reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the MemorySSA class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/MemorySSA.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Use.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <iterator>
#include <memory>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "memoryssa"

INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
                      true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
                    true)

INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
                      "Memory SSA Printer", false, false)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
                    "Memory SSA Printer", false, false)

static cl::opt<unsigned> MaxCheckLimit(
    "memssa-check-limit", cl::Hidden, cl::init(100),
    cl::desc("The maximum number of stores/phis MemorySSA"
             "will consider trying to walk past (default = 100)"));

// Always verify MemorySSA if expensive checking is enabled.
#ifdef EXPENSIVE_CHECKS
bool llvm::VerifyMemorySSA = true;
#else
bool llvm::VerifyMemorySSA = false;
#endif
/// Enables memory ssa as a dependency for loop passes in legacy pass manager.
cl::opt<bool> llvm::EnableMSSALoopDependency(
    "enable-mssa-loop-dependency", cl::Hidden, cl::init(true),
    cl::desc("Enable MemorySSA dependency for loop pass manager"));

static cl::opt<bool, true>
    VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
                     cl::Hidden, cl::desc("Enable verification of MemorySSA."));

namespace llvm {

/// An assembly annotator class to print Memory SSA information in
/// comments.
class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
  friend class MemorySSA;

  const MemorySSA *MSSA;

public:
  MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}

  void emitBasicBlockStartAnnot(const BasicBlock *BB,
                                formatted_raw_ostream &OS) override {
    if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
      OS << "; " << *MA << "\n";
  }

  void emitInstructionAnnot(const Instruction *I,
                            formatted_raw_ostream &OS) override {
    if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
      OS << "; " << *MA << "\n";
  }
};

} // end namespace llvm

namespace {

/// Our current alias analysis API differentiates heavily between calls and
/// non-calls, and functions called on one usually assert on the other.
/// This class encapsulates the distinction to simplify other code that wants
/// "Memory affecting instructions and related data" to use as a key.
/// For example, this class is used as a densemap key in the use optimizer.
class MemoryLocOrCall {
public:
  bool IsCall = false;

  MemoryLocOrCall(MemoryUseOrDef *MUD)
      : MemoryLocOrCall(MUD->getMemoryInst()) {}
  MemoryLocOrCall(const MemoryUseOrDef *MUD)
      : MemoryLocOrCall(MUD->getMemoryInst()) {}

  MemoryLocOrCall(Instruction *Inst) {
    if (auto *C = dyn_cast<CallBase>(Inst)) {
      IsCall = true;
      Call = C;
    } else {
      IsCall = false;
      // There is no such thing as a memorylocation for a fence inst, and it is
      // unique in that regard.
      if (!isa<FenceInst>(Inst))
        Loc = MemoryLocation::get(Inst);
    }
  }

  explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}

  const CallBase *getCall() const {
    assert(IsCall);
    return Call;
  }

  MemoryLocation getLoc() const {
    assert(!IsCall);
    return Loc;
  }

  bool operator==(const MemoryLocOrCall &Other) const {
    if (IsCall != Other.IsCall)
      return false;

    if (!IsCall)
      return Loc == Other.Loc;

    if (Call->getCalledValue() != Other.Call->getCalledValue())
      return false;

    return Call->arg_size() == Other.Call->arg_size() &&
           std::equal(Call->arg_begin(), Call->arg_end(),
                      Other.Call->arg_begin());
  }

private:
  union {
    const CallBase *Call;
    MemoryLocation Loc;
  };
};

} // end anonymous namespace

namespace llvm {

template <> struct DenseMapInfo<MemoryLocOrCall> {
  static inline MemoryLocOrCall getEmptyKey() {
    return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
  }

  static inline MemoryLocOrCall getTombstoneKey() {
    return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
  }

  static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
    if (!MLOC.IsCall)
      return hash_combine(
          MLOC.IsCall,
          DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));

    hash_code hash =
        hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
                                      MLOC.getCall()->getCalledValue()));

    for (const Value *Arg : MLOC.getCall()->args())
      hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
    return hash;
  }

  static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
    return LHS == RHS;
  }
};

} // end namespace llvm

/// This does one-way checks to see if Use could theoretically be hoisted above
/// MayClobber. This will not check the other way around.
///
/// This assumes that, for the purposes of MemorySSA, Use comes directly after
/// MayClobber, with no potentially clobbering operations in between them.
/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
static bool areLoadsReorderable(const LoadInst *Use,
                                const LoadInst *MayClobber) {
  bool VolatileUse = Use->isVolatile();
  bool VolatileClobber = MayClobber->isVolatile();
  // Volatile operations may never be reordered with other volatile operations.
  if (VolatileUse && VolatileClobber)
    return false;
  // Otherwise, volatile doesn't matter here. From the language reference:
  // 'optimizers may change the order of volatile operations relative to
  // non-volatile operations.'"

  // If a load is seq_cst, it cannot be moved above other loads. If its ordering
  // is weaker, it can be moved above other loads. We just need to be sure that
  // MayClobber isn't an acquire load, because loads can't be moved above
  // acquire loads.
  //
  // Note that this explicitly *does* allow the free reordering of monotonic (or
  // weaker) loads of the same address.
  bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
  bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
                                                     AtomicOrdering::Acquire);
  return !(SeqCstUse || MayClobberIsAcquire);
}

namespace {

struct ClobberAlias {
  bool IsClobber;
  Optional<AliasResult> AR;
};

} // end anonymous namespace

// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
// ignored if IsClobber = false.
template <typename AliasAnalysisType>
static ClobberAlias
instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
                         const Instruction *UseInst, AliasAnalysisType &AA) {
  Instruction *DefInst = MD->getMemoryInst();
  assert(DefInst && "Defining instruction not actually an instruction");
  const auto *UseCall = dyn_cast<CallBase>(UseInst);
  Optional<AliasResult> AR;

  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
    // These intrinsics will show up as affecting memory, but they are just
    // markers, mostly.
    //
    // FIXME: We probably don't actually want MemorySSA to model these at all
    // (including creating MemoryAccesses for them): we just end up inventing
    // clobbers where they don't really exist at all. Please see D43269 for
    // context.
    switch (II->getIntrinsicID()) {
    case Intrinsic::lifetime_start:
      if (UseCall)
        return {false, NoAlias};
      AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
      return {AR != NoAlias, AR};
    case Intrinsic::lifetime_end:
    case Intrinsic::invariant_start:
    case Intrinsic::invariant_end:
    case Intrinsic::assume:
      return {false, NoAlias};
    case Intrinsic::dbg_addr:
    case Intrinsic::dbg_declare:
    case Intrinsic::dbg_label:
    case Intrinsic::dbg_value:
      llvm_unreachable("debuginfo shouldn't have associated defs!");
    default:
      break;
    }
  }

  if (UseCall) {
    ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
    AR = isMustSet(I) ? MustAlias : MayAlias;
    return {isModOrRefSet(I), AR};
  }

  if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
    if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
      return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};

  ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
  AR = isMustSet(I) ? MustAlias : MayAlias;
  return {isModSet(I), AR};
}

template <typename AliasAnalysisType>
static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
                                             const MemoryUseOrDef *MU,
                                             const MemoryLocOrCall &UseMLOC,
                                             AliasAnalysisType &AA) {
  // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
  // to exist while MemoryLocOrCall is pushed through places.
  if (UseMLOC.IsCall)
    return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
                                    AA);
  return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
                                  AA);
}

// Return true when MD may alias MU, return false otherwise.
bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
                                        AliasAnalysis &AA) {
  return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
}

namespace {

struct UpwardsMemoryQuery {
  // True if our original query started off as a call
  bool IsCall = false;
  // The pointer location we started the query with. This will be empty if
  // IsCall is true.
  MemoryLocation StartingLoc;
  // This is the instruction we were querying about.
  const Instruction *Inst = nullptr;
  // The MemoryAccess we actually got called with, used to test local domination
  const MemoryAccess *OriginalAccess = nullptr;
  Optional<AliasResult> AR = MayAlias;
  bool SkipSelfAccess = false;

  UpwardsMemoryQuery() = default;

  UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
      : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
    if (!IsCall)
      StartingLoc = MemoryLocation::get(Inst);
  }
};

} // end anonymous namespace

static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
                           BatchAAResults &AA) {
  Instruction *Inst = MD->getMemoryInst();
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::lifetime_end:
      return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias;
    default:
      return false;
    }
  }
  return false;
}

template <typename AliasAnalysisType>
static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
                                                   const Instruction *I) {
  // If the memory can't be changed, then loads of the memory can't be
  // clobbered.
  return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) ||
                              AA.pointsToConstantMemory(MemoryLocation(
                                  cast<LoadInst>(I)->getPointerOperand())));
}

/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
///
/// This is meant to be as simple and self-contained as possible. Because it
/// uses no cache, etc., it can be relatively expensive.
///
/// \param Start     The MemoryAccess that we want to walk from.
/// \param ClobberAt A clobber for Start.
/// \param StartLoc  The MemoryLocation for Start.
/// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
/// \param Query     The UpwardsMemoryQuery we used for our search.
/// \param AA        The AliasAnalysis we used for our search.
/// \param AllowImpreciseClobber Always false, unless we do relaxed verify.

