reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers LLVM IR exception handling into something closer to what the
// backend wants for functions using a personality function from a runtime
// provided by MSVC. Functions with other personality functions are left alone
// and may be prepared by other passes. In particular, all supported MSVC
// personality functions require cleanup code to be outlined, and the C++
// personality requires catch handler code to be outlined.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Verifier.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"

using namespace llvm;

#define DEBUG_TYPE "winehprepare"

static cl::opt<bool> DisableDemotion(
    "disable-demotion", cl::Hidden,
    cl::desc(
        "Clone multicolor basic blocks but do not demote cross scopes"),
    cl::init(false));

static cl::opt<bool> DisableCleanups(
    "disable-cleanups", cl::Hidden,
    cl::desc("Do not remove implausible terminators or other similar cleanups"),
    cl::init(false));

static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
    "demote-catchswitch-only", cl::Hidden,
    cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));

namespace {

class WinEHPrepare : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid.
  WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
      : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}

  bool runOnFunction(Function &Fn) override;

  bool doFinalization(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  StringRef getPassName() const override {
    return "Windows exception handling preparation";
  }

private:
  void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
  void
  insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
                 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
  AllocaInst *insertPHILoads(PHINode *PN, Function &F);
  void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
                          DenseMap<BasicBlock *, Value *> &Loads, Function &F);
  bool prepareExplicitEH(Function &F);
  void colorFunclets(Function &F);

  void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
  void cloneCommonBlocks(Function &F);
  void removeImplausibleInstructions(Function &F);
  void cleanupPreparedFunclets(Function &F);
  void verifyPreparedFunclets(Function &F);

  bool DemoteCatchSwitchPHIOnly;

  // All fields are reset by runOnFunction.
  EHPersonality Personality = EHPersonality::Unknown;

  const DataLayout *DL = nullptr;
  DenseMap<BasicBlock *, ColorVector> BlockColors;
  MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
};

} // end anonymous namespace

char WinEHPrepare::ID = 0;
INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",
                false, false)

FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
  return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
}

bool WinEHPrepare::runOnFunction(Function &Fn) {
  if (!Fn.hasPersonalityFn())
    return false;

  // Classify the personality to see what kind of preparation we need.
  Personality = classifyEHPersonality(Fn.getPersonalityFn());

  // Do nothing if this is not a scope-based personality.
  if (!isScopedEHPersonality(Personality))
    return false;

  DL = &Fn.getParent()->getDataLayout();
  return prepareExplicitEH(Fn);
}

bool WinEHPrepare::doFinalization(Module &M) { return false; }

void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}

static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
                             const BasicBlock *BB) {
  CxxUnwindMapEntry UME;
  UME.ToState = ToState;
  UME.Cleanup = BB;
  FuncInfo.CxxUnwindMap.push_back(UME);
  return FuncInfo.getLastStateNumber();
}

static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
                                int TryHigh, int CatchHigh,
                                ArrayRef<const CatchPadInst *> Handlers) {
  WinEHTryBlockMapEntry TBME;
  TBME.TryLow = TryLow;
  TBME.TryHigh = TryHigh;
  TBME.CatchHigh = CatchHigh;
  assert(TBME.TryLow <= TBME.TryHigh);
  for (const CatchPadInst *CPI : Handlers) {
    WinEHHandlerType HT;
    Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
    if (TypeInfo->isNullValue())
      HT.TypeDescriptor = nullptr;
    else
      HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
    HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
    HT.Handler = CPI->getParent();
    if (auto *AI =
            dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
      HT.CatchObj.Alloca = AI;
    else
      HT.CatchObj.Alloca = nullptr;
    TBME.HandlerArray.push_back(HT);
  }
  FuncInfo.TryBlockMap.push_back(TBME);
}

static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
  for (const User *U : CleanupPad->users())
    if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
      return CRI->getUnwindDest();
  return nullptr;
}

static void calculateStateNumbersForInvokes(const Function *Fn,
                                            WinEHFuncInfo &FuncInfo) {
  auto *F = const_cast<Function *>(Fn);
  DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
  for (BasicBlock &BB : *F) {
    auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
    if (!II)
      continue;

    auto &BBColors = BlockColors[&BB];
    assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
    BasicBlock *FuncletEntryBB = BBColors.front();

    BasicBlock *FuncletUnwindDest;
    auto *FuncletPad =
        dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
    assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
    if (!FuncletPad)
      FuncletUnwindDest = nullptr;
    else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
      FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
    else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
      FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
    else
      llvm_unreachable("unexpected funclet pad!");

    BasicBlock *InvokeUnwindDest = II->getUnwindDest();
    int BaseState = -1;
    if (FuncletUnwindDest == InvokeUnwindDest) {
      auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
      if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
        BaseState = BaseStateI->second;
    }

    if (BaseState != -1) {
      FuncInfo.InvokeStateMap[II] = BaseState;
    } else {
      Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
      assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
      FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
    }
  }
}

// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
// to. If the unwind edge came from an invoke, return null.
static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
                                                 Value *ParentPad) {
  const Instruction *TI = BB->getTerminator();
  if (isa<InvokeInst>(TI))
    return nullptr;
  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
    if (CatchSwitch->getParentPad() != ParentPad)
      return nullptr;
    return BB;
  }
  assert(!TI->isEHPad() && "unexpected EHPad!");
  auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
  if (CleanupPad->getParentPad() != ParentPad)
    return nullptr;
  return CleanupPad->getParent();
}

static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
                                     const Instruction *FirstNonPHI,
                                     int ParentState) {
  const BasicBlock *BB = FirstNonPHI->getParent();
  assert(BB->isEHPad() && "not a funclet!");

  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
    assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
           "shouldn't revist catch funclets!");

    SmallVector<const CatchPadInst *, 2> Handlers;
    for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
      auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
      Handlers.push_back(CatchPad);
    }
    int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
    FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
    for (const BasicBlock *PredBlock : predecessors(BB))
      if ((PredBlock = getEHPadFromPredecessor(PredBlock,
                                               CatchSwitch->getParentPad())))
        calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 TryLow);
    int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);

    // catchpads are separate funclets in C++ EH due to the way rethrow works.
    int TryHigh = CatchLow - 1;
    for (const auto *CatchPad : Handlers) {
      FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
      for (const User *U : CatchPad->users()) {
        const auto *UserI = cast<Instruction>(U);
        if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
          BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
          if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
            calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
        }
        if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
          BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
          // If a nested cleanup pad reports a null unwind destination and the
          // enclosing catch pad doesn't it must be post-dominated by an
          // unreachable instruction.
          if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
            calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
        }
      }
    }
    int CatchHigh = FuncInfo.getLastStateNumber();
    addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
    LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
    LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
                      << '\n');
    LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
                      << '\n');
  } else {
    auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);

    // It's possible for a cleanup to be visited twice: it might have multiple
    // cleanupret instructions.
    if (FuncInfo.EHPadStateMap.count(CleanupPad))
      return;

    int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
    FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
    LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
                      << BB->getName() << '\n');
    for (const BasicBlock *PredBlock : predecessors(BB)) {
      if ((PredBlock = getEHPadFromPredecessor(PredBlock,
                                               CleanupPad->getParentPad()))) {
        calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 CleanupState);
      }
    }
    for (const User *U : CleanupPad->users()) {
      const auto *UserI = cast<Instruction>(U);
      if (UserI->isEHPad())
        report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
                           "contain exceptional actions");
    }
  }
}

static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
                        const Function *Filter, const BasicBlock *Handler) {
  SEHUnwindMapEntry Entry;
  Entry.ToState = ParentState;
  Entry.IsFinally = false;
  Entry.Filter = Filter;
  Entry.Handler = Handler;
  FuncInfo.SEHUnwindMap.push_back(Entry);
  return FuncInfo.SEHUnwindMap.size() - 1;
}

static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
                         const BasicBlock *Handler) {
  SEHUnwindMapEntry Entry;
  Entry.ToState = ParentState;
  Entry.IsFinally = true;
  Entry.Filter = nullptr;
  Entry.Handler = Handler;
  FuncInfo.SEHUnwindMap.push_back(Entry);
  return FuncInfo.SEHUnwindMap.size() - 1;
}

static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
                                     const Instruction *FirstNonPHI,
                                     int ParentState) {
  const BasicBlock *BB = FirstNonPHI->getParent();
  assert(BB->isEHPad() && "no a funclet!");

  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
    assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
           "shouldn't revist catch funclets!");

    // Extract the filter function and the __except basic block and create a
    // state for them.
    assert(CatchSwitch->getNumHandlers() == 1 &&
           "SEH doesn't have multiple handlers per __try");
    const auto *CatchPad =
        cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
    const BasicBlock *CatchPadBB = CatchPad->getParent();
    const Constant *FilterOrNull =
        cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
    const Function *Filter = dyn_cast<Function>(FilterOrNull);
    assert((Filter || FilterOrNull->isNullValue()) &&
           "unexpected filter value");
    int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);

    // Everything in the __try block uses TryState as its parent state.
    FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
    LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
                      << CatchPadBB->getName() << '\n');
    for (const BasicBlock *PredBlock : predecessors(BB))
      if ((PredBlock = getEHPadFromPredecessor(PredBlock,
                                               CatchSwitch->getParentPad())))
        calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 TryState);

