reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the generic implementation of LoopInfo used for both Loops and
// MachineLoops.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
#define LLVM_ANALYSIS_LOOPINFOIMPL_H

#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"

namespace llvm {

//===----------------------------------------------------------------------===//
// APIs for simple analysis of the loop. See header notes.

/// getExitingBlocks - Return all blocks inside the loop that have successors
/// outside of the loop.  These are the blocks _inside of the current loop_
/// which branch out.  The returned list is always unique.
///
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::getExitingBlocks(
    SmallVectorImpl<BlockT *> &ExitingBlocks) const {
  assert(!isInvalid() && "Loop not in a valid state!");
  for (const auto BB : blocks())
    for (const auto &Succ : children<BlockT *>(BB))
      if (!contains(Succ)) {
        // Not in current loop? It must be an exit block.
        ExitingBlocks.push_back(BB);
        break;
      }
}

/// getExitingBlock - If getExitingBlocks would return exactly one block,
/// return that block. Otherwise return null.
template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
  assert(!isInvalid() && "Loop not in a valid state!");
  SmallVector<BlockT *, 8> ExitingBlocks;
  getExitingBlocks(ExitingBlocks);
  if (ExitingBlocks.size() == 1)
    return ExitingBlocks[0];
  return nullptr;
}

/// getExitBlocks - Return all of the successor blocks of this loop.  These
/// are the blocks _outside of the current loop_ which are branched to.
///
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::getExitBlocks(
    SmallVectorImpl<BlockT *> &ExitBlocks) const {
  assert(!isInvalid() && "Loop not in a valid state!");
  for (const auto BB : blocks())
    for (const auto &Succ : children<BlockT *>(BB))
      if (!contains(Succ))
        // Not in current loop? It must be an exit block.
        ExitBlocks.push_back(Succ);
}

/// getExitBlock - If getExitBlocks would return exactly one block,
/// return that block. Otherwise return null.
template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
  assert(!isInvalid() && "Loop not in a valid state!");
  SmallVector<BlockT *, 8> ExitBlocks;
  getExitBlocks(ExitBlocks);
  if (ExitBlocks.size() == 1)
    return ExitBlocks[0];
  return nullptr;
}

template <class BlockT, class LoopT>
bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
  // Each predecessor of each exit block of a normal loop is contained
  // within the loop.
  SmallVector<BlockT *, 4> UniqueExitBlocks;
  getUniqueExitBlocks(UniqueExitBlocks);
  for (BlockT *EB : UniqueExitBlocks)
    for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
      if (!contains(Predecessor))
        return false;
  // All the requirements are met.
  return true;
}

// Helper function to get unique loop exits. Pred is a predicate pointing to
// BasicBlocks in a loop which should be considered to find loop exits.
template <class BlockT, class LoopT, typename PredicateT>
void getUniqueExitBlocksHelper(const LoopT *L,
                               SmallVectorImpl<BlockT *> &ExitBlocks,
                               PredicateT Pred) {
  assert(!L->isInvalid() && "Loop not in a valid state!");
  SmallPtrSet<BlockT *, 32> Visited;
  auto Filtered = make_filter_range(L->blocks(), Pred);
  for (BlockT *BB : Filtered)
    for (BlockT *Successor : children<BlockT *>(BB))
      if (!L->contains(Successor))
        if (Visited.insert(Successor).second)
          ExitBlocks.push_back(Successor);
}

template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
    SmallVectorImpl<BlockT *> &ExitBlocks) const {
  getUniqueExitBlocksHelper(this, ExitBlocks,
                            [](const BlockT *BB) { return true; });
}

template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
    SmallVectorImpl<BlockT *> &ExitBlocks) const {
  const BlockT *Latch = getLoopLatch();
  assert(Latch && "Latch block must exists");
  getUniqueExitBlocksHelper(this, ExitBlocks,
                            [Latch](const BlockT *BB) { return BB != Latch; });
}

template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
  SmallVector<BlockT *, 8> UniqueExitBlocks;
  getUniqueExitBlocks(UniqueExitBlocks);
  if (UniqueExitBlocks.size() == 1)
    return UniqueExitBlocks[0];
  return nullptr;
}

