reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
//===- llvm/ADT/SetVector.h - Set with insert order iteration ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a set that has insertion order iteration
// characteristics. This is useful for keeping a set of things that need to be
// visited later but in a deterministic order (insertion order). The interface
// is purposefully minimal.
//
// This file defines SetVector and SmallSetVector, which performs no allocations
// if the SetVector has less than a certain number of elements.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_SETVECTOR_H
#define LLVM_ADT_SETVECTOR_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <vector>

namespace llvm {

/// A vector that has set insertion semantics.
///
/// This adapter class provides a way to keep a set of things that also has the
/// property of a deterministic iteration order. The order of iteration is the
/// order of insertion.
template <typename T, typename Vector = std::vector<T>,
          typename Set = DenseSet<T>>
class SetVector {
public:
  using value_type = T;
  using key_type = T;
  using reference = T&;
  using const_reference = const T&;
  using set_type = Set;
  using vector_type = Vector;
  using iterator = typename vector_type::const_iterator;
  using const_iterator = typename vector_type::const_iterator;
  using reverse_iterator = typename vector_type::const_reverse_iterator;
  using const_reverse_iterator = typename vector_type::const_reverse_iterator;
  using size_type = typename vector_type::size_type;

  /// Construct an empty SetVector
  SetVector() = default;

  /// Initialize a SetVector with a range of elements
  template<typename It>
  SetVector(It Start, It End) {
    insert(Start, End);
  }

  ArrayRef<T> getArrayRef() const { return vector_; }

  /// Clear the SetVector and return the underlying vector.
  Vector takeVector() {
    set_.clear();
    return std::move(vector_);
  }

  /// Determine if the SetVector is empty or not.
  bool empty() const {
    return vector_.empty();
  }

  /// Determine the number of elements in the SetVector.
  size_type size() const {
    return vector_.size();
  }

  /// Get an iterator to the beginning of the SetVector.
  iterator begin() {
    return vector_.begin();
  }

  /// Get a const_iterator to the beginning of the SetVector.
  const_iterator begin() const {
    return vector_.begin();
  }

  /// Get an iterator to the end of the SetVector.
  iterator end() {
    return vector_.end();
  }

  /// Get a const_iterator to the end of the SetVector.
  const_iterator end() const {
    return vector_.end();
  }

  /// Get an reverse_iterator to the end of the SetVector.
  reverse_iterator rbegin() {
    return vector_.rbegin();
  }

  /// Get a const_reverse_iterator to the end of the SetVector.
  const_reverse_iterator rbegin() const {
    return vector_.rbegin();
  }

  /// Get a reverse_iterator to the beginning of the SetVector.
  reverse_iterator rend() {
    return vector_.rend();
  }

  /// Get a const_reverse_iterator to the beginning of the SetVector.
  const_reverse_iterator rend() const {
    return vector_.rend();
  }

  /// Return the first element of the SetVector.
  const T &front() const {
    assert(!empty() && "Cannot call front() on empty SetVector!");
    return vector_.front();
  }

  /// Return the last element of the SetVector.
  const T &back() const {
    assert(!empty() && "Cannot call back() on empty SetVector!");
    return vector_.back();
  }

  /// Index into the SetVector.
  const_reference operator[](size_type n) const {
    assert(n < vector_.size() && "SetVector access out of range!");
    return vector_[n];
  }

  /// Insert a new element into the SetVector.
  /// \returns true if the element was inserted into the SetVector.
  bool insert(const value_type &X) {
    bool result = set_.insert(X).second;
    if (result)
      vector_.push_back(X);
    return result;
  }

  /// Insert a range of elements into the SetVector.
  template<typename It>
  void insert(It Start, It End) {
    for (; Start != End; ++Start)
      if (set_.insert(*Start).second)
        vector_.push_back(*Start);
  }

  /// Remove an item from the set vector.
  bool remove(const value_type& X) {
    if (set_.erase(X)) {
      typename vector_type::iterator I = find(vector_, X);
      assert(I != vector_.end() && "Corrupted SetVector instances!");
      vector_.erase(I);
      return true;
    }
    return false;
  }

