reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform manipulations on basic blocks, and
// instructions contained within basic blocks.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "basicblock-utils"

void llvm::DetatchDeadBlocks(
    ArrayRef<BasicBlock *> BBs,
    SmallVectorImpl<DominatorTree::UpdateType> *Updates,
    bool KeepOneInputPHIs) {
  for (auto *BB : BBs) {
    // Loop through all of our successors and make sure they know that one
    // of their predecessors is going away.
    SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
    for (BasicBlock *Succ : successors(BB)) {
      Succ->removePredecessor(BB, KeepOneInputPHIs);
      if (Updates && UniqueSuccessors.insert(Succ).second)
        Updates->push_back({DominatorTree::Delete, BB, Succ});
    }

    // Zap all the instructions in the block.
    while (!BB->empty()) {
      Instruction &I = BB->back();
      // If this instruction is used, replace uses with an arbitrary value.
      // Because control flow can't get here, we don't care what we replace the
      // value with.  Note that since this block is unreachable, and all values
      // contained within it must dominate their uses, that all uses will
      // eventually be removed (they are themselves dead).
      if (!I.use_empty())
        I.replaceAllUsesWith(UndefValue::get(I.getType()));
      BB->getInstList().pop_back();
    }
    new UnreachableInst(BB->getContext(), BB);
    assert(BB->getInstList().size() == 1 &&
           isa<UnreachableInst>(BB->getTerminator()) &&
           "The successor list of BB isn't empty before "
           "applying corresponding DTU updates.");
  }
}

void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
                           bool KeepOneInputPHIs) {
  DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
}

void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
                            bool KeepOneInputPHIs) {
#ifndef NDEBUG
  // Make sure that all predecessors of each dead block is also dead.
  SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
  assert(Dead.size() == BBs.size() && "Duplicating blocks?");
  for (auto *BB : Dead)
    for (BasicBlock *Pred : predecessors(BB))
      assert(Dead.count(Pred) && "All predecessors must be dead!");
#endif

  SmallVector<DominatorTree::UpdateType, 4> Updates;
  DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);

  if (DTU)
    DTU->applyUpdatesPermissive(Updates);

  for (BasicBlock *BB : BBs)
    if (DTU)
      DTU->deleteBB(BB);
    else
      BB->eraseFromParent();
}

bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
                                      bool KeepOneInputPHIs) {
  df_iterator_default_set<BasicBlock*> Reachable;

  // Mark all reachable blocks.
  for (BasicBlock *BB : depth_first_ext(&F, Reachable))
    (void)BB/* Mark all reachable blocks */;

  // Collect all dead blocks.
  std::vector<BasicBlock*> DeadBlocks;
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (!Reachable.count(&*I)) {
      BasicBlock *BB = &*I;
      DeadBlocks.push_back(BB);
    }

  // Delete the dead blocks.
  DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);

  return !DeadBlocks.empty();
}

void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
                                   MemoryDependenceResults *MemDep) {
  if (!isa<PHINode>(BB->begin())) return;

  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
    if (PN->getIncomingValue(0) != PN)
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
    else
      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));

    if (MemDep)
      MemDep->removeInstruction(PN);  // Memdep updates AA itself.

    PN->eraseFromParent();
  }
}

bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
  // Recursively deleting a PHI may cause multiple PHIs to be deleted
  // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
  SmallVector<WeakTrackingVH, 8> PHIs;
  for (PHINode &PN : BB->phis())
    PHIs.push_back(&PN);

  bool Changed = false;
  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
      Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);

  return Changed;
}

bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
                                     LoopInfo *LI, MemorySSAUpdater *MSSAU,
                                     MemoryDependenceResults *MemDep,
                                     bool PredecessorWithTwoSuccessors) {
  if (BB->hasAddressTaken())
    return false;

  // Can't merge if there are multiple predecessors, or no predecessors.
  BasicBlock *PredBB = BB->getUniquePredecessor();
  if (!PredBB) return false;

  // Don't break self-loops.
  if (PredBB == BB) return false;
  // Don't break unwinding instructions.
  if (PredBB->getTerminator()->isExceptionalTerminator())
    return false;

