reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
//===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the TypeBasedAliasAnalysis pass, which implements
// metadata-based TBAA.
//
// In LLVM IR, memory does not have types, so LLVM's own type system is not
// suitable for doing TBAA. Instead, metadata is added to the IR to describe
// a type system of a higher level language. This can be used to implement
// typical C/C++ TBAA, but it can also be used to implement custom alias
// analysis behavior for other languages.
//
// We now support two types of metadata format: scalar TBAA and struct-path
// aware TBAA. After all testing cases are upgraded to use struct-path aware
// TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
// can be dropped.
//
// The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
// three fields, e.g.:
//   !0 = !{ !"an example type tree" }
//   !1 = !{ !"int", !0 }
//   !2 = !{ !"float", !0 }
//   !3 = !{ !"const float", !2, i64 1 }
//
// The first field is an identity field. It can be any value, usually
// an MDString, which uniquely identifies the type. The most important
// name in the tree is the name of the root node. Two trees with
// different root node names are entirely disjoint, even if they
// have leaves with common names.
//
// The second field identifies the type's parent node in the tree, or
// is null or omitted for a root node. A type is considered to alias
// all of its descendants and all of its ancestors in the tree. Also,
// a type is considered to alias all types in other trees, so that
// bitcode produced from multiple front-ends is handled conservatively.
//
// If the third field is present, it's an integer which if equal to 1
// indicates that the type is "constant" (meaning pointsToConstantMemory
// should return true; see
// http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
//
// With struct-path aware TBAA, the MDNodes attached to an instruction using
// "!tbaa" are called path tag nodes.
//
// The path tag node has 4 fields with the last field being optional.
//
// The first field is the base type node, it can be a struct type node
// or a scalar type node. The second field is the access type node, it
// must be a scalar type node. The third field is the offset into the base type.
// The last field has the same meaning as the last field of our scalar TBAA:
// it's an integer which if equal to 1 indicates that the access is "constant".
//
// The struct type node has a name and a list of pairs, one pair for each member
// of the struct. The first element of each pair is a type node (a struct type
// node or a scalar type node), specifying the type of the member, the second
// element of each pair is the offset of the member.
//
// Given an example
// typedef struct {
//   short s;
// } A;
// typedef struct {
//   uint16_t s;
//   A a;
// } B;
//
// For an access to B.a.s, we attach !5 (a path tag node) to the load/store
// instruction. The base type is !4 (struct B), the access type is !2 (scalar
// type short) and the offset is 4.
//
// !0 = !{!"Simple C/C++ TBAA"}
// !1 = !{!"omnipotent char", !0} // Scalar type node
// !2 = !{!"short", !1}           // Scalar type node
// !3 = !{!"A", !2, i64 0}        // Struct type node
// !4 = !{!"B", !2, i64 0, !3, i64 4}
//                                                           // Struct type node
// !5 = !{!4, !2, i64 4}          // Path tag node
//
// The struct type nodes and the scalar type nodes form a type DAG.
//         Root (!0)
//         char (!1)  -- edge to Root
//         short (!2) -- edge to char
//         A (!3) -- edge with offset 0 to short
//         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
//
// To check if two tags (tagX and tagY) can alias, we start from the base type
// of tagX, follow the edge with the correct offset in the type DAG and adjust
// the offset until we reach the base type of tagY or until we reach the Root
// node.
// If we reach the base type of tagY, compare the adjusted offset with
// offset of tagY, return Alias if the offsets are the same, return NoAlias
// otherwise.
// If we reach the Root node, perform the above starting from base type of tagY
// to see if we reach base type of tagX.
//
// If they have different roots, they're part of different potentially
// unrelated type systems, so we return Alias to be conservative.
// If neither node is an ancestor of the other and they have the same root,
// then we say NoAlias.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>

using namespace llvm;

// A handy option for disabling TBAA functionality. The same effect can also be
// achieved by stripping the !tbaa tags from IR, but this option is sometimes
// more convenient.
static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);

namespace {

/// isNewFormatTypeNode - Return true iff the given type node is in the new
/// size-aware format.
static bool isNewFormatTypeNode(const MDNode *N) {
  if (N->getNumOperands() < 3)
    return false;
  // In the old format the first operand is a string.
  if (!isa<MDNode>(N->getOperand(0)))
    return false;
  return true;
}