    // Everything in the __except block unwinds to ParentState, just like code
    // outside the __try.
    for (const User *U : CatchPad->users()) {
      const auto *UserI = cast<Instruction>(U);
      if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
        BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
        if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
          calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
      }
      if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
        BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
        // If a nested cleanup pad reports a null unwind destination and the
        // enclosing catch pad doesn't it must be post-dominated by an
        // unreachable instruction.
        if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
          calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
      }
    }
  } else {
    auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);

    // It's possible for a cleanup to be visited twice: it might have multiple
    // cleanupret instructions.
    if (FuncInfo.EHPadStateMap.count(CleanupPad))
      return;

    int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
    FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
    LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
                      << BB->getName() << '\n');
    for (const BasicBlock *PredBlock : predecessors(BB))
      if ((PredBlock =
               getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
        calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 CleanupState);
    for (const User *U : CleanupPad->users()) {
      const auto *UserI = cast<Instruction>(U);
      if (UserI->isEHPad())
        report_fatal_error("Cleanup funclets for the SEH personality cannot "
                           "contain exceptional actions");
    }
  }
}

static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
    return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
           CatchSwitch->unwindsToCaller();
  if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
    return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
           getCleanupRetUnwindDest(CleanupPad) == nullptr;
  if (isa<CatchPadInst>(EHPad))
    return false;
  llvm_unreachable("unexpected EHPad!");
}

void llvm::calculateSEHStateNumbers(const Function *Fn,
                                    WinEHFuncInfo &FuncInfo) {
  // Don't compute state numbers twice.
  if (!FuncInfo.SEHUnwindMap.empty())
    return;

  for (const BasicBlock &BB : *Fn) {
    if (!BB.isEHPad())
      continue;
    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
    if (!isTopLevelPadForMSVC(FirstNonPHI))
      continue;
    ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
  }

  calculateStateNumbersForInvokes(Fn, FuncInfo);
}

void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
                                         WinEHFuncInfo &FuncInfo) {
  // Return if it's already been done.
  if (!FuncInfo.EHPadStateMap.empty())
    return;

  for (const BasicBlock &BB : *Fn) {
    if (!BB.isEHPad())
      continue;
    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
    if (!isTopLevelPadForMSVC(FirstNonPHI))
      continue;
    calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
  }

  calculateStateNumbersForInvokes(Fn, FuncInfo);
}

static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
                           int TryParentState, ClrHandlerType HandlerType,
                           uint32_t TypeToken, const BasicBlock *Handler) {
  ClrEHUnwindMapEntry Entry;
  Entry.HandlerParentState = HandlerParentState;
  Entry.TryParentState = TryParentState;
  Entry.Handler = Handler;
  Entry.HandlerType = HandlerType;
  Entry.TypeToken = TypeToken;
  FuncInfo.ClrEHUnwindMap.push_back(Entry);
  return FuncInfo.ClrEHUnwindMap.size() - 1;
}

void llvm::calculateClrEHStateNumbers(const Function *Fn,
                                      WinEHFuncInfo &FuncInfo) {
  // Return if it's already been done.
  if (!FuncInfo.EHPadStateMap.empty())
    return;

  // This numbering assigns one state number to each catchpad and cleanuppad.
  // It also computes two tree-like relations over states:
  // 1) Each state has a "HandlerParentState", which is the state of the next
  //    outer handler enclosing this state's handler (same as nearest ancestor
  //    per the ParentPad linkage on EH pads, but skipping over catchswitches).
  // 2) Each state has a "TryParentState", which:
  //    a) for a catchpad that's not the last handler on its catchswitch, is
  //       the state of the next catchpad on that catchswitch
  //    b) for all other pads, is the state of the pad whose try region is the
  //       next outer try region enclosing this state's try region.  The "try
  //       regions are not present as such in the IR, but will be inferred
  //       based on the placement of invokes and pads which reach each other
  //       by exceptional exits
  // Catchswitches do not get their own states, but each gets mapped to the
  // state of its first catchpad.

  // Step one: walk down from outermost to innermost funclets, assigning each
  // catchpad and cleanuppad a state number.  Add an entry to the
  // ClrEHUnwindMap for each state, recording its HandlerParentState and
  // handler attributes.  Record the TryParentState as well for each catchpad
  // that's not the last on its catchswitch, but initialize all other entries'
  // TryParentStates to a sentinel -1 value that the next pass will update.