  // Can't merge if there are multiple distinct successors.
  if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
    return false;

  // Currently only allow PredBB to have two predecessors, one being BB.
  // Update BI to branch to BB's only successor instead of BB.
  BranchInst *PredBB_BI;
  BasicBlock *NewSucc = nullptr;
  unsigned FallThruPath;
  if (PredecessorWithTwoSuccessors) {
    if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
      return false;
    BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
    if (!BB_JmpI || !BB_JmpI->isUnconditional())
      return false;
    NewSucc = BB_JmpI->getSuccessor(0);
    FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
  }

  // Can't merge if there is PHI loop.
  for (PHINode &PN : BB->phis())
    for (Value *IncValue : PN.incoming_values())
      if (IncValue == &PN)
        return false;

  LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
                    << PredBB->getName() << "\n");

  // Begin by getting rid of unneeded PHIs.
  SmallVector<AssertingVH<Value>, 4> IncomingValues;
  if (isa<PHINode>(BB->front())) {
    for (PHINode &PN : BB->phis())
      if (!isa<PHINode>(PN.getIncomingValue(0)) ||
          cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
        IncomingValues.push_back(PN.getIncomingValue(0));
    FoldSingleEntryPHINodes(BB, MemDep);
  }

  // DTU update: Collect all the edges that exit BB.
  // These dominator edges will be redirected from Pred.
  std::vector<DominatorTree::UpdateType> Updates;
  if (DTU) {
    Updates.reserve(1 + (2 * succ_size(BB)));
    // Add insert edges first. Experimentally, for the particular case of two
    // blocks that can be merged, with a single successor and single predecessor
    // respectively, it is beneficial to have all insert updates first. Deleting
    // edges first may lead to unreachable blocks, followed by inserting edges
    // making the blocks reachable again. Such DT updates lead to high compile
    // times. We add inserts before deletes here to reduce compile time.
    for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
      // This successor of BB may already have PredBB as a predecessor.
      if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
        Updates.push_back({DominatorTree::Insert, PredBB, *I});
    for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
      Updates.push_back({DominatorTree::Delete, BB, *I});
    Updates.push_back({DominatorTree::Delete, PredBB, BB});
  }

  Instruction *PTI = PredBB->getTerminator();
  Instruction *STI = BB->getTerminator();
  Instruction *Start = &*BB->begin();
  // If there's nothing to move, mark the starting instruction as the last
  // instruction in the block.
  if (Start == STI)
    Start = PTI;

  // Move all definitions in the successor to the predecessor...
  PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
                               BB->begin(), STI->getIterator());

  if (MSSAU)
    MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);

  // Make all PHI nodes that referred to BB now refer to Pred as their
  // source...
  BB->replaceAllUsesWith(PredBB);

  if (PredecessorWithTwoSuccessors) {
    // Delete the unconditional branch from BB.
    BB->getInstList().pop_back();

    // Update branch in the predecessor.
    PredBB_BI->setSuccessor(FallThruPath, NewSucc);
  } else {
    // Delete the unconditional branch from the predecessor.
    PredBB->getInstList().pop_back();

    // Move terminator instruction.
    PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
  }
  // Add unreachable to now empty BB.
  new UnreachableInst(BB->getContext(), BB);

  // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
  for (auto Incoming : IncomingValues) {
    if (isa<Instruction>(*Incoming)) {
      SmallVector<DbgValueInst *, 2> DbgValues;
      SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
          DbgValueSet;
      llvm::findDbgValues(DbgValues, Incoming);
      for (auto &DVI : DbgValues) {
        auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
        if (!R.second)
          DVI->eraseFromParent();
      }
    }
  }

  // Inherit predecessors name if it exists.
  if (!PredBB->hasName())
    PredBB->takeName(BB);

  if (LI)
    LI->removeBlock(BB);

  if (MemDep)
    MemDep->invalidateCachedPredecessors();