/// This is a simple wrapper around an MDNode which provides a higher-level
/// interface by hiding the details of how alias analysis information is encoded
/// in its operands.
template<typename MDNodeTy>
class TBAANodeImpl {
  MDNodeTy *Node = nullptr;

public:
  TBAANodeImpl() = default;
  explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}

  /// getNode - Get the MDNode for this TBAANode.
  MDNodeTy *getNode() const { return Node; }

  /// isNewFormat - Return true iff the wrapped type node is in the new
  /// size-aware format.
  bool isNewFormat() const { return isNewFormatTypeNode(Node); }

  /// getParent - Get this TBAANode's Alias tree parent.
  TBAANodeImpl<MDNodeTy> getParent() const {
    if (isNewFormat())
      return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));

    if (Node->getNumOperands() < 2)
      return TBAANodeImpl<MDNodeTy>();
    MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
    if (!P)
      return TBAANodeImpl<MDNodeTy>();
    // Ok, this node has a valid parent. Return it.
    return TBAANodeImpl<MDNodeTy>(P);
  }

  /// Test if this TBAANode represents a type for objects which are
  /// not modified (by any means) in the context where this
  /// AliasAnalysis is relevant.
  bool isTypeImmutable() const {
    if (Node->getNumOperands() < 3)
      return false;
    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
    if (!CI)
      return false;
    return CI->getValue()[0];
  }
};

/// \name Specializations of \c TBAANodeImpl for const and non const qualified
/// \c MDNode.
/// @{
using TBAANode = TBAANodeImpl<const MDNode>;
using MutableTBAANode = TBAANodeImpl<MDNode>;
/// @}

/// This is a simple wrapper around an MDNode which provides a
/// higher-level interface by hiding the details of how alias analysis
/// information is encoded in its operands.
template<typename MDNodeTy>
class TBAAStructTagNodeImpl {
  /// This node should be created with createTBAAAccessTag().
  MDNodeTy *Node;

public:
  explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}

  /// Get the MDNode for this TBAAStructTagNode.
  MDNodeTy *getNode() const { return Node; }

  /// isNewFormat - Return true iff the wrapped access tag is in the new
  /// size-aware format.
  bool isNewFormat() const {
    if (Node->getNumOperands() < 4)
      return false;
    if (MDNodeTy *AccessType = getAccessType())
      if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
        return false;
    return true;
  }

  MDNodeTy *getBaseType() const {
    return dyn_cast_or_null<MDNode>(Node->getOperand(0));
  }

  MDNodeTy *getAccessType() const {
    return dyn_cast_or_null<MDNode>(Node->getOperand(1));
  }

  uint64_t getOffset() const {
    return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
  }

  uint64_t getSize() const {
    if (!isNewFormat())
      return UINT64_MAX;
    return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
  }

  /// Test if this TBAAStructTagNode represents a type for objects
  /// which are not modified (by any means) in the context where this
  /// AliasAnalysis is relevant.
  bool isTypeImmutable() const {
    unsigned OpNo = isNewFormat() ? 4 : 3;
    if (Node->getNumOperands() < OpNo + 1)
      return false;
    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
    if (!CI)
      return false;
    return CI->getValue()[0];
  }
};

/// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
/// qualified \c MDNods.
/// @{
using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
/// @}

/// This is a simple wrapper around an MDNode which provides a
/// higher-level interface by hiding the details of how alias analysis
/// information is encoded in its operands.
class TBAAStructTypeNode {
  /// This node should be created with createTBAATypeNode().
  const MDNode *Node = nullptr;

public:
  TBAAStructTypeNode() = default;
  explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}

  /// Get the MDNode for this TBAAStructTypeNode.
  const MDNode *getNode() const { return Node; }

  /// isNewFormat - Return true iff the wrapped type node is in the new
  /// size-aware format.
  bool isNewFormat() const { return isNewFormatTypeNode(Node); }

  bool operator==(const TBAAStructTypeNode &Other) const {
    return getNode() == Other.getNode();
  }