  // Seed a worklist with pads that have no parent.
  SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
  for (const BasicBlock &BB : *Fn) {
    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
    const Value *ParentPad;
    if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
      ParentPad = CPI->getParentPad();
    else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
      ParentPad = CSI->getParentPad();
    else
      continue;
    if (isa<ConstantTokenNone>(ParentPad))
      Worklist.emplace_back(FirstNonPHI, -1);
  }

  // Use the worklist to visit all pads, from outer to inner.  Record
  // HandlerParentState for all pads.  Record TryParentState only for catchpads
  // that aren't the last on their catchswitch (setting all other entries'
  // TryParentStates to an initial value of -1).  This loop is also responsible
  // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
  // catchswitches.
  while (!Worklist.empty()) {
    const Instruction *Pad;
    int HandlerParentState;
    std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();

    if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
      // Create the entry for this cleanup with the appropriate handler
      // properties.  Finally and fault handlers are distinguished by arity.
      ClrHandlerType HandlerType =
          (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
                                        : ClrHandlerType::Finally);
      int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
                                         HandlerType, 0, Pad->getParent());
      // Queue any child EH pads on the worklist.
      for (const User *U : Cleanup->users())
        if (const auto *I = dyn_cast<Instruction>(U))
          if (I->isEHPad())
            Worklist.emplace_back(I, CleanupState);
      // Remember this pad's state.
      FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
    } else {
      // Walk the handlers of this catchswitch in reverse order since all but
      // the last need to set the following one as its TryParentState.
      const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
      int CatchState = -1, FollowerState = -1;
      SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
      for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend();
           CBI != CBE; ++CBI, FollowerState = CatchState) {
        const BasicBlock *CatchBlock = *CBI;
        // Create the entry for this catch with the appropriate handler
        // properties.
        const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
        uint32_t TypeToken = static_cast<uint32_t>(
            cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
        CatchState =
            addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
                            ClrHandlerType::Catch, TypeToken, CatchBlock);
        // Queue any child EH pads on the worklist.
        for (const User *U : Catch->users())
          if (const auto *I = dyn_cast<Instruction>(U))
            if (I->isEHPad())
              Worklist.emplace_back(I, CatchState);
        // Remember this catch's state.
        FuncInfo.EHPadStateMap[Catch] = CatchState;
      }
      // Associate the catchswitch with the state of its first catch.
      assert(CatchSwitch->getNumHandlers());
      FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
    }
  }

  // Step two: record the TryParentState of each state.  For cleanuppads that
  // don't have cleanuprets, we may need to infer this from their child pads,
  // so visit pads in descendant-most to ancestor-most order.
  for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(),
            End = FuncInfo.ClrEHUnwindMap.rend();
       Entry != End; ++Entry) {
    const Instruction *Pad =
        Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI();
    // For most pads, the TryParentState is the state associated with the
    // unwind dest of exceptional exits from it.
    const BasicBlock *UnwindDest;
    if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
      // If a catch is not the last in its catchswitch, its TryParentState is
      // the state associated with the next catch in the switch, even though
      // that's not the unwind dest of exceptions escaping the catch.  Those
      // cases were already assigned a TryParentState in the first pass, so
      // skip them.
      if (Entry->TryParentState != -1)
        continue;
      // Otherwise, get the unwind dest from the catchswitch.
      UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
    } else {
      const auto *Cleanup = cast<CleanupPadInst>(Pad);
      UnwindDest = nullptr;
      for (const User *U : Cleanup->users()) {
        if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
          // Common and unambiguous case -- cleanupret indicates cleanup's
          // unwind dest.
          UnwindDest = CleanupRet->getUnwindDest();
          break;
        }

        // Get an unwind dest for the user
        const BasicBlock *UserUnwindDest = nullptr;
        if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
          UserUnwindDest = Invoke->getUnwindDest();
        } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
          UserUnwindDest = CatchSwitch->getUnwindDest();
        } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
          int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
          int UserUnwindState =
              FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
          if (UserUnwindState != -1)
            UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
                                 .Handler.get<const BasicBlock *>();
        }

        // Not having an unwind dest for this user might indicate that it
        // doesn't unwind, so can't be taken as proof that the cleanup itself
        // may unwind to caller (see e.g. SimplifyUnreachable and
        // RemoveUnwindEdge).
        if (!UserUnwindDest)
          continue;

        // Now we have an unwind dest for the user, but we need to see if it
        // unwinds all the way out of the cleanup or if it stays within it.
        const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
        const Value *UserUnwindParent;
        if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
          UserUnwindParent = CSI->getParentPad();
        else
          UserUnwindParent =
              cast<CleanupPadInst>(UserUnwindPad)->getParentPad();

        // The unwind stays within the cleanup iff it targets a child of the
        // cleanup.
        if (UserUnwindParent == Cleanup)
          continue;

        // This unwind exits the cleanup, so its dest is the cleanup's dest.
        UnwindDest = UserUnwindDest;
        break;
      }
    }

    // Record the state of the unwind dest as the TryParentState.
    int UnwindDestState;

