reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
//===- CFG.h ----------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file provides various utilities for inspecting and working with the
/// control flow graph in LLVM IR. This includes generic facilities for
/// iterating successors and predecessors of basic blocks, the successors of
/// specific terminator instructions, etc. It also defines specializations of
/// GraphTraits that allow Function and BasicBlock graphs to be treated as
/// proper graphs for generic algorithms.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_CFG_H
#define LLVM_IR_CFG_H

#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/type_traits.h"
#include <cassert>
#include <cstddef>
#include <iterator>

namespace llvm {

//===----------------------------------------------------------------------===//
// BasicBlock pred_iterator definition
//===----------------------------------------------------------------------===//

template <class Ptr, class USE_iterator> // Predecessor Iterator
class PredIterator : public std::iterator<std::forward_iterator_tag,
                                          Ptr, ptrdiff_t, Ptr*, Ptr*> {
  using super =
      std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*, Ptr*>;
  using Self = PredIterator<Ptr, USE_iterator>;
  USE_iterator It;

  inline void advancePastNonTerminators() {
    // Loop to ignore non-terminator uses (for example BlockAddresses).
    while (!It.atEnd()) {
      if (auto *Inst = dyn_cast<Instruction>(*It))
        if (Inst->isTerminator())
          break;

      ++It;
    }
  }

public:
  using pointer = typename super::pointer;
  using reference = typename super::reference;

  PredIterator() = default;
  explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
    advancePastNonTerminators();
  }
  inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}

  inline bool operator==(const Self& x) const { return It == x.It; }
  inline bool operator!=(const Self& x) const { return !operator==(x); }

  inline reference operator*() const {
    assert(!It.atEnd() && "pred_iterator out of range!");
    return cast<Instruction>(*It)->getParent();
  }
  inline pointer *operator->() const { return &operator*(); }

  inline Self& operator++() {   // Preincrement
    assert(!It.atEnd() && "pred_iterator out of range!");
    ++It; advancePastNonTerminators();
    return *this;
  }

  inline Self operator++(int) { // Postincrement
    Self tmp = *this; ++*this; return tmp;
  }

  /// getOperandNo - Return the operand number in the predecessor's
  /// terminator of the successor.
  unsigned getOperandNo() const {
    return It.getOperandNo();
  }

  /// getUse - Return the operand Use in the predecessor's terminator
  /// of the successor.
  Use &getUse() const {
    return It.getUse();
  }
};

using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>;
using const_pred_iterator =
    PredIterator<const BasicBlock, Value::const_user_iterator>;
using pred_range = iterator_range<pred_iterator>;
using pred_const_range = iterator_range<const_pred_iterator>;

inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
inline const_pred_iterator pred_begin(const BasicBlock *BB) {
  return const_pred_iterator(BB);
}
inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
inline const_pred_iterator pred_end(const BasicBlock *BB) {
  return const_pred_iterator(BB, true);
}
inline bool pred_empty(const BasicBlock *BB) {
  return pred_begin(BB) == pred_end(BB);
}
/// Get the number of predecessors of \p BB. This is a linear time operation.
/// Use \ref BasicBlock::hasNPredecessors() or hasNPredecessorsOrMore if able.
inline unsigned pred_size(const BasicBlock *BB) {
  return std::distance(pred_begin(BB), pred_end(BB));
}
inline pred_range predecessors(BasicBlock *BB) {
  return pred_range(pred_begin(BB), pred_end(BB));
}
inline pred_const_range predecessors(const BasicBlock *BB) {
  return pred_const_range(pred_begin(BB), pred_end(BB));
}