template <typename AliasAnalysisType>
LLVM_ATTRIBUTE_UNUSED static void
checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
                   const MemoryLocation &StartLoc, const MemorySSA &MSSA,
                   const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
                   bool AllowImpreciseClobber = false) {
  assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");

  if (MSSA.isLiveOnEntryDef(Start)) {
    assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
           "liveOnEntry must clobber itself");
    return;
  }

  bool FoundClobber = false;
  DenseSet<ConstMemoryAccessPair> VisitedPhis;
  SmallVector<ConstMemoryAccessPair, 8> Worklist;
  Worklist.emplace_back(Start, StartLoc);
  // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
  // is found, complain.
  while (!Worklist.empty()) {
    auto MAP = Worklist.pop_back_val();
    // All we care about is that nothing from Start to ClobberAt clobbers Start.
    // We learn nothing from revisiting nodes.
    if (!VisitedPhis.insert(MAP).second)
      continue;

    for (const auto *MA : def_chain(MAP.first)) {
      if (MA == ClobberAt) {
        if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
          // instructionClobbersQuery isn't essentially free, so don't use `|=`,
          // since it won't let us short-circuit.
          //
          // Also, note that this can't be hoisted out of the `Worklist` loop,
          // since MD may only act as a clobber for 1 of N MemoryLocations.
          FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
          if (!FoundClobber) {
            ClobberAlias CA =
                instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
            if (CA.IsClobber) {
              FoundClobber = true;
              // Not used: CA.AR;
            }
          }
        }
        break;
      }

      // We should never hit liveOnEntry, unless it's the clobber.
      assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");

      if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
        // If Start is a Def, skip self.
        if (MD == Start)
          continue;

        assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
                    .IsClobber &&
               "Found clobber before reaching ClobberAt!");
        continue;
      }

      if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
        (void)MU;
        assert (MU == Start &&
                "Can only find use in def chain if Start is a use");
        continue;
      }

      assert(isa<MemoryPhi>(MA));
      Worklist.append(
          upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
          upward_defs_end());
    }
  }

  // If the verify is done following an optimization, it's possible that
  // ClobberAt was a conservative clobbering, that we can now infer is not a
  // true clobbering access. Don't fail the verify if that's the case.
  // We do have accesses that claim they're optimized, but could be optimized
  // further. Updating all these can be expensive, so allow it for now (FIXME).
  if (AllowImpreciseClobber)
    return;

  // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
  // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
  assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
         "ClobberAt never acted as a clobber");
}

namespace {

/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
/// in one class.
template <class AliasAnalysisType> class ClobberWalker {
  /// Save a few bytes by using unsigned instead of size_t.
  using ListIndex = unsigned;

  /// Represents a span of contiguous MemoryDefs, potentially ending in a
  /// MemoryPhi.
  struct DefPath {
    MemoryLocation Loc;
    // Note that, because we always walk in reverse, Last will always dominate
    // First. Also note that First and Last are inclusive.
    MemoryAccess *First;
    MemoryAccess *Last;
    Optional<ListIndex> Previous;

    DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
            Optional<ListIndex> Previous)
        : Loc(Loc), First(First), Last(Last), Previous(Previous) {}

    DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
            Optional<ListIndex> Previous)
        : DefPath(Loc, Init, Init, Previous) {}
  };

  const MemorySSA &MSSA;
  AliasAnalysisType &AA;
  DominatorTree &DT;
  UpwardsMemoryQuery *Query;
  unsigned *UpwardWalkLimit;

  // Phi optimization bookkeeping
  SmallVector<DefPath, 32> Paths;
  DenseSet<ConstMemoryAccessPair> VisitedPhis;

  /// Find the nearest def or phi that `From` can legally be optimized to.
  const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
    assert(From->getNumOperands() && "Phi with no operands?");

    BasicBlock *BB = From->getBlock();
    MemoryAccess *Result = MSSA.getLiveOnEntryDef();
    DomTreeNode *Node = DT.getNode(BB);
    while ((Node = Node->getIDom())) {
      auto *Defs = MSSA.getBlockDefs(Node->getBlock());
      if (Defs)
        return &*Defs->rbegin();
    }
    return Result;
  }

  /// Result of calling walkToPhiOrClobber.
  struct UpwardsWalkResult {
    /// The "Result" of the walk. Either a clobber, the last thing we walked, or
    /// both. Include alias info when clobber found.
    MemoryAccess *Result;
    bool IsKnownClobber;
    Optional<AliasResult> AR;
  };

  /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
  /// This will update Desc.Last as it walks. It will (optionally) also stop at
  /// StopAt.
  ///
  /// This does not test for whether StopAt is a clobber
  UpwardsWalkResult
  walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
                     const MemoryAccess *SkipStopAt = nullptr) const {
    assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
    assert(UpwardWalkLimit && "Need a valid walk limit");
    bool LimitAlreadyReached = false;
    // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
    // it to 1. This will not do any alias() calls. It either returns in the
    // first iteration in the loop below, or is set back to 0 if all def chains
    // are free of MemoryDefs.
    if (!*UpwardWalkLimit) {
      *UpwardWalkLimit = 1;
      LimitAlreadyReached = true;
    }

    for (MemoryAccess *Current : def_chain(Desc.Last)) {
      Desc.Last = Current;
      if (Current == StopAt || Current == SkipStopAt)
        return {Current, false, MayAlias};

      if (auto *MD = dyn_cast<MemoryDef>(Current)) {
        if (MSSA.isLiveOnEntryDef(MD))
          return {MD, true, MustAlias};

        if (!--*UpwardWalkLimit)
          return {Current, true, MayAlias};

        ClobberAlias CA =
            instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
        if (CA.IsClobber)
          return {MD, true, CA.AR};
      }
    }

    if (LimitAlreadyReached)
      *UpwardWalkLimit = 0;

    assert(isa<MemoryPhi>(Desc.Last) &&
           "Ended at a non-clobber that's not a phi?");
    return {Desc.Last, false, MayAlias};
  }

  void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
                   ListIndex PriorNode) {
    auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
                                 upward_defs_end());
    for (const MemoryAccessPair &P : UpwardDefs) {
      PausedSearches.push_back(Paths.size());
      Paths.emplace_back(P.second, P.first, PriorNode);
    }
  }

  /// Represents a search that terminated after finding a clobber. This clobber
  /// may or may not be present in the path of defs from LastNode..SearchStart,
  /// since it may have been retrieved from cache.
  struct TerminatedPath {
    MemoryAccess *Clobber;
    ListIndex LastNode;
  };

  /// Get an access that keeps us from optimizing to the given phi.
  ///
  /// PausedSearches is an array of indices into the Paths array. Its incoming
  /// value is the indices of searches that stopped at the last phi optimization
  /// target. It's left in an unspecified state.
  ///
  /// If this returns None, NewPaused is a vector of searches that terminated
  /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
  Optional<TerminatedPath>
  getBlockingAccess(const MemoryAccess *StopWhere,
                    SmallVectorImpl<ListIndex> &PausedSearches,
                    SmallVectorImpl<ListIndex> &NewPaused,
                    SmallVectorImpl<TerminatedPath> &Terminated) {
    assert(!PausedSearches.empty() && "No searches to continue?");

    // BFS vs DFS really doesn't make a difference here, so just do a DFS with
    // PausedSearches as our stack.
    while (!PausedSearches.empty()) {
      ListIndex PathIndex = PausedSearches.pop_back_val();
      DefPath &Node = Paths[PathIndex];

      // If we've already visited this path with this MemoryLocation, we don't
      // need to do so again.
      //
      // NOTE: That we just drop these paths on the ground makes caching
      // behavior sporadic. e.g. given a diamond:
      //  A
      // B C
      //  D
      //
      // ...If we walk D, B, A, C, we'll only cache the result of phi
      // optimization for A, B, and D; C will be skipped because it dies here.
      // This arguably isn't the worst thing ever, since:
      //   - We generally query things in a top-down order, so if we got below D
      //     without needing cache entries for {C, MemLoc}, then chances are
      //     that those cache entries would end up ultimately unused.
      //   - We still cache things for A, so C only needs to walk up a bit.
      // If this behavior becomes problematic, we can fix without a ton of extra
      // work.
      if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
        continue;

      const MemoryAccess *SkipStopWhere = nullptr;
      if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
        assert(isa<MemoryDef>(Query->OriginalAccess));
        SkipStopWhere = Query->OriginalAccess;
      }

      UpwardsWalkResult Res = walkToPhiOrClobber(Node,
                                                 /*StopAt=*/StopWhere,
                                                 /*SkipStopAt=*/SkipStopWhere);
      if (Res.IsKnownClobber) {
        assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);

        // If this wasn't a cache hit, we hit a clobber when walking. That's a
        // failure.
        TerminatedPath Term{Res.Result, PathIndex};
        if (!MSSA.dominates(Res.Result, StopWhere))
          return Term;