  // Finally, erase the old block and update dominator info.
  if (DTU) {
    assert(BB->getInstList().size() == 1 &&
           isa<UnreachableInst>(BB->getTerminator()) &&
           "The successor list of BB isn't empty before "
           "applying corresponding DTU updates.");
    DTU->applyUpdatesPermissive(Updates);
    DTU->deleteBB(BB);
  } else {
    BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
  }

  return true;
}

void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
                                BasicBlock::iterator &BI, Value *V) {
  Instruction &I = *BI;
  // Replaces all of the uses of the instruction with uses of the value
  I.replaceAllUsesWith(V);

  // Make sure to propagate a name if there is one already.
  if (I.hasName() && !V->hasName())
    V->takeName(&I);

  // Delete the unnecessary instruction now...
  BI = BIL.erase(BI);
}

void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
                               BasicBlock::iterator &BI, Instruction *I) {
  assert(I->getParent() == nullptr &&
         "ReplaceInstWithInst: Instruction already inserted into basic block!");

  // Copy debug location to newly added instruction, if it wasn't already set
  // by the caller.
  if (!I->getDebugLoc())
    I->setDebugLoc(BI->getDebugLoc());

  // Insert the new instruction into the basic block...
  BasicBlock::iterator New = BIL.insert(BI, I);

  // Replace all uses of the old instruction, and delete it.
  ReplaceInstWithValue(BIL, BI, I);

  // Move BI back to point to the newly inserted instruction
  BI = New;
}

void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
  BasicBlock::iterator BI(From);
  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
}

BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
                            LoopInfo *LI, MemorySSAUpdater *MSSAU) {
  unsigned SuccNum = GetSuccessorNumber(BB, Succ);

  // If this is a critical edge, let SplitCriticalEdge do it.
  Instruction *LatchTerm = BB->getTerminator();
  if (SplitCriticalEdge(
          LatchTerm, SuccNum,
          CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
    return LatchTerm->getSuccessor(SuccNum);

  // If the edge isn't critical, then BB has a single successor or Succ has a
  // single pred.  Split the block.
  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
    // If the successor only has a single pred, split the top of the successor
    // block.
    assert(SP == BB && "CFG broken");
    SP = nullptr;
    return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
  }

  // Otherwise, if BB has a single successor, split it at the bottom of the
  // block.
  assert(BB->getTerminator()->getNumSuccessors() == 1 &&
         "Should have a single succ!");
  return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
}

unsigned
llvm::SplitAllCriticalEdges(Function &F,
                            const CriticalEdgeSplittingOptions &Options) {
  unsigned NumBroken = 0;
  for (BasicBlock &BB : F) {
    Instruction *TI = BB.getTerminator();
    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
        if (SplitCriticalEdge(TI, i, Options))
          ++NumBroken;
  }
  return NumBroken;
}

BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
                             DominatorTree *DT, LoopInfo *LI,
                             MemorySSAUpdater *MSSAU, const Twine &BBName) {
  BasicBlock::iterator SplitIt = SplitPt->getIterator();
  while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
    ++SplitIt;
  std::string Name = BBName.str();
  BasicBlock *New = Old->splitBasicBlock(
      SplitIt, Name.empty() ? Old->getName() + ".split" : Name);

  // The new block lives in whichever loop the old one did. This preserves
  // LCSSA as well, because we force the split point to be after any PHI nodes.
  if (LI)
    if (Loop *L = LI->getLoopFor(Old))
      L->addBasicBlockToLoop(New, *LI);

  if (DT)
    // Old dominates New. New node dominates all other nodes dominated by Old.
    if (DomTreeNode *OldNode = DT->getNode(Old)) {
      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());

      DomTreeNode *NewNode = DT->addNewBlock(New, Old);
      for (DomTreeNode *I : Children)
        DT->changeImmediateDominator(I, NewNode);
    }

  // Move MemoryAccesses still tracked in Old, but part of New now.
  // Update accesses in successor blocks accordingly.
  if (MSSAU)
    MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));

  return New;
}

/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
                                      ArrayRef<BasicBlock *> Preds,
                                      DominatorTree *DT, LoopInfo *LI,
                                      MemorySSAUpdater *MSSAU,
                                      bool PreserveLCSSA, bool &HasLoopExit) {
  // Update dominator tree if available.
  if (DT) {
    if (OldBB == DT->getRootNode()->getBlock()) {
      assert(NewBB == &NewBB->getParent()->getEntryBlock());
      DT->setNewRoot(NewBB);
    } else {
      // Split block expects NewBB to have a non-empty set of predecessors.
      DT->splitBlock(NewBB);
    }
  }

