reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
//==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the generic AliasAnalysis interface which is used as the
// common interface used by all clients and implementations of alias analysis.
//
// This file also implements the default version of the AliasAnalysis interface
// that is to be used when no other implementation is specified.  This does some
// simple tests that detect obvious cases: two different global pointers cannot
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
// etc.
//
// This alias analysis implementation really isn't very good for anything, but
// it is very fast, and makes a nice clean default implementation.  Because it
// handles lots of little corner cases, other, more complex, alias analysis
// implementations may choose to rely on this pass to resolve these simple and
// easy cases.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iterator>

using namespace llvm;

/// Allow disabling BasicAA from the AA results. This is particularly useful
/// when testing to isolate a single AA implementation.
static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
                                    cl::init(false));

AAResults::AAResults(AAResults &&Arg)
    : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
  for (auto &AA : AAs)
    AA->setAAResults(this);
}

AAResults::~AAResults() {
// FIXME; It would be nice to at least clear out the pointers back to this
// aggregation here, but we end up with non-nesting lifetimes in the legacy
// pass manager that prevent this from working. In the legacy pass manager
// we'll end up with dangling references here in some cases.
#if 0
  for (auto &AA : AAs)
    AA->setAAResults(nullptr);
#endif
}

bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
                           FunctionAnalysisManager::Invalidator &Inv) {
  // AAResults preserves the AAManager by default, due to the stateless nature
  // of AliasAnalysis. There is no need to check whether it has been preserved
  // explicitly. Check if any module dependency was invalidated and caused the
  // AAManager to be invalidated. Invalidate ourselves in that case.
  auto PAC = PA.getChecker<AAManager>();
  if (!PAC.preservedWhenStateless())
    return true;

  // Check if any of the function dependencies were invalidated, and invalidate
  // ourselves in that case.
  for (AnalysisKey *ID : AADeps)
    if (Inv.invalidate(ID, F, PA))
      return true;

  // Everything we depend on is still fine, so are we. Nothing to invalidate.
  return false;
}

//===----------------------------------------------------------------------===//
// Default chaining methods
//===----------------------------------------------------------------------===//

AliasResult AAResults::alias(const MemoryLocation &LocA,
                             const MemoryLocation &LocB) {
  AAQueryInfo AAQIP;
  return alias(LocA, LocB, AAQIP);
}

AliasResult AAResults::alias(const MemoryLocation &LocA,
                             const MemoryLocation &LocB, AAQueryInfo &AAQI) {
  for (const auto &AA : AAs) {
    auto Result = AA->alias(LocA, LocB, AAQI);
    if (Result != MayAlias)
      return Result;
  }
  return MayAlias;
}

bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
                                       bool OrLocal) {
  AAQueryInfo AAQIP;
  return pointsToConstantMemory(Loc, AAQIP, OrLocal);
}

bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
                                       AAQueryInfo &AAQI, bool OrLocal) {
  for (const auto &AA : AAs)
    if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
      return true;

  return false;
}

ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
  ModRefInfo Result = ModRefInfo::ModRef;

  for (const auto &AA : AAs) {
    Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));

    // Early-exit the moment we reach the bottom of the lattice.
    if (isNoModRef(Result))
      return ModRefInfo::NoModRef;
  }

  return Result;
}

ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
  AAQueryInfo AAQIP;
  return getModRefInfo(I, Call2, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
                                    AAQueryInfo &AAQI) {
  // We may have two calls.
  if (const auto *Call1 = dyn_cast<CallBase>(I)) {
    // Check if the two calls modify the same memory.
    return getModRefInfo(Call1, Call2, AAQI);
  } else if (I->isFenceLike()) {
    // If this is a fence, just return ModRef.
    return ModRefInfo::ModRef;
  } else {
    // Otherwise, check if the call modifies or references the
    // location this memory access defines.  The best we can say
    // is that if the call references what this instruction
    // defines, it must be clobbered by this location.
    const MemoryLocation DefLoc = MemoryLocation::get(I);
    ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
    if (isModOrRefSet(MR))
      return setModAndRef(MR);
  }
  return ModRefInfo::NoModRef;
}

ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(Call, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  ModRefInfo Result = ModRefInfo::ModRef;

  for (const auto &AA : AAs) {
    Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));

    // Early-exit the moment we reach the bottom of the lattice.
    if (isNoModRef(Result))
      return ModRefInfo::NoModRef;
  }

