reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the LoopInfo class that is used to identify natural loops
// and determine the loop depth of various nodes of the CFG.  Note that the
// loops identified may actually be several natural loops that share the same
// header node... not just a single natural loop.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LoopInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/LoopInfoImpl.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;

// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
template class llvm::LoopBase<BasicBlock, Loop>;
template class llvm::LoopInfoBase<BasicBlock, Loop>;

// Always verify loopinfo if expensive checking is enabled.
#ifdef EXPENSIVE_CHECKS
bool llvm::VerifyLoopInfo = true;
#else
bool llvm::VerifyLoopInfo = false;
#endif
static cl::opt<bool, true>
    VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
                    cl::Hidden, cl::desc("Verify loop info (time consuming)"));

//===----------------------------------------------------------------------===//
// Loop implementation
//

bool Loop::isLoopInvariant(const Value *V) const {
  if (const Instruction *I = dyn_cast<Instruction>(V))
    return !contains(I);
  return true; // All non-instructions are loop invariant
}

bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
  return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
}

bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
                             MemorySSAUpdater *MSSAU) const {
  if (Instruction *I = dyn_cast<Instruction>(V))
    return makeLoopInvariant(I, Changed, InsertPt, MSSAU);
  return true; // All non-instructions are loop-invariant.
}

bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
                             Instruction *InsertPt,
                             MemorySSAUpdater *MSSAU) const {
  // Test if the value is already loop-invariant.
  if (isLoopInvariant(I))
    return true;
  if (!isSafeToSpeculativelyExecute(I))
    return false;
  if (I->mayReadFromMemory())
    return false;
  // EH block instructions are immobile.
  if (I->isEHPad())
    return false;
  // Determine the insertion point, unless one was given.
  if (!InsertPt) {
    BasicBlock *Preheader = getLoopPreheader();
    // Without a preheader, hoisting is not feasible.
    if (!Preheader)
      return false;
    InsertPt = Preheader->getTerminator();
  }
  // Don't hoist instructions with loop-variant operands.
  for (Value *Operand : I->operands())
    if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU))
      return false;

  // Hoist.
  I->moveBefore(InsertPt);
  if (MSSAU)
    if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
      MSSAU->moveToPlace(MUD, InsertPt->getParent(), MemorySSA::End);

  // There is possibility of hoisting this instruction above some arbitrary
  // condition. Any metadata defined on it can be control dependent on this
  // condition. Conservatively strip it here so that we don't give any wrong
  // information to the optimizer.
  I->dropUnknownNonDebugMetadata();

  Changed = true;
  return true;
}

bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
                                  BasicBlock *&Backedge) const {
  BasicBlock *H = getHeader();

  Incoming = nullptr;
  Backedge = nullptr;
  pred_iterator PI = pred_begin(H);
  assert(PI != pred_end(H) && "Loop must have at least one backedge!");
  Backedge = *PI++;
  if (PI == pred_end(H))
    return false; // dead loop
  Incoming = *PI++;
  if (PI != pred_end(H))
    return false; // multiple backedges?

  if (contains(Incoming)) {
    if (contains(Backedge))
      return false;
    std::swap(Incoming, Backedge);
  } else if (!contains(Backedge))
    return false;

  assert(Incoming && Backedge && "expected non-null incoming and backedges");
  return true;
}

PHINode *Loop::getCanonicalInductionVariable() const {
  BasicBlock *H = getHeader();

  BasicBlock *Incoming = nullptr, *Backedge = nullptr;
  if (!getIncomingAndBackEdge(Incoming, Backedge))
    return nullptr;

  // Loop over all of the PHI nodes, looking for a canonical indvar.
  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    if (ConstantInt *CI =
            dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
      if (CI->isZero())
        if (Instruction *Inc =
                dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
          if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
              if (CI->isOne())
                return PN;
  }
  return nullptr;
}

/// Get the latch condition instruction.
static ICmpInst *getLatchCmpInst(const Loop &L) {
  if (BasicBlock *Latch = L.getLoopLatch())
    if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
      if (BI->isConditional())
        return dyn_cast<ICmpInst>(BI->getCondition());

  return nullptr;
}

/// Return the final value of the loop induction variable if found.
static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
                               const Instruction &StepInst) {
  ICmpInst *LatchCmpInst = getLatchCmpInst(L);
  if (!LatchCmpInst)
    return nullptr;