/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::getExitEdges(
    SmallVectorImpl<Edge> &ExitEdges) const {
  assert(!isInvalid() && "Loop not in a valid state!");
  for (const auto BB : blocks())
    for (const auto &Succ : children<BlockT *>(BB))
      if (!contains(Succ))
        // Not in current loop? It must be an exit block.
        ExitEdges.emplace_back(BB, Succ);
}

/// getLoopPreheader - If there is a preheader for this loop, return it.  A
/// loop has a preheader if there is only one edge to the header of the loop
/// from outside of the loop and it is legal to hoist instructions into the
/// predecessor. If this is the case, the block branching to the header of the
/// loop is the preheader node.
///
/// This method returns null if there is no preheader for the loop.
///
template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
  assert(!isInvalid() && "Loop not in a valid state!");
  // Keep track of nodes outside the loop branching to the header...
  BlockT *Out = getLoopPredecessor();
  if (!Out)
    return nullptr;

  // Make sure we are allowed to hoist instructions into the predecessor.
  if (!Out->isLegalToHoistInto())
    return nullptr;

  // Make sure there is only one exit out of the preheader.
  typedef GraphTraits<BlockT *> BlockTraits;
  typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
  ++SI;
  if (SI != BlockTraits::child_end(Out))
    return nullptr; // Multiple exits from the block, must not be a preheader.

  // The predecessor has exactly one successor, so it is a preheader.
  return Out;
}

/// getLoopPredecessor - If the given loop's header has exactly one unique
/// predecessor outside the loop, return it. Otherwise return null.
/// This is less strict that the loop "preheader" concept, which requires
/// the predecessor to have exactly one successor.
///
template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
  assert(!isInvalid() && "Loop not in a valid state!");
  // Keep track of nodes outside the loop branching to the header...
  BlockT *Out = nullptr;

  // Loop over the predecessors of the header node...
  BlockT *Header = getHeader();
  for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
    if (!contains(Pred)) { // If the block is not in the loop...
      if (Out && Out != Pred)
        return nullptr; // Multiple predecessors outside the loop
      Out = Pred;
    }
  }

  return Out;
}

/// getLoopLatch - If there is a single latch block for this loop, return it.
/// A latch block is a block that contains a branch back to the header.
template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
  assert(!isInvalid() && "Loop not in a valid state!");
  BlockT *Header = getHeader();
  BlockT *Latch = nullptr;
  for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
    if (contains(Pred)) {
      if (Latch)
        return nullptr;
      Latch = Pred;
    }
  }

  return Latch;
}

//===----------------------------------------------------------------------===//
// APIs for updating loop information after changing the CFG
//

/// addBasicBlockToLoop - This method is used by other analyses to update loop
/// information.  NewBB is set to be a new member of the current loop.
/// Because of this, it is added as a member of all parent loops, and is added
/// to the specified LoopInfo object as being in the current basic block.  It
/// is not valid to replace the loop header with this method.
///
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
    BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
  assert(!isInvalid() && "Loop not in a valid state!");
#ifndef NDEBUG
  if (!Blocks.empty()) {
    auto SameHeader = LIB[getHeader()];
    assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
           "Incorrect LI specified for this loop!");
  }
#endif
  assert(NewBB && "Cannot add a null basic block to the loop!");
  assert(!LIB[NewBB] && "BasicBlock already in the loop!");

  LoopT *L = static_cast<LoopT *>(this);

  // Add the loop mapping to the LoopInfo object...
  LIB.BBMap[NewBB] = L;

  // Add the basic block to this loop and all parent loops...
  while (L) {
    L->addBlockEntry(NewBB);
    L = L->getParentLoop();
  }
}