  /// getId - Return type identifier.
  Metadata *getId() const {
    return Node->getOperand(isNewFormat() ? 2 : 0);
  }

  unsigned getNumFields() const {
    unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
    unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
    return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
  }

  TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
    unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
    unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
    unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
    auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
    return TBAAStructTypeNode(TypeNode);
  }

  /// Get this TBAAStructTypeNode's field in the type DAG with
  /// given offset. Update the offset to be relative to the field type.
  TBAAStructTypeNode getField(uint64_t &Offset) const {
    bool NewFormat = isNewFormat();
    if (NewFormat) {
      // New-format root and scalar type nodes have no fields.
      if (Node->getNumOperands() < 6)
        return TBAAStructTypeNode();
    } else {
      // Parent can be omitted for the root node.
      if (Node->getNumOperands() < 2)
        return TBAAStructTypeNode();

      // Fast path for a scalar type node and a struct type node with a single
      // field.
      if (Node->getNumOperands() <= 3) {
        uint64_t Cur = Node->getNumOperands() == 2
                           ? 0
                           : mdconst::extract<ConstantInt>(Node->getOperand(2))
                                 ->getZExtValue();
        Offset -= Cur;
        MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
        if (!P)
          return TBAAStructTypeNode();
        return TBAAStructTypeNode(P);
      }
    }

    // Assume the offsets are in order. We return the previous field if
    // the current offset is bigger than the given offset.
    unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
    unsigned NumOpsPerField = NewFormat ? 3 : 2;
    unsigned TheIdx = 0;
    for (unsigned Idx = FirstFieldOpNo; Idx < Node->getNumOperands();
         Idx += NumOpsPerField) {
      uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
                         ->getZExtValue();
      if (Cur > Offset) {
        assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
               "TBAAStructTypeNode::getField should have an offset match!");
        TheIdx = Idx - NumOpsPerField;
        break;
      }
    }
    // Move along the last field.
    if (TheIdx == 0)
      TheIdx = Node->getNumOperands() - NumOpsPerField;
    uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
                       ->getZExtValue();
    Offset -= Cur;
    MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
    if (!P)
      return TBAAStructTypeNode();
    return TBAAStructTypeNode(P);
  }
};

} // end anonymous namespace

/// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
/// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
/// format.
static bool isStructPathTBAA(const MDNode *MD) {
  // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
  // a TBAA tag.
  return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
}

AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
                                     const MemoryLocation &LocB,
                                     AAQueryInfo &AAQI) {
  if (!EnableTBAA)
    return AAResultBase::alias(LocA, LocB, AAQI);

  // If accesses may alias, chain to the next AliasAnalysis.
  if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
    return AAResultBase::alias(LocA, LocB, AAQI);

  // Otherwise return a definitive result.
  return NoAlias;
}

bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
                                               AAQueryInfo &AAQI,
                                               bool OrLocal) {
  if (!EnableTBAA)
    return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);

  const MDNode *M = Loc.AATags.TBAA;
  if (!M)
    return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);

  // If this is an "immutable" type, we can assume the pointer is pointing
  // to constant memory.
  if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
      (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
    return true;

  return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
}

FunctionModRefBehavior
TypeBasedAAResult::getModRefBehavior(const CallBase *Call) {
  if (!EnableTBAA)
    return AAResultBase::getModRefBehavior(Call);

  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;

  // If this is an "immutable" type, we can assume the call doesn't write
  // to memory.
  if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
    if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
        (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
      Min = FMRB_OnlyReadsMemory;

  return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
}

FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
  // Functions don't have metadata. Just chain to the next implementation.
  return AAResultBase::getModRefBehavior(F);
}

ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call,
                                            const MemoryLocation &Loc,
                                            AAQueryInfo &AAQI) {
  if (!EnableTBAA)
    return AAResultBase::getModRefInfo(Call, Loc, AAQI);

  if (const MDNode *L = Loc.AATags.TBAA)
    if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
      if (!Aliases(L, M))
        return ModRefInfo::NoModRef;

  return AAResultBase::getModRefInfo(Call, Loc, AAQI);
}

ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call1,
                                            const CallBase *Call2,
                                            AAQueryInfo &AAQI) {
  if (!EnableTBAA)
    return AAResultBase::getModRefInfo(Call1, Call2, AAQI);

  if (const MDNode *M1 = Call1->getMetadata(LLVMContext::MD_tbaa))
    if (const MDNode *M2 = Call2->getMetadata(LLVMContext::MD_tbaa))
      if (!Aliases(M1, M2))
        return ModRefInfo::NoModRef;

  return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
}

bool MDNode::isTBAAVtableAccess() const {
  if (!isStructPathTBAA(this)) {
    if (getNumOperands() < 1)
      return false;
    if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
      if (Tag1->getString() == "vtable pointer")
        return true;
    }
    return false;
  }

  // For struct-path aware TBAA, we use the access type of the tag.
  TBAAStructTagNode Tag(this);
  TBAAStructTypeNode AccessType(Tag.getAccessType());
  if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
    if (Id->getString() == "vtable pointer")
      return true;
  return false;
}

static bool matchAccessTags(const MDNode *A, const MDNode *B,
                            const MDNode **GenericTag = nullptr);

MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
  const MDNode *GenericTag;
  matchAccessTags(A, B, &GenericTag);
  return const_cast<MDNode*>(GenericTag);
}

static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
  if (!A || !B)
    return nullptr;

  if (A == B)
    return A;

  SmallSetVector<const MDNode *, 4> PathA;
  TBAANode TA(A);
  while (TA.getNode()) {
    if (PathA.count(TA.getNode()))
      report_fatal_error("Cycle found in TBAA metadata.");
    PathA.insert(TA.getNode());
    TA = TA.getParent();
  }

  SmallSetVector<const MDNode *, 4> PathB;
  TBAANode TB(B);
  while (TB.getNode()) {
    if (PathB.count(TB.getNode()))
      report_fatal_error("Cycle found in TBAA metadata.");
    PathB.insert(TB.getNode());
    TB = TB.getParent();
  }

  int IA = PathA.size() - 1;
  int IB = PathB.size() - 1;

  const MDNode *Ret = nullptr;
  while (IA >= 0 && IB >= 0) {
    if (PathA[IA] == PathB[IB])
      Ret = PathA[IA];
    else
      break;
    --IA;
    --IB;
  }

  return Ret;
}

void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
  if (Merge)
    N.TBAA =
        MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
  else
    N.TBAA = getMetadata(LLVMContext::MD_tbaa);

  if (Merge)
    N.Scope = MDNode::getMostGenericAliasScope(
        N.Scope, getMetadata(LLVMContext::MD_alias_scope));
  else
    N.Scope = getMetadata(LLVMContext::MD_alias_scope);

  if (Merge)
    N.NoAlias =
        MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
  else
    N.NoAlias = getMetadata(LLVMContext::MD_noalias);
}

static const MDNode *createAccessTag(const MDNode *AccessType) {
  // If there is no access type or the access type is the root node, then
  // we don't have any useful access tag to return.
  if (!AccessType || AccessType->getNumOperands() < 2)
    return nullptr;

  Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
  auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));

  if (TBAAStructTypeNode(AccessType).isNewFormat()) {
    // TODO: Take access ranges into account when matching access tags and
    // fix this code to generate actual access sizes for generic tags.
    uint64_t AccessSize = UINT64_MAX;
    auto *SizeNode =
        ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
    Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
                       const_cast<MDNode*>(AccessType),
                       OffsetNode, SizeNode};
    return MDNode::get(AccessType->getContext(), Ops);
  }

  Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
                     const_cast<MDNode*>(AccessType),
                     OffsetNode};
  return MDNode::get(AccessType->getContext(), Ops);
}

static bool hasField(TBAAStructTypeNode BaseType,
                     TBAAStructTypeNode FieldType) {
  for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
    TBAAStructTypeNode T = BaseType.getFieldType(I);
    if (T == FieldType || hasField(T, FieldType))
      return true;
  }
  return false;
}