  Value *Op0 = LatchCmpInst->getOperand(0);
  Value *Op1 = LatchCmpInst->getOperand(1);
  if (Op0 == &IndVar || Op0 == &StepInst)
    return Op1;

  if (Op1 == &IndVar || Op1 == &StepInst)
    return Op0;

  return nullptr;
}

Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L,
                                                       PHINode &IndVar,
                                                       ScalarEvolution &SE) {
  InductionDescriptor IndDesc;
  if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
    return None;

  Value *InitialIVValue = IndDesc.getStartValue();
  Instruction *StepInst = IndDesc.getInductionBinOp();
  if (!InitialIVValue || !StepInst)
    return None;

  const SCEV *Step = IndDesc.getStep();
  Value *StepInstOp1 = StepInst->getOperand(1);
  Value *StepInstOp0 = StepInst->getOperand(0);
  Value *StepValue = nullptr;
  if (SE.getSCEV(StepInstOp1) == Step)
    StepValue = StepInstOp1;
  else if (SE.getSCEV(StepInstOp0) == Step)
    StepValue = StepInstOp0;

  Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
  if (!FinalIVValue)
    return None;

  return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
                    SE);
}

using Direction = Loop::LoopBounds::Direction;

ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
  BasicBlock *Latch = L.getLoopLatch();
  assert(Latch && "Expecting valid latch");

  BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
  assert(BI && BI->isConditional() && "Expecting conditional latch branch");

  ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
  assert(LatchCmpInst &&
         "Expecting the latch compare instruction to be a CmpInst");

  // Need to inverse the predicate when first successor is not the loop
  // header
  ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
                                 ? LatchCmpInst->getPredicate()
                                 : LatchCmpInst->getInversePredicate();

  if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
    Pred = ICmpInst::getSwappedPredicate(Pred);

  // Need to flip strictness of the predicate when the latch compare instruction
  // is not using StepInst
  if (LatchCmpInst->getOperand(0) == &getStepInst() ||
      LatchCmpInst->getOperand(1) == &getStepInst())
    return Pred;

  // Cannot flip strictness of NE and EQ
  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
    return ICmpInst::getFlippedStrictnessPredicate(Pred);

  Direction D = getDirection();
  if (D == Direction::Increasing)
    return ICmpInst::ICMP_SLT;

  if (D == Direction::Decreasing)
    return ICmpInst::ICMP_SGT;

  // If cannot determine the direction, then unable to find the canonical
  // predicate
  return ICmpInst::BAD_ICMP_PREDICATE;
}

Direction Loop::LoopBounds::getDirection() const {
  if (const SCEVAddRecExpr *StepAddRecExpr =
          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
    if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
      if (SE.isKnownPositive(StepRecur))
        return Direction::Increasing;
      if (SE.isKnownNegative(StepRecur))
        return Direction::Decreasing;
    }

  return Direction::Unknown;
}

Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
  if (PHINode *IndVar = getInductionVariable(SE))
    return LoopBounds::getBounds(*this, *IndVar, SE);

  return None;
}

PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
  if (!isLoopSimplifyForm())
    return nullptr;

  BasicBlock *Header = getHeader();
  assert(Header && "Expected a valid loop header");
  ICmpInst *CmpInst = getLatchCmpInst(*this);
  if (!CmpInst)
    return nullptr;

  Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0));
  Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1));

  for (PHINode &IndVar : Header->phis()) {
    InductionDescriptor IndDesc;
    if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
      continue;

    Instruction *StepInst = IndDesc.getInductionBinOp();

    // case 1:
    // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
    // StepInst = IndVar + step
    // cmp = StepInst < FinalValue
    if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
      return &IndVar;

    // case 2:
    // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
    // StepInst = IndVar + step
    // cmp = IndVar < FinalValue
    if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
      return &IndVar;
  }

  return nullptr;
}

bool Loop::getInductionDescriptor(ScalarEvolution &SE,
                                  InductionDescriptor &IndDesc) const {
  if (PHINode *IndVar = getInductionVariable(SE))
    return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);

  return false;
}

bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
                                        ScalarEvolution &SE) const {
  // Located in the loop header
  BasicBlock *Header = getHeader();
  if (AuxIndVar.getParent() != Header)
    return false;

  // No uses outside of the loop
  for (User *U : AuxIndVar.users())
    if (const Instruction *I = dyn_cast<Instruction>(U))
      if (!contains(I))
        return false;

