reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
//===- MustExecute.h - Is an instruction known to execute--------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Contains a collection of routines for determining if a given instruction is
/// guaranteed to execute if a given point in control flow is reached. The most
/// common example is an instruction within a loop being provably executed if we
/// branch to the header of it's containing loop.
///
/// There are two interfaces available to determine if an instruction is
/// executed once a given point in the control flow is reached:
/// 1) A loop-centric one derived from LoopSafetyInfo.
/// 2) A "must be executed context"-based one implemented in the
///    MustBeExecutedContextExplorer.
/// Please refer to the class comments for more information.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_MUSTEXECUTE_H
#define LLVM_ANALYSIS_MUSTEXECUTE_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/InstructionPrecedenceTracking.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instruction.h"

namespace llvm {

class Instruction;
class DominatorTree;
class Loop;

/// Captures loop safety information.
/// It keep information for loop blocks may throw exception or otherwise
/// exit abnormaly on any iteration of the loop which might actually execute
/// at runtime.  The primary way to consume this infromation is via
/// isGuaranteedToExecute below, but some callers bailout or fallback to
/// alternate reasoning if a loop contains any implicit control flow.
/// NOTE: LoopSafetyInfo contains cached information regarding loops and their
/// particular blocks. This information is only dropped on invocation of
/// computeLoopSafetyInfo. If the loop or any of its block is deleted, or if
/// any thrower instructions have been added or removed from them, or if the
/// control flow has changed, or in case of other meaningful modifications, the
/// LoopSafetyInfo needs to be recomputed. If a meaningful modifications to the
/// loop were made and the info wasn't recomputed properly, the behavior of all
/// methods except for computeLoopSafetyInfo is undefined.
class LoopSafetyInfo {
  // Used to update funclet bundle operands.
  DenseMap<BasicBlock *, ColorVector> BlockColors;

protected:
  /// Computes block colors.
  void computeBlockColors(const Loop *CurLoop);

public:
  /// Returns block colors map that is used to update funclet operand bundles.
  const DenseMap<BasicBlock *, ColorVector> &getBlockColors() const;

  /// Copy colors of block \p Old into the block \p New.
  void copyColors(BasicBlock *New, BasicBlock *Old);

  /// Returns true iff the block \p BB potentially may throw exception. It can
  /// be false-positive in cases when we want to avoid complex analysis.
  virtual bool blockMayThrow(const BasicBlock *BB) const = 0;

  /// Returns true iff any block of the loop for which this info is contains an
  /// instruction that may throw or otherwise exit abnormally.
  virtual bool anyBlockMayThrow() const = 0;

  /// Return true if we must reach the block \p BB under assumption that the
  /// loop \p CurLoop is entered.
  bool allLoopPathsLeadToBlock(const Loop *CurLoop, const BasicBlock *BB,
                               const DominatorTree *DT) const;

  /// Computes safety information for a loop checks loop body & header for
  /// the possibility of may throw exception, it takes LoopSafetyInfo and loop
  /// as argument. Updates safety information in LoopSafetyInfo argument.
  /// Note: This is defined to clear and reinitialize an already initialized
  /// LoopSafetyInfo.  Some callers rely on this fact.
  virtual void computeLoopSafetyInfo(const Loop *CurLoop) = 0;

  /// Returns true if the instruction in a loop is guaranteed to execute at
  /// least once (under the assumption that the loop is entered).
  virtual bool isGuaranteedToExecute(const Instruction &Inst,
                                     const DominatorTree *DT,
                                     const Loop *CurLoop) const = 0;

  LoopSafetyInfo() = default;

  virtual ~LoopSafetyInfo() = default;
};


/// Simple and conservative implementation of LoopSafetyInfo that can give
/// false-positive answers to its queries in order to avoid complicated
/// analysis.
class SimpleLoopSafetyInfo: public LoopSafetyInfo {
  bool MayThrow = false;       // The current loop contains an instruction which
                               // may throw.
  bool HeaderMayThrow = false; // Same as previous, but specific to loop header

public:
  virtual bool blockMayThrow(const BasicBlock *BB) const;

  virtual bool anyBlockMayThrow() const;

  virtual void computeLoopSafetyInfo(const Loop *CurLoop);

  virtual bool isGuaranteedToExecute(const Instruction &Inst,
                                     const DominatorTree *DT,
                                     const Loop *CurLoop) const;

  SimpleLoopSafetyInfo() : LoopSafetyInfo() {};

  virtual ~SimpleLoopSafetyInfo() {};
};

/// This implementation of LoopSafetyInfo use ImplicitControlFlowTracking to
/// give precise answers on "may throw" queries. This implementation uses cache
/// that should be invalidated by calling the methods insertInstructionTo and
/// removeInstruction whenever we modify a basic block's contents by adding or
/// removing instructions.
class ICFLoopSafetyInfo: public LoopSafetyInfo {
  bool MayThrow = false;       // The current loop contains an instruction which
                               // may throw.
  // Contains information about implicit control flow in this loop's blocks.
  mutable ImplicitControlFlowTracking ICF;
  // Contains information about instruction that may possibly write memory.
  mutable MemoryWriteTracking MW;

public:
  virtual bool blockMayThrow(const BasicBlock *BB) const;

  virtual bool anyBlockMayThrow() const;

  virtual void computeLoopSafetyInfo(const Loop *CurLoop);

  virtual bool isGuaranteedToExecute(const Instruction &Inst,
                                     const DominatorTree *DT,
                                     const Loop *CurLoop) const;