//===----------------------------------------------------------------------===//
// Instruction and BasicBlock succ_iterator helpers
//===----------------------------------------------------------------------===//

template <class InstructionT, class BlockT>
class SuccIterator
    : public iterator_facade_base<SuccIterator<InstructionT, BlockT>,
                                  std::random_access_iterator_tag, BlockT, int,
                                  BlockT *, BlockT *> {
public:
  using difference_type = int;
  using pointer = BlockT *;
  using reference = BlockT *;

private:
  InstructionT *Inst;
  int Idx;
  using Self = SuccIterator<InstructionT, BlockT>;

  inline bool index_is_valid(int Idx) {
    // Note that we specially support the index of zero being valid even in the
    // face of a null instruction.
    return Idx >= 0 && (Idx == 0 || Idx <= (int)Inst->getNumSuccessors());
  }

  /// Proxy object to allow write access in operator[]
  class SuccessorProxy {
    Self It;

  public:
    explicit SuccessorProxy(const Self &It) : It(It) {}

    SuccessorProxy(const SuccessorProxy &) = default;

    SuccessorProxy &operator=(SuccessorProxy RHS) {
      *this = reference(RHS);
      return *this;
    }

    SuccessorProxy &operator=(reference RHS) {
      It.Inst->setSuccessor(It.Idx, RHS);
      return *this;
    }

    operator reference() const { return *It; }
  };

public:
  // begin iterator
  explicit inline SuccIterator(InstructionT *Inst) : Inst(Inst), Idx(0) {}
  // end iterator
  inline SuccIterator(InstructionT *Inst, bool) : Inst(Inst) {
    if (Inst)
      Idx = Inst->getNumSuccessors();
    else
      // Inst == NULL happens, if a basic block is not fully constructed and
      // consequently getTerminator() returns NULL. In this case we construct
      // a SuccIterator which describes a basic block that has zero
      // successors.
      // Defining SuccIterator for incomplete and malformed CFGs is especially
      // useful for debugging.
      Idx = 0;
  }

  /// This is used to interface between code that wants to
  /// operate on terminator instructions directly.
  int getSuccessorIndex() const { return Idx; }

  inline bool operator==(const Self &x) const { return Idx == x.Idx; }

  inline BlockT *operator*() const { return Inst->getSuccessor(Idx); }

  // We use the basic block pointer directly for operator->.
  inline BlockT *operator->() const { return operator*(); }

  inline bool operator<(const Self &RHS) const {
    assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
    return Idx < RHS.Idx;
  }

  int operator-(const Self &RHS) const {
    assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
    return Idx - RHS.Idx;
  }

  inline Self &operator+=(int RHS) {
    int NewIdx = Idx + RHS;
    assert(index_is_valid(NewIdx) && "Iterator index out of bound");
    Idx = NewIdx;
    return *this;
  }

  inline Self &operator-=(int RHS) { return operator+=(-RHS); }

  // Specially implement the [] operation using a proxy object to support
  // assignment.
  inline SuccessorProxy operator[](int Offset) {
    Self TmpIt = *this;
    TmpIt += Offset;
    return SuccessorProxy(TmpIt);
  }

  /// Get the source BlockT of this iterator.
  inline BlockT *getSource() {
    assert(Inst && "Source not available, if basic block was malformed");
    return Inst->getParent();
  }
};

using succ_iterator = SuccIterator<Instruction, BasicBlock>;
using succ_const_iterator = SuccIterator<const Instruction, const BasicBlock>;
using succ_range = iterator_range<succ_iterator>;
using succ_const_range = iterator_range<succ_const_iterator>;

inline succ_iterator succ_begin(Instruction *I) { return succ_iterator(I); }
inline succ_const_iterator succ_begin(const Instruction *I) {
  return succ_const_iterator(I);
}
inline succ_iterator succ_end(Instruction *I) { return succ_iterator(I, true); }
inline succ_const_iterator succ_end(const Instruction *I) {
  return succ_const_iterator(I, true);
}
inline bool succ_empty(const Instruction *I) {
  return succ_begin(I) == succ_end(I);
}
inline unsigned succ_size(const Instruction *I) {
  return std::distance(succ_begin(I), succ_end(I));
}
inline succ_range successors(Instruction *I) {
  return succ_range(succ_begin(I), succ_end(I));
}
inline succ_const_range successors(const Instruction *I) {
  return succ_const_range(succ_begin(I), succ_end(I));
}