  InductionDescriptor IndDesc;
  if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
    return false;

  // The step instruction opcode should be add or sub.
  if (IndDesc.getInductionOpcode() != Instruction::Add &&
      IndDesc.getInductionOpcode() != Instruction::Sub)
    return false;

  // Incremented by a loop invariant step for each loop iteration
  return SE.isLoopInvariant(IndDesc.getStep(), this);
}

BranchInst *Loop::getLoopGuardBranch() const {
  if (!isLoopSimplifyForm())
    return nullptr;

  BasicBlock *Preheader = getLoopPreheader();
  BasicBlock *Latch = getLoopLatch();
  assert(Preheader && Latch &&
         "Expecting a loop with valid preheader and latch");

  // Loop should be in rotate form.
  if (!isLoopExiting(Latch))
    return nullptr;

  // Disallow loops with more than one unique exit block, as we do not verify
  // that GuardOtherSucc post dominates all exit blocks.
  BasicBlock *ExitFromLatch = getUniqueExitBlock();
  if (!ExitFromLatch)
    return nullptr;

  BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor();
  if (!ExitFromLatchSucc)
    return nullptr;

  BasicBlock *GuardBB = Preheader->getUniquePredecessor();
  if (!GuardBB)
    return nullptr;

  assert(GuardBB->getTerminator() && "Expecting valid guard terminator");

  BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
  if (!GuardBI || GuardBI->isUnconditional())
    return nullptr;

  BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
                                   ? GuardBI->getSuccessor(1)
                                   : GuardBI->getSuccessor(0);
  return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr;
}

bool Loop::isCanonical(ScalarEvolution &SE) const {
  InductionDescriptor IndDesc;
  if (!getInductionDescriptor(SE, IndDesc))
    return false;

  ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
  if (!Init || !Init->isZero())
    return false;

  if (IndDesc.getInductionOpcode() != Instruction::Add)
    return false;

  ConstantInt *Step = IndDesc.getConstIntStepValue();
  if (!Step || !Step->isOne())
    return false;

  return true;
}

// Check that 'BB' doesn't have any uses outside of the 'L'
static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
                               DominatorTree &DT) {
  for (const Instruction &I : BB) {
    // Tokens can't be used in PHI nodes and live-out tokens prevent loop
    // optimizations, so for the purposes of considered LCSSA form, we
    // can ignore them.
    if (I.getType()->isTokenTy())
      continue;

    for (const Use &U : I.uses()) {
      const Instruction *UI = cast<Instruction>(U.getUser());
      const BasicBlock *UserBB = UI->getParent();
      if (const PHINode *P = dyn_cast<PHINode>(UI))
        UserBB = P->getIncomingBlock(U);

      // Check the current block, as a fast-path, before checking whether
      // the use is anywhere in the loop.  Most values are used in the same
      // block they are defined in.  Also, blocks not reachable from the
      // entry are special; uses in them don't need to go through PHIs.
      if (UserBB != &BB && !L.contains(UserBB) &&
          DT.isReachableFromEntry(UserBB))
        return false;
    }
  }
  return true;
}

bool Loop::isLCSSAForm(DominatorTree &DT) const {
  // For each block we check that it doesn't have any uses outside of this loop.
  return all_of(this->blocks(), [&](const BasicBlock *BB) {
    return isBlockInLCSSAForm(*this, *BB, DT);
  });
}

bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
  // For each block we check that it doesn't have any uses outside of its
  // innermost loop. This process will transitively guarantee that the current
  // loop and all of the nested loops are in LCSSA form.
  return all_of(this->blocks(), [&](const BasicBlock *BB) {
    return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
  });
}

bool Loop::isLoopSimplifyForm() const {
  // Normal-form loops have a preheader, a single backedge, and all of their
  // exits have all their predecessors inside the loop.
  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
}

// Routines that reform the loop CFG and split edges often fail on indirectbr.
bool Loop::isSafeToClone() const {
  // Return false if any loop blocks contain indirectbrs, or there are any calls
  // to noduplicate functions.
  // FIXME: it should be ok to clone CallBrInst's if we correctly update the
  // operand list to reflect the newly cloned labels.
  for (BasicBlock *BB : this->blocks()) {
    if (isa<IndirectBrInst>(BB->getTerminator()) ||
        isa<CallBrInst>(BB->getTerminator()))
      return false;

    for (Instruction &I : *BB)
      if (auto CS = CallSite(&I))
        if (CS.cannotDuplicate())
          return false;
  }
  return true;
}