  // Try to refine the mod-ref info further using other API entry points to the
  // aggregate set of AA results.
  auto MRB = getModRefBehavior(Call);
  if (MRB == FMRB_DoesNotAccessMemory ||
      MRB == FMRB_OnlyAccessesInaccessibleMem)
    return ModRefInfo::NoModRef;

  if (onlyReadsMemory(MRB))
    Result = clearMod(Result);
  else if (doesNotReadMemory(MRB))
    Result = clearRef(Result);

  if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
    bool IsMustAlias = true;
    ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
    if (doesAccessArgPointees(MRB)) {
      for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
        const Value *Arg = *AI;
        if (!Arg->getType()->isPointerTy())
          continue;
        unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
        MemoryLocation ArgLoc =
            MemoryLocation::getForArgument(Call, ArgIdx, TLI);
        AliasResult ArgAlias = alias(ArgLoc, Loc);
        if (ArgAlias != NoAlias) {
          ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
          AllArgsMask = unionModRef(AllArgsMask, ArgMask);
        }
        // Conservatively clear IsMustAlias unless only MustAlias is found.
        IsMustAlias &= (ArgAlias == MustAlias);
      }
    }
    // Return NoModRef if no alias found with any argument.
    if (isNoModRef(AllArgsMask))
      return ModRefInfo::NoModRef;
    // Logical & between other AA analyses and argument analysis.
    Result = intersectModRef(Result, AllArgsMask);
    // If only MustAlias found above, set Must bit.
    Result = IsMustAlias ? setMust(Result) : clearMust(Result);
  }

  // If Loc is a constant memory location, the call definitely could not
  // modify the memory location.
  if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
    Result = clearMod(Result);

  return Result;
}

ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
                                    const CallBase *Call2) {
  AAQueryInfo AAQIP;
  return getModRefInfo(Call1, Call2, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
                                    const CallBase *Call2, AAQueryInfo &AAQI) {
  ModRefInfo Result = ModRefInfo::ModRef;

  for (const auto &AA : AAs) {
    Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));

    // Early-exit the moment we reach the bottom of the lattice.
    if (isNoModRef(Result))
      return ModRefInfo::NoModRef;
  }

  // Try to refine the mod-ref info further using other API entry points to the
  // aggregate set of AA results.

  // If Call1 or Call2 are readnone, they don't interact.
  auto Call1B = getModRefBehavior(Call1);
  if (Call1B == FMRB_DoesNotAccessMemory)
    return ModRefInfo::NoModRef;

  auto Call2B = getModRefBehavior(Call2);
  if (Call2B == FMRB_DoesNotAccessMemory)
    return ModRefInfo::NoModRef;

  // If they both only read from memory, there is no dependence.
  if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
    return ModRefInfo::NoModRef;

  // If Call1 only reads memory, the only dependence on Call2 can be
  // from Call1 reading memory written by Call2.
  if (onlyReadsMemory(Call1B))
    Result = clearMod(Result);
  else if (doesNotReadMemory(Call1B))
    Result = clearRef(Result);

  // If Call2 only access memory through arguments, accumulate the mod/ref
  // information from Call1's references to the memory referenced by
  // Call2's arguments.
  if (onlyAccessesArgPointees(Call2B)) {
    if (!doesAccessArgPointees(Call2B))
      return ModRefInfo::NoModRef;
    ModRefInfo R = ModRefInfo::NoModRef;
    bool IsMustAlias = true;
    for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
      const Value *Arg = *I;
      if (!Arg->getType()->isPointerTy())
        continue;
      unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
      auto Call2ArgLoc =
          MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);

      // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
      // dependence of Call1 on that location is the inverse:
      // - If Call2 modifies location, dependence exists if Call1 reads or
      //   writes.
      // - If Call2 only reads location, dependence exists if Call1 writes.
      ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
      ModRefInfo ArgMask = ModRefInfo::NoModRef;
      if (isModSet(ArgModRefC2))
        ArgMask = ModRefInfo::ModRef;
      else if (isRefSet(ArgModRefC2))
        ArgMask = ModRefInfo::Mod;

      // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
      // above ArgMask to update dependence info.
      ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc);
      ArgMask = intersectModRef(ArgMask, ModRefC1);

      // Conservatively clear IsMustAlias unless only MustAlias is found.
      IsMustAlias &= isMustSet(ModRefC1);

      R = intersectModRef(unionModRef(R, ArgMask), Result);
      if (R == Result) {
        // On early exit, not all args were checked, cannot set Must.
        if (I + 1 != E)
          IsMustAlias = false;
        break;
      }
    }

    if (isNoModRef(R))
      return ModRefInfo::NoModRef;

