

    bool TryTrivialLoopUnswitch(bool &Changed);

    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
                              Instruction *TI = nullptr);
    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
                                  BasicBlock *ExitBlock, Instruction *TI);
    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
                                     Instruction *TI);

    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
                                              Constant *Val, bool isEqual);

    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
                                        BasicBlock *TrueDest,
                                        BasicBlock *FalseDest,
                                        BranchInst *OldBranch, Instruction *TI);

    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);

    /// Given that the Invariant is not equal to Val. Simplify instructions
    /// in the loop.
    Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
                                           Constant *Val);
  };

} // end anonymous namespace

// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
                                AssumptionCache *AC) {
  LoopPropsMapIt PropsIt;
  bool Inserted;
  std::tie(PropsIt, Inserted) =
      LoopsProperties.insert(std::make_pair(L, LoopProperties()));

  LoopProperties &Props = PropsIt->second;

  if (Inserted) {
    // New loop.

    // Limit the number of instructions to avoid causing significant code
    // expansion, and the number of basic blocks, to avoid loops with
    // large numbers of branches which cause loop unswitching to go crazy.
    // This is a very ad-hoc heuristic.

    SmallPtrSet<const Value *, 32> EphValues;
    CodeMetrics::collectEphemeralValues(L, AC, EphValues);

    // FIXME: This is overly conservative because it does not take into
    // consideration code simplification opportunities and code that can
    // be shared by the resultant unswitched loops.
    CodeMetrics Metrics;
    for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
         ++I)
      Metrics.analyzeBasicBlock(*I, TTI, EphValues);

    Props.SizeEstimation = Metrics.NumInsts;
    Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
    Props.WasUnswitchedCount = 0;
    MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;

    if (Metrics.notDuplicatable) {
      LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
                        << ", contents cannot be "
                        << "duplicated!\n");
      return false;
    }
  }

  // Be careful. This links are good only before new loop addition.
  CurrentLoopProperties = &Props;
  CurLoopInstructions = &Props.UnswitchedVals;

  return true;
}

// Clean all data related to given loop.
void LUAnalysisCache::forgetLoop(const Loop *L) {
  LoopPropsMapIt LIt = LoopsProperties.find(L);

  if (LIt != LoopsProperties.end()) {
    LoopProperties &Props = LIt->second;
    MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
               Props.SizeEstimation;
    LoopsProperties.erase(LIt);
  }

  CurrentLoopProperties = nullptr;
  CurLoopInstructions = nullptr;
}

// Mark case value as unswitched.
// Since SI instruction can be partly unswitched, in order to avoid
// extra unswitching in cloned loops keep track all unswitched values.
void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
  (*CurLoopInstructions)[SI].insert(V);
}

// Check was this case value unswitched before or not.
bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
  return (*CurLoopInstructions)[SI].count(V);
}

bool LUAnalysisCache::CostAllowsUnswitching() {
  return CurrentLoopProperties->CanBeUnswitchedCount > 0;
}

// Clone all loop-unswitch related loop properties.
// Redistribute unswitching quotas.
// Note, that new loop data is stored inside the VMap.
void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
                                const ValueToValueMapTy &VMap) {
  LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
  LoopProperties &OldLoopProps = *CurrentLoopProperties;
  UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;

  // Reallocate "can-be-unswitched quota"

  --OldLoopProps.CanBeUnswitchedCount;
  ++OldLoopProps.WasUnswitchedCount;
  NewLoopProps.WasUnswitchedCount = 0;
  unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
  NewLoopProps.CanBeUnswitchedCount = Quota / 2;
  OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;

  NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;

  // Clone unswitched values info:
  // for new loop switches we clone info about values that was
  // already unswitched and has redundant successors.
  for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
    const SwitchInst *OldInst = I->first;
    Value *NewI = VMap.lookup(OldInst);
    const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
    assert(NewInst && "All instructions that are in SrcBB must be in VMap.");

    NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
  }
}

char LoopUnswitch::ID = 0;

INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
                      false, false)

Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
  return new LoopUnswitch(Os, hasBranchDivergence);
}

/// Operator chain lattice.
enum OperatorChain {
  OC_OpChainNone,    ///< There is no operator.
  OC_OpChainOr,      ///< There are only ORs.
  OC_OpChainAnd,     ///< There are only ANDs.
  OC_OpChainMixed    ///< There are ANDs and ORs.
};

/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
/// an invariant piece, return the invariant. Otherwise, return null.
//
/// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
/// mixed operator chain, as we can not reliably find a value which will simplify
/// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
/// to simplify the chain.
///
/// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
/// simplify the condition itself to a loop variant condition, but at the
/// cost of creating an entirely new loop.
static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
                                   OperatorChain &ParentChain,
                                   DenseMap<Value *, Value *> &Cache,
                                   MemorySSAUpdater *MSSAU) {
  auto CacheIt = Cache.find(Cond);
  if (CacheIt != Cache.end())
    return CacheIt->second;

  // We started analyze new instruction, increment scanned instructions counter.
  ++TotalInsts;

  // We can never unswitch on vector conditions.
  if (Cond->getType()->isVectorTy())
    return nullptr;

  // Constants should be folded, not unswitched on!
  if (isa<Constant>(Cond)) return nullptr;

  // TODO: Handle: br (VARIANT|INVARIANT).