        // Otherwise, it's a valid thing to potentially optimize to.
        Terminated.push_back(Term);
        continue;
      }

      if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
        // We've hit our target. Save this path off for if we want to continue
        // walking. If we are in the mode of skipping the OriginalAccess, and
        // we've reached back to the OriginalAccess, do not save path, we've
        // just looped back to self.
        if (Res.Result != SkipStopWhere)
          NewPaused.push_back(PathIndex);
        continue;
      }

      assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
      addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
    }

    return None;
  }

  template <typename T, typename Walker>
  struct generic_def_path_iterator
      : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
                                    std::forward_iterator_tag, T *> {
    generic_def_path_iterator() {}
    generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}

    T &operator*() const { return curNode(); }

    generic_def_path_iterator &operator++() {
      N = curNode().Previous;
      return *this;
    }

    bool operator==(const generic_def_path_iterator &O) const {
      if (N.hasValue() != O.N.hasValue())
        return false;
      return !N.hasValue() || *N == *O.N;
    }

  private:
    T &curNode() const { return W->Paths[*N]; }

    Walker *W = nullptr;
    Optional<ListIndex> N = None;
  };

  using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
  using const_def_path_iterator =
      generic_def_path_iterator<const DefPath, const ClobberWalker>;

  iterator_range<def_path_iterator> def_path(ListIndex From) {
    return make_range(def_path_iterator(this, From), def_path_iterator());
  }

  iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
    return make_range(const_def_path_iterator(this, From),
                      const_def_path_iterator());
  }

  struct OptznResult {
    /// The path that contains our result.
    TerminatedPath PrimaryClobber;
    /// The paths that we can legally cache back from, but that aren't
    /// necessarily the result of the Phi optimization.
    SmallVector<TerminatedPath, 4> OtherClobbers;
  };

  ListIndex defPathIndex(const DefPath &N) const {
    // The assert looks nicer if we don't need to do &N
    const DefPath *NP = &N;
    assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
           "Out of bounds DefPath!");
    return NP - &Paths.front();
  }

  /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
  /// that act as legal clobbers. Note that this won't return *all* clobbers.
  ///
  /// Phi optimization algorithm tl;dr:
  ///   - Find the earliest def/phi, A, we can optimize to
  ///   - Find if all paths from the starting memory access ultimately reach A
  ///     - If not, optimization isn't possible.
  ///     - Otherwise, walk from A to another clobber or phi, A'.
  ///       - If A' is a def, we're done.
  ///       - If A' is a phi, try to optimize it.
  ///
  /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
  /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
  OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
                             const MemoryLocation &Loc) {
    assert(Paths.empty() && VisitedPhis.empty() &&
           "Reset the optimization state.");

    Paths.emplace_back(Loc, Start, Phi, None);
    // Stores how many "valid" optimization nodes we had prior to calling
    // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
    auto PriorPathsSize = Paths.size();

    SmallVector<ListIndex, 16> PausedSearches;
    SmallVector<ListIndex, 8> NewPaused;
    SmallVector<TerminatedPath, 4> TerminatedPaths;

    addSearches(Phi, PausedSearches, 0);

    // Moves the TerminatedPath with the "most dominated" Clobber to the end of
    // Paths.
    auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
      assert(!Paths.empty() && "Need a path to move");
      auto Dom = Paths.begin();
      for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
        if (!MSSA.dominates(I->Clobber, Dom->Clobber))
          Dom = I;
      auto Last = Paths.end() - 1;
      if (Last != Dom)
        std::iter_swap(Last, Dom);
    };

    MemoryPhi *Current = Phi;
    while (true) {
      assert(!MSSA.isLiveOnEntryDef(Current) &&
             "liveOnEntry wasn't treated as a clobber?");

      const auto *Target = getWalkTarget(Current);
      // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
      // optimization for the prior phi.
      assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
        return MSSA.dominates(P.Clobber, Target);
      }));

      // FIXME: This is broken, because the Blocker may be reported to be
      // liveOnEntry, and we'll happily wait for that to disappear (read: never)
      // For the moment, this is fine, since we do nothing with blocker info.
      if (Optional<TerminatedPath> Blocker = getBlockingAccess(
              Target, PausedSearches, NewPaused, TerminatedPaths)) {

        // Find the node we started at. We can't search based on N->Last, since
        // we may have gone around a loop with a different MemoryLocation.
        auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
          return defPathIndex(N) < PriorPathsSize;
        });
        assert(Iter != def_path_iterator());

        DefPath &CurNode = *Iter;
        assert(CurNode.Last == Current);

        // Two things:
        // A. We can't reliably cache all of NewPaused back. Consider a case
        //    where we have two paths in NewPaused; one of which can't optimize
        //    above this phi, whereas the other can. If we cache the second path
        //    back, we'll end up with suboptimal cache entries. We can handle
        //    cases like this a bit better when we either try to find all
        //    clobbers that block phi optimization, or when our cache starts
        //    supporting unfinished searches.
        // B. We can't reliably cache TerminatedPaths back here without doing
        //    extra checks; consider a case like:
        //       T
        //      / \
        //     D   C
        //      \ /
        //       S
        //    Where T is our target, C is a node with a clobber on it, D is a
        //    diamond (with a clobber *only* on the left or right node, N), and
        //    S is our start. Say we walk to D, through the node opposite N
        //    (read: ignoring the clobber), and see a cache entry in the top
        //    node of D. That cache entry gets put into TerminatedPaths. We then
        //    walk up to C (N is later in our worklist), find the clobber, and
        //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
        //    the bottom part of D to the cached clobber, ignoring the clobber
        //    in N. Again, this problem goes away if we start tracking all
        //    blockers for a given phi optimization.
        TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
        return {Result, {}};
      }

      // If there's nothing left to search, then all paths led to valid clobbers
      // that we got from our cache; pick the nearest to the start, and allow
      // the rest to be cached back.
      if (NewPaused.empty()) {
        MoveDominatedPathToEnd(TerminatedPaths);
        TerminatedPath Result = TerminatedPaths.pop_back_val();
        return {Result, std::move(TerminatedPaths)};
      }

      MemoryAccess *DefChainEnd = nullptr;
      SmallVector<TerminatedPath, 4> Clobbers;
      for (ListIndex Paused : NewPaused) {
        UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
        if (WR.IsKnownClobber)
          Clobbers.push_back({WR.Result, Paused});
        else
          // Micro-opt: If we hit the end of the chain, save it.
          DefChainEnd = WR.Result;
      }

      if (!TerminatedPaths.empty()) {
        // If we couldn't find the dominating phi/liveOnEntry in the above loop,
        // do it now.
        if (!DefChainEnd)
          for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
            DefChainEnd = MA;
        assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");

        // If any of the terminated paths don't dominate the phi we'll try to
        // optimize, we need to figure out what they are and quit.
        const BasicBlock *ChainBB = DefChainEnd->getBlock();
        for (const TerminatedPath &TP : TerminatedPaths) {
          // Because we know that DefChainEnd is as "high" as we can go, we
          // don't need local dominance checks; BB dominance is sufficient.
          if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
            Clobbers.push_back(TP);
        }
      }

      // If we have clobbers in the def chain, find the one closest to Current
      // and quit.
      if (!Clobbers.empty()) {
        MoveDominatedPathToEnd(Clobbers);
        TerminatedPath Result = Clobbers.pop_back_val();
        return {Result, std::move(Clobbers)};
      }

      assert(all_of(NewPaused,
                    [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));

      // Because liveOnEntry is a clobber, this must be a phi.
      auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);

      PriorPathsSize = Paths.size();
      PausedSearches.clear();
      for (ListIndex I : NewPaused)
        addSearches(DefChainPhi, PausedSearches, I);
      NewPaused.clear();

      Current = DefChainPhi;
    }
  }

  void verifyOptResult(const OptznResult &R) const {
    assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
      return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
    }));
  }

  void resetPhiOptznState() {
    Paths.clear();
    VisitedPhis.clear();
  }

public:
  ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
      : MSSA(MSSA), AA(AA), DT(DT) {}

  AliasAnalysisType *getAA() { return &AA; }
  /// Finds the nearest clobber for the given query, optimizing phis if
  /// possible.
  MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
                            unsigned &UpWalkLimit) {
    Query = &Q;
    UpwardWalkLimit = &UpWalkLimit;
    // Starting limit must be > 0.
    if (!UpWalkLimit)
      UpWalkLimit++;

    MemoryAccess *Current = Start;
    // This walker pretends uses don't exist. If we're handed one, silently grab
    // its def. (This has the nice side-effect of ensuring we never cache uses)
    if (auto *MU = dyn_cast<MemoryUse>(Start))
      Current = MU->getDefiningAccess();

    DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
    // Fast path for the overly-common case (no crazy phi optimization
    // necessary)
    UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
    MemoryAccess *Result;
    if (WalkResult.IsKnownClobber) {
      Result = WalkResult.Result;
      Q.AR = WalkResult.AR;
    } else {
      OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
                                          Current, Q.StartingLoc);
      verifyOptResult(OptRes);
      resetPhiOptznState();
      Result = OptRes.PrimaryClobber.Clobber;
    }