    // If UnwindDest is null at this point, either the pad in question can
    // be exited by unwind to caller, or it cannot be exited by unwind.  In
    // either case, reporting such cases as unwinding to caller is correct.
    // This can lead to EH tables that "look strange" -- if this pad's is in
    // a parent funclet which has other children that do unwind to an enclosing
    // pad, the try region for this pad will be missing the "duplicate" EH
    // clause entries that you'd expect to see covering the whole parent.  That
    // should be benign, since the unwind never actually happens.  If it were
    // an issue, we could add a subsequent pass that pushes unwind dests down
    // from parents that have them to children that appear to unwind to caller.
    if (!UnwindDest) {
      UnwindDestState = -1;
    } else {
      UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
    }

    Entry->TryParentState = UnwindDestState;
  }

  // Step three: transfer information from pads to invokes.
  calculateStateNumbersForInvokes(Fn, FuncInfo);
}

void WinEHPrepare::colorFunclets(Function &F) {
  BlockColors = colorEHFunclets(F);

  // Invert the map from BB to colors to color to BBs.
  for (BasicBlock &BB : F) {
    ColorVector &Colors = BlockColors[&BB];
    for (BasicBlock *Color : Colors)
      FuncletBlocks[Color].push_back(&BB);
  }
}

void WinEHPrepare::demotePHIsOnFunclets(Function &F,
                                        bool DemoteCatchSwitchPHIOnly) {
  // Strip PHI nodes off of EH pads.
  SmallVector<PHINode *, 16> PHINodes;
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
    BasicBlock *BB = &*FI++;
    if (!BB->isEHPad())
      continue;
    if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB->getFirstNonPHI()))
      continue;

    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
      Instruction *I = &*BI++;
      auto *PN = dyn_cast<PHINode>(I);
      // Stop at the first non-PHI.
      if (!PN)
        break;

      AllocaInst *SpillSlot = insertPHILoads(PN, F);
      if (SpillSlot)
        insertPHIStores(PN, SpillSlot);

      PHINodes.push_back(PN);
    }
  }

  for (auto *PN : PHINodes) {
    // There may be lingering uses on other EH PHIs being removed
    PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
    PN->eraseFromParent();
  }
}

void WinEHPrepare::cloneCommonBlocks(Function &F) {
  // We need to clone all blocks which belong to multiple funclets.  Values are
  // remapped throughout the funclet to propagate both the new instructions
  // *and* the new basic blocks themselves.
  for (auto &Funclets : FuncletBlocks) {
    BasicBlock *FuncletPadBB = Funclets.first;
    std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
    Value *FuncletToken;
    if (FuncletPadBB == &F.getEntryBlock())
      FuncletToken = ConstantTokenNone::get(F.getContext());
    else
      FuncletToken = FuncletPadBB->getFirstNonPHI();

    std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
    ValueToValueMapTy VMap;
    for (BasicBlock *BB : BlocksInFunclet) {
      ColorVector &ColorsForBB = BlockColors[BB];
      // We don't need to do anything if the block is monochromatic.
      size_t NumColorsForBB = ColorsForBB.size();
      if (NumColorsForBB == 1)
        continue;

      DEBUG_WITH_TYPE("winehprepare-coloring",
                      dbgs() << "  Cloning block \'" << BB->getName()
                              << "\' for funclet \'" << FuncletPadBB->getName()
                              << "\'.\n");

      // Create a new basic block and copy instructions into it!
      BasicBlock *CBB =
          CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
      // Insert the clone immediately after the original to ensure determinism
      // and to keep the same relative ordering of any funclet's blocks.
      CBB->insertInto(&F, BB->getNextNode());

      // Add basic block mapping.
      VMap[BB] = CBB;

      // Record delta operations that we need to perform to our color mappings.
      Orig2Clone.emplace_back(BB, CBB);
    }

    // If nothing was cloned, we're done cloning in this funclet.
    if (Orig2Clone.empty())
      continue;

    // Update our color mappings to reflect that one block has lost a color and
    // another has gained a color.
    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;

      BlocksInFunclet.push_back(NewBlock);
      ColorVector &NewColors = BlockColors[NewBlock];
      assert(NewColors.empty() && "A new block should only have one color!");
      NewColors.push_back(FuncletPadBB);

      DEBUG_WITH_TYPE("winehprepare-coloring",
                      dbgs() << "  Assigned color \'" << FuncletPadBB->getName()
                              << "\' to block \'" << NewBlock->getName()
                              << "\'.\n");

      BlocksInFunclet.erase(
          std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock),
          BlocksInFunclet.end());
      ColorVector &OldColors = BlockColors[OldBlock];
      OldColors.erase(
          std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB),
          OldColors.end());

      DEBUG_WITH_TYPE("winehprepare-coloring",
                      dbgs() << "  Removed color \'" << FuncletPadBB->getName()
                              << "\' from block \'" << OldBlock->getName()
                              << "\'.\n");
    }