  // Hoist simple values out.
  if (L->makeLoopInvariant(Cond, Changed, nullptr, MSSAU)) {
    Cache[Cond] = Cond;
    return Cond;
  }

  // Walk up the operator chain to find partial invariant conditions.
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
    if (BO->getOpcode() == Instruction::And ||
        BO->getOpcode() == Instruction::Or) {
      // Given the previous operator, compute the current operator chain status.
      OperatorChain NewChain;
      switch (ParentChain) {
      case OC_OpChainNone:
        NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
                                      OC_OpChainOr;
        break;
      case OC_OpChainOr:
        NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
                                      OC_OpChainMixed;
        break;
      case OC_OpChainAnd:
        NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
                                      OC_OpChainMixed;
        break;
      case OC_OpChainMixed:
        NewChain = OC_OpChainMixed;
        break;
      }

      // If we reach a Mixed state, we do not want to keep walking up as we can not
      // reliably find a value that will simplify the chain. With this check, we
      // will return null on the first sight of mixed chain and the caller will
      // either backtrack to find partial LIV in other operand or return null.
      if (NewChain != OC_OpChainMixed) {
        // Update the current operator chain type before we search up the chain.
        ParentChain = NewChain;
        // If either the left or right side is invariant, we can unswitch on this,
        // which will cause the branch to go away in one loop and the condition to
        // simplify in the other one.
        if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
                                              ParentChain, Cache, MSSAU)) {
          Cache[Cond] = LHS;
          return LHS;
        }
        // We did not manage to find a partial LIV in operand(0). Backtrack and try
        // operand(1).
        ParentChain = NewChain;
        if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
                                              ParentChain, Cache, MSSAU)) {
          Cache[Cond] = RHS;
          return RHS;
        }
      }
    }

  Cache[Cond] = nullptr;
  return nullptr;
}

/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
/// an invariant piece, return the invariant along with the operator chain type.
/// Otherwise, return null.
static std::pair<Value *, OperatorChain>
FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
                     MemorySSAUpdater *MSSAU) {
  DenseMap<Value *, Value *> Cache;
  OperatorChain OpChain = OC_OpChainNone;
  Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache, MSSAU);

  // In case we do find a LIV, it can not be obtained by walking up a mixed
  // operator chain.
  assert((!FCond || OpChain != OC_OpChainMixed) &&
        "Do not expect a partial LIV with mixed operator chain");
  return {FCond, OpChain};
}

bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
  if (skipLoop(L))
    return false;

  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
      *L->getHeader()->getParent());
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  LPM = &LPM_Ref;
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  if (EnableMSSALoopDependency) {
    MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
    assert(DT && "Cannot update MemorySSA without a valid DomTree.");
  }
  currentLoop = L;
  Function *F = currentLoop->getHeader()->getParent();

  SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
  if (SanitizeMemory)
    SafetyInfo.computeLoopSafetyInfo(L);

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  bool Changed = false;
  do {
    assert(currentLoop->isLCSSAForm(*DT));
    if (MSSA && VerifyMemorySSA)
      MSSA->verifyMemorySSA();
    redoLoop = false;
    Changed |= processCurrentLoop();
  } while(redoLoop);

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  return Changed;
}

// Return true if the BasicBlock BB is unreachable from the loop header.
// Return false, otherwise.
bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
  auto *Node = DT->getNode(BB)->getIDom();
  BasicBlock *DomBB = Node->getBlock();
  while (currentLoop->contains(DomBB)) {
    BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());

    Node = DT->getNode(DomBB)->getIDom();
    DomBB = Node->getBlock();

    if (!BInst || !BInst->isConditional())
      continue;

    Value *Cond = BInst->getCondition();
    if (!isa<ConstantInt>(Cond))
      continue;

    BasicBlock *UnreachableSucc =
        Cond == ConstantInt::getTrue(Cond->getContext())
            ? BInst->getSuccessor(1)
            : BInst->getSuccessor(0);

    if (DT->dominates(UnreachableSucc, BB))
      return true;
  }
  return false;
}

/// FIXME: Remove this workaround when freeze related patches are done.
/// LoopUnswitch and Equality propagation in GVN have discrepancy about
/// whether branch on undef/poison has undefine behavior. Here it is to
/// rule out some common cases that we found such discrepancy already
/// causing problems. Detail could be found in PR31652. Note if the
/// func returns true, it is unsafe. But if it is false, it doesn't mean
/// it is necessarily safe.
static bool EqualityPropUnSafe(Value &LoopCond) {
  ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
  if (!CI || !CI->isEquality())
    return false;

  Value *LHS = CI->getOperand(0);
  Value *RHS = CI->getOperand(1);
  if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
    return true;

  auto hasUndefInPHI = [](PHINode &PN) {
    for (Value *Opd : PN.incoming_values()) {
      if (isa<UndefValue>(Opd))
        return true;
    }
    return false;
  };
  PHINode *LPHI = dyn_cast<PHINode>(LHS);
  PHINode *RPHI = dyn_cast<PHINode>(RHS);
  if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
    return true;

  auto hasUndefInSelect = [](SelectInst &SI) {
    if (isa<UndefValue>(SI.getTrueValue()) ||
        isa<UndefValue>(SI.getFalseValue()))
      return true;
    return false;
  };
  SelectInst *LSI = dyn_cast<SelectInst>(LHS);
  SelectInst *RSI = dyn_cast<SelectInst>(RHS);
  if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
    return true;
  return false;
}

/// Do actual work and unswitch loop if possible and profitable.
bool LoopUnswitch::processCurrentLoop() {
  bool Changed = false;

  initLoopData();

  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
  if (!loopPreheader)
    return false;

  // Loops with indirectbr cannot be cloned.
  if (!currentLoop->isSafeToClone())
    return false;

