reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
//  * Both of a binary operator's parameters are of the same type
//  * Verify that the indices of mem access instructions match other operands
//  * Verify that arithmetic and other things are only performed on first-class
//    types.  Verify that shifts & logicals only happen on integrals f.e.
//  * All of the constants in a switch statement are of the correct type
//  * The code is in valid SSA form
//  * It should be illegal to put a label into any other type (like a structure)
//    or to return one. [except constant arrays!]
//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
//  * PHI nodes must have an entry for each predecessor, with no extras.
//  * PHI nodes must be the first thing in a basic block, all grouped together
//  * PHI nodes must have at least one entry
//  * All basic blocks should only end with terminator insts, not contain them
//  * The entry node to a function must not have predecessors
//  * All Instructions must be embedded into a basic block
//  * Functions cannot take a void-typed parameter
//  * Verify that a function's argument list agrees with it's declared type.
//  * It is illegal to specify a name for a void value.
//  * It is illegal to have a internal global value with no initializer
//  * It is illegal to have a ret instruction that returns a value that does not
//    agree with the function return value type.
//  * Function call argument types match the function prototype
//  * A landing pad is defined by a landingpad instruction, and can be jumped to
//    only by the unwind edge of an invoke instruction.
//  * A landingpad instruction must be the first non-PHI instruction in the
//    block.
//  * Landingpad instructions must be in a function with a personality function.
//  * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Verifier.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>

using namespace llvm;

namespace llvm {

struct VerifierSupport {
  raw_ostream *OS;
  const Module &M;
  ModuleSlotTracker MST;
  Triple TT;
  const DataLayout &DL;
  LLVMContext &Context;

  /// Track the brokenness of the module while recursively visiting.
  bool Broken = false;
  /// Broken debug info can be "recovered" from by stripping the debug info.
  bool BrokenDebugInfo = false;
  /// Whether to treat broken debug info as an error.
  bool TreatBrokenDebugInfoAsError = true;

  explicit VerifierSupport(raw_ostream *OS, const Module &M)
      : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
        Context(M.getContext()) {}

private:
  void Write(const Module *M) {
    *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
  }

  void Write(const Value *V) {
    if (V)
      Write(*V);
  }

  void Write(const Value &V) {
    if (isa<Instruction>(V)) {
      V.print(*OS, MST);
      *OS << '\n';
    } else {
      V.printAsOperand(*OS, true, MST);
      *OS << '\n';
    }
  }

  void Write(const Metadata *MD) {
    if (!MD)
      return;
    MD->print(*OS, MST, &M);
    *OS << '\n';
  }

  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
    Write(MD.get());
  }

  void Write(const NamedMDNode *NMD) {
    if (!NMD)
      return;
    NMD->print(*OS, MST);
    *OS << '\n';
  }

  void Write(Type *T) {
    if (!T)
      return;
    *OS << ' ' << *T;
  }

  void Write(const Comdat *C) {
    if (!C)
      return;
    *OS << *C;
  }

  void Write(const APInt *AI) {
    if (!AI)
      return;
    *OS << *AI << '\n';
  }

  void Write(const unsigned i) { *OS << i << '\n'; }

  template <typename T> void Write(ArrayRef<T> Vs) {
    for (const T &V : Vs)
      Write(V);
  }

  template <typename T1, typename... Ts>
  void WriteTs(const T1 &V1, const Ts &... Vs) {
    Write(V1);
    WriteTs(Vs...);
  }

  template <typename... Ts> void WriteTs() {}

public:
  /// A check failed, so printout out the condition and the message.
  ///
  /// This provides a nice place to put a breakpoint if you want to see why
  /// something is not correct.
  void CheckFailed(const Twine &Message) {
    if (OS)
      *OS << Message << '\n';
    Broken = true;
  }

  /// A check failed (with values to print).
  ///
  /// This calls the Message-only version so that the above is easier to set a
  /// breakpoint on.
  template <typename T1, typename... Ts>
  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
    CheckFailed(Message);
    if (OS)
      WriteTs(V1, Vs...);
  }