MDNode *Loop::getLoopID() const {
  MDNode *LoopID = nullptr;

  // Go through the latch blocks and check the terminator for the metadata.
  SmallVector<BasicBlock *, 4> LatchesBlocks;
  getLoopLatches(LatchesBlocks);
  for (BasicBlock *BB : LatchesBlocks) {
    Instruction *TI = BB->getTerminator();
    MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);

    if (!MD)
      return nullptr;

    if (!LoopID)
      LoopID = MD;
    else if (MD != LoopID)
      return nullptr;
  }
  if (!LoopID || LoopID->getNumOperands() == 0 ||
      LoopID->getOperand(0) != LoopID)
    return nullptr;
  return LoopID;
}

void Loop::setLoopID(MDNode *LoopID) const {
  assert((!LoopID || LoopID->getNumOperands() > 0) &&
         "Loop ID needs at least one operand");
  assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
         "Loop ID should refer to itself");

  SmallVector<BasicBlock *, 4> LoopLatches;
  getLoopLatches(LoopLatches);
  for (BasicBlock *BB : LoopLatches)
    BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
}

void Loop::setLoopAlreadyUnrolled() {
  LLVMContext &Context = getHeader()->getContext();

  MDNode *DisableUnrollMD =
      MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
  MDNode *LoopID = getLoopID();
  MDNode *NewLoopID = makePostTransformationMetadata(
      Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
  setLoopID(NewLoopID);
}

bool Loop::isAnnotatedParallel() const {
  MDNode *DesiredLoopIdMetadata = getLoopID();

  if (!DesiredLoopIdMetadata)
    return false;

  MDNode *ParallelAccesses =
      findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
  SmallPtrSet<MDNode *, 4>
      ParallelAccessGroups; // For scalable 'contains' check.
  if (ParallelAccesses) {
    for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) {
      MDNode *AccGroup = cast<MDNode>(MD.get());
      assert(isValidAsAccessGroup(AccGroup) &&
             "List item must be an access group");
      ParallelAccessGroups.insert(AccGroup);
    }
  }

  // The loop branch contains the parallel loop metadata. In order to ensure
  // that any parallel-loop-unaware optimization pass hasn't added loop-carried
  // dependencies (thus converted the loop back to a sequential loop), check
  // that all the memory instructions in the loop belong to an access group that
  // is parallel to this loop.
  for (BasicBlock *BB : this->blocks()) {
    for (Instruction &I : *BB) {
      if (!I.mayReadOrWriteMemory())
        continue;

      if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
        auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
          if (AG->getNumOperands() == 0) {
            assert(isValidAsAccessGroup(AG) && "Item must be an access group");
            return ParallelAccessGroups.count(AG);
          }

          for (const MDOperand &AccessListItem : AG->operands()) {
            MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
            assert(isValidAsAccessGroup(AccGroup) &&
                   "List item must be an access group");
            if (ParallelAccessGroups.count(AccGroup))
              return true;
          }
          return false;
        };

        if (ContainsAccessGroup(AccessGroup))
          continue;
      }

      // The memory instruction can refer to the loop identifier metadata
      // directly or indirectly through another list metadata (in case of
      // nested parallel loops). The loop identifier metadata refers to
      // itself so we can check both cases with the same routine.
      MDNode *LoopIdMD =
          I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);

      if (!LoopIdMD)
        return false;

      bool LoopIdMDFound = false;
      for (const MDOperand &MDOp : LoopIdMD->operands()) {
        if (MDOp == DesiredLoopIdMetadata) {
          LoopIdMDFound = true;
          break;
        }
      }

      if (!LoopIdMDFound)
        return false;
    }
  }
  return true;
}

DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }

Loop::LocRange Loop::getLocRange() const {
  // If we have a debug location in the loop ID, then use it.
  if (MDNode *LoopID = getLoopID()) {
    DebugLoc Start;
    // We use the first DebugLoc in the header as the start location of the loop
    // and if there is a second DebugLoc in the header we use it as end location
    // of the loop.
    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
      if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
        if (!Start)
          Start = DebugLoc(L);
        else
          return LocRange(Start, DebugLoc(L));
      }
    }

    if (Start)
      return LocRange(Start);
  }

  // Try the pre-header first.
  if (BasicBlock *PHeadBB = getLoopPreheader())
    if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
      return LocRange(DL);