  // Without dedicated exits, splitting the exit edge may fail.
  if (!currentLoop->hasDedicatedExits())
    return false;

  LLVMContext &Context = loopHeader->getContext();

  // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
  if (!BranchesInfo.countLoop(
          currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
                           *currentLoop->getHeader()->getParent()),
          AC))
    return false;

  // Try trivial unswitch first before loop over other basic blocks in the loop.
  if (TryTrivialLoopUnswitch(Changed)) {
    return true;
  }

  // Do not do non-trivial unswitch while optimizing for size.
  // FIXME: Use Function::hasOptSize().
  if (OptimizeForSize ||
      loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
    return false;

  // Run through the instructions in the loop, keeping track of three things:
  //
  //  - That we do not unswitch loops containing convergent operations, as we
  //    might be making them control dependent on the unswitch value when they
  //    were not before.
  //    FIXME: This could be refined to only bail if the convergent operation is
  //    not already control-dependent on the unswitch value.
  //
  //  - That basic blocks in the loop contain invokes whose predecessor edges we
  //    cannot split.
  //
  //  - The set of guard intrinsics encountered (these are non terminator
  //    instructions that are also profitable to be unswitched).

  SmallVector<IntrinsicInst *, 4> Guards;

  for (const auto BB : currentLoop->blocks()) {
    for (auto &I : *BB) {
      auto CS = CallSite(&I);
      if (!CS) continue;
      if (CS.isConvergent())
        return false;
      if (auto *II = dyn_cast<InvokeInst>(&I))
        if (!II->getUnwindDest()->canSplitPredecessors())
          return false;
      if (auto *II = dyn_cast<IntrinsicInst>(&I))
        if (II->getIntrinsicID() == Intrinsic::experimental_guard)
          Guards.push_back(II);
    }
  }

  for (IntrinsicInst *Guard : Guards) {
    Value *LoopCond = FindLIVLoopCondition(Guard->getOperand(0), currentLoop,
                                           Changed, MSSAU.get())
                          .first;
    if (LoopCond &&
        UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
      // NB! Unswitching (if successful) could have erased some of the
      // instructions in Guards leaving dangling pointers there.  This is fine
      // because we're returning now, and won't look at Guards again.
      ++NumGuards;
      return true;
    }
  }

  // Loop over all of the basic blocks in the loop.  If we find an interior
  // block that is branching on a loop-invariant condition, we can unswitch this
  // loop.
  for (Loop::block_iterator I = currentLoop->block_begin(),
         E = currentLoop->block_end(); I != E; ++I) {
    Instruction *TI = (*I)->getTerminator();

    // Unswitching on a potentially uninitialized predicate is not
    // MSan-friendly. Limit this to the cases when the original predicate is
    // guaranteed to execute, to avoid creating a use-of-uninitialized-value
    // in the code that did not have one.
    // This is a workaround for the discrepancy between LLVM IR and MSan
    // semantics. See PR28054 for more details.
    if (SanitizeMemory &&
        !SafetyInfo.isGuaranteedToExecute(*TI, DT, currentLoop))
      continue;

    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      // Some branches may be rendered unreachable because of previous
      // unswitching.
      // Unswitch only those branches that are reachable.
      if (isUnreachableDueToPreviousUnswitching(*I))
        continue;

      // If this isn't branching on an invariant condition, we can't unswitch
      // it.
      if (BI->isConditional()) {
        // See if this, or some part of it, is loop invariant.  If so, we can
        // unswitch on it if we desire.
        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), currentLoop,
                                               Changed, MSSAU.get())
                              .first;
        if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
            UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
          ++NumBranches;
          return true;
        }
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      Value *SC = SI->getCondition();
      Value *LoopCond;
      OperatorChain OpChain;
      std::tie(LoopCond, OpChain) =
          FindLIVLoopCondition(SC, currentLoop, Changed, MSSAU.get());

      unsigned NumCases = SI->getNumCases();
      if (LoopCond && NumCases) {
        // Find a value to unswitch on:
        // FIXME: this should chose the most expensive case!
        // FIXME: scan for a case with a non-critical edge?
        Constant *UnswitchVal = nullptr;
        // Find a case value such that at least one case value is unswitched
        // out.
        if (OpChain == OC_OpChainAnd) {
          // If the chain only has ANDs and the switch has a case value of 0.
          // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
          auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
          if (BranchesInfo.isUnswitched(SI, AllZero))
            continue;
          // We are unswitching 0 out.
          UnswitchVal = AllZero;
        } else if (OpChain == OC_OpChainOr) {
          // If the chain only has ORs and the switch has a case value of ~0.
          // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
          auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
          if (BranchesInfo.isUnswitched(SI, AllOne))
            continue;
          // We are unswitching ~0 out.
          UnswitchVal = AllOne;
        } else {
          assert(OpChain == OC_OpChainNone &&
                 "Expect to unswitch on trivial chain");
          // Do not process same value again and again.
          // At this point we have some cases already unswitched and
          // some not yet unswitched. Let's find the first not yet unswitched one.
          for (auto Case : SI->cases()) {
            Constant *UnswitchValCandidate = Case.getCaseValue();
            if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
              UnswitchVal = UnswitchValCandidate;
              break;
            }
          }
        }

        if (!UnswitchVal)
          continue;

        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
          ++NumSwitches;
          // In case of a full LIV, UnswitchVal is the value we unswitched out.
          // In case of a partial LIV, we only unswitch when its an AND-chain
          // or OR-chain. In both cases switch input value simplifies to
          // UnswitchVal.
          BranchesInfo.setUnswitched(SI, UnswitchVal);
          return true;
        }
      }
    }