#ifdef EXPENSIVE_CHECKS
    if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
      checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
#endif
    return Result;
  }
};

struct RenamePassData {
  DomTreeNode *DTN;
  DomTreeNode::const_iterator ChildIt;
  MemoryAccess *IncomingVal;

  RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
                 MemoryAccess *M)
      : DTN(D), ChildIt(It), IncomingVal(M) {}

  void swap(RenamePassData &RHS) {
    std::swap(DTN, RHS.DTN);
    std::swap(ChildIt, RHS.ChildIt);
    std::swap(IncomingVal, RHS.IncomingVal);
  }
};

} // end anonymous namespace

namespace llvm {

template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
  ClobberWalker<AliasAnalysisType> Walker;
  MemorySSA *MSSA;

public:
  ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
      : Walker(*M, *A, *D), MSSA(M) {}

  MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
                                              const MemoryLocation &,
                                              unsigned &);
  // Third argument (bool), defines whether the clobber search should skip the
  // original queried access. If true, there will be a follow-up query searching
  // for a clobber access past "self". Note that the Optimized access is not
  // updated if a new clobber is found by this SkipSelf search. If this
  // additional query becomes heavily used we may decide to cache the result.
  // Walker instantiations will decide how to set the SkipSelf bool.
  MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool);
};

/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
/// longer does caching on its own, but the name has been retained for the
/// moment.
template <class AliasAnalysisType>
class MemorySSA::CachingWalker final : public MemorySSAWalker {
  ClobberWalkerBase<AliasAnalysisType> *Walker;

public:
  CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
      : MemorySSAWalker(M), Walker(W) {}
  ~CachingWalker() override = default;

  using MemorySSAWalker::getClobberingMemoryAccess;

  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
    return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
  }
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
                                          const MemoryLocation &Loc,
                                          unsigned &UWL) {
    return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
  }

  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
    unsigned UpwardWalkLimit = MaxCheckLimit;
    return getClobberingMemoryAccess(MA, UpwardWalkLimit);
  }
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
                                          const MemoryLocation &Loc) override {
    unsigned UpwardWalkLimit = MaxCheckLimit;
    return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
  }

  void invalidateInfo(MemoryAccess *MA) override {
    if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
      MUD->resetOptimized();
  }
};

template <class AliasAnalysisType>
class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
  ClobberWalkerBase<AliasAnalysisType> *Walker;

public:
  SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
      : MemorySSAWalker(M), Walker(W) {}
  ~SkipSelfWalker() override = default;

  using MemorySSAWalker::getClobberingMemoryAccess;

  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
    return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
  }
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
                                          const MemoryLocation &Loc,
                                          unsigned &UWL) {
    return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
  }

  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
    unsigned UpwardWalkLimit = MaxCheckLimit;
    return getClobberingMemoryAccess(MA, UpwardWalkLimit);
  }
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
                                          const MemoryLocation &Loc) override {
    unsigned UpwardWalkLimit = MaxCheckLimit;
    return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
  }

  void invalidateInfo(MemoryAccess *MA) override {
    if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
      MUD->resetOptimized();
  }
};

} // end namespace llvm

void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
                                    bool RenameAllUses) {
  // Pass through values to our successors
  for (const BasicBlock *S : successors(BB)) {
    auto It = PerBlockAccesses.find(S);
    // Rename the phi nodes in our successor block
    if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
      continue;
    AccessList *Accesses = It->second.get();
    auto *Phi = cast<MemoryPhi>(&Accesses->front());
    if (RenameAllUses) {
      bool ReplacementDone = false;
      for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
        if (Phi->getIncomingBlock(I) == BB) {
          Phi->setIncomingValue(I, IncomingVal);
          ReplacementDone = true;
        }
      (void) ReplacementDone;
      assert(ReplacementDone && "Incomplete phi during partial rename");
    } else
      Phi->addIncoming(IncomingVal, BB);
  }
}

/// Rename a single basic block into MemorySSA form.
/// Uses the standard SSA renaming algorithm.
/// \returns The new incoming value.
MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
                                     bool RenameAllUses) {
  auto It = PerBlockAccesses.find(BB);
  // Skip most processing if the list is empty.
  if (It != PerBlockAccesses.end()) {
    AccessList *Accesses = It->second.get();
    for (MemoryAccess &L : *Accesses) {
      if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
        if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
          MUD->setDefiningAccess(IncomingVal);
        if (isa<MemoryDef>(&L))
          IncomingVal = &L;
      } else {
        IncomingVal = &L;
      }
    }
  }
  return IncomingVal;
}

/// This is the standard SSA renaming algorithm.
///
/// We walk the dominator tree in preorder, renaming accesses, and then filling
/// in phi nodes in our successors.
void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
                           SmallPtrSetImpl<BasicBlock *> &Visited,
                           bool SkipVisited, bool RenameAllUses) {
  assert(Root && "Trying to rename accesses in an unreachable block");

  SmallVector<RenamePassData, 32> WorkStack;
  // Skip everything if we already renamed this block and we are skipping.
  // Note: You can't sink this into the if, because we need it to occur
  // regardless of whether we skip blocks or not.
  bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
  if (SkipVisited && AlreadyVisited)
    return;

  IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
  renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
  WorkStack.push_back({Root, Root->begin(), IncomingVal});

  while (!WorkStack.empty()) {
    DomTreeNode *Node = WorkStack.back().DTN;
    DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
    IncomingVal = WorkStack.back().IncomingVal;

    if (ChildIt == Node->end()) {
      WorkStack.pop_back();
    } else {
      DomTreeNode *Child = *ChildIt;
      ++WorkStack.back().ChildIt;
      BasicBlock *BB = Child->getBlock();
      // Note: You can't sink this into the if, because we need it to occur
      // regardless of whether we skip blocks or not.
      AlreadyVisited = !Visited.insert(BB).second;
      if (SkipVisited && AlreadyVisited) {
        // We already visited this during our renaming, which can happen when
        // being asked to rename multiple blocks. Figure out the incoming val,
        // which is the last def.
        // Incoming value can only change if there is a block def, and in that
        // case, it's the last block def in the list.
        if (auto *BlockDefs = getWritableBlockDefs(BB))
          IncomingVal = &*BlockDefs->rbegin();
      } else
        IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
      renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
      WorkStack.push_back({Child, Child->begin(), IncomingVal});
    }
  }
}

/// This handles unreachable block accesses by deleting phi nodes in
/// unreachable blocks, and marking all other unreachable MemoryAccess's as
/// being uses of the live on entry definition.
void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
  assert(!DT->isReachableFromEntry(BB) &&
         "Reachable block found while handling unreachable blocks");

  // Make sure phi nodes in our reachable successors end up with a
  // LiveOnEntryDef for our incoming edge, even though our block is forward
  // unreachable.  We could just disconnect these blocks from the CFG fully,
  // but we do not right now.
  for (const BasicBlock *S : successors(BB)) {
    if (!DT->isReachableFromEntry(S))
      continue;
    auto It = PerBlockAccesses.find(S);
    // Rename the phi nodes in our successor block
    if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
      continue;
    AccessList *Accesses = It->second.get();
    auto *Phi = cast<MemoryPhi>(&Accesses->front());
    Phi->addIncoming(LiveOnEntryDef.get(), BB);
  }

  auto It = PerBlockAccesses.find(BB);
  if (It == PerBlockAccesses.end())
    return;

  auto &Accesses = It->second;
  for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
    auto Next = std::next(AI);
    // If we have a phi, just remove it. We are going to replace all
    // users with live on entry.
    if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
      UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
    else
      Accesses->erase(AI);
    AI = Next;
  }
}

MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
    : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
      SkipWalker(nullptr), NextID(0) {
  // Build MemorySSA using a batch alias analysis. This reuses the internal
  // state that AA collects during an alias()/getModRefInfo() call. This is
  // safe because there are no CFG changes while building MemorySSA and can
  // significantly reduce the time spent by the compiler in AA, because we will
  // make queries about all the instructions in the Function.
  BatchAAResults BatchAA(*AA);
  buildMemorySSA(BatchAA);
  // Intentionally leave AA to nullptr while building so we don't accidently
  // use non-batch AliasAnalysis.
  this->AA = AA;
  // Also create the walker here.
  getWalker();
}

MemorySSA::~MemorySSA() {
  // Drop all our references
  for (const auto &Pair : PerBlockAccesses)
    for (MemoryAccess &MA : *Pair.second)
      MA.dropAllReferences();
}

MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
  auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));

  if (Res.second)
    Res.first->second = std::make_unique<AccessList>();
  return Res.first->second.get();
}

MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
  auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));

  if (Res.second)
    Res.first->second = std::make_unique<DefsList>();
  return Res.first->second.get();
}

namespace llvm {

/// This class is a batch walker of all MemoryUse's in the program, and points
/// their defining access at the thing that actually clobbers them.  Because it
/// is a batch walker that touches everything, it does not operate like the
/// other walkers.  This walker is basically performing a top-down SSA renaming
/// pass, where the version stack is used as the cache.  This enables it to be
/// significantly more time and memory efficient than using the regular walker,
/// which is walking bottom-up.
class MemorySSA::OptimizeUses {
public:
  OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
               BatchAAResults *BAA, DominatorTree *DT)
      : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}

  void optimizeUses();

private:
  /// This represents where a given memorylocation is in the stack.
  struct MemlocStackInfo {
    // This essentially is keeping track of versions of the stack. Whenever
    // the stack changes due to pushes or pops, these versions increase.
    unsigned long StackEpoch;
    unsigned long PopEpoch;
    // This is the lower bound of places on the stack to check. It is equal to
    // the place the last stack walk ended.
    // Note: Correctness depends on this being initialized to 0, which densemap
    // does
    unsigned long LowerBound;
    const BasicBlock *LowerBoundBlock;
    // This is where the last walk for this memory location ended.
    unsigned long LastKill;
    bool LastKillValid;
    Optional<AliasResult> AR;
  };

  void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
                           SmallVectorImpl<MemoryAccess *> &,
                           DenseMap<MemoryLocOrCall, MemlocStackInfo> &);

  MemorySSA *MSSA;
  CachingWalker<BatchAAResults> *Walker;
  BatchAAResults *AA;
  DominatorTree *DT;
};

} // end namespace llvm

/// Optimize the uses in a given block This is basically the SSA renaming
/// algorithm, with one caveat: We are able to use a single stack for all
/// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
/// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
/// going to be some position in that stack of possible ones.
///
/// We track the stack positions that each MemoryLocation needs
/// to check, and last ended at.  This is because we only want to check the
/// things that changed since last time.  The same MemoryLocation should
/// get clobbered by the same store (getModRefInfo does not use invariantness or
/// things like this, and if they start, we can modify MemoryLocOrCall to
/// include relevant data)
void MemorySSA::OptimizeUses::optimizeUsesInBlock(
    const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
    SmallVectorImpl<MemoryAccess *> &VersionStack,
    DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {

  /// If no accesses, nothing to do.
  MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
  if (Accesses == nullptr)
    return;

  // Pop everything that doesn't dominate the current block off the stack,
  // increment the PopEpoch to account for this.
  while (true) {
    assert(
        !VersionStack.empty() &&
        "Version stack should have liveOnEntry sentinel dominating everything");
    BasicBlock *BackBlock = VersionStack.back()->getBlock();
    if (DT->dominates(BackBlock, BB))
      break;
    while (VersionStack.back()->getBlock() == BackBlock)
      VersionStack.pop_back();
    ++PopEpoch;
  }

  for (MemoryAccess &MA : *Accesses) {
    auto *MU = dyn_cast<MemoryUse>(&MA);
    if (!MU) {
      VersionStack.push_back(&MA);
      ++StackEpoch;
      continue;
    }

    if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
      MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
      continue;
    }

    MemoryLocOrCall UseMLOC(MU);
    auto &LocInfo = LocStackInfo[UseMLOC];
    // If the pop epoch changed, it means we've removed stuff from top of
    // stack due to changing blocks. We may have to reset the lower bound or
    // last kill info.
    if (LocInfo.PopEpoch != PopEpoch) {
      LocInfo.PopEpoch = PopEpoch;
      LocInfo.StackEpoch = StackEpoch;
      // If the lower bound was in something that no longer dominates us, we
      // have to reset it.
      // We can't simply track stack size, because the stack may have had
      // pushes/pops in the meantime.
      // XXX: This is non-optimal, but only is slower cases with heavily
      // branching dominator trees.  To get the optimal number of queries would
      // be to make lowerbound and lastkill a per-loc stack, and pop it until
      // the top of that stack dominates us.  This does not seem worth it ATM.
      // A much cheaper optimization would be to always explore the deepest
      // branch of the dominator tree first. This will guarantee this resets on
      // the smallest set of blocks.
      if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
          !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
        // Reset the lower bound of things to check.
        // TODO: Some day we should be able to reset to last kill, rather than
        // 0.
        LocInfo.LowerBound = 0;
        LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
        LocInfo.LastKillValid = false;
      }
    } else if (LocInfo.StackEpoch != StackEpoch) {
      // If all that has changed is the StackEpoch, we only have to check the
      // new things on the stack, because we've checked everything before.  In
      // this case, the lower bound of things to check remains the same.
      LocInfo.PopEpoch = PopEpoch;
      LocInfo.StackEpoch = StackEpoch;
    }
    if (!LocInfo.LastKillValid) {
      LocInfo.LastKill = VersionStack.size() - 1;
      LocInfo.LastKillValid = true;
      LocInfo.AR = MayAlias;
    }

    // At this point, we should have corrected last kill and LowerBound to be
    // in bounds.
    assert(LocInfo.LowerBound < VersionStack.size() &&
           "Lower bound out of range");
    assert(LocInfo.LastKill < VersionStack.size() &&
           "Last kill info out of range");
    // In any case, the new upper bound is the top of the stack.
    unsigned long UpperBound = VersionStack.size() - 1;

    if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
      LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
                        << *(MU->getMemoryInst()) << ")"
                        << " because there are "
                        << UpperBound - LocInfo.LowerBound
                        << " stores to disambiguate\n");
      // Because we did not walk, LastKill is no longer valid, as this may
      // have been a kill.
      LocInfo.LastKillValid = false;
      continue;
    }
    bool FoundClobberResult = false;
    unsigned UpwardWalkLimit = MaxCheckLimit;
    while (UpperBound > LocInfo.LowerBound) {
      if (isa<MemoryPhi>(VersionStack[UpperBound])) {
        // For phis, use the walker, see where we ended up, go there
        MemoryAccess *Result =
            Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit);
        // We are guaranteed to find it or something is wrong
        while (VersionStack[UpperBound] != Result) {
          assert(UpperBound != 0);
          --UpperBound;
        }
        FoundClobberResult = true;
        break;
      }

      MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
      // If the lifetime of the pointer ends at this instruction, it's live on
      // entry.
      if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
        // Reset UpperBound to liveOnEntryDef's place in the stack
        UpperBound = 0;
        FoundClobberResult = true;
        LocInfo.AR = MustAlias;
        break;
      }
      ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
      if (CA.IsClobber) {
        FoundClobberResult = true;
        LocInfo.AR = CA.AR;
        break;
      }
      --UpperBound;
    }

    // Note: Phis always have AliasResult AR set to MayAlias ATM.

    // At the end of this loop, UpperBound is either a clobber, or lower bound
    // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
    if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
      // We were last killed now by where we got to
      if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
        LocInfo.AR = None;
      MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
      LocInfo.LastKill = UpperBound;
    } else {
      // Otherwise, we checked all the new ones, and now we know we can get to
      // LastKill.
      MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
    }
    LocInfo.LowerBound = VersionStack.size() - 1;
    LocInfo.LowerBoundBlock = BB;
  }
}

/// Optimize uses to point to their actual clobbering definitions.
void MemorySSA::OptimizeUses::optimizeUses() {
  SmallVector<MemoryAccess *, 16> VersionStack;
  DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
  VersionStack.push_back(MSSA->getLiveOnEntryDef());

  unsigned long StackEpoch = 1;
  unsigned long PopEpoch = 1;
  // We perform a non-recursive top-down dominator tree walk.
  for (const auto *DomNode : depth_first(DT->getRootNode()))
    optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
                        LocStackInfo);
}

void MemorySSA::placePHINodes(
    const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
  // Determine where our MemoryPhi's should go
  ForwardIDFCalculator IDFs(*DT);
  IDFs.setDefiningBlocks(DefiningBlocks);
  SmallVector<BasicBlock *, 32> IDFBlocks;
  IDFs.calculate(IDFBlocks);

  // Now place MemoryPhi nodes.
  for (auto &BB : IDFBlocks)
    createMemoryPhi(BB);
}

void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
  // We create an access to represent "live on entry", for things like
  // arguments or users of globals, where the memory they use is defined before
  // the beginning of the function. We do not actually insert it into the IR.
  // We do not define a live on exit for the immediate uses, and thus our
  // semantics do *not* imply that something with no immediate uses can simply
  // be removed.
  BasicBlock &StartingPoint = F.getEntryBlock();
  LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
                                     &StartingPoint, NextID++));

  // We maintain lists of memory accesses per-block, trading memory for time. We
  // could just look up the memory access for every possible instruction in the
  // stream.
  SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
  // Go through each block, figure out where defs occur, and chain together all
  // the accesses.
  for (BasicBlock &B : F) {
    bool InsertIntoDef = false;
    AccessList *Accesses = nullptr;
    DefsList *Defs = nullptr;
    for (Instruction &I : B) {
      MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
      if (!MUD)
        continue;

      if (!Accesses)
        Accesses = getOrCreateAccessList(&B);
      Accesses->push_back(MUD);
      if (isa<MemoryDef>(MUD)) {
        InsertIntoDef = true;
        if (!Defs)
          Defs = getOrCreateDefsList(&B);
        Defs->push_back(*MUD);
      }
    }
    if (InsertIntoDef)
      DefiningBlocks.insert(&B);
  }
  placePHINodes(DefiningBlocks);

  // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
  // filled in with all blocks.
  SmallPtrSet<BasicBlock *, 16> Visited;
  renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);

  ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
  CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
  OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();

  // Mark the uses in unreachable blocks as live on entry, so that they go
  // somewhere.
  for (auto &BB : F)
    if (!Visited.count(&BB))
      markUnreachableAsLiveOnEntry(&BB);
}

MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }

MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
  if (Walker)
    return Walker.get();

  if (!WalkerBase)
    WalkerBase =
        std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);

  Walker =
      std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
  return Walker.get();
}

MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
  if (SkipWalker)
    return SkipWalker.get();

  if (!WalkerBase)
    WalkerBase =
        std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);

  SkipWalker =
      std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
  return SkipWalker.get();
 }


// This is a helper function used by the creation routines. It places NewAccess
// into the access and defs lists for a given basic block, at the given
// insertion point.
void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
                                        const BasicBlock *BB,
                                        InsertionPlace Point) {
  auto *Accesses = getOrCreateAccessList(BB);
  if (Point == Beginning) {
    // If it's a phi node, it goes first, otherwise, it goes after any phi
    // nodes.
    if (isa<MemoryPhi>(NewAccess)) {
      Accesses->push_front(NewAccess);
      auto *Defs = getOrCreateDefsList(BB);
      Defs->push_front(*NewAccess);
    } else {
      auto AI = find_if_not(
          *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
      Accesses->insert(AI, NewAccess);
      if (!isa<MemoryUse>(NewAccess)) {
        auto *Defs = getOrCreateDefsList(BB);
        auto DI = find_if_not(
            *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
        Defs->insert(DI, *NewAccess);
      }
    }
  } else {
    Accesses->push_back(NewAccess);
    if (!isa<MemoryUse>(NewAccess)) {
      auto *Defs = getOrCreateDefsList(BB);
      Defs->push_back(*NewAccess);
    }
  }
  BlockNumberingValid.erase(BB);
}

void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
                                      AccessList::iterator InsertPt) {
  auto *Accesses = getWritableBlockAccesses(BB);
  bool WasEnd = InsertPt == Accesses->end();
  Accesses->insert(AccessList::iterator(InsertPt), What);
  if (!isa<MemoryUse>(What)) {
    auto *Defs = getOrCreateDefsList(BB);
    // If we got asked to insert at the end, we have an easy job, just shove it
    // at the end. If we got asked to insert before an existing def, we also get
    // an iterator. If we got asked to insert before a use, we have to hunt for
    // the next def.
    if (WasEnd) {
      Defs->push_back(*What);
    } else if (isa<MemoryDef>(InsertPt)) {
      Defs->insert(InsertPt->getDefsIterator(), *What);
    } else {
      while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
        ++InsertPt;
      // Either we found a def, or we are inserting at the end
      if (InsertPt == Accesses->end())
        Defs->push_back(*What);
      else
        Defs->insert(InsertPt->getDefsIterator(), *What);
    }
  }
  BlockNumberingValid.erase(BB);
}

void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
  // Keep it in the lookup tables, remove from the lists
  removeFromLists(What, false);

  // Note that moving should implicitly invalidate the optimized state of a
  // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
  // MemoryDef.
  if (auto *MD = dyn_cast<MemoryDef>(What))
    MD->resetOptimized();
  What->setBlock(BB);
}

// Move What before Where in the IR.  The end result is that What will belong to
// the right lists and have the right Block set, but will not otherwise be
// correct. It will not have the right defining access, and if it is a def,
// things below it will not properly be updated.
void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
                       AccessList::iterator Where) {
  prepareForMoveTo(What, BB);
  insertIntoListsBefore(What, BB, Where);
}

void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
                       InsertionPlace Point) {
  if (isa<MemoryPhi>(What)) {
    assert(Point == Beginning &&
           "Can only move a Phi at the beginning of the block");
    // Update lookup table entry
    ValueToMemoryAccess.erase(What->getBlock());
    bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
    (void)Inserted;
    assert(Inserted && "Cannot move a Phi to a block that already has one");
  }

  prepareForMoveTo(What, BB);
  insertIntoListsForBlock(What, BB, Point);
}

MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
  assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
  MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
  // Phi's always are placed at the front of the block.
  insertIntoListsForBlock(Phi, BB, Beginning);
  ValueToMemoryAccess[BB] = Phi;
  return Phi;
}

MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
                                               MemoryAccess *Definition,
                                               const MemoryUseOrDef *Template,
                                               bool CreationMustSucceed) {
  assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
  MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
  if (CreationMustSucceed)
    assert(NewAccess != nullptr && "Tried to create a memory access for a "
                                   "non-memory touching instruction");
  if (NewAccess)
    NewAccess->setDefiningAccess(Definition);
  return NewAccess;
}

// Return true if the instruction has ordering constraints.
// Note specifically that this only considers stores and loads
// because others are still considered ModRef by getModRefInfo.
static inline bool isOrdered(const Instruction *I) {
  if (auto *SI = dyn_cast<StoreInst>(I)) {
    if (!SI->isUnordered())
      return true;
  } else if (auto *LI = dyn_cast<LoadInst>(I)) {
    if (!LI->isUnordered())
      return true;
  }
  return false;
}

/// Helper function to create new memory accesses
template <typename AliasAnalysisType>
MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
                                           AliasAnalysisType *AAP,
                                           const MemoryUseOrDef *Template) {
  // The assume intrinsic has a control dependency which we model by claiming
  // that it writes arbitrarily. Debuginfo intrinsics may be considered
  // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
  // dependencies here.
  // FIXME: Replace this special casing with a more accurate modelling of
  // assume's control dependency.
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
    if (II->getIntrinsicID() == Intrinsic::assume)
      return nullptr;

  // Using a nonstandard AA pipelines might leave us with unexpected modref
  // results for I, so add a check to not model instructions that may not read
  // from or write to memory. This is necessary for correctness.
  if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
    return nullptr;

  bool Def, Use;
  if (Template) {
    Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
    Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
#if !defined(NDEBUG)
    ModRefInfo ModRef = AAP->getModRefInfo(I, None);
    bool DefCheck, UseCheck;
    DefCheck = isModSet(ModRef) || isOrdered(I);
    UseCheck = isRefSet(ModRef);
    assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
#endif
  } else {
    // Find out what affect this instruction has on memory.
    ModRefInfo ModRef = AAP->getModRefInfo(I, None);
    // The isOrdered check is used to ensure that volatiles end up as defs
    // (atomics end up as ModRef right now anyway).  Until we separate the
    // ordering chain from the memory chain, this enables people to see at least
    // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
    // will still give an answer that bypasses other volatile loads.  TODO:
    // Separate memory aliasing and ordering into two different chains so that
    // we can precisely represent both "what memory will this read/write/is
    // clobbered by" and "what instructions can I move this past".
    Def = isModSet(ModRef) || isOrdered(I);
    Use = isRefSet(ModRef);
  }

  // It's possible for an instruction to not modify memory at all. During
  // construction, we ignore them.
  if (!Def && !Use)
    return nullptr;

  MemoryUseOrDef *MUD;
  if (Def)
    MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
  else
    MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
  ValueToMemoryAccess[I] = MUD;
  return MUD;
}

/// Returns true if \p Replacer dominates \p Replacee .
bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
                             const MemoryAccess *Replacee) const {
  if (isa<MemoryUseOrDef>(Replacee))
    return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
  const auto *MP = cast<MemoryPhi>(Replacee);
  // For a phi node, the use occurs in the predecessor block of the phi node.
  // Since we may occur multiple times in the phi node, we have to check each
  // operand to ensure Replacer dominates each operand where Replacee occurs.
  for (const Use &Arg : MP->operands()) {
    if (Arg.get() != Replacee &&
        !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
      return false;
  }
  return true;
}

/// Properly remove \p MA from all of MemorySSA's lookup tables.
void MemorySSA::removeFromLookups(MemoryAccess *MA) {
  assert(MA->use_empty() &&
         "Trying to remove memory access that still has uses");
  BlockNumbering.erase(MA);
  if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
    MUD->setDefiningAccess(nullptr);
  // Invalidate our walker's cache if necessary
  if (!isa<MemoryUse>(MA))
    getWalker()->invalidateInfo(MA);

  Value *MemoryInst;
  if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
    MemoryInst = MUD->getMemoryInst();
  else
    MemoryInst = MA->getBlock();

  auto VMA = ValueToMemoryAccess.find(MemoryInst);
  if (VMA->second == MA)
    ValueToMemoryAccess.erase(VMA);
}

/// Properly remove \p MA from all of MemorySSA's lists.
///
/// Because of the way the intrusive list and use lists work, it is important to
/// do removal in the right order.
/// ShouldDelete defaults to true, and will cause the memory access to also be
/// deleted, not just removed.
void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
  BasicBlock *BB = MA->getBlock();
  // The access list owns the reference, so we erase it from the non-owning list
  // first.
  if (!isa<MemoryUse>(MA)) {
    auto DefsIt = PerBlockDefs.find(BB);
    std::unique_ptr<DefsList> &Defs = DefsIt->second;
    Defs->remove(*MA);
    if (Defs->empty())
      PerBlockDefs.erase(DefsIt);
  }