  // If we have no pre-header or there are no instructions with debug
  // info in it, try the header.
  if (BasicBlock *HeadBB = getHeader())
    return LocRange(HeadBB->getTerminator()->getDebugLoc());

  return LocRange();
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }

LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
  print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
}
#endif

//===----------------------------------------------------------------------===//
// UnloopUpdater implementation
//

namespace {
/// Find the new parent loop for all blocks within the "unloop" whose last
/// backedges has just been removed.
class UnloopUpdater {
  Loop &Unloop;
  LoopInfo *LI;

  LoopBlocksDFS DFS;

  // Map unloop's immediate subloops to their nearest reachable parents. Nested
  // loops within these subloops will not change parents. However, an immediate
  // subloop's new parent will be the nearest loop reachable from either its own
  // exits *or* any of its nested loop's exits.
  DenseMap<Loop *, Loop *> SubloopParents;

  // Flag the presence of an irreducible backedge whose destination is a block
  // directly contained by the original unloop.
  bool FoundIB;

public:
  UnloopUpdater(Loop *UL, LoopInfo *LInfo)
      : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}

  void updateBlockParents();

  void removeBlocksFromAncestors();

  void updateSubloopParents();

protected:
  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
};
} // end anonymous namespace

/// Update the parent loop for all blocks that are directly contained within the
/// original "unloop".
void UnloopUpdater::updateBlockParents() {
  if (Unloop.getNumBlocks()) {
    // Perform a post order CFG traversal of all blocks within this loop,
    // propagating the nearest loop from successors to predecessors.
    LoopBlocksTraversal Traversal(DFS, LI);
    for (BasicBlock *POI : Traversal) {

      Loop *L = LI->getLoopFor(POI);
      Loop *NL = getNearestLoop(POI, L);

      if (NL != L) {
        // For reducible loops, NL is now an ancestor of Unloop.
        assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
               "uninitialized successor");
        LI->changeLoopFor(POI, NL);
      } else {
        // Or the current block is part of a subloop, in which case its parent
        // is unchanged.
        assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
      }
    }
  }
  // Each irreducible loop within the unloop induces a round of iteration using
  // the DFS result cached by Traversal.
  bool Changed = FoundIB;
  for (unsigned NIters = 0; Changed; ++NIters) {
    assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");

    // Iterate over the postorder list of blocks, propagating the nearest loop
    // from successors to predecessors as before.
    Changed = false;
    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
                                   POE = DFS.endPostorder();
         POI != POE; ++POI) {

      Loop *L = LI->getLoopFor(*POI);
      Loop *NL = getNearestLoop(*POI, L);
      if (NL != L) {
        assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
               "uninitialized successor");
        LI->changeLoopFor(*POI, NL);
        Changed = true;
      }
    }
  }
}

/// Remove unloop's blocks from all ancestors below their new parents.
void UnloopUpdater::removeBlocksFromAncestors() {
  // Remove all unloop's blocks (including those in nested subloops) from
  // ancestors below the new parent loop.
  for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
       BI != BE; ++BI) {
    Loop *OuterParent = LI->getLoopFor(*BI);
    if (Unloop.contains(OuterParent)) {
      while (OuterParent->getParentLoop() != &Unloop)
        OuterParent = OuterParent->getParentLoop();
      OuterParent = SubloopParents[OuterParent];
    }
    // Remove blocks from former Ancestors except Unloop itself which will be
    // deleted.
    for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
         OldParent = OldParent->getParentLoop()) {
      assert(OldParent && "new loop is not an ancestor of the original");
      OldParent->removeBlockFromLoop(*BI);
    }
  }
}

/// Update the parent loop for all subloops directly nested within unloop.
void UnloopUpdater::updateSubloopParents() {
  while (!Unloop.empty()) {
    Loop *Subloop = *std::prev(Unloop.end());
    Unloop.removeChildLoop(std::prev(Unloop.end()));

    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
    if (Loop *Parent = SubloopParents[Subloop])
      Parent->addChildLoop(Subloop);
    else
      LI->addTopLevelLoop(Subloop);
  }
}

/// Return the nearest parent loop among this block's successors. If a successor
/// is a subloop header, consider its parent to be the nearest parent of the
/// subloop's exits.
///
/// For subloop blocks, simply update SubloopParents and return NULL.
Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {

  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
  // is considered uninitialized.
  Loop *NearLoop = BBLoop;