    // Scan the instructions to check for unswitchable values.
    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
         BBI != E; ++BBI)
      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), currentLoop,
                                               Changed, MSSAU.get())
                              .first;
        if (LoopCond && UnswitchIfProfitable(LoopCond,
                                             ConstantInt::getTrue(Context))) {
          ++NumSelects;
          return true;
        }
      }
  }
  return Changed;
}

/// Check to see if all paths from BB exit the loop with no side effects
/// (including infinite loops).
///
/// If true, we return true and set ExitBB to the block we
/// exit through.
///
static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
                                         BasicBlock *&ExitBB,
                                         std::set<BasicBlock*> &Visited) {
  if (!Visited.insert(BB).second) {
    // Already visited. Without more analysis, this could indicate an infinite
    // loop.
    return false;
  }
  if (!L->contains(BB)) {
    // Otherwise, this is a loop exit, this is fine so long as this is the
    // first exit.
    if (ExitBB) return false;
    ExitBB = BB;
    return true;
  }

  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
    // Check to see if the successor is a trivial loop exit.
    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
      return false;
  }

  // Okay, everything after this looks good, check to make sure that this block
  // doesn't include any side effects.
  for (Instruction &I : *BB)
    if (I.mayHaveSideEffects())
      return false;

  return true;
}

/// Return true if the specified block unconditionally leads to an exit from
/// the specified loop, and has no side-effects in the process. If so, return
/// the block that is exited to, otherwise return null.
static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
  std::set<BasicBlock*> Visited;
  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
  BasicBlock *ExitBB = nullptr;
  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
    return ExitBB;
  return nullptr;
}

/// We have found that we can unswitch currentLoop when LoopCond == Val to
/// simplify the loop.  If we decide that this is profitable,
/// unswitch the loop, reprocess the pieces, then return true.
bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
                                        Instruction *TI) {
  // Check to see if it would be profitable to unswitch current loop.
  if (!BranchesInfo.CostAllowsUnswitching()) {
    LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
                      << currentLoop->getHeader()->getName()
                      << " at non-trivial condition '" << *Val
                      << "' == " << *LoopCond << "\n"
                      << ". Cost too high.\n");
    return false;
  }
  if (hasBranchDivergence &&
      getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) {
    LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
                      << currentLoop->getHeader()->getName()
                      << " at non-trivial condition '" << *Val
                      << "' == " << *LoopCond << "\n"
                      << ". Condition is divergent.\n");
    return false;
  }

  UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
  return true;
}

/// Recursively clone the specified loop and all of its children,
/// mapping the blocks with the specified map.
static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
                       LoopInfo *LI, LPPassManager *LPM) {
  Loop &New = *LI->AllocateLoop();
  if (PL)
    PL->addChildLoop(&New);
  else
    LI->addTopLevelLoop(&New);
  LPM->addLoop(New);

  // Add all of the blocks in L to the new loop.
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
       I != E; ++I)
    if (LI->getLoopFor(*I) == L)
      New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);

  // Add all of the subloops to the new loop.
  for (Loop *I : *L)
    CloneLoop(I, &New, VM, LI, LPM);

  return &New;
}

/// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
/// otherwise branch to FalseDest. Insert the code immediately before OldBranch
/// and remove (but not erase!) it from the function.
void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
                                                  BasicBlock *TrueDest,
                                                  BasicBlock *FalseDest,
                                                  BranchInst *OldBranch,
                                                  Instruction *TI) {
  assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
  assert(TrueDest != FalseDest && "Branch targets should be different");
  // Insert a conditional branch on LIC to the two preheaders.  The original
  // code is the true version and the new code is the false version.
  Value *BranchVal = LIC;
  bool Swapped = false;
  if (!isa<ConstantInt>(Val) ||
      Val->getType() != Type::getInt1Ty(LIC->getContext()))
    BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
  else if (Val != ConstantInt::getTrue(Val->getContext())) {
    // We want to enter the new loop when the condition is true.
    std::swap(TrueDest, FalseDest);
    Swapped = true;
  }

  // Old branch will be removed, so save its parent and successor to update the
  // DomTree.
  auto *OldBranchSucc = OldBranch->getSuccessor(0);
  auto *OldBranchParent = OldBranch->getParent();

  // Insert the new branch.
  BranchInst *BI =
      IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
  if (Swapped)
    BI->swapProfMetadata();

  // Remove the old branch so there is only one branch at the end. This is
  // needed to perform DomTree's internal DFS walk on the function's CFG.
  OldBranch->removeFromParent();

  // Inform the DT about the new branch.
  if (DT) {
    // First, add both successors.
    SmallVector<DominatorTree::UpdateType, 3> Updates;
    if (TrueDest != OldBranchSucc)
      Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
    if (FalseDest != OldBranchSucc)
      Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
    // If both of the new successors are different from the old one, inform the
    // DT that the edge was deleted.
    if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
      Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
    }
    DT->applyUpdates(Updates);

    if (MSSAU)
      MSSAU->applyUpdates(Updates, *DT);
  }

  // If either edge is critical, split it. This helps preserve LoopSimplify
  // form for enclosing loops.
  auto Options =
      CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA();
  SplitCriticalEdge(BI, 0, Options);
  SplitCriticalEdge(BI, 1, Options);
}