/// replaceChildLoopWith - This is used when splitting loops up.  It replaces
/// the OldChild entry in our children list with NewChild, and updates the
/// parent pointer of OldChild to be null and the NewChild to be this loop.
/// This updates the loop depth of the new child.
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
                                                   LoopT *NewChild) {
  assert(!isInvalid() && "Loop not in a valid state!");
  assert(OldChild->ParentLoop == this && "This loop is already broken!");
  assert(!NewChild->ParentLoop && "NewChild already has a parent!");
  typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
  assert(I != SubLoops.end() && "OldChild not in loop!");
  *I = NewChild;
  OldChild->ParentLoop = nullptr;
  NewChild->ParentLoop = static_cast<LoopT *>(this);
}

/// verifyLoop - Verify loop structure
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::verifyLoop() const {
  assert(!isInvalid() && "Loop not in a valid state!");
#ifndef NDEBUG
  assert(!Blocks.empty() && "Loop header is missing");

  // Setup for using a depth-first iterator to visit every block in the loop.
  SmallVector<BlockT *, 8> ExitBBs;
  getExitBlocks(ExitBBs);
  df_iterator_default_set<BlockT *> VisitSet;
  VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
  df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
      BI = df_ext_begin(getHeader(), VisitSet),
      BE = df_ext_end(getHeader(), VisitSet);

  // Keep track of the BBs visited.
  SmallPtrSet<BlockT *, 8> VisitedBBs;

  // Check the individual blocks.
  for (; BI != BE; ++BI) {
    BlockT *BB = *BI;

    assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
                       GraphTraits<BlockT *>::child_end(BB),
                       [&](BlockT *B) { return contains(B); }) &&
           "Loop block has no in-loop successors!");

    assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
                       GraphTraits<Inverse<BlockT *>>::child_end(BB),
                       [&](BlockT *B) { return contains(B); }) &&
           "Loop block has no in-loop predecessors!");

    SmallVector<BlockT *, 2> OutsideLoopPreds;
    std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
                  GraphTraits<Inverse<BlockT *>>::child_end(BB),
                  [&](BlockT *B) {
                    if (!contains(B))
                      OutsideLoopPreds.push_back(B);
                  });

    if (BB == getHeader()) {
      assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
    } else if (!OutsideLoopPreds.empty()) {
      // A non-header loop shouldn't be reachable from outside the loop,
      // though it is permitted if the predecessor is not itself actually
      // reachable.
      BlockT *EntryBB = &BB->getParent()->front();
      for (BlockT *CB : depth_first(EntryBB))
        for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
          assert(CB != OutsideLoopPreds[i] &&
                 "Loop has multiple entry points!");
    }
    assert(BB != &getHeader()->getParent()->front() &&
           "Loop contains function entry block!");

    VisitedBBs.insert(BB);
  }

  if (VisitedBBs.size() != getNumBlocks()) {
    dbgs() << "The following blocks are unreachable in the loop: ";
    for (auto BB : Blocks) {
      if (!VisitedBBs.count(BB)) {
        dbgs() << *BB << "\n";
      }
    }
    assert(false && "Unreachable block in loop");
  }

  // Check the subloops.
  for (iterator I = begin(), E = end(); I != E; ++I)
    // Each block in each subloop should be contained within this loop.
    for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
         BI != BE; ++BI) {
      assert(contains(*BI) &&
             "Loop does not contain all the blocks of a subloop!");
    }

  // Check the parent loop pointer.
  if (ParentLoop) {
    assert(is_contained(*ParentLoop, this) &&
           "Loop is not a subloop of its parent!");
  }
#endif
}

/// verifyLoop - Verify loop structure of this loop and all nested loops.
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::verifyLoopNest(
    DenseSet<const LoopT *> *Loops) const {
  assert(!isInvalid() && "Loop not in a valid state!");
  Loops->insert(static_cast<const LoopT *>(this));
  // Verify this loop.
  verifyLoop();
  // Verify the subloops.
  for (iterator I = begin(), E = end(); I != E; ++I)
    (*I)->verifyLoopNest(Loops);
}

template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
                                    bool Verbose) const {
  OS.indent(Depth * 2);
  if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
    OS << "Parallel ";
  OS << "Loop at depth " << getLoopDepth() << " containing: ";