    // If MustAlias found above, set Must bit.
    return IsMustAlias ? setMust(R) : clearMust(R);
  }

  // If Call1 only accesses memory through arguments, check if Call2 references
  // any of the memory referenced by Call1's arguments. If not, return NoModRef.
  if (onlyAccessesArgPointees(Call1B)) {
    if (!doesAccessArgPointees(Call1B))
      return ModRefInfo::NoModRef;
    ModRefInfo R = ModRefInfo::NoModRef;
    bool IsMustAlias = true;
    for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
      const Value *Arg = *I;
      if (!Arg->getType()->isPointerTy())
        continue;
      unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
      auto Call1ArgLoc =
          MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);

      // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
      // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
      // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
      ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
      ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc);
      if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
          (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
        R = intersectModRef(unionModRef(R, ArgModRefC1), Result);

      // Conservatively clear IsMustAlias unless only MustAlias is found.
      IsMustAlias &= isMustSet(ModRefC2);

      if (R == Result) {
        // On early exit, not all args were checked, cannot set Must.
        if (I + 1 != E)
          IsMustAlias = false;
        break;
      }
    }

    if (isNoModRef(R))
      return ModRefInfo::NoModRef;

    // If MustAlias found above, set Must bit.
    return IsMustAlias ? setMust(R) : clearMust(R);
  }

  return Result;
}

FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;

  for (const auto &AA : AAs) {
    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));

    // Early-exit the moment we reach the bottom of the lattice.
    if (Result == FMRB_DoesNotAccessMemory)
      return Result;
  }

  return Result;
}

FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;

  for (const auto &AA : AAs) {
    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));

    // Early-exit the moment we reach the bottom of the lattice.
    if (Result == FMRB_DoesNotAccessMemory)
      return Result;
  }

  return Result;
}

raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
  switch (AR) {
  case NoAlias:
    OS << "NoAlias";
    break;
  case MustAlias:
    OS << "MustAlias";
    break;
  case MayAlias:
    OS << "MayAlias";
    break;
  case PartialAlias:
    OS << "PartialAlias";
    break;
  }
  return OS;
}

//===----------------------------------------------------------------------===//
// Helper method implementation
//===----------------------------------------------------------------------===//

ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(L, Loc, AAQIP);
}
ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  // Be conservative in the face of atomic.
  if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
    return ModRefInfo::ModRef;

  // If the load address doesn't alias the given address, it doesn't read
  // or write the specified memory.
  if (Loc.Ptr) {
    AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
    if (AR == NoAlias)
      return ModRefInfo::NoModRef;
    if (AR == MustAlias)
      return ModRefInfo::MustRef;
  }
  // Otherwise, a load just reads.
  return ModRefInfo::Ref;
}

ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(S, Loc, AAQIP);
}
ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  // Be conservative in the face of atomic.
  if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
    return ModRefInfo::ModRef;

  if (Loc.Ptr) {
    AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
    // If the store address cannot alias the pointer in question, then the
    // specified memory cannot be modified by the store.
    if (AR == NoAlias)
      return ModRefInfo::NoModRef;

    // If the pointer is a pointer to constant memory, then it could not have
    // been modified by this store.
    if (pointsToConstantMemory(Loc, AAQI))
      return ModRefInfo::NoModRef;

    // If the store address aliases the pointer as must alias, set Must.
    if (AR == MustAlias)
      return ModRefInfo::MustMod;
  }

  // Otherwise, a store just writes.
  return ModRefInfo::Mod;
}

ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(S, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  // If we know that the location is a constant memory location, the fence
  // cannot modify this location.
  if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
    return ModRefInfo::Ref;
  return ModRefInfo::ModRef;
}

ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(V, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  if (Loc.Ptr) {
    AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
    // If the va_arg address cannot alias the pointer in question, then the
    // specified memory cannot be accessed by the va_arg.
    if (AR == NoAlias)
      return ModRefInfo::NoModRef;

    // If the pointer is a pointer to constant memory, then it could not have
    // been modified by this va_arg.
    if (pointsToConstantMemory(Loc, AAQI))
      return ModRefInfo::NoModRef;

    // If the va_arg aliases the pointer as must alias, set Must.
    if (AR == MustAlias)
      return ModRefInfo::MustModRef;
  }