/// Given a loop that has a trivial unswitchable condition in it (a cond branch
/// from its header block to its latch block, where the path through the loop
/// that doesn't execute its body has no side-effects), unswitch it. This
/// doesn't involve any code duplication, just moving the conditional branch
/// outside of the loop and updating loop info.
void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
                                            BasicBlock *ExitBlock,
                                            Instruction *TI) {
  LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
                    << loopHeader->getName() << " [" << L->getBlocks().size()
                    << " blocks] in Function "
                    << L->getHeader()->getParent()->getName()
                    << " on cond: " << *Val << " == " << *Cond << "\n");
  // We are going to make essential changes to CFG. This may invalidate cached
  // information for L or one of its parent loops in SCEV.
  if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
    SEWP->getSE().forgetTopmostLoop(L);

  // First step, split the preheader, so that we know that there is a safe place
  // to insert the conditional branch.  We will change loopPreheader to have a
  // conditional branch on Cond.
  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());

  // Now that we have a place to insert the conditional branch, create a place
  // to branch to: this is the exit block out of the loop that we should
  // short-circuit to.

  // Split this block now, so that the loop maintains its exit block, and so
  // that the jump from the preheader can execute the contents of the exit block
  // without actually branching to it (the exit block should be dominated by the
  // loop header, not the preheader).
  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
  BasicBlock *NewExit =
      SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get());

  // Okay, now we have a position to branch from and a position to branch to,
  // insert the new conditional branch.
  auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
  assert(OldBranch && "Failed to split the preheader");
  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
  LPM->deleteSimpleAnalysisValue(OldBranch, L);

  // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
  // Delete it, as it is no longer needed.
  delete OldBranch;

  // We need to reprocess this loop, it could be unswitched again.
  redoLoop = true;

  // Now that we know that the loop is never entered when this condition is a
  // particular value, rewrite the loop with this info.  We know that this will
  // at least eliminate the old branch.
  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);

  ++NumTrivial;
}

/// Check if the first non-constant condition starting from the loop header is
/// a trivial unswitch condition: that is, a condition controls whether or not
/// the loop does anything at all. If it is a trivial condition, unswitching
/// produces no code duplications (equivalently, it produces a simpler loop and
/// a new empty loop, which gets deleted). Therefore always unswitch trivial
/// condition.
bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
  BasicBlock *CurrentBB = currentLoop->getHeader();
  Instruction *CurrentTerm = CurrentBB->getTerminator();
  LLVMContext &Context = CurrentBB->getContext();

  // If loop header has only one reachable successor (currently via an
  // unconditional branch or constant foldable conditional branch, but
  // should also consider adding constant foldable switch instruction in
  // future), we should keep looking for trivial condition candidates in
  // the successor as well. An alternative is to constant fold conditions
  // and merge successors into loop header (then we only need to check header's
  // terminator). The reason for not doing this in LoopUnswitch pass is that
  // it could potentially break LoopPassManager's invariants. Folding dead
  // branches could either eliminate the current loop or make other loops
  // unreachable. LCSSA form might also not be preserved after deleting
  // branches. The following code keeps traversing loop header's successors
  // until it finds the trivial condition candidate (condition that is not a
  // constant). Since unswitching generates branches with constant conditions,
  // this scenario could be very common in practice.
  SmallPtrSet<BasicBlock*, 8> Visited;

  while (true) {
    // If we exit loop or reach a previous visited block, then
    // we can not reach any trivial condition candidates (unfoldable
    // branch instructions or switch instructions) and no unswitch
    // can happen. Exit and return false.
    if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
      return false;

    // Check if this loop will execute any side-effecting instructions (e.g.
    // stores, calls, volatile loads) in the part of the loop that the code
    // *would* execute. Check the header first.
    for (Instruction &I : *CurrentBB)
      if (I.mayHaveSideEffects())
        return false;

    if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
      if (BI->isUnconditional()) {
        CurrentBB = BI->getSuccessor(0);
      } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
        CurrentBB = BI->getSuccessor(0);
      } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
        CurrentBB = BI->getSuccessor(1);
      } else {
        // Found a trivial condition candidate: non-foldable conditional branch.
        break;
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
      // At this point, any constant-foldable instructions should have probably
      // been folded.
      ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
      if (!Cond)
        break;
      // Find the target block we are definitely going to.
      CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
    } else {
      // We do not understand these terminator instructions.
      break;
    }

    CurrentTerm = CurrentBB->getTerminator();
  }

  // CondVal is the condition that controls the trivial condition.
  // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
  Constant *CondVal = nullptr;
  BasicBlock *LoopExitBB = nullptr;

  if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
    // If this isn't branching on an invariant condition, we can't unswitch it.
    if (!BI->isConditional())
      return false;

    Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), currentLoop,
                                           Changed, MSSAU.get())
                          .first;

    // Unswitch only if the trivial condition itself is an LIV (not
    // partial LIV which could occur in and/or)
    if (!LoopCond || LoopCond != BI->getCondition())
      return false;

    // Check to see if a successor of the branch is guaranteed to
    // exit through a unique exit block without having any
    // side-effects.  If so, determine the value of Cond that causes
    // it to do this.
    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
                                             BI->getSuccessor(0)))) {
      CondVal = ConstantInt::getTrue(Context);
    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
                                                    BI->getSuccessor(1)))) {
      CondVal = ConstantInt::getFalse(Context);
    }

    // If we didn't find a single unique LoopExit block, or if the loop exit
    // block contains phi nodes, this isn't trivial.
    if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
      return false;   // Can't handle this.

    if (EqualityPropUnSafe(*LoopCond))
      return false;