  /// A debug info check failed.
  void DebugInfoCheckFailed(const Twine &Message) {
    if (OS)
      *OS << Message << '\n';
    Broken |= TreatBrokenDebugInfoAsError;
    BrokenDebugInfo = true;
  }

  /// A debug info check failed (with values to print).
  template <typename T1, typename... Ts>
  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
                            const Ts &... Vs) {
    DebugInfoCheckFailed(Message);
    if (OS)
      WriteTs(V1, Vs...);
  }
};

} // namespace llvm

namespace {

class Verifier : public InstVisitor<Verifier>, VerifierSupport {
  friend class InstVisitor<Verifier>;

  DominatorTree DT;

  /// When verifying a basic block, keep track of all of the
  /// instructions we have seen so far.
  ///
  /// This allows us to do efficient dominance checks for the case when an
  /// instruction has an operand that is an instruction in the same block.
  SmallPtrSet<Instruction *, 16> InstsInThisBlock;

  /// Keep track of the metadata nodes that have been checked already.
  SmallPtrSet<const Metadata *, 32> MDNodes;

  /// Keep track which DISubprogram is attached to which function.
  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;

  /// Track all DICompileUnits visited.
  SmallPtrSet<const Metadata *, 2> CUVisited;

  /// The result type for a landingpad.
  Type *LandingPadResultTy;

  /// Whether we've seen a call to @llvm.localescape in this function
  /// already.
  bool SawFrameEscape;

  /// Whether the current function has a DISubprogram attached to it.
  bool HasDebugInfo = false;

  /// Whether source was present on the first DIFile encountered in each CU.
  DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;

  /// Stores the count of how many objects were passed to llvm.localescape for a
  /// given function and the largest index passed to llvm.localrecover.
  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;

  // Maps catchswitches and cleanuppads that unwind to siblings to the
  // terminators that indicate the unwind, used to detect cycles therein.
  MapVector<Instruction *, Instruction *> SiblingFuncletInfo;

  /// Cache of constants visited in search of ConstantExprs.
  SmallPtrSet<const Constant *, 32> ConstantExprVisited;

  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
  SmallVector<const Function *, 4> DeoptimizeDeclarations;

  // Verify that this GlobalValue is only used in this module.
  // This map is used to avoid visiting uses twice. We can arrive at a user
  // twice, if they have multiple operands. In particular for very large
  // constant expressions, we can arrive at a particular user many times.
  SmallPtrSet<const Value *, 32> GlobalValueVisited;

  // Keeps track of duplicate function argument debug info.
  SmallVector<const DILocalVariable *, 16> DebugFnArgs;

  TBAAVerifier TBAAVerifyHelper;

  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);

public:
  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
                    const Module &M)
      : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
        SawFrameEscape(false), TBAAVerifyHelper(this) {
    TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
  }

  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }

  bool verify(const Function &F) {
    assert(F.getParent() == &M &&
           "An instance of this class only works with a specific module!");

    // First ensure the function is well-enough formed to compute dominance
    // information, and directly compute a dominance tree. We don't rely on the
    // pass manager to provide this as it isolates us from a potentially
    // out-of-date dominator tree and makes it significantly more complex to run
    // this code outside of a pass manager.
    // FIXME: It's really gross that we have to cast away constness here.
    if (!F.empty())
      DT.recalculate(const_cast<Function &>(F));

    for (const BasicBlock &BB : F) {
      if (!BB.empty() && BB.back().isTerminator())
        continue;

      if (OS) {
        *OS << "Basic Block in function '" << F.getName()
            << "' does not have terminator!\n";
        BB.printAsOperand(*OS, true, MST);
        *OS << "\n";
      }
      return false;
    }