inline succ_iterator succ_begin(BasicBlock *BB) {
  return succ_iterator(BB->getTerminator());
}
inline succ_const_iterator succ_begin(const BasicBlock *BB) {
  return succ_const_iterator(BB->getTerminator());
}
inline succ_iterator succ_end(BasicBlock *BB) {
  return succ_iterator(BB->getTerminator(), true);
}
inline succ_const_iterator succ_end(const BasicBlock *BB) {
  return succ_const_iterator(BB->getTerminator(), true);
}
inline bool succ_empty(const BasicBlock *BB) {
  return succ_begin(BB) == succ_end(BB);
}
inline unsigned succ_size(const BasicBlock *BB) {
  return std::distance(succ_begin(BB), succ_end(BB));
}
inline succ_range successors(BasicBlock *BB) {
  return succ_range(succ_begin(BB), succ_end(BB));
}
inline succ_const_range successors(const BasicBlock *BB) {
  return succ_const_range(succ_begin(BB), succ_end(BB));
}

//===--------------------------------------------------------------------===//
// GraphTraits specializations for basic block graphs (CFGs)
//===--------------------------------------------------------------------===//

// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks...

template <> struct GraphTraits<BasicBlock*> {
  using NodeRef = BasicBlock *;
  using ChildIteratorType = succ_iterator;

  static NodeRef getEntryNode(BasicBlock *BB) { return BB; }
  static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
};

template <> struct GraphTraits<const BasicBlock*> {
  using NodeRef = const BasicBlock *;
  using ChildIteratorType = succ_const_iterator;

  static NodeRef getEntryNode(const BasicBlock *BB) { return BB; }

  static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
};

// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<BasicBlock*>> {
  using NodeRef = BasicBlock *;
  using ChildIteratorType = pred_iterator;

  static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
  static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
};

template <> struct GraphTraits<Inverse<const BasicBlock*>> {
  using NodeRef = const BasicBlock *;
  using ChildIteratorType = const_pred_iterator;

  static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; }
  static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
};

//===--------------------------------------------------------------------===//
// GraphTraits specializations for function basic block graphs (CFGs)
//===--------------------------------------------------------------------===//

// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... these are the same as the basic block iterators,
// except that the root node is implicitly the first node of the function.
//
template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
  static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); }

  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
  using nodes_iterator = pointer_iterator<Function::iterator>;

  static nodes_iterator nodes_begin(Function *F) {
    return nodes_iterator(F->begin());
  }

  static nodes_iterator nodes_end(Function *F) {
    return nodes_iterator(F->end());
  }

  static size_t size(Function *F) { return F->size(); }
};
template <> struct GraphTraits<const Function*> :
  public GraphTraits<const BasicBlock*> {
  static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); }

  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
  using nodes_iterator = pointer_iterator<Function::const_iterator>;

  static nodes_iterator nodes_begin(const Function *F) {
    return nodes_iterator(F->begin());
  }

  static nodes_iterator nodes_end(const Function *F) {
    return nodes_iterator(F->end());
  }

  static size_t size(const Function *F) { return F->size(); }
};

// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<Function*>> :
  public GraphTraits<Inverse<BasicBlock*>> {
  static NodeRef getEntryNode(Inverse<Function *> G) {
    return &G.Graph->getEntryBlock();
  }
};
template <> struct GraphTraits<Inverse<const Function*>> :
  public GraphTraits<Inverse<const BasicBlock*>> {
  static NodeRef getEntryNode(Inverse<const Function *> G) {
    return &G.Graph->getEntryBlock();
  }
};

} // end namespace llvm

#endif // LLVM_IR_CFG_H