  /// Erase a single element from the set vector.
  /// \returns an iterator pointing to the next element that followed the
  /// element erased. This is the end of the SetVector if the last element is
  /// erased.
  iterator erase(iterator I) {
    const key_type &V = *I;
    assert(set_.count(V) && "Corrupted SetVector instances!");
    set_.erase(V);

    // FIXME: No need to use the non-const iterator when built with
    // std:vector.erase(const_iterator) as defined in C++11. This is for
    // compatibility with non-standard libstdc++ up to 4.8 (fixed in 4.9).
    auto NI = vector_.begin();
    std::advance(NI, std::distance<iterator>(NI, I));

    return vector_.erase(NI);
  }

  /// Remove items from the set vector based on a predicate function.
  ///
  /// This is intended to be equivalent to the following code, if we could
  /// write it:
  ///
  /// \code
  ///   V.erase(remove_if(V, P), V.end());
  /// \endcode
  ///
  /// However, SetVector doesn't expose non-const iterators, making any
  /// algorithm like remove_if impossible to use.
  ///
  /// \returns true if any element is removed.
  template <typename UnaryPredicate>
  bool remove_if(UnaryPredicate P) {
    typename vector_type::iterator I =
        llvm::remove_if(vector_, TestAndEraseFromSet<UnaryPredicate>(P, set_));
    if (I == vector_.end())
      return false;
    vector_.erase(I, vector_.end());
    return true;
  }

  /// Count the number of elements of a given key in the SetVector.
  /// \returns 0 if the element is not in the SetVector, 1 if it is.
  size_type count(const key_type &key) const {
    return set_.count(key);
  }

  /// Completely clear the SetVector
  void clear() {
    set_.clear();
    vector_.clear();
  }

  /// Remove the last element of the SetVector.
  void pop_back() {
    assert(!empty() && "Cannot remove an element from an empty SetVector!");
    set_.erase(back());
    vector_.pop_back();
  }

  LLVM_NODISCARD T pop_back_val() {
    T Ret = back();
    pop_back();
    return Ret;
  }

  bool operator==(const SetVector &that) const {
    return vector_ == that.vector_;
  }

  bool operator!=(const SetVector &that) const {
    return vector_ != that.vector_;
  }

  /// Compute This := This u S, return whether 'This' changed.
  /// TODO: We should be able to use set_union from SetOperations.h, but
  ///       SetVector interface is inconsistent with DenseSet.
  template <class STy>
  bool set_union(const STy &S) {
    bool Changed = false;

    for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE;
         ++SI)
      if (insert(*SI))
        Changed = true;

    return Changed;
  }

  /// Compute This := This - B
  /// TODO: We should be able to use set_subtract from SetOperations.h, but
  ///       SetVector interface is inconsistent with DenseSet.
  template <class STy>
  void set_subtract(const STy &S) {
    for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE;
         ++SI)
      remove(*SI);
  }

private:
  /// A wrapper predicate designed for use with std::remove_if.
  ///
  /// This predicate wraps a predicate suitable for use with std::remove_if to
  /// call set_.erase(x) on each element which is slated for removal.
  template <typename UnaryPredicate>
  class TestAndEraseFromSet {
    UnaryPredicate P;
    set_type &set_;

  public:
    TestAndEraseFromSet(UnaryPredicate P, set_type &set_)
        : P(std::move(P)), set_(set_) {}

    template <typename ArgumentT>
    bool operator()(const ArgumentT &Arg) {
      if (P(Arg)) {
        set_.erase(Arg);
        return true;
      }
      return false;
    }
  };

  set_type set_;         ///< The set.
  vector_type vector_;   ///< The vector.
};

/// A SetVector that performs no allocations if smaller than
/// a certain size.
template <typename T, unsigned N>
class SmallSetVector
    : public SetVector<T, SmallVector<T, N>, SmallDenseSet<T, N>> {
public:
  SmallSetVector() = default;

  /// Initialize a SmallSetVector with a range of elements
  template<typename It>
  SmallSetVector(It Start, It End) {
    this->insert(Start, End);
  }
};

} // end namespace llvm

#endif // LLVM_ADT_SETVECTOR_H