    Broken = false;
    // FIXME: We strip const here because the inst visitor strips const.
    visit(const_cast<Function &>(F));
    verifySiblingFuncletUnwinds();
    InstsInThisBlock.clear();
    DebugFnArgs.clear();
    LandingPadResultTy = nullptr;
    SawFrameEscape = false;
    SiblingFuncletInfo.clear();

    return !Broken;
  }

  /// Verify the module that this instance of \c Verifier was initialized with.
  bool verify() {
    Broken = false;

    // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
    for (const Function &F : M)
      if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
        DeoptimizeDeclarations.push_back(&F);

    // Now that we've visited every function, verify that we never asked to
    // recover a frame index that wasn't escaped.
    verifyFrameRecoverIndices();
    for (const GlobalVariable &GV : M.globals())
      visitGlobalVariable(GV);

    for (const GlobalAlias &GA : M.aliases())
      visitGlobalAlias(GA);

    for (const NamedMDNode &NMD : M.named_metadata())
      visitNamedMDNode(NMD);

    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
      visitComdat(SMEC.getValue());

    visitModuleFlags(M);
    visitModuleIdents(M);
    visitModuleCommandLines(M);

    verifyCompileUnits();

    verifyDeoptimizeCallingConvs();
    DISubprogramAttachments.clear();
    return !Broken;
  }

private:
  // Verification methods...
  void visitGlobalValue(const GlobalValue &GV);
  void visitGlobalVariable(const GlobalVariable &GV);
  void visitGlobalAlias(const GlobalAlias &GA);
  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
                           const GlobalAlias &A, const Constant &C);
  void visitNamedMDNode(const NamedMDNode &NMD);
  void visitMDNode(const MDNode &MD);
  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
  void visitComdat(const Comdat &C);
  void visitModuleIdents(const Module &M);
  void visitModuleCommandLines(const Module &M);
  void visitModuleFlags(const Module &M);
  void visitModuleFlag(const MDNode *Op,
                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
                       SmallVectorImpl<const MDNode *> &Requirements);
  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
  void visitFunction(const Function &F);
  void visitBasicBlock(BasicBlock &BB);
  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
  void visitProfMetadata(Instruction &I, MDNode *MD);

  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
#include "llvm/IR/Metadata.def"
  void visitDIScope(const DIScope &N);
  void visitDIVariable(const DIVariable &N);
  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
  void visitDITemplateParameter(const DITemplateParameter &N);

  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);

  // InstVisitor overrides...
  using InstVisitor<Verifier>::visit;
  void visit(Instruction &I);

  void visitTruncInst(TruncInst &I);
  void visitZExtInst(ZExtInst &I);
  void visitSExtInst(SExtInst &I);
  void visitFPTruncInst(FPTruncInst &I);
  void visitFPExtInst(FPExtInst &I);
  void visitFPToUIInst(FPToUIInst &I);
  void visitFPToSIInst(FPToSIInst &I);
  void visitUIToFPInst(UIToFPInst &I);
  void visitSIToFPInst(SIToFPInst &I);
  void visitIntToPtrInst(IntToPtrInst &I);
  void visitPtrToIntInst(PtrToIntInst &I);
  void visitBitCastInst(BitCastInst &I);
  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
  void visitPHINode(PHINode &PN);
  void visitCallBase(CallBase &Call);
  void visitUnaryOperator(UnaryOperator &U);
  void visitBinaryOperator(BinaryOperator &B);
  void visitICmpInst(ICmpInst &IC);
  void visitFCmpInst(FCmpInst &FC);
  void visitExtractElementInst(ExtractElementInst &EI);
  void visitInsertElementInst(InsertElementInst &EI);
  void visitShuffleVectorInst(ShuffleVectorInst &EI);
  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
  void visitCallInst(CallInst &CI);
  void visitInvokeInst(InvokeInst &II);
  void visitGetElementPtrInst(GetElementPtrInst &GEP);
  void visitLoadInst(LoadInst &LI);
  void visitStoreInst(StoreInst &SI);
  void verifyDominatesUse(Instruction &I