  // Update MemoryPhis after split if MemorySSA is available
  if (MSSAU)
    MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);

  // The rest of the logic is only relevant for updating the loop structures.
  if (!LI)
    return;

  assert(DT && "DT should be available to update LoopInfo!");
  Loop *L = LI->getLoopFor(OldBB);

  // If we need to preserve loop analyses, collect some information about how
  // this split will affect loops.
  bool IsLoopEntry = !!L;
  bool SplitMakesNewLoopHeader = false;
  for (BasicBlock *Pred : Preds) {
    // Preds that are not reachable from entry should not be used to identify if
    // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
    // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
    // as true and make the NewBB the header of some loop. This breaks LI.
    if (!DT->isReachableFromEntry(Pred))
      continue;
    // If we need to preserve LCSSA, determine if any of the preds is a loop
    // exit.
    if (PreserveLCSSA)
      if (Loop *PL = LI->getLoopFor(Pred))
        if (!PL->contains(OldBB))
          HasLoopExit = true;

    // If we need to preserve LoopInfo, note whether any of the preds crosses
    // an interesting loop boundary.
    if (!L)
      continue;
    if (L->contains(Pred))
      IsLoopEntry = false;
    else
      SplitMakesNewLoopHeader = true;
  }

  // Unless we have a loop for OldBB, nothing else to do here.
  if (!L)
    return;

  if (IsLoopEntry) {
    // Add the new block to the nearest enclosing loop (and not an adjacent
    // loop). To find this, examine each of the predecessors and determine which
    // loops enclose them, and select the most-nested loop which contains the
    // loop containing the block being split.
    Loop *InnermostPredLoop = nullptr;
    for (BasicBlock *Pred : Preds) {
      if (Loop *PredLoop = LI->getLoopFor(Pred)) {
        // Seek a loop which actually contains the block being split (to avoid
        // adjacent loops).
        while (PredLoop && !PredLoop->contains(OldBB))
          PredLoop = PredLoop->getParentLoop();

        // Select the most-nested of these loops which contains the block.
        if (PredLoop && PredLoop->contains(OldBB) &&
            (!InnermostPredLoop ||
             InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
          InnermostPredLoop = PredLoop;
      }
    }

    if (InnermostPredLoop)
      InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
  } else {
    L->addBasicBlockToLoop(NewBB, *LI);
    if (SplitMakesNewLoopHeader)
      L->moveToHeader(NewBB);
  }
}

/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
/// This also updates AliasAnalysis, if available.
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
                           ArrayRef<BasicBlock *> Preds, BranchInst *BI,
                           bool HasLoopExit) {
  // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
  SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
  for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
    PHINode *PN = cast<PHINode>(I++);

    // Check to see if all of the values coming in are the same.  If so, we
    // don't need to create a new PHI node, unless it's needed for LCSSA.
    Value *InVal = nullptr;
    if (!HasLoopExit) {
      InVal = PN->getIncomingValueForBlock(Preds[0]);
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        if (!PredSet.count(PN->getIncomingBlock(i)))
          continue;
        if (!InVal)
          InVal = PN->getIncomingValue(i);
        else if (InVal != PN->getIncomingValue(i)) {
          InVal = nullptr;
          break;
        }
      }
    }

    if (InVal) {
      // If all incoming values for the new PHI would be the same, just don't
      // make a new PHI.  Instead, just remove the incoming values from the old
      // PHI.