  BlockT *H = getHeader();
  for (unsigned i = 0; i < getBlocks().size(); ++i) {
    BlockT *BB = getBlocks()[i];
    if (!Verbose) {
      if (i)
        OS << ",";
      BB->printAsOperand(OS, false);
    } else
      OS << "\n";

    if (BB == H)
      OS << "<header>";
    if (isLoopLatch(BB))
      OS << "<latch>";
    if (isLoopExiting(BB))
      OS << "<exiting>";
    if (Verbose)
      BB->print(OS);
  }
  OS << "\n";

  for (iterator I = begin(), E = end(); I != E; ++I)
    (*I)->print(OS, Depth + 2);
}

//===----------------------------------------------------------------------===//
/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
/// result does / not depend on use list (block predecessor) order.
///

/// Discover a subloop with the specified backedges such that: All blocks within
/// this loop are mapped to this loop or a subloop. And all subloops within this
/// loop have their parent loop set to this loop or a subloop.
template <class BlockT, class LoopT>
static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
                                  LoopInfoBase<BlockT, LoopT> *LI,
                                  const DomTreeBase<BlockT> &DomTree) {
  typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;

  unsigned NumBlocks = 0;
  unsigned NumSubloops = 0;

  // Perform a backward CFG traversal using a worklist.
  std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
  while (!ReverseCFGWorklist.empty()) {
    BlockT *PredBB = ReverseCFGWorklist.back();
    ReverseCFGWorklist.pop_back();

    LoopT *Subloop = LI->getLoopFor(PredBB);
    if (!Subloop) {
      if (!DomTree.isReachableFromEntry(PredBB))
        continue;

      // This is an undiscovered block. Map it to the current loop.
      LI->changeLoopFor(PredBB, L);
      ++NumBlocks;
      if (PredBB == L->getHeader())
        continue;
      // Push all block predecessors on the worklist.
      ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
                                InvBlockTraits::child_begin(PredBB),
                                InvBlockTraits::child_end(PredBB));
    } else {
      // This is a discovered block. Find its outermost discovered loop.
      while (LoopT *Parent = Subloop->getParentLoop())
        Subloop = Parent;

      // If it is already discovered to be a subloop of this loop, continue.
      if (Subloop == L)
        continue;

      // Discover a subloop of this loop.
      Subloop->setParentLoop(L);
      ++NumSubloops;
      NumBlocks += Subloop->getBlocksVector().capacity();
      PredBB = Subloop->getHeader();
      // Continue traversal along predecessors that are not loop-back edges from
      // within this subloop tree itself. Note that a predecessor may directly
      // reach another subloop that is not yet discovered to be a subloop of
      // this loop, which we must traverse.
      for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
        if (LI->getLoopFor(Pred) != Subloop)
          ReverseCFGWorklist.push_back(Pred);
      }
    }
  }
  L->getSubLoopsVector().reserve(NumSubloops);
  L->reserveBlocks(NumBlocks);
}

/// Populate all loop data in a stable order during a single forward DFS.
template <class BlockT, class LoopT> class PopulateLoopsDFS {
  typedef GraphTraits<BlockT *> BlockTraits;
  typedef typename BlockTraits::ChildIteratorType SuccIterTy;

  LoopInfoBase<BlockT, LoopT> *LI;

public:
  PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}

  void traverse(BlockT *EntryBlock);

protected:
  void insertIntoLoop(BlockT *Block);
};

/// Top-level driver for the forward DFS within the loop.
template <class BlockT, class LoopT>
void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
  for (BlockT *BB : post_order(EntryBlock))
    insertIntoLoop(BB);
}