  /// Returns true if we could not execute a memory-modifying instruction before
  /// we enter \p BB under assumption that \p CurLoop is entered.
  bool doesNotWriteMemoryBefore(const BasicBlock *BB, const Loop *CurLoop)
      const;

  /// Returns true if we could not execute a memory-modifying instruction before
  /// we execute \p I under assumption that \p CurLoop is entered.
  bool doesNotWriteMemoryBefore(const Instruction &I, const Loop *CurLoop)
      const;

  /// Inform the safety info that we are planning to insert a new instruction
  /// \p Inst into the basic block \p BB. It will make all cache updates to keep
  /// it correct after this insertion.
  void insertInstructionTo(const Instruction *Inst, const BasicBlock *BB);

  /// Inform safety info that we are planning to remove the instruction \p Inst
  /// from its block. It will make all cache updates to keep it correct after
  /// this removal.
  void removeInstruction(const Instruction *Inst);

  ICFLoopSafetyInfo(DominatorTree *DT) : LoopSafetyInfo(), ICF(DT), MW(DT) {};

  virtual ~ICFLoopSafetyInfo() {};
};

struct MustBeExecutedContextExplorer;

/// Must be executed iterators visit stretches of instructions that are
/// guaranteed to be executed together, potentially with other instruction
/// executed in-between.
///
/// Given the following code, and assuming all statements are single
/// instructions which transfer execution to the successor (see
/// isGuaranteedToTransferExecutionToSuccessor), there are two possible
/// outcomes. If we start the iterator at A, B, or E, we will visit only A, B,
/// and E. If we start at C or D, we will visit all instructions A-E.
///
/// \code
///   A;
///   B;
///   if (...) {
///     C;
///     D;
///   }
///   E;
/// \endcode
///
///
/// Below is the example extneded with instructions F and G. Now we assume F
/// might not transfer execution to it's successor G. As a result we get the
/// following visit sets:
///
/// Start Instruction   | Visit Set
/// A                   | A, B,       E, F
///    B                | A, B,       E, F
///       C             | A, B, C, D, E, F
///          D          | A, B, C, D, E, F
///             E       | A, B,       E, F
///                F    | A, B,       E, F
///                   G | A, B,       E, F, G
///
///
/// \code
///   A;
///   B;
///   if (...) {
///     C;
///     D;
///   }
///   E;
///   F;  // Might not transfer execution to its successor G.
///   G;
/// \endcode
///
///
/// A more complex example involving conditionals, loops, break, and continue
/// is shown below. We again assume all instructions will transmit control to
/// the successor and we assume we can prove the inner loop to be finite. We
/// omit non-trivial branch conditions as the exploration is oblivious to them.
/// Constant branches are assumed to be unconditional in the CFG. The resulting
/// visist sets are shown in the table below.
///
/// \code
///   A;
///   while (true) {
///     B;
///     if (...)
///       C;
///     if (...)
///       continue;
///     D;
///     if (...)
///       break;
///     do {
///       if (...)
///         continue;
///       E;
///     } while (...);
///     F;
///   }
///   G;
/// \endcode
///
/// Start Instruction    | Visit Set
/// A                    | A, B
///    B                 | A, B
///       C              | A, B, C
///          D           | A, B,    D
///             E        | A, B,    D, E, F
///                F     | A, B,    D,    F
///                   G  | A, B,    D,       G
///
///
/// Note that the examples show optimal visist sets but not necessarily the ones
/// derived by the explorer depending on the available CFG analyses (see
/// MustBeExecutedContextExplorer). Also note that we, depending on the options,
/// the visit set can contain instructions from other functions.
struct MustBeExecutedIterator {
  /// Type declarations that make his class an input iterator.
  ///{
  typedef const Instruction *value_type;
  typedef std::ptrdiff_t difference_type;
  typedef const Instruction **pointer;
  typedef const Instruction *&reference;
  typedef std::input_iterator_tag iterator_category;
  ///}

  using ExplorerTy = MustBeExecutedContextExplorer;

  MustBeExecutedIterator(const MustBeExecutedIterator &Other)
      : Visited(Other.Visited), Explorer(Other.Explorer),
        CurInst(Other.CurInst) {}

  MustBeExecutedIterator(MustBeExecutedIterator &&Other)
      : Visited(std::move(Other.Visited)), Explorer(Other.Explorer),
        CurInst(Other.CurInst) {}

  MustBeExecutedIterator &operator=(MustBeExecutedIterator &&Other) {
    if (this != &Other) {
      std::swap(Visited, Other.Visited);
      std::swap(CurInst, Other.CurInst);
    }
    return *this;
  }