      // NOTE! This loop walks backwards for a reason! First off, this minimizes
      // the cost of removal if we end up removing a large number of values, and
      // second off, this ensures that the indices for the incoming values
      // aren't invalidated when we remove one.
      for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
        if (PredSet.count(PN->getIncomingBlock(i)))
          PN->removeIncomingValue(i, false);

      // Add an incoming value to the PHI node in the loop for the preheader
      // edge.
      PN->addIncoming(InVal, NewBB);
      continue;
    }

    // If the values coming into the block are not the same, we need a new
    // PHI.
    // Create the new PHI node, insert it into NewBB at the end of the block
    PHINode *NewPHI =
        PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);

    // NOTE! This loop walks backwards for a reason! First off, this minimizes
    // the cost of removal if we end up removing a large number of values, and
    // second off, this ensures that the indices for the incoming values aren't
    // invalidated when we remove one.
    for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
      BasicBlock *IncomingBB = PN->getIncomingBlock(i);
      if (PredSet.count(IncomingBB)) {
        Value *V = PN->removeIncomingValue(i, false);
        NewPHI->addIncoming(V, IncomingBB);
      }
    }

    PN->addIncoming(NewPHI, NewBB);
  }
}

BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
                                         ArrayRef<BasicBlock *> Preds,
                                         const char *Suffix, DominatorTree *DT,
                                         LoopInfo *LI, MemorySSAUpdater *MSSAU,
                                         bool PreserveLCSSA) {
  // Do not attempt to split that which cannot be split.
  if (!BB->canSplitPredecessors())
    return nullptr;

  // For the landingpads we need to act a bit differently.
  // Delegate this work to the SplitLandingPadPredecessors.
  if (BB->isLandingPad()) {
    SmallVector<BasicBlock*, 2> NewBBs;
    std::string NewName = std::string(Suffix) + ".split-lp";

    SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
                                LI, MSSAU, PreserveLCSSA);
    return NewBBs[0];
  }

  // Create new basic block, insert right before the original block.
  BasicBlock *NewBB = BasicBlock::Create(
      BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);

  // The new block unconditionally branches to the old block.
  BranchInst *BI = BranchInst::Create(BB, NewBB);
  // Splitting the predecessors of a loop header creates a preheader block.
  if (LI && LI->isLoopHeader(BB))
    // Using the loop start line number prevents debuggers stepping into the
    // loop body for this instruction.
    BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
  else
    BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());

  // Move the edges from Preds to point to NewBB instead of BB.
  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    // This is slightly more strict than necessary; the minimum requirement
    // is that there be no more than one indirectbr branching to BB. And
    // all BlockAddress uses would need to be updated.
    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
           "Cannot split an edge from an IndirectBrInst");
    assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
           "Cannot split an edge from a CallBrInst");
    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
  }

  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
  // node becomes an incoming value for BB's phi node.  However, if the Preds
  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
  // account for the newly created predecessor.
  if (Preds.empty()) {
    // Insert dummy values as the incoming value.
    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
  }

  // Update DominatorTree, LoopInfo, and LCCSA analysis information.
  bool HasLoopExit = false;
  UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
                            HasLoopExit);

  if (!Preds.empty()) {
    // Update the PHI nodes in BB with the values coming from NewBB.
    UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
  }

  return NewBB;
}

void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
                                       ArrayRef<BasicBlock *> Preds,
                                       const char *Suffix1, const char *Suffix2,
                                       SmallVectorImpl<BasicBlock *> &NewBBs,
                                       DominatorTree *DT, LoopInfo *LI,
                                       MemorySSAUpdater *MSSAU,
                                       bool PreserveLCSSA) {
  assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");

  // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
  // it right before the original block.
  BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
                                          OrigBB->getName() + Suffix1,
                                          OrigBB->getParent(), OrigBB);
  NewBBs.push_back(NewBB1);

  // The new block unconditionally branches to the old block.
  BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
  BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());

  // Move the edges from Preds to point to NewBB1 instead of OrigBB.
  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    // This is slightly more strict than necessary; the minimum requirement
    // is that there be no more than one indirectbr branching to BB. And
    // all BlockAddress uses would need to be updated.
    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
           "Cannot split an edge from an IndirectBrInst");
    Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
  }

  bool HasLoopExit = false;
  UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
                            HasLoopExit);

  // Update the PHI nodes in OrigBB with the values coming from NewBB1.
  UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);