    // Loop over all of the instructions in this funclet, fixing up operand
    // references as we go.  This uses VMap to do all the hard work.
    for (BasicBlock *BB : BlocksInFunclet)
      // Loop over all instructions, fixing each one as we find it...
      for (Instruction &I : *BB)
        RemapInstruction(&I, VMap,
                         RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);

    // Catchrets targeting cloned blocks need to be updated separately from
    // the loop above because they are not in the current funclet.
    SmallVector<CatchReturnInst *, 2> FixupCatchrets;
    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;

      FixupCatchrets.clear();
      for (BasicBlock *Pred : predecessors(OldBlock))
        if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
          if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
            FixupCatchrets.push_back(CatchRet);

      for (CatchReturnInst *CatchRet : FixupCatchrets)
        CatchRet->setSuccessor(NewBlock);
    }

    auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
      unsigned NumPreds = PN->getNumIncomingValues();
      for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
           ++PredIdx) {
        BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
        bool EdgeTargetsFunclet;
        if (auto *CRI =
                dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
          EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
        } else {
          ColorVector &IncomingColors = BlockColors[IncomingBlock];
          assert(!IncomingColors.empty() && "Block not colored!");
          assert((IncomingColors.size() == 1 ||
                  llvm::all_of(IncomingColors,
                               [&](BasicBlock *Color) {
                                 return Color != FuncletPadBB;
                               })) &&
                 "Cloning should leave this funclet's blocks monochromatic");
          EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
        }
        if (IsForOldBlock != EdgeTargetsFunclet)
          continue;
        PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
        // Revisit the next entry.
        --PredIdx;
        --PredEnd;
      }
    };

    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;
      for (PHINode &OldPN : OldBlock->phis()) {
        UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
      }
      for (PHINode &NewPN : NewBlock->phis()) {
        UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
      }
    }

    // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
    // the PHI nodes for NewBB now.
    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;
      for (BasicBlock *SuccBB : successors(NewBlock)) {
        for (PHINode &SuccPN : SuccBB->phis()) {
          // Ok, we have a PHI node.  Figure out what the incoming value was for
          // the OldBlock.
          int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
          if (OldBlockIdx == -1)
            break;
          Value *IV = SuccPN.getIncomingValue(OldBlockIdx);

          // Remap the value if necessary.
          if (auto *Inst = dyn_cast<Instruction>(IV)) {
            ValueToValueMapTy::iterator I = VMap.find(Inst);
            if (I != VMap.end())
              IV = I->second;
          }

          SuccPN.addIncoming(IV, NewBlock);
        }
      }
    }

    for (ValueToValueMapTy::value_type VT : VMap) {
      // If there were values defined in BB that are used outside the funclet,
      // then we now have to update all uses of the value to use either the
      // original value, the cloned value, or some PHI derived value.  This can
      // require arbitrary PHI insertion, of which we are prepared to do, clean
      // these up now.
      SmallVector<Use *, 16> UsesToRename;

      auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
      if (!OldI)
        continue;
      auto *NewI = cast<Instruction>(VT.second);
      // Scan all uses of this instruction to see if it is used outside of its
      // funclet, and if so, record them in UsesToRename.
      for (Use &U : OldI->uses()) {
        Instruction *UserI = cast<Instruction>(U.getUser());
        BasicBlock *UserBB = UserI->getParent();
        ColorVector &ColorsForUserBB = BlockColors[UserBB];
        assert(!ColorsForUserBB.empty());
        if (ColorsForUserBB.size() > 1 ||
            *ColorsForUserBB.begin() != FuncletPadBB)
          UsesToRename.push_back(&U);
      }

      // If there are no uses outside the block, we're done with this
      // instruction.
      if (UsesToRename.empty())
        continue;

      // We found a use of OldI outside of the funclet.  Rename all uses of OldI
      // that are outside its funclet to be uses of the appropriate PHI node
      // etc.
      SSAUpdater SSAUpdate;
      SSAUpdate.Initialize(OldI->getType(), OldI->getName());
      SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
      SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);

      while (!UsesToRename.empty())
        SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
    }
  }
}

void WinEHPrepare::removeImplausibleInstructions(Function &F) {
  // Remove implausible terminators and replace them with UnreachableInst.
  for (auto &Funclet : FuncletBlocks) {
    BasicBlock *FuncletPadBB = Funclet.first;
    std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
    Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
    auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
    auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
    auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);

    for (BasicBlock *BB : BlocksInFunclet) {
      for (Instruction &I : *BB) {
        CallSite CS(&I);
        if (!CS)
          continue;

        Value *FuncletBundleOperand = nullptr;
        if (auto BU = CS.getOperandBundle(LLVMContext::OB_funclet))
          FuncletBundleOperand = BU->Inputs.front();

        if (FuncletBundleOperand == FuncletPad)
          continue;