    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
                             CurrentTerm);
    ++NumBranches;
    return true;
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
    // If this isn't switching on an invariant condition, we can't unswitch it.
    Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), currentLoop,
                                           Changed, MSSAU.get())
                          .first;

    // Unswitch only if the trivial condition itself is an LIV (not
    // partial LIV which could occur in and/or)
    if (!LoopCond || LoopCond != SI->getCondition())
      return false;

    // Check to see if a successor of the switch is guaranteed to go to the
    // latch block or exit through a one exit block without having any
    // side-effects.  If so, determine the value of Cond that causes it to do
    // this.
    // Note that we can't trivially unswitch on the default case or
    // on already unswitched cases.
    for (auto Case : SI->cases()) {
      BasicBlock *LoopExitCandidate;
      if ((LoopExitCandidate =
               isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
        // Okay, we found a trivial case, remember the value that is trivial.
        ConstantInt *CaseVal = Case.getCaseValue();

        // Check that it was not unswitched before, since already unswitched
        // trivial vals are looks trivial too.
        if (BranchesInfo.isUnswitched(SI, CaseVal))
          continue;
        LoopExitBB = LoopExitCandidate;
        CondVal = CaseVal;
        break;
      }
    }

    // If we didn't find a single unique LoopExit block, or if the loop exit
    // block contains phi nodes, this isn't trivial.
    if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
      return false;   // Can't handle this.

    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
                             nullptr);

    // We are only unswitching full LIV.
    BranchesInfo.setUnswitched(SI, CondVal);
    ++NumSwitches;
    return true;
  }
  return false;
}

/// Split all of the edges from inside the loop to their exit blocks.
/// Update the appropriate Phi nodes as we do so.
void LoopUnswitch::SplitExitEdges(Loop *L,
                               const SmallVectorImpl<BasicBlock *> &ExitBlocks){

  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *ExitBlock = ExitBlocks[i];
    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
                                       pred_end(ExitBlock));

    // Although SplitBlockPredecessors doesn't preserve loop-simplify in
    // general, if we call it on all predecessors of all exits then it does.
    SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(),
                           /*PreserveLCSSA*/ true);
  }
}

/// We determined that the loop is profitable to unswitch when LIC equal Val.
/// Split it into loop versions and test the condition outside of either loop.
/// Return the loops created as Out1/Out2.
void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
                                               Loop *L, Instruction *TI) {
  Function *F = loopHeader->getParent();
  LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
                    << loopHeader->getName() << " [" << L->getBlocks().size()
                    << " blocks] in Function " << F->getName() << " when '"
                    << *Val << "' == " << *LIC << "\n");

  // We are going to make essential changes to CFG. This may invalidate cached
  // information for L or one of its parent loops in SCEV.
  if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
    SEWP->getSE().forgetTopmostLoop(L);

  LoopBlocks.clear();
  NewBlocks.clear();

  if (MSSAU && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  // First step, split the preheader and exit blocks, and add these blocks to
  // the LoopBlocks list.
  BasicBlock *NewPreheader =
      SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
  LoopBlocks.push_back(NewPreheader);

  // We want the loop to come after the preheader, but before the exit blocks.
  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());

  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);

  // Split all of the edges from inside the loop to their exit blocks.  Update
  // the appropriate Phi nodes as we do so.
  SplitExitEdges(L, ExitBlocks);

  // The exit blocks may have been changed due to edge splitting, recompute.
  ExitBlocks.clear();
  L->getUniqueExitBlocks(ExitBlocks);

  // Add exit blocks to the loop blocks.
  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());

  // Next step, clone all of the basic blocks that make up the loop (including
  // the loop preheader and exit blocks), keeping track of the mapping between
  // the instructions and blocks.
  NewBlocks.reserve(LoopBlocks.size());
  ValueToValueMapTy VMap;
  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);

    NewBlocks.push_back(NewBB);
    VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
  }

  // Splice the newly inserted blocks into the function right before the
  // original preheader.
  F->getBasicBlockList().splice(NewPreheader->getIterator(),
                                F->getBasicBlockList(),
                                NewBlocks[0]->getIterator(), F->end());

  // Now we create the new Loop object for the versioned loop.
  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);

  // Recalculate unswitching quota, inherit simplified switches info for NewBB,
  // Probably clone more loop-unswitch related loop properties.
  BranchesInfo.cloneData(NewLoop, L, VMap);

  Loop *ParentLoop = L->getParentLoop();
  if (ParentLoop) {
    // Make sure to add the cloned preheader and exit blocks to the parent loop
    // as well.
    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
  }

  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
    // The new exit block should be in the same loop as the old one.
    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);

    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
           "Exit block should have been split to have one successor!");
    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);

    // If the successor of the exit block had PHI nodes, add an entry for
    // NewExit.
    for (PHINode &PN : ExitSucc->phis()) {
      Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
      ValueToValueMapTy::iterator It = VMap.find(V);
      if (It != VMap.end()) V = It->second;
      PN.addIncoming(V, NewExit);
    }

    if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
      PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
                                    &*ExitSucc->getFirstInsertionPt());

      for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
           I != E; ++I) {
        BasicBlock *BB = *I;
        LandingPadInst *LPI = BB->getLandingPadInst();
        LPI->replaceAllUsesWith(PN);
        PN->addIncoming(LPI, BB);
      }
    }
  }

  // Rewrite the code to refer to itself.
  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
    for (Instruction &I : *NewBlocks[i]) {
      RemapInstruction(&I, VMap,
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
      if (auto *II = dyn_cast<IntrinsicInst>(&I))
        if (II->getIntrinsicID() == Intrinsic::assume)
          AC->registerAssumption(II);
    }
  }