  // The erase call here will delete it. If we don't want it deleted, we call
  // remove instead.
  auto AccessIt = PerBlockAccesses.find(BB);
  std::unique_ptr<AccessList> &Accesses = AccessIt->second;
  if (ShouldDelete)
    Accesses->erase(MA);
  else
    Accesses->remove(MA);

  if (Accesses->empty()) {
    PerBlockAccesses.erase(AccessIt);
    BlockNumberingValid.erase(BB);
  }
}

void MemorySSA::print(raw_ostream &OS) const {
  MemorySSAAnnotatedWriter Writer(this);
  F.print(OS, &Writer);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
#endif

void MemorySSA::verifyMemorySSA() const {
  verifyDefUses(F);
  verifyDomination(F);
  verifyOrdering(F);
  verifyDominationNumbers(F);
  verifyPrevDefInPhis(F);
  // Previously, the verification used to also verify that the clobberingAccess
  // cached by MemorySSA is the same as the clobberingAccess found at a later
  // query to AA. This does not hold true in general due to the current fragility
  // of BasicAA which has arbitrary caps on the things it analyzes before giving
  // up. As a result, transformations that are correct, will lead to BasicAA
  // returning different Alias answers before and after that transformation.
  // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
  // random, in the worst case we'd need to rebuild MemorySSA from scratch after
  // every transformation, which defeats the purpose of using it. For such an
  // example, see test4 added in D51960.
}

void MemorySSA::verifyPrevDefInPhis(Function &F) const {
#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
  for (const BasicBlock &BB : F) {
    if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
      for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
        auto *Pred = Phi->getIncomingBlock(I);
        auto *IncAcc = Phi->getIncomingValue(I);
        // If Pred has no unreachable predecessors, get last def looking at
        // IDoms. If, while walkings IDoms, any of these has an unreachable
        // predecessor, then the incoming def can be any access.
        if (auto *DTNode = DT->getNode(Pred)) {
          while (DTNode) {
            if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
              auto *LastAcc = &*(--DefList->end());
              assert(LastAcc == IncAcc &&
                     "Incorrect incoming access into phi.");
              break;
            }
            DTNode = DTNode->getIDom();
          }
        } else {
          // If Pred has unreachable predecessors, but has at least a Def, the
          // incoming access can be the last Def in Pred, or it could have been
          // optimized to LoE. After an update, though, the LoE may have been
          // replaced by another access, so IncAcc may be any access.
          // If Pred has unreachable predecessors and no Defs, incoming access
          // should be LoE; However, after an update, it may be any access.
        }
      }
    }
  }
#endif
}

/// Verify that all of the blocks we believe to have valid domination numbers
/// actually have valid domination numbers.
void MemorySSA::verifyDominationNumbers(const Function &F) const {
#ifndef NDEBUG
  if (BlockNumberingValid.empty())
    return;

  SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
  for (const BasicBlock &BB : F) {
    if (!ValidBlocks.count(&BB))
      continue;

    ValidBlocks.erase(&BB);

    const AccessList *Accesses = getBlockAccesses(&BB);
    // It's correct to say an empty block has valid numbering.
    if (!Accesses)
      continue;

    // Block numbering starts at 1.
    unsigned long LastNumber = 0;
    for (const MemoryAccess &MA : *Accesses) {
      auto ThisNumberIter = BlockNumbering.find(&MA);
      assert(ThisNumberIter != BlockNumbering.end() &&
             "MemoryAccess has no domination number in a valid block!");

      unsigned long ThisNumber = ThisNumberIter->second;
      assert(ThisNumber > LastNumber &&
             "Domination numbers should be strictly increasing!");
      LastNumber = ThisNumber;
    }
  }

  assert(ValidBlocks.empty() &&
         "All valid BasicBlocks should exist in F -- dangling pointers?");
#endif
}

/// Verify that the order and existence of MemoryAccesses matches the
/// order and existence of memory affecting instructions.
void MemorySSA::verifyOrdering(Function &F) const {
#ifndef NDEBUG
  // Walk all the blocks, comparing what the lookups think and what the access
  // lists think, as well as the order in the blocks vs the order in the access
  // lists.
  SmallVector<MemoryAccess *, 32> ActualAccesses;
  SmallVector<MemoryAccess *, 32> ActualDefs;
  for (BasicBlock &B : F) {
    const AccessList *AL = getBlockAccesses(&B);
    const auto *DL = getBlockDefs(&B);
    MemoryAccess *Phi = getMemoryAccess(&B);
    if (Phi) {
      ActualAccesses.push_back(Phi);
      ActualDefs.push_back(Phi);
    }

    for (Instruction &I : B) {
      MemoryAccess *MA = getMemoryAccess(&I);
      assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
             "We have memory affecting instructions "
             "in this block but they are not in the "
             "access list or defs list");
      if (MA) {
        ActualAccesses.push_back(MA);
        if (isa<MemoryDef>(MA))
          ActualDefs.push_back(MA);
      }
    }
    // Either we hit the assert, really have no accesses, or we have both
    // accesses and an access list.
    // Same with defs.
    if (!AL && !DL)
      continue;
    assert(AL->size() == ActualAccesses.size() &&
           "We don't have the same number of accesses in the block as on the "
           "access list");
    assert((DL || ActualDefs.size() == 0) &&
           "Either we should have a defs list, or we should have no defs");
    assert((!DL || DL->size() == ActualDefs.size()) &&
           "We don't have the same number of defs in the block as on the "
           "def list");
    auto ALI = AL->begin();
    auto AAI = ActualAccesses.begin();
    while (ALI != AL->end() && AAI != ActualAccesses.end()) {
      assert(&*ALI == *AAI && "Not the same accesses in the same order");
      ++ALI;
      ++AAI;
    }
    ActualAccesses.clear();
    if (DL) {
      auto DLI = DL->begin();
      auto ADI = ActualDefs.begin();
      while (DLI != DL->end() && ADI != ActualDefs.end()) {
        assert(&*DLI == *ADI && "Not the same defs in the same order");
        ++DLI;
        ++ADI;
      }
    }
    ActualDefs.clear();
  }
#endif
}

/// Verify the domination properties of MemorySSA by checking that each
/// definition dominates all of its uses.
void MemorySSA::verifyDomination(Function &F) const {
#ifndef NDEBUG
  for (BasicBlock &B : F) {
    // Phi nodes are attached to basic blocks
    if (MemoryPhi *MP = getMemoryAccess(&B))
      for (const Use &U : MP->uses())
        assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");

    for (Instruction &I : B) {
      MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
      if (!MD)
        continue;

      for (const Use &U : MD->uses())
        assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
    }
  }
#endif
}

/// Verify the def-use lists in MemorySSA, by verifying that \p Use
/// appears in the use list of \p Def.
void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
#ifndef NDEBUG
  // The live on entry use may cause us to get a NULL def here
  if (!Def)
    assert(isLiveOnEntryDef(Use) &&
           "Null def but use not point to live on entry def");
  else
    assert(is_contained(Def->users(), Use) &&
           "Did not find use in def's use list");
#endif
}

/// Verify the immediate use information, by walking all the memory
/// accesses and verifying that, for each use, it appears in the
/// appropriate def's use list
void MemorySSA::verifyDefUses(Function &F) const {
#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
  for (BasicBlock &B : F) {
    // Phi nodes are attached to basic blocks
    if (MemoryPhi *Phi = getMemoryAccess(&B)) {
      assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
                                          pred_begin(&B), pred_end(&B))) &&
             "Incomplete MemoryPhi Node");
      for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
        verifyUseInDefs(Phi->getIncomingValue(I), Phi);
        assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
                   pred_end(&B) &&
               "Incoming phi block not a block predecessor");
      }
    }

    for (Instruction &I : B) {
      if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
        verifyUseInDefs(MA->getDefiningAccess(), MA);
      }
    }
  }
#endif
}

/// Perform a local numbering on blocks so that instruction ordering can be
/// determined in constant time.
/// TODO: We currently just number in order.  If we numbered by N, we could
/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
/// log2(N) sequences of mixed before and after) without needing to invalidate
/// the numbering.
void MemorySSA::renumberBlock(const BasicBlock *B) const {
  // The pre-increment ensures the numbers really start at 1.
  unsigned long CurrentNumber = 0;
  const AccessList *AL = getBlockAccesses(B);
  assert(AL != nullptr && "Asking to renumber an empty block");
  for (const auto &I : *AL)
    BlockNumbering[&I] = ++CurrentNumber;
  BlockNumberingValid.insert(B);
}

/// Determine, for two memory accesses in the same block,
/// whether \p Dominator dominates \p Dominatee.
/// \returns True if \p Dominator dominates \p Dominatee.
bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
                                 const MemoryAccess *Dominatee) const {
  const BasicBlock *DominatorBlock = Dominator->getBlock();

  assert((DominatorBlock == Dominatee->getBlock()) &&
         "Asking for local domination when accesses are in different blocks!");
  // A node dominates itself.
  if (Dominatee == Dominator)
    return true;