/// Add a single Block to its ancestor loops in PostOrder. If the block is a
/// subloop header, add the subloop to its parent in PostOrder, then reverse the
/// Block and Subloop vectors of the now complete subloop to achieve RPO.
template <class BlockT, class LoopT>
void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
  LoopT *Subloop = LI->getLoopFor(Block);
  if (Subloop && Block == Subloop->getHeader()) {
    // We reach this point once per subloop after processing all the blocks in
    // the subloop.
    if (Subloop->getParentLoop())
      Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
    else
      LI->addTopLevelLoop(Subloop);

    // For convenience, Blocks and Subloops are inserted in postorder. Reverse
    // the lists, except for the loop header, which is always at the beginning.
    Subloop->reverseBlock(1);
    std::reverse(Subloop->getSubLoopsVector().begin(),
                 Subloop->getSubLoopsVector().end());

    Subloop = Subloop->getParentLoop();
  }
  for (; Subloop; Subloop = Subloop->getParentLoop())
    Subloop->addBlockEntry(Block);
}

/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
/// interleaved with backward CFG traversals within each subloop
/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
/// this part of the algorithm is linear in the number of CFG edges. Subloop and
/// Block vectors are then populated during a single forward CFG traversal
/// (PopulateLoopDFS).
///
/// During the two CFG traversals each block is seen three times:
/// 1) Discovered and mapped by a reverse CFG traversal.
/// 2) Visited during a forward DFS CFG traversal.
/// 3) Reverse-inserted in the loop in postorder following forward DFS.
///
/// The Block vectors are inclusive, so step 3 requires loop-depth number of
/// insertions per block.
template <class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
  // Postorder traversal of the dominator tree.
  const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
  for (auto DomNode : post_order(DomRoot)) {

    BlockT *Header = DomNode->getBlock();
    SmallVector<BlockT *, 4> Backedges;

    // Check each predecessor of the potential loop header.
    for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
      // If Header dominates predBB, this is a new loop. Collect the backedges.
      if (DomTree.dominates(Header, Backedge) &&
          DomTree.isReachableFromEntry(Backedge)) {
        Backedges.push_back(Backedge);
      }
    }
    // Perform a backward CFG traversal to discover and map blocks in this loop.
    if (!Backedges.empty()) {
      LoopT *L = AllocateLoop(Header);
      discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
    }
  }
  // Perform a single forward CFG traversal to populate block and subloop
  // vectors for all loops.
  PopulateLoopsDFS<BlockT, LoopT> DFS(this);
  DFS.traverse(DomRoot->getBlock());
}

template <class BlockT, class LoopT>
SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
  SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
  // The outer-most loop actually goes into the result in the same relative
  // order as we walk it. But LoopInfo stores the top level loops in reverse
  // program order so for here we reverse it to get forward program order.
  // FIXME: If we change the order of LoopInfo we will want to remove the
  // reverse here.
  for (LoopT *RootL : reverse(*this)) {
    auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
    PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
                         PreOrderLoopsInRootL.end());
  }

  return PreOrderLoops;
}

template <class BlockT, class LoopT>
SmallVector<LoopT *, 4>
LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
  SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
  // The outer-most loop actually goes into the result in the same relative
  // order as we walk it. LoopInfo stores the top level loops in reverse
  // program order so we walk in order here.
  // FIXME: If we change the order of LoopInfo we will want to add a reverse
  // here.
  for (LoopT *RootL : *this) {
    assert(PreOrderWorklist.empty() &&
           "Must start with an empty preorder walk worklist.");
    PreOrderWorklist.push_back(RootL);
    do {
      LoopT *L = PreOrderWorklist.pop_back_val();
      // Sub-loops are stored in forward program order, but will process the
      // worklist backwards so we can just append them in order.
      PreOrderWorklist.append(L->begin(), L->end());
      PreOrderLoops.push_back(L);
    } while (!PreOrderWorklist.empty());
  }

  return PreOrderLoops;
}

// Debugging
template <class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
  for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
    TopLevelLoops[i]->print(OS);
#if 0
  for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
         E = BBMap.end(); I != E; ++I)
    OS << "BB '" << I->first->getName() << "' level = "
       << I->second->getLoopDepth() << "\n";
#endif
}

template <typename T>
bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
  llvm::sort(BB1);
  llvm::sort(BB2);
  return BB1 == BB2;
}

template <class BlockT, class LoopT>
void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
                               const LoopInfoBase<BlockT, LoopT> &LI,
                               const LoopT &L) {
  LoopHeaders[L.getHeader()] = &L;
  for (LoopT *SL : L)
    addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
}