  // Otherwise, a va_arg reads and writes.
  return ModRefInfo::ModRef;
}

ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(CatchPad, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  if (Loc.Ptr) {
    // If the pointer is a pointer to constant memory,
    // then it could not have been modified by this catchpad.
    if (pointsToConstantMemory(Loc, AAQI))
      return ModRefInfo::NoModRef;
  }

  // Otherwise, a catchpad reads and writes.
  return ModRefInfo::ModRef;
}

ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(CatchRet, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  if (Loc.Ptr) {
    // If the pointer is a pointer to constant memory,
    // then it could not have been modified by this catchpad.
    if (pointsToConstantMemory(Loc, AAQI))
      return ModRefInfo::NoModRef;
  }

  // Otherwise, a catchret reads and writes.
  return ModRefInfo::ModRef;
}

ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(CX, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
  if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
    return ModRefInfo::ModRef;

  if (Loc.Ptr) {
    AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
    // If the cmpxchg address does not alias the location, it does not access
    // it.
    if (AR == NoAlias)
      return ModRefInfo::NoModRef;

    // If the cmpxchg address aliases the pointer as must alias, set Must.
    if (AR == MustAlias)
      return ModRefInfo::MustModRef;
  }

  return ModRefInfo::ModRef;
}

ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
                                    const MemoryLocation &Loc) {
  AAQueryInfo AAQIP;
  return getModRefInfo(RMW, Loc, AAQIP);
}

ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
                                    const MemoryLocation &Loc,
                                    AAQueryInfo &AAQI) {
  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
  if (isStrongerThanMonotonic(RMW->getOrdering()))
    return ModRefInfo::ModRef;

  if (Loc.Ptr) {
    AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
    // If the atomicrmw address does not alias the location, it does not access
    // it.
    if (AR == NoAlias)
      return ModRefInfo::NoModRef;

    // If the atomicrmw address aliases the pointer as must alias, set Must.
    if (AR == MustAlias)
      return ModRefInfo::MustModRef;
  }

  return ModRefInfo::ModRef;
}

/// Return information about whether a particular call site modifies
/// or reads the specified memory location \p MemLoc before instruction \p I
/// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
/// instruction-ordering queries inside the BasicBlock containing \p I.
/// FIXME: this is really just shoring-up a deficiency in alias analysis.
/// BasicAA isn't willing to spend linear time determining whether an alloca
/// was captured before or after this particular call, while we are. However,
/// with a smarter AA in place, this test is just wasting compile time.
ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
                                         const MemoryLocation &MemLoc,
                                         DominatorTree *DT,
                                         OrderedBasicBlock *OBB) {
  if (!DT)
    return ModRefInfo::ModRef;

  const Value *Object =
      GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
      isa<Constant>(Object))
    return ModRefInfo::ModRef;

  const auto *Call = dyn_cast<CallBase>(I);
  if (!Call || Call == Object)
    return ModRefInfo::ModRef;

  if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
                                 /* StoreCaptures */ true, I, DT,
                                 /* include Object */ true,
                                 /* OrderedBasicBlock */ OBB))
    return ModRefInfo::ModRef;

  unsigned ArgNo = 0;
  ModRefInfo R = ModRefInfo::NoModRef;
  bool IsMustAlias = true;
  // Set flag only if no May found and all operands processed.
  for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
       CI != CE; ++CI, ++ArgNo) {
    // Only look at the no-capture or byval pointer arguments.  If this
    // pointer were passed to arguments that were neither of these, then it
    // couldn't be no-capture.
    if (!(*CI)->getType()->isPointerTy() ||
        (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
         !Call->isByValArgument(ArgNo)))
      continue;

    AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
    // If this is a no-capture pointer argument, see if we can tell that it
    // is impossible to alias the pointer we're checking.  If not, we have to
    // assume that the call could touch the pointer, even though it doesn't
    // escape.
    if (AR != MustAlias)
      IsMustAlias = false;
    if (AR == NoAlias)
      continue;
    if (Call->doesNotAccessMemory(ArgNo))
      continue;
    if (Call->onlyReadsMemory(ArgNo)) {
      R = ModRefInfo::Ref;
      continue;
    }
    // Not returning MustModRef since we have not seen all the arguments.
    return ModRefInfo::ModRef;
  }
  return IsMustAlias ? setMust(R) : clearMust(R);
}

/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the location Loc.
///
bool AAResults::canBasicBlockModify(const BasicBlock &BB,
                                    const MemoryLocation &Loc) {
  return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
}