  // When Dominatee is defined on function entry, it is not dominated by another
  // memory access.
  if (isLiveOnEntryDef(Dominatee))
    return false;

  // When Dominator is defined on function entry, it dominates the other memory
  // access.
  if (isLiveOnEntryDef(Dominator))
    return true;

  if (!BlockNumberingValid.count(DominatorBlock))
    renumberBlock(DominatorBlock);

  unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
  // All numbers start with 1
  assert(DominatorNum != 0 && "Block was not numbered properly");
  unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
  assert(DominateeNum != 0 && "Block was not numbered properly");
  return DominatorNum < DominateeNum;
}

bool MemorySSA::dominates(const MemoryAccess *Dominator,
                          const MemoryAccess *Dominatee) const {
  if (Dominator == Dominatee)
    return true;

  if (isLiveOnEntryDef(Dominatee))
    return false;

  if (Dominator->getBlock() != Dominatee->getBlock())
    return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
  return locallyDominates(Dominator, Dominatee);
}

bool MemorySSA::dominates(const MemoryAccess *Dominator,
                          const Use &Dominatee) const {
  if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
    BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
    // The def must dominate the incoming block of the phi.
    if (UseBB != Dominator->getBlock())
      return DT->dominates(Dominator->getBlock(), UseBB);
    // If the UseBB and the DefBB are the same, compare locally.
    return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
  }
  // If it's not a PHI node use, the normal dominates can already handle it.
  return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
}

const static char LiveOnEntryStr[] = "liveOnEntry";

void MemoryAccess::print(raw_ostream &OS) const {
  switch (getValueID()) {
  case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
  case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
  case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
  }
  llvm_unreachable("invalid value id");
}

void MemoryDef::print(raw_ostream &OS) const {
  MemoryAccess *UO = getDefiningAccess();

  auto printID = [&OS](MemoryAccess *A) {
    if (A && A->getID())
      OS << A->getID();
    else
      OS << LiveOnEntryStr;
  };

  OS << getID() << " = MemoryDef(";
  printID(UO);
  OS << ")";

  if (isOptimized()) {
    OS << "->";
    printID(getOptimized());

    if (Optional<AliasResult> AR = getOptimizedAccessType())
      OS << " " << *AR;
  }
}

void MemoryPhi::print(raw_ostream &OS) const {
  bool First = true;
  OS << getID() << " = MemoryPhi(";
  for (const auto &Op : operands()) {
    BasicBlock *BB = getIncomingBlock(Op);
    MemoryAccess *MA = cast<MemoryAccess>(Op);
    if (!First)
      OS << ',';
    else
      First = false;

    OS << '{';
    if (BB->hasName())
      OS << BB->getName();
    else
      BB->printAsOperand(OS, false);
    OS << ',';
    if (unsigned ID = MA->getID())
      OS << ID;
    else
      OS << LiveOnEntryStr;
    OS << '}';
  }
  OS << ')';
}

void MemoryUse::print(raw_ostream &OS) const {
  MemoryAccess *UO = getDefiningAccess();
  OS << "MemoryUse(";
  if (UO && UO->getID())
    OS << UO->getID();
  else
    OS << LiveOnEntryStr;
  OS << ')';

  if (Optional<AliasResult> AR = getOptimizedAccessType())
    OS << " " << *AR;
}

void MemoryAccess::dump() const {
// Cannot completely remove virtual function even in release mode.
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  print(dbgs());
  dbgs() << "\n";
#endif
}

char MemorySSAPrinterLegacyPass::ID = 0;

MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
  initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
}

void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<MemorySSAWrapperPass>();
}

bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
  auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
  MSSA.print(dbgs());
  if (VerifyMemorySSA)
    MSSA.verifyMemorySSA();
  return false;
}

AnalysisKey MemorySSAAnalysis::Key;

MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
                                                 FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
}

bool MemorySSAAnalysis::Result::invalidate(
    Function &F, const PreservedAnalyses &PA,
    FunctionAnalysisManager::Invalidator &Inv) {
  auto PAC = PA.getChecker<MemorySSAAnalysis>();
  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
         Inv.invalidate<AAManager>(F, PA) ||
         Inv.invalidate<DominatorTreeAnalysis>(F, PA);
}

PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
                                            FunctionAnalysisManager &AM) {
  OS << "MemorySSA for function: " << F.getName() << "\n";
  AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);

  return PreservedAnalyses::all();
}

PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
                                             FunctionAnalysisManager &AM) {
  AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();

  return PreservedAnalyses::all();
}

char MemorySSAWrapperPass::ID = 0;

MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
  initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
}

void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }

void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
  AU.addRequiredTransitive<AAResultsWrapperPass>();
}

bool MemorySSAWrapperPass::runOnFunction(Function &F) {
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  MSSA.reset(new MemorySSA(F, &AA, &DT));
  return false;
}

void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }

void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
  MSSA->print(OS);
}

MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}

/// Walk the use-def chains starting at \p StartingAccess and find
/// the MemoryAccess that actually clobbers Loc.
///
/// \returns our clobbering memory access
template <typename AliasAnalysisType>
MemoryAccess *
MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
    MemoryAccess *StartingAccess, const MemoryLocation &Loc,
    unsigned &UpwardWalkLimit) {
  if (isa<MemoryPhi>(StartingAccess))
    return StartingAccess;

  auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
  if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
    return StartingUseOrDef;

  Instruction *I = StartingUseOrDef->getMemoryInst();

  // Conservatively, fences are always clobbers, so don't perform the walk if we
  // hit a fence.
  if (!isa<CallBase>(I) && I->isFenceLike())
    return StartingUseOrDef;

  UpwardsMemoryQuery Q;
  Q.OriginalAccess = StartingUseOrDef;
  Q.StartingLoc = Loc;
  Q.Inst = I;
  Q.IsCall = false;

  // Unlike the other function, do not walk to the def of a def, because we are
  // handed something we already believe is the clobbering access.
  // We never set SkipSelf to true in Q in this method.
  MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
                                     ? StartingUseOrDef->getDefiningAccess()
                                     : StartingUseOrDef;

  MemoryAccess *Clobber =
      Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
  LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
  LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *Clobber << "\n");
  return Clobber;
}

template <typename AliasAnalysisType>
MemoryAccess *
MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
    MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) {
  auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
  // If this is a MemoryPhi, we can't do anything.
  if (!StartingAccess)
    return MA;

  bool IsOptimized = false;

  // If this is an already optimized use or def, return the optimized result.
  // Note: Currently, we store the optimized def result in a separate field,
  // since we can't use the defining access.
  if (StartingAccess->isOptimized()) {
    if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
      return StartingAccess->getOptimized();
    IsOptimized = true;
  }

  const Instruction *I = StartingAccess->getMemoryInst();
  // We can't sanely do anything with a fence, since they conservatively clobber
  // all memory, and have no locations to get pointers from to try to
  // disambiguate.
  if (!isa<CallBase>(I) && I->isFenceLike())
    return StartingAccess;

  UpwardsMemoryQuery Q(I, StartingAccess);

  if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
    MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
    StartingAccess->setOptimized(LiveOnEntry);
    StartingAccess->setOptimizedAccessType(None);
    return LiveOnEntry;
  }

  MemoryAccess *OptimizedAccess;
  if (!IsOptimized) {
    // Start with the thing we already think clobbers this location
    MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();

    // At this point, DefiningAccess may be the live on entry def.
    // If it is, we will not get a better result.
    if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
      StartingAccess->setOptimized(DefiningAccess);
      StartingAccess->setOptimizedAccessType(None);
      return DefiningAccess;
    }

    OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
    StartingAccess->setOptimized(OptimizedAccess);
    if (MSSA->isLiveOnEntryDef(OptimizedAccess))
      StartingAccess->setOptimizedAccessType(None);
    else if (Q.AR == MustAlias)
      StartingAccess->setOptimizedAccessType(MustAlias);
  } else
    OptimizedAccess = StartingAccess->getOptimized();

  LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
  LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");

  MemoryAccess *Result;
  if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
      isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
    assert(isa<MemoryDef>(Q.OriginalAccess));
    Q.SkipSelfAccess = true;
    Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
  } else
    Result = OptimizedAccess;

  LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
  LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");

  return Result;
}

MemoryAccess *
DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
  if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
    return Use->getDefiningAccess();
  return MA;
}

MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
    MemoryAccess *StartingAccess, const MemoryLocation &) {
  if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
    return Use->getDefiningAccess();
  return StartingAccess;
}

void MemoryPhi::deleteMe(DerivedUser *Self) {
  delete static_cast<MemoryPhi *>(Self);
}

void MemoryDef::deleteMe(DerivedUser *Self) {
  delete static_cast<MemoryDef *>(Self);
}

void MemoryUse::deleteMe(DerivedUser *Self) {
  delete static_cast<MemoryUse *>(Self);
}