  Loop *Subloop = nullptr;
  if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
    Subloop = NearLoop;
    // Find the subloop ancestor that is directly contained within Unloop.
    while (Subloop->getParentLoop() != &Unloop) {
      Subloop = Subloop->getParentLoop();
      assert(Subloop && "subloop is not an ancestor of the original loop");
    }
    // Get the current nearest parent of the Subloop exits, initially Unloop.
    NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
  }

  succ_iterator I = succ_begin(BB), E = succ_end(BB);
  if (I == E) {
    assert(!Subloop && "subloop blocks must have a successor");
    NearLoop = nullptr; // unloop blocks may now exit the function.
  }
  for (; I != E; ++I) {
    if (*I == BB)
      continue; // self loops are uninteresting

    Loop *L = LI->getLoopFor(*I);
    if (L == &Unloop) {
      // This successor has not been processed. This path must lead to an
      // irreducible backedge.
      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
      FoundIB = true;
    }
    if (L != &Unloop && Unloop.contains(L)) {
      // Successor is in a subloop.
      if (Subloop)
        continue; // Branching within subloops. Ignore it.

      // BB branches from the original into a subloop header.
      assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");

      // Get the current nearest parent of the Subloop's exits.
      L = SubloopParents[L];
      // L could be Unloop if the only exit was an irreducible backedge.
    }
    if (L == &Unloop) {
      continue;
    }
    // Handle critical edges from Unloop into a sibling loop.
    if (L && !L->contains(&Unloop)) {
      L = L->getParentLoop();
    }
    // Remember the nearest parent loop among successors or subloop exits.
    if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
      NearLoop = L;
  }
  if (Subloop) {
    SubloopParents[Subloop] = NearLoop;
    return BBLoop;
  }
  return NearLoop;
}

LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }

bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
                          FunctionAnalysisManager::Invalidator &) {
  // Check whether the analysis, all analyses on functions, or the function's
  // CFG have been preserved.
  auto PAC = PA.getChecker<LoopAnalysis>();
  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
           PAC.preservedSet<CFGAnalyses>());
}

void LoopInfo::erase(Loop *Unloop) {
  assert(!Unloop->isInvalid() && "Loop has already been erased!");

  auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });

  // First handle the special case of no parent loop to simplify the algorithm.
  if (!Unloop->getParentLoop()) {
    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
    for (Loop::block_iterator I = Unloop->block_begin(),
                              E = Unloop->block_end();
         I != E; ++I) {

      // Don't reparent blocks in subloops.
      if (getLoopFor(*I) != Unloop)
        continue;

      // Blocks no longer have a parent but are still referenced by Unloop until
      // the Unloop object is deleted.
      changeLoopFor(*I, nullptr);
    }

    // Remove the loop from the top-level LoopInfo object.
    for (iterator I = begin();; ++I) {
      assert(I != end() && "Couldn't find loop");
      if (*I == Unloop) {
        removeLoop(I);
        break;
      }
    }

    // Move all of the subloops to the top-level.
    while (!Unloop->empty())
      addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));

    return;
  }

  // Update the parent loop for all blocks within the loop. Blocks within
  // subloops will not change parents.
  UnloopUpdater Updater(Unloop, this);
  Updater.updateBlockParents();

  // Remove blocks from former ancestor loops.
  Updater.removeBlocksFromAncestors();

  // Add direct subloops as children in their new parent loop.
  Updater.updateSubloopParents();

  // Remove unloop from its parent loop.
  Loop *ParentLoop = Unloop->getParentLoop();
  for (Loop::iterator I = ParentLoop->begin();; ++I) {
    assert(I != ParentLoop->end() && "Couldn't find loop");
    if (*I == Unloop) {
      ParentLoop->removeChildLoop(I);
      break;
    }
  }
}

AnalysisKey LoopAnalysis::Key;

LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
  // FIXME: Currently we create a LoopInfo from scratch for every function.
  // This may prove to be too wasteful due to deallocating and re-allocating
  // memory each time for the underlying map and vector datastructures. At some
  // point it may prove worthwhile to use a freelist and recycle LoopInfo
  // objects. I don't want to add that kind of complexity until the scope of
  // the problem is better understood.
  LoopInfo LI;
  LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
  return LI;
}