/// canInstructionRangeModRef - Return true if it is possible for the
/// execution of the specified instructions to mod\ref (according to the
/// mode) the location Loc. The instructions to consider are all
/// of the instructions in the range of [I1,I2] INCLUSIVE.
/// I1 and I2 must be in the same basic block.
bool AAResults::canInstructionRangeModRef(const Instruction &I1,
                                          const Instruction &I2,
                                          const MemoryLocation &Loc,
                                          const ModRefInfo Mode) {
  assert(I1.getParent() == I2.getParent() &&
         "Instructions not in same basic block!");
  BasicBlock::const_iterator I = I1.getIterator();
  BasicBlock::const_iterator E = I2.getIterator();
  ++E;  // Convert from inclusive to exclusive range.

  for (; I != E; ++I) // Check every instruction in range
    if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
      return true;
  return false;
}

// Provide a definition for the root virtual destructor.
AAResults::Concept::~Concept() = default;

// Provide a definition for the static object used to identify passes.
AnalysisKey AAManager::Key;

namespace {


} // end anonymous namespace

char ExternalAAWrapperPass::ID = 0;

INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
                false, true)

ImmutablePass *
llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
  return new ExternalAAWrapperPass(std::move(Callback));
}

AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
}

char AAResultsWrapperPass::ID = 0;

INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
                      "Function Alias Analysis Results", false, true)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
                    "Function Alias Analysis Results", false, true)

FunctionPass *llvm::createAAResultsWrapperPass() {
  return new AAResultsWrapperPass();
}

/// Run the wrapper pass to rebuild an aggregation over known AA passes.
///
/// This is the legacy pass manager's interface to the new-style AA results
/// aggregation object. Because this is somewhat shoe-horned into the legacy
/// pass manager, we hard code all the specific alias analyses available into
/// it. While the particular set enabled is configured via commandline flags,
/// adding a new alias analysis to LLVM will require adding support for it to
/// this list.
bool AAResultsWrapperPass::runOnFunction(Function &F) {
  // NB! This *must* be reset before adding new AA results to the new
  // AAResults object because in the legacy pass manager, each instance
  // of these will refer to the *same* immutable analyses, registering and
  // unregistering themselves with them. We need to carefully tear down the
  // previous object first, in this case replacing it with an empty one, before
  // registering new results.
  AAR.reset(
      new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));

  // BasicAA is always available for function analyses. Also, we add it first
  // so that it can trump TBAA results when it proves MustAlias.
  // FIXME: TBAA should have an explicit mode to support this and then we
  // should reconsider the ordering here.
  if (!DisableBasicAA)
    AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());

  // Populate the results with the currently available AAs.
  if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass =
          getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());

  // If available, run an external AA providing callback over the results as
  // well.
  if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
    if (WrapperPass->CB)
      WrapperPass->CB(*this, F, *AAR);

  // Analyses don't mutate the IR, so return false.
  return false;
}

void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<BasicAAWrapperPass>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();

  // We also need to mark all the alias analysis passes we will potentially
  // probe in runOnFunction as used here to ensure the legacy pass manager
  // preserves them. This hard coding of lists of alias analyses is specific to
  // the legacy pass manager.
  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
  AU.addUsedIfAvailable<SCEVAAWrapperPass>();
  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
}

AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
                                        BasicAAResult &BAR) {
  AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));

  // Add in our explicitly constructed BasicAA results.
  if (!DisableBasicAA)
    AAR.addAAResult(BAR);

  // Populate the results with the other currently available AAs.
  if (auto *WrapperPass =
          P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass =
          P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());

  return AAR;
}

bool llvm::isNoAliasCall(const Value *V) {
  if (const auto *Call = dyn_cast<CallBase>(V))
    return Call->hasRetAttr(Attribute::NoAlias);
  return false;
}

bool llvm::isNoAliasArgument(const Value *V) {
  if (const Argument *A = dyn_cast<Argument>(V))
    return A->hasNoAliasAttr();
  return false;
}

bool llvm::isIdentifiedObject(const Value *V) {
  if (isa<AllocaInst>(V))
    return true;
  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
    return true;
  if (isNoAliasCall(V))
    return true;
  if (const Argument *A = dyn_cast<Argument>(V))
    return A->hasNoAliasAttr() || A->hasByValAttr();
  return false;
}

bool llvm::isIdentifiedFunctionLocal(const Value *V) {
  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
}

void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
  // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
  // more alias analyses are added to llvm::createLegacyPMAAResults, they need
  // to be added here also.
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
}