  // Rewrite the original preheader to select between versions of the loop.
  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
         "Preheader splitting did not work correctly!");

  if (MSSAU) {
    // Update MemorySSA after cloning, and before splitting to unreachables,
    // since that invalidates the 1:1 mapping of clones in VMap.
    LoopBlocksRPO LBRPO(L);
    LBRPO.perform(LI);
    MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap);
  }

  // Emit the new branch that selects between the two versions of this loop.
  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
                                 TI);
  LPM->deleteSimpleAnalysisValue(OldBR, L);
  if (MSSAU) {
    // Update MemoryPhis in Exit blocks.
    MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT);
    if (VerifyMemorySSA)
      MSSA->verifyMemorySSA();
  }

  // The OldBr was replaced by a new one and removed (but not erased) by
  // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
  delete OldBR;

  LoopProcessWorklist.push_back(NewLoop);
  redoLoop = true;

  // Keep a WeakTrackingVH holding onto LIC.  If the first call to
  // RewriteLoopBody
  // deletes the instruction (for example by simplifying a PHI that feeds into
  // the condition that we're unswitching on), we don't rewrite the second
  // iteration.
  WeakTrackingVH LICHandle(LIC);

  // Now we rewrite the original code to know that the condition is true and the
  // new code to know that the condition is false.
  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);

  // It's possible that simplifying one loop could cause the other to be
  // changed to another value or a constant.  If its a constant, don't simplify
  // it.
  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
      LICHandle && !isa<Constant>(LICHandle))
    RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();
}

/// Remove all instances of I from the worklist vector specified.
static void RemoveFromWorklist(Instruction *I,
                               std::vector<Instruction*> &Worklist) {

  Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
                 Worklist.end());
}

/// When we find that I really equals V, remove I from the
/// program, replacing all uses with V and update the worklist.
static void ReplaceUsesOfWith(Instruction *I, Value *V,
                              std::vector<Instruction *> &Worklist, Loop *L,
                              LPPassManager *LPM, MemorySSAUpdater *MSSAU) {
  LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");

  // Add uses to the worklist, which may be dead now.
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
      Worklist.push_back(Use);

  // Add users to the worklist which may be simplified now.
  for (User *U : I->users())
    Worklist.push_back(cast<Instruction>(U));
  LPM->deleteSimpleAnalysisValue(I, L);
  RemoveFromWorklist(I, Worklist);
  I->replaceAllUsesWith(V);
  if (!I->mayHaveSideEffects()) {
    if (MSSAU)
      MSSAU->removeMemoryAccess(I);
    I->eraseFromParent();
  }
  ++NumSimplify;
}

/// We know either that the value LIC has the value specified by Val in the
/// specified loop, or we know it does NOT have that value.
/// Rewrite any uses of LIC or of properties correlated to it.
void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
                                                        Constant *Val,
                                                        bool IsEqual) {
  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");

  // FIXME: Support correlated properties, like:
  //  for (...)
  //    if (li1 < li2)
  //      ...
  //    if (li1 > li2)
  //      ...

  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
  // selects, switches.
  std::vector<Instruction*> Worklist;
  LLVMContext &Context = Val->getContext();

  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
  // in the loop with the appropriate one directly.
  if (IsEqual || (isa<ConstantInt>(Val) &&
      Val->getType()->isIntegerTy(1))) {
    Value *Replacement;
    if (IsEqual)
      Replacement = Val;
    else
      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
                                     !cast<ConstantInt>(Val)->getZExtValue());

    for (User *U : LIC->users()) {
      Instruction *UI = dyn_cast<Instruction>(U);
      if (!UI || !L->contains(UI))
        continue;
      Worklist.push_back(UI);
    }

    for (Instruction *UI : Worklist)
      UI->replaceUsesOfWith(LIC, Replacement);

    SimplifyCode(Worklist, L);
    return;
  }

  // Otherwise, we don't know the precise value of LIC, but we do know that it
  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
  // can.  This case occurs when we unswitch switch statements.
  for (User *U : LIC->users()) {
    Instruction *UI = dyn_cast<Instruction>(U);
    if (!UI || !L->contains(UI))
      continue;

    // At this point, we know LIC is definitely not Val. Try to use some simple
    // logic to simplify the user w.r.t. to the context.
    if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
      if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
        // This in-loop instruction has been simplified w.r.t. its context,
        // i.e. LIC != Val, make sure we propagate its replacement value to
        // all its users.
        //
        // We can not yet delete UI, the LIC user, yet, because that would invalidate
        // the LIC->users() iterator !. However, we can make this instruction
        // dead by replacing all its users and push it onto the worklist so that
        // it can be properly deleted and its operands simplified.
        UI->replaceAllUsesWith(Replacement);
      }
    }

    // This is a LIC user, push it into the worklist so that SimplifyCode can
    // attempt to simplify it.
    Worklist.push_back(UI);

    // If we know that LIC is not Val, use this info to simplify code.
    SwitchInst *SI = dyn_cast<SwitchInst>(UI);
    if (!SI || !isa<ConstantInt>(Val)) continue;

    // NOTE: if a case value for the switch is unswitched out, we record it
    // after the unswitch finishes. We can not record it here as the switch
    // is not a direct user of the partial LIV.
    SwitchInst::CaseHandle DeadCase =
        *SI->findCaseValue(cast<ConstantInt>(Val));
    // Default case is live for multiple values.
    if (DeadCase == *SI->case_default())
      continue;

    // Found a dead case value.  Don't remove PHI nodes in the
    // successor if they become single-entry, those PHI nodes may
    // be in the Users list.