        // Skip call sites which are nounwind intrinsics or inline asm.
        auto *CalledFn =
            dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
        if (CalledFn && ((CalledFn->isIntrinsic() && CS.doesNotThrow()) ||
                         CS.isInlineAsm()))
          continue;

        // This call site was not part of this funclet, remove it.
        if (CS.isInvoke()) {
          // Remove the unwind edge if it was an invoke.
          removeUnwindEdge(BB);
          // Get a pointer to the new call.
          BasicBlock::iterator CallI =
              std::prev(BB->getTerminator()->getIterator());
          auto *CI = cast<CallInst>(&*CallI);
          changeToUnreachable(CI, /*UseLLVMTrap=*/false);
        } else {
          changeToUnreachable(&I, /*UseLLVMTrap=*/false);
        }

        // There are no more instructions in the block (except for unreachable),
        // we are done.
        break;
      }

      Instruction *TI = BB->getTerminator();
      // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
      bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
      // The token consumed by a CatchReturnInst must match the funclet token.
      bool IsUnreachableCatchret = false;
      if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
        IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
      // The token consumed by a CleanupReturnInst must match the funclet token.
      bool IsUnreachableCleanupret = false;
      if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
        IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
      if (IsUnreachableRet || IsUnreachableCatchret ||
          IsUnreachableCleanupret) {
        changeToUnreachable(TI, /*UseLLVMTrap=*/false);
      } else if (isa<InvokeInst>(TI)) {
        if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
          // Invokes within a cleanuppad for the MSVC++ personality never
          // transfer control to their unwind edge: the personality will
          // terminate the program.
          removeUnwindEdge(BB);
        }
      }
    }
  }
}

void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
  // Clean-up some of the mess we made by removing useles PHI nodes, trivial
  // branches, etc.
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
    BasicBlock *BB = &*FI++;
    SimplifyInstructionsInBlock(BB);
    ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
    MergeBlockIntoPredecessor(BB);
  }

  // We might have some unreachable blocks after cleaning up some impossible
  // control flow.
  removeUnreachableBlocks(F);
}

#ifndef NDEBUG
void WinEHPrepare::verifyPreparedFunclets(Function &F) {
  for (BasicBlock &BB : F) {
    size_t NumColors = BlockColors[&BB].size();
    assert(NumColors == 1 && "Expected monochromatic BB!");
    if (NumColors == 0)
      report_fatal_error("Uncolored BB!");
    if (NumColors > 1)
      report_fatal_error("Multicolor BB!");
    assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
           "EH Pad still has a PHI!");
  }
}
#endif

bool WinEHPrepare::prepareExplicitEH(Function &F) {
  // Remove unreachable blocks.  It is not valuable to assign them a color and
  // their existence can trick us into thinking values are alive when they are
  // not.
  removeUnreachableBlocks(F);

  // Determine which blocks are reachable from which funclet entries.
  colorFunclets(F);

  cloneCommonBlocks(F);

  if (!DisableDemotion)
    demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
                                DemoteCatchSwitchPHIOnlyOpt);

  if (!DisableCleanups) {
    LLVM_DEBUG(verifyFunction(F));
    removeImplausibleInstructions(F);

    LLVM_DEBUG(verifyFunction(F));
    cleanupPreparedFunclets(F);
  }

  LLVM_DEBUG(verifyPreparedFunclets(F));
  // Recolor the CFG to verify that all is well.
  LLVM_DEBUG(colorFunclets(F));
  LLVM_DEBUG(verifyPreparedFunclets(F));

  BlockColors.clear();
  FuncletBlocks.clear();

  return true;
}

// TODO: Share loads when one use dominates another, or when a catchpad exit
// dominates uses (needs dominators).
AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
  BasicBlock *PHIBlock = PN->getParent();
  AllocaInst *SpillSlot = nullptr;
  Instruction *EHPad = PHIBlock->getFirstNonPHI();

  if (!EHPad->isTerminator()) {
    // If the EHPad isn't a terminator, then we can insert a load in this block
    // that will dominate all uses.
    SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
                               Twine(PN->getName(), ".wineh.spillslot"),
                               &F.getEntryBlock().front());
    Value *V = new LoadInst(PN->getType(), SpillSlot,
                            Twine(PN->getName(), ".wineh.reload"),
                            &*PHIBlock->getFirstInsertionPt());
    PN->replaceAllUsesWith(V);
    return SpillSlot;
  }

  // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
  // loads of the slot before every use.
  DenseMap<BasicBlock *, Value *> Loads;
  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
       UI != UE;) {
    Use &U = *UI++;
    auto *UsingInst = cast<Instruction>(U.getUser());
    if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
      // Use is on an EH pad phi.  Leave it alone; we'll insert loads and
      // stores for it separately.
      continue;
    }
    replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
  }
  return SpillSlot;
}