/// Return true if for two given accesses, one of the accessed objects may be a
/// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
/// describe the accesses to the base object and the subobject respectively.
/// \p CommonType must be the metadata node describing the common type of the
/// accessed objects. On return, \p MayAlias is set to true iff these accesses
/// may alias and \p Generic, if not null, points to the most generic access
/// tag for the given two.
static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
                                     TBAAStructTagNode SubobjectTag,
                                     const MDNode *CommonType,
                                     const MDNode **GenericTag,
                                     bool &MayAlias) {
  // If the base object is of the least common type, then this may be an access
  // to its subobject.
  if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
      BaseTag.getAccessType() == CommonType) {
    if (GenericTag)
      *GenericTag = createAccessTag(CommonType);
    MayAlias = true;
    return true;
  }

  // If the access to the base object is through a field of the subobject's
  // type, then this may be an access to that field. To check for that we start
  // from the base type, follow the edge with the correct offset in the type DAG
  // and adjust the offset until we reach the field type or until we reach the
  // access type.
  bool NewFormat = BaseTag.isNewFormat();
  TBAAStructTypeNode BaseType(BaseTag.getBaseType());
  uint64_t OffsetInBase = BaseTag.getOffset();

  for (;;) {
    // In the old format there is no distinction between fields and parent
    // types, so in this case we consider all nodes up to the root.
    if (!BaseType.getNode()) {
      assert(!NewFormat && "Did not see access type in access path!");
      break;
    }

    if (BaseType.getNode() == SubobjectTag.getBaseType()) {
      bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
      if (GenericTag) {
        *GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
                                         createAccessTag(CommonType);
      }
      MayAlias = SameMemberAccess;
      return true;
    }

    // With new-format nodes we stop at the access type.
    if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
      break;

    // Follow the edge with the correct offset. Offset will be adjusted to
    // be relative to the field type.
    BaseType = BaseType.getField(OffsetInBase);
  }

  // If the base object has a direct or indirect field of the subobject's type,
  // then this may be an access to that field. We need this to check now that
  // we support aggregates as access types.
  if (NewFormat) {
    // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
    TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
    if (hasField(BaseType, FieldType)) {
      if (GenericTag)
        *GenericTag = createAccessTag(CommonType);
      MayAlias = true;
      return true;
    }
  }

  return false;
}

/// matchTags - Return true if the given couple of accesses are allowed to
/// overlap. If \arg GenericTag is not null, then on return it points to the
/// most generic access descriptor for the given two.
static bool matchAccessTags(const MDNode *A, const MDNode *B,
                            const MDNode **GenericTag) {
  if (A == B) {
    if (GenericTag)
      *GenericTag = A;
    return true;
  }

  // Accesses with no TBAA information may alias with any other accesses.
  if (!A || !B) {
    if (GenericTag)
      *GenericTag = nullptr;
    return true;
  }

  // Verify that both input nodes are struct-path aware.  Auto-upgrade should
  // have taken care of this.
  assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
  assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");

  TBAAStructTagNode TagA(A), TagB(B);
  const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
                                                TagB.getAccessType());

  // If the final access types have different roots, they're part of different
  // potentially unrelated type systems, so we must be conservative.
  if (!CommonType) {
    if (GenericTag)
      *GenericTag = nullptr;
    return true;
  }

  // If one of the accessed objects may be a subobject of the other, then such
  // accesses may alias.
  bool MayAlias;
  if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
                               CommonType, GenericTag, MayAlias) ||
      mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
                               CommonType, GenericTag, MayAlias))
    return MayAlias;

  // Otherwise, we've proved there's no alias.
  if (GenericTag)
    *GenericTag = createAccessTag(CommonType);
  return false;
}

/// Aliases - Test whether the access represented by tag A may alias the
/// access represented by tag B.
bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
  return matchAccessTags(A, B);
}

AnalysisKey TypeBasedAA::Key;

TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
  return TypeBasedAAResult();
}

char TypeBasedAAWrapperPass::ID = 0;
INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
                false, true)

ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
  return new TypeBasedAAWrapperPass();
}

TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
  initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
}

bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
  Result.reset(new TypeBasedAAResult());
  return false;
}

bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
  Result.reset();
  return false;
}

void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
}