PreservedAnalyses LoopPrinterPass::run(Function &F,
                                       FunctionAnalysisManager &AM) {
  AM.getResult<LoopAnalysis>(F).print(OS);
  return PreservedAnalyses::all();
}

void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {

  if (forcePrintModuleIR()) {
    // handling -print-module-scope
    OS << Banner << " (loop: ";
    L.getHeader()->printAsOperand(OS, false);
    OS << ")\n";

    // printing whole module
    OS << *L.getHeader()->getModule();
    return;
  }

  OS << Banner;

  auto *PreHeader = L.getLoopPreheader();
  if (PreHeader) {
    OS << "\n; Preheader:";
    PreHeader->print(OS);
    OS << "\n; Loop:";
  }

  for (auto *Block : L.blocks())
    if (Block)
      Block->print(OS);
    else
      OS << "Printing <null> block";

  SmallVector<BasicBlock *, 8> ExitBlocks;
  L.getExitBlocks(ExitBlocks);
  if (!ExitBlocks.empty()) {
    OS << "\n; Exit blocks";
    for (auto *Block : ExitBlocks)
      if (Block)
        Block->print(OS);
      else
        OS << "Printing <null> block";
  }
}

MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
  // No loop metadata node, no loop properties.
  if (!LoopID)
    return nullptr;

  // First operand should refer to the metadata node itself, for legacy reasons.
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");

  // Iterate over the metdata node operands and look for MDString metadata.
  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
    if (!MD || MD->getNumOperands() < 1)
      continue;
    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
    if (!S)
      continue;
    // Return the operand node if MDString holds expected metadata.
    if (Name.equals(S->getString()))
      return MD;
  }

  // Loop property not found.
  return nullptr;
}

MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
  return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
}

bool llvm::isValidAsAccessGroup(MDNode *Node) {
  return Node->getNumOperands() == 0 && Node->isDistinct();
}

MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
                                             MDNode *OrigLoopID,
                                             ArrayRef<StringRef> RemovePrefixes,
                                             ArrayRef<MDNode *> AddAttrs) {
  // First remove any existing loop metadata related to this transformation.
  SmallVector<Metadata *, 4> MDs;

  // Reserve first location for self reference to the LoopID metadata node.
  TempMDTuple TempNode = MDNode::getTemporary(Context, None);
  MDs.push_back(TempNode.get());

  // Remove metadata for the transformation that has been applied or that became
  // outdated.
  if (OrigLoopID) {
    for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
      bool IsVectorMetadata = false;
      Metadata *Op = OrigLoopID->getOperand(i);
      if (MDNode *MD = dyn_cast<MDNode>(Op)) {
        const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
        if (S)
          IsVectorMetadata =
              llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
                return S->getString().startswith(Prefix);
              });
      }
      if (!IsVectorMetadata)
        MDs.push_back(Op);
    }
  }

  // Add metadata to avoid reapplying a transformation, such as
  // llvm.loop.unroll.disable and llvm.loop.isvectorized.
  MDs.append(AddAttrs.begin(), AddAttrs.end());

  MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
  // Replace the temporary node with a self-reference.
  NewLoopID->replaceOperandWith(0, NewLoopID);
  return NewLoopID;
}

//===----------------------------------------------------------------------===//
// LoopInfo implementation
//

char LoopInfoWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
                      true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
                    true, true)

bool LoopInfoWrapperPass::runOnFunction(Function &) {
  releaseMemory();
  LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
  return false;
}

void LoopInfoWrapperPass::verifyAnalysis() const {
  // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
  // function each time verifyAnalysis is called is very expensive. The
  // -verify-loop-info option can enable this. In order to perform some
  // checking by default, LoopPass has been taught to call verifyLoop manually
  // during loop pass sequences.
  if (VerifyLoopInfo) {
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LI.verify(DT);
  }
}

void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
}

void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
  LI.print(OS);
}

PreservedAnalyses LoopVerifierPass::run(Function &F,
                                        FunctionAnalysisManager &AM) {
  LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  LI.verify(DT);
  return PreservedAnalyses::all();
}

//===----------------------------------------------------------------------===//
// LoopBlocksDFS implementation
//

/// Traverse the loop blocks and store the DFS result.
/// Useful for clients that just want the final DFS result and don't need to
/// visit blocks during the initial traversal.
void LoopBlocksDFS::perform(LoopInfo *LI) {
  LoopBlocksTraversal Traversal(*this, LI);
  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
                                        POE = Traversal.end();
       POI != POE; ++POI)
    ;
}