// TODO: improve store placement.  Inserting at def is probably good, but need
// to be careful not to introduce interfering stores (needs liveness analysis).
// TODO: identify related phi nodes that can share spill slots, and share them
// (also needs liveness).
void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
                                   AllocaInst *SpillSlot) {
  // Use a worklist of (Block, Value) pairs -- the given Value needs to be
  // stored to the spill slot by the end of the given Block.
  SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;

  Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});

  while (!Worklist.empty()) {
    BasicBlock *EHBlock;
    Value *InVal;
    std::tie(EHBlock, InVal) = Worklist.pop_back_val();

    PHINode *PN = dyn_cast<PHINode>(InVal);
    if (PN && PN->getParent() == EHBlock) {
      // The value is defined by another PHI we need to remove, with no room to
      // insert a store after the PHI, so each predecessor needs to store its
      // incoming value.
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
        Value *PredVal = PN->getIncomingValue(i);

        // Undef can safely be skipped.
        if (isa<UndefValue>(PredVal))
          continue;

        insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
      }
    } else {
      // We need to store InVal, which dominates EHBlock, but can't put a store
      // in EHBlock, so need to put stores in each predecessor.
      for (BasicBlock *PredBlock : predecessors(EHBlock)) {
        insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
      }
    }
  }
}

void WinEHPrepare::insertPHIStore(
    BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
    SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {

  if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
    // Pred is unsplittable, so we need to queue it on the worklist.
    Worklist.push_back({PredBlock, PredVal});
    return;
  }

  // Otherwise, insert the store at the end of the basic block.
  new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
}

void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
                                      DenseMap<BasicBlock *, Value *> &Loads,
                                      Function &F) {
  // Lazilly create the spill slot.
  if (!SpillSlot)
    SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
                               Twine(V->getName(), ".wineh.spillslot"),
                               &F.getEntryBlock().front());

  auto *UsingInst = cast<Instruction>(U.getUser());
  if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
    // If this is a PHI node, we can't insert a load of the value before
    // the use.  Instead insert the load in the predecessor block
    // corresponding to the incoming value.
    //
    // Note that if there are multiple edges from a basic block to this
    // PHI node that we cannot have multiple loads.  The problem is that
    // the resulting PHI node will have multiple values (from each load)
    // coming in from the same block, which is illegal SSA form.
    // For this reason, we keep track of and reuse loads we insert.
    BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
    if (auto *CatchRet =
            dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
      // Putting a load above a catchret and use on the phi would still leave
      // a cross-funclet def/use.  We need to split the edge, change the
      // catchret to target the new block, and put the load there.
      BasicBlock *PHIBlock = UsingInst->getParent();
      BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
      // SplitEdge gives us:
      //   IncomingBlock:
      //     ...
      //     br label %NewBlock
      //   NewBlock:
      //     catchret label %PHIBlock
      // But we need:
      //   IncomingBlock:
      //     ...
      //     catchret label %NewBlock
      //   NewBlock:
      //     br label %PHIBlock
      // So move the terminators to each others' blocks and swap their
      // successors.
      BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
      Goto->removeFromParent();
      CatchRet->removeFromParent();
      IncomingBlock->getInstList().push_back(CatchRet);
      NewBlock->getInstList().push_back(Goto);
      Goto->setSuccessor(0, PHIBlock);
      CatchRet->setSuccessor(NewBlock);
      // Update the color mapping for the newly split edge.
      // Grab a reference to the ColorVector to be inserted before getting the
      // reference to the vector we are copying because inserting the new
      // element in BlockColors might cause the map to be reallocated.
      ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
      ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
      ColorsForNewBlock = ColorsForPHIBlock;
      for (BasicBlock *FuncletPad : ColorsForPHIBlock)
        FuncletBlocks[FuncletPad].push_back(NewBlock);
      // Treat the new block as incoming for load insertion.
      IncomingBlock = NewBlock;
    }
    Value *&Load = Loads[IncomingBlock];
    // Insert the load into the predecessor block
    if (!Load)
      Load = new LoadInst(V->getType(), SpillSlot,
                          Twine(V->getName(), ".wineh.reload"),
                          /*isVolatile=*/false, IncomingBlock->getTerminator());

    U.set(Load);
  } else {
    // Reload right before the old use.
    auto *Load = new LoadInst(V->getType(), SpillSlot,
                              Twine(V->getName(), ".wineh.reload"),
                              /*isVolatile=*/false, UsingInst);
    U.set(Load);
  }
}

void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
                                      MCSymbol *InvokeBegin,
                                      MCSymbol *InvokeEnd) {
  assert(InvokeStateMap.count(II) &&
         "should get invoke with precomputed state");
  LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
}

WinEHFuncInfo::WinEHFuncInfo() {}