  ~MustBeExecutedIterator() {}

  /// Pre- and post-increment operators.
  ///{
  MustBeExecutedIterator &operator++() {
    CurInst = advance();
    return *this;
  }

  MustBeExecutedIterator operator++(int) {
    MustBeExecutedIterator tmp(*this);
    operator++();
    return tmp;
  }
  ///}

  /// Equality and inequality operators. Note that we ignore the history here.
  ///{
  bool operator==(const MustBeExecutedIterator &Other) const {
    return CurInst == Other.CurInst;
  }

  bool operator!=(const MustBeExecutedIterator &Other) const {
    return !(*this == Other);
  }
  ///}

  /// Return the underlying instruction.
  const Instruction *&operator*() { return CurInst; }
  const Instruction *getCurrentInst() const { return CurInst; }

  /// Return true if \p I was encountered by this iterator already.
  bool count(const Instruction *I) const { return Visited.count(I); }

private:
  using VisitedSetTy = DenseSet<const Instruction *>;

  /// Private constructors.
  MustBeExecutedIterator(ExplorerTy &Explorer, const Instruction *I);

  /// Reset the iterator to its initial state pointing at \p I.
  void reset(const Instruction *I);

  /// Try to advance one of the underlying positions (Head or Tail).
  ///
  /// \return The next instruction in the must be executed context, or nullptr
  ///         if none was found.
  const Instruction *advance();

  /// A set to track the visited instructions in order to deal with endless
  /// loops and recursion.
  VisitedSetTy Visited;

  /// A reference to the explorer that created this iterator.
  ExplorerTy &Explorer;

  /// The instruction we are currently exposing to the user. There is always an
  /// instruction that we know is executed with the given program point,
  /// initially the program point itself.
  const Instruction *CurInst;

  friend struct MustBeExecutedContextExplorer;
};

/// A "must be executed context" for a given program point PP is the set of
/// instructions, potentially before and after PP, that are executed always when
/// PP is reached. The MustBeExecutedContextExplorer an interface to explore
/// "must be executed contexts" in a module through the use of
/// MustBeExecutedIterator.
///
/// The explorer exposes "must be executed iterators" that traverse the must be
/// executed context. There is little information sharing between iterators as
/// the expected use case involves few iterators for "far apart" instructions.
/// If that changes, we should consider caching more intermediate results.
struct MustBeExecutedContextExplorer {

  /// In the description of the parameters we use PP to denote a program point
  /// for which the must be executed context is explored, or put differently,
  /// for which the MustBeExecutedIterator is created.
  ///
  /// \param ExploreInterBlock    Flag to indicate if instructions in blocks
  ///                             other than the parent of PP should be
  ///                             explored.
  MustBeExecutedContextExplorer(bool ExploreInterBlock)
      : ExploreInterBlock(ExploreInterBlock), EndIterator(*this, nullptr) {}

  /// Clean up the dynamically allocated iterators.
  ~MustBeExecutedContextExplorer() {
    DeleteContainerSeconds(InstructionIteratorMap);
  }

  /// Iterator-based interface. \see MustBeExecutedIterator.
  ///{
  using iterator = MustBeExecutedIterator;
  using const_iterator = const MustBeExecutedIterator;

  /// Return an iterator to explore the context around \p PP.
  iterator &begin(const Instruction *PP) {
    auto *&It = InstructionIteratorMap[PP];
    if (!It)
      It = new iterator(*this, PP);
    return *It;
  }

  /// Return an iterator to explore the cached context around \p PP.
  const_iterator &begin(const Instruction *PP) const {
    return *InstructionIteratorMap.lookup(PP);
  }

  /// Return an universal end iterator.
  ///{
  iterator &end() { return EndIterator; }
  iterator &end(const Instruction *) { return EndIterator; }

  const_iterator &end() const { return EndIterator; }
  const_iterator &end(const Instruction *) const { return EndIterator; }
  ///}

  /// Return an iterator range to explore the context around \p PP.
  llvm::iterator_range<iterator> range(const Instruction *PP) {
    return llvm::make_range(begin(PP), end(PP));
  }

  /// Return an iterator range to explore the cached context around \p PP.
  llvm::iterator_range<const_iterator> range(const Instruction *PP) const {
    return llvm::make_range(begin(PP), end(PP));
  }
  ///}

  /// Return the next instruction that is guaranteed to be executed after \p PP.
  ///
  /// \param It              The iterator that is used to traverse the must be
  ///                        executed context.
  /// \param PP              The program point for which the next instruction
  ///                        that is guaranteed to execute is determined.
  const Instruction *
  getMustBeExecutedNextInstruction(MustBeExecutedIterator &It,
                                   const Instruction *PP);

  /// Parameter that limit the performed exploration. See the constructor for
  /// their meaning.
  ///{
  const bool ExploreInterBlock;
  ///}

private:
  /// Map from instructions to associated must be executed iterators.
  DenseMap<const Instruction *, MustBeExecutedIterator *>
      InstructionIteratorMap;

  /// A unique end iterator.
  MustBeExecutedIterator EndIterator;
};

} // namespace llvm

#endif