#ifndef NDEBUG
template <class BlockT, class LoopT>
static void compareLoops(const LoopT *L, const LoopT *OtherL,
                         DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
  BlockT *H = L->getHeader();
  BlockT *OtherH = OtherL->getHeader();
  assert(H == OtherH &&
         "Mismatched headers even though found in the same map entry!");

  assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
         "Mismatched loop depth!");
  const LoopT *ParentL = L, *OtherParentL = OtherL;
  do {
    assert(ParentL->getHeader() == OtherParentL->getHeader() &&
           "Mismatched parent loop headers!");
    ParentL = ParentL->getParentLoop();
    OtherParentL = OtherParentL->getParentLoop();
  } while (ParentL);

  for (const LoopT *SubL : *L) {
    BlockT *SubH = SubL->getHeader();
    const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
    assert(OtherSubL && "Inner loop is missing in computed loop info!");
    OtherLoopHeaders.erase(SubH);
    compareLoops(SubL, OtherSubL, OtherLoopHeaders);
  }

  std::vector<BlockT *> BBs = L->getBlocks();
  std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
  assert(compareVectors(BBs, OtherBBs) &&
         "Mismatched basic blocks in the loops!");

  const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
  const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet = L->getBlocksSet();
  assert(BlocksSet.size() == OtherBlocksSet.size() &&
         std::all_of(BlocksSet.begin(), BlocksSet.end(),
                     [&OtherBlocksSet](const BlockT *BB) {
                       return OtherBlocksSet.count(BB);
                     }) &&
         "Mismatched basic blocks in BlocksSets!");
}
#endif

template <class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::verify(
    const DomTreeBase<BlockT> &DomTree) const {
  DenseSet<const LoopT *> Loops;
  for (iterator I = begin(), E = end(); I != E; ++I) {
    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
    (*I)->verifyLoopNest(&Loops);
  }

// Verify that blocks are mapped to valid loops.
#ifndef NDEBUG
  for (auto &Entry : BBMap) {
    const BlockT *BB = Entry.first;
    LoopT *L = Entry.second;
    assert(Loops.count(L) && "orphaned loop");
    assert(L->contains(BB) && "orphaned block");
    for (LoopT *ChildLoop : *L)
      assert(!ChildLoop->contains(BB) &&
             "BBMap should point to the innermost loop containing BB");
  }

  // Recompute LoopInfo to verify loops structure.
  LoopInfoBase<BlockT, LoopT> OtherLI;
  OtherLI.analyze(DomTree);

  // Build a map we can use to move from our LI to the computed one. This
  // allows us to ignore the particular order in any layer of the loop forest
  // while still comparing the structure.
  DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
  for (LoopT *L : OtherLI)
    addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);

  // Walk the top level loops and ensure there is a corresponding top-level
  // loop in the computed version and then recursively compare those loop
  // nests.
  for (LoopT *L : *this) {
    BlockT *Header = L->getHeader();
    const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
    assert(OtherL && "Top level loop is missing in computed loop info!");
    // Now that we've matched this loop, erase its header from the map.
    OtherLoopHeaders.erase(Header);
    // And recursively compare these loops.
    compareLoops(L, OtherL, OtherLoopHeaders);
  }

  // Any remaining entries in the map are loops which were found when computing
  // a fresh LoopInfo but not present in the current one.
  if (!OtherLoopHeaders.empty()) {
    for (const auto &HeaderAndLoop : OtherLoopHeaders)
      dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
    llvm_unreachable("Found new loops when recomputing LoopInfo!");
  }
#endif
}

} // End llvm namespace

#endif