    BasicBlock *Switch = SI->getParent();
    BasicBlock *SISucc = DeadCase.getCaseSuccessor();
    BasicBlock *Latch = L->getLoopLatch();

    if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
    // If the DeadCase successor dominates the loop latch, then the
    // transformation isn't safe since it will delete the sole predecessor edge
    // to the latch.
    if (Latch && DT->dominates(SISucc, Latch))
      continue;

    // FIXME: This is a hack.  We need to keep the successor around
    // and hooked up so as to preserve the loop structure, because
    // trying to update it is complicated.  So instead we preserve the
    // loop structure and put the block on a dead code path.
    SplitEdge(Switch, SISucc, DT, LI, MSSAU.get());
    // Compute the successors instead of relying on the return value
    // of SplitEdge, since it may have split the switch successor
    // after PHI nodes.
    BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
    // Create an "unreachable" destination.
    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
                                           Switch->getParent(),
                                           OldSISucc);
    new UnreachableInst(Context, Abort);
    // Force the new case destination to branch to the "unreachable"
    // block while maintaining a (dead) CFG edge to the old block.
    NewSISucc->getTerminator()->eraseFromParent();
    BranchInst::Create(Abort, OldSISucc,
                       ConstantInt::getTrue(Context), NewSISucc);
    // Release the PHI operands for this edge.
    for (PHINode &PN : NewSISucc->phis())
      PN.setIncomingValueForBlock(Switch, UndefValue::get(PN.getType()));
    // Tell the domtree about the new block. We don't fully update the
    // domtree here -- instead we force it to do a full recomputation
    // after the pass is complete -- but we do need to inform it of
    // new blocks.
    DT->addNewBlock(Abort, NewSISucc);
  }

  SimplifyCode(Worklist, L);
}

/// Now that we have simplified some instructions in the loop, walk over it and
/// constant prop, dce, and fold control flow where possible. Note that this is
/// effectively a very simple loop-structure-aware optimizer. During processing
/// of this loop, L could very well be deleted, so it must not be used.
///
/// FIXME: When the loop optimizer is more mature, separate this out to a new
/// pass.
///
void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
  while (!Worklist.empty()) {
    Instruction *I = Worklist.back();
    Worklist.pop_back();

    // Simple DCE.
    if (isInstructionTriviallyDead(I)) {
      LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");

      // Add uses to the worklist, which may be dead now.
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
          Worklist.push_back(Use);
      LPM->deleteSimpleAnalysisValue(I, L);
      RemoveFromWorklist(I, Worklist);
      if (MSSAU)
        MSSAU->removeMemoryAccess(I);
      I->eraseFromParent();
      ++NumSimplify;
      continue;
    }

    // See if instruction simplification can hack this up.  This is common for
    // things like "select false, X, Y" after unswitching made the condition be
    // 'false'.  TODO: update the domtree properly so we can pass it here.
    if (Value *V = SimplifyInstruction(I, DL))
      if (LI->replacementPreservesLCSSAForm(I, V)) {
        ReplaceUsesOfWith(I, V, Worklist, L, LPM, MSSAU.get());
        continue;
      }

    // Special case hacks that appear commonly in unswitched code.
    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
      if (BI->isUnconditional()) {
        // If BI's parent is the only pred of the successor, fold the two blocks
        // together.
        BasicBlock *Pred = BI->getParent();
        (void)Pred;
        BasicBlock *Succ = BI->getSuccessor(0);
        BasicBlock *SinglePred = Succ->getSinglePredecessor();
        if (!SinglePred) continue;  // Nothing to do.
        assert(SinglePred == Pred && "CFG broken");

        // Make the LPM and Worklist updates specific to LoopUnswitch.
        LPM->deleteSimpleAnalysisValue(BI, L);
        RemoveFromWorklist(BI, Worklist);
        LPM->deleteSimpleAnalysisValue(Succ, L);
        auto SuccIt = Succ->begin();
        while (PHINode *PN = dyn_cast<PHINode>(SuccIt++)) {
          for (unsigned It = 0, E = PN->getNumOperands(); It != E; ++It)
            if (Instruction *Use = dyn_cast<Instruction>(PN->getOperand(It)))
              Worklist.push_back(Use);
          for (User *U : PN->users())
            Worklist.push_back(cast<Instruction>(U));
          LPM->deleteSimpleAnalysisValue(PN, L);
          RemoveFromWorklist(PN, Worklist);
          ++NumSimplify;
        }
        // Merge the block and make the remaining analyses updates.
        DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
        MergeBlockIntoPredecessor(Succ, &DTU, LI, MSSAU.get());
        ++NumSimplify;
        continue;
      }

      continue;
    }
  }
}

/// Simple simplifications we can do given the information that Cond is
/// definitely not equal to Val.
Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
                                                     Value *Invariant,
                                                     Constant *Val) {
  // icmp eq cond, val -> false
  ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
  if (CI && CI->isEquality()) {
    Value *Op0 = CI->getOperand(0);
    Value *Op1 = CI->getOperand(1);
    if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
      LLVMContext &Ctx = Inst->getContext();
      if (CI->getPredicate() == CmpInst::ICMP_EQ)
        return ConstantInt::getFalse(Ctx);
      else
        return ConstantInt::getTrue(Ctx);
     }
  }

  // FIXME: there may be other opportunities, e.g. comparison with floating
  // point, or Invariant - Val != 0, etc.
  return nullptr;
}