  // Move the remaining edges from OrigBB to point to NewBB2.
  SmallVector<BasicBlock*, 8> NewBB2Preds;
  for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
       i != e; ) {
    BasicBlock *Pred = *i++;
    if (Pred == NewBB1) continue;
    assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
           "Cannot split an edge from an IndirectBrInst");
    NewBB2Preds.push_back(Pred);
    e = pred_end(OrigBB);
  }

  BasicBlock *NewBB2 = nullptr;
  if (!NewBB2Preds.empty()) {
    // Create another basic block for the rest of OrigBB's predecessors.
    NewBB2 = BasicBlock::Create(OrigBB->getContext(),
                                OrigBB->getName() + Suffix2,
                                OrigBB->getParent(), OrigBB);
    NewBBs.push_back(NewBB2);

    // The new block unconditionally branches to the old block.
    BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
    BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());

    // Move the remaining edges from OrigBB to point to NewBB2.
    for (BasicBlock *NewBB2Pred : NewBB2Preds)
      NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);

    // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    HasLoopExit = false;
    UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
                              PreserveLCSSA, HasLoopExit);

    // Update the PHI nodes in OrigBB with the values coming from NewBB2.
    UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
  }

  LandingPadInst *LPad = OrigBB->getLandingPadInst();
  Instruction *Clone1 = LPad->clone();
  Clone1->setName(Twine("lpad") + Suffix1);
  NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);

  if (NewBB2) {
    Instruction *Clone2 = LPad->clone();
    Clone2->setName(Twine("lpad") + Suffix2);
    NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);

    // Create a PHI node for the two cloned landingpad instructions only
    // if the original landingpad instruction has some uses.
    if (!LPad->use_empty()) {
      assert(!LPad->getType()->isTokenTy() &&
             "Split cannot be applied if LPad is token type. Otherwise an "
             "invalid PHINode of token type would be created.");
      PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
      PN->addIncoming(Clone1, NewBB1);
      PN->addIncoming(Clone2, NewBB2);
      LPad->replaceAllUsesWith(PN);
    }
    LPad->eraseFromParent();
  } else {
    // There is no second clone. Just replace the landing pad with the first
    // clone.
    LPad->replaceAllUsesWith(Clone1);
    LPad->eraseFromParent();
  }
}

ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
                                             BasicBlock *Pred,
                                             DomTreeUpdater *DTU) {
  Instruction *UncondBranch = Pred->getTerminator();
  // Clone the return and add it to the end of the predecessor.
  Instruction *NewRet = RI->clone();
  Pred->getInstList().push_back(NewRet);

  // If the return instruction returns a value, and if the value was a
  // PHI node in "BB", propagate the right value into the return.
  for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
       i != e; ++i) {
    Value *V = *i;
    Instruction *NewBC = nullptr;
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
      // Return value might be bitcasted. Clone and insert it before the
      // return instruction.
      V = BCI->getOperand(0);
      NewBC = BCI->clone();
      Pred->getInstList().insert(NewRet->getIterator(), NewBC);
      *i = NewBC;
    }
    if (PHINode *PN = dyn_cast<PHINode>(V)) {
      if (PN->getParent() == BB) {
        if (NewBC)
          NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
        else
          *i = PN->getIncomingValueForBlock(Pred);
      }
    }
  }

  // Update any PHI nodes in the returning block to realize that we no
  // longer branch to them.
  BB->removePredecessor(Pred);
  UncondBranch->eraseFromParent();

  if (DTU)
    DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});

  return cast<ReturnInst>(NewRet);
}

Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
                                             Instruction *SplitBefore,
                                             bool Unreachable,
                                             MDNode *BranchWeights,
                                             DominatorTree *DT, LoopInfo *LI,
                                             BasicBlock *ThenBlock) {
  BasicBlock *Head = SplitBefore->getParent();
  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
  Instruction *HeadOldTerm = Head->getTerminator();
  LLVMContext &C = Head->getContext();
  Instruction *CheckTerm;
  bool CreateThenBlock = (ThenBlock == nullptr);
  if (CreateThenBlock) {
    ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    if (Unreachable)
      CheckTerm = new UnreachableInst(C, ThenBlock);
    else
      CheckTerm = BranchInst::Create(Tail, ThenBlock);
    CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
  } else
    CheckTerm = ThenBlock->getTerminator();
  BranchInst *HeadNewTerm =
    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);

  if (DT) {
    if (DomTreeNode *OldNode = DT->getNode(Head)) {
      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());

      DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
      for (DomTreeNode *Child : Children)
        DT->changeImmediateDominator(Child, NewNode);

      // Head dominates ThenBlock.
      if (CreateThenBlock)
        DT->addNewBlock(ThenBlock, Head);
      else
        DT->changeImmediateDominator(ThenBlock, Head);
    }
  }

  if (LI) {
    if (Loop *L = LI->getLoopFor(Head)) {
      L->addBasicBlockToLoop(ThenBlock, *LI);
      L->addBasicBlockToLoop(Tail, *LI);
    }
  }

  return CheckTerm;
}

void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
                                         Instruction **ThenTerm,
                                         Instruction **ElseTerm,
                                         MDNode *BranchWeights) {
  BasicBlock *Head = SplitBefore->getParent();
  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
  Instruction *HeadOldTerm = Head->getTerminator();
  LLVMContext &C = Head->getContext();
  BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
  BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
  *ThenTerm = BranchInst::Create(Tail, ThenBlock);
  (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
  *ElseTerm = BranchInst::Create(Tail, ElseBlock);
  (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
  BranchInst *HeadNewTerm =
    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
}

Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
                             BasicBlock *&IfFalse) {
  PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
  BasicBlock *Pred1 = nullptr;
  BasicBlock *Pred2 = nullptr;

  if (SomePHI) {
    if (SomePHI->getNumIncomingValues() != 2)
      return nullptr;
    Pred1 = SomePHI->getIncomingBlock(0);
    Pred2 = SomePHI->getIncomingBlock(1);
  } else {
    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    if (PI == PE) // No predecessor
      return nullptr;
    Pred1 = *PI++;
    if (PI == PE) // Only one predecessor
      return nullptr;
    Pred2 = *PI++;
    if (PI != PE) // More than two predecessors
      return nullptr;
  }

  // We can only handle branches.  Other control flow will be lowered to
  // branches if possible anyway.
  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
  if (!Pred1Br || !Pred2Br)
    return nullptr;

  // Eliminate code duplication by ensuring that Pred1Br is conditional if
  // either are.
  if (Pred2Br->isConditional()) {
    // If both branches are conditional, we don't have an "if statement".  In
    // reality, we could transform this case, but since the condition will be
    // required anyway, we stand no chance of eliminating it, so the xform is
    // probably not profitable.
    if (Pred1Br->isConditional())
      return nullptr;

    std::swap(Pred1, Pred2);
    std::swap(Pred1Br, Pred2Br);
  }

  if (Pred1Br->isConditional()) {
    // The only thing we have to watch out for here is to make sure that Pred2
    // doesn't have incoming edges from other blocks.  If it does, the condition
    // doesn't dominate BB.
    if (!Pred2->getSinglePredecessor())
      return nullptr;

    // If we found a conditional branch predecessor, make sure that it branches
    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    if (Pred1Br->getSuccessor(0) == BB &&
        Pred1Br->getSuccessor(1) == Pred2) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
               Pred1Br->getSuccessor(1) == BB) {
      IfTrue = Pred2;
      IfFalse = Pred1;
    } else {
      // We know that one arm of the conditional goes to BB, so the other must
      // go somewhere unrelated, and this must not be an "if statement".
      return nullptr;
    }

    return Pred1Br->getCondition();
  }

  // Ok, if we got here, both predecessors end with an unconditional branch to
  // BB.  Don't panic!  If both blocks only have a single (identical)
  // predecessor, and THAT is a conditional branch, then we're all ok!
  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
  if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
    return nullptr;

  // Otherwise, if this is a conditional branch, then we can use it!
  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
  if (!BI) return nullptr;

  assert(BI->isConditional() && "Two successors but not conditional?");
  if (BI->getSuccessor(0) == Pred1) {
    IfTrue = Pred1;
    IfFalse = Pred2;
  } else {
    IfTrue = Pred2;
    IfFalse = Pred1;
  }
  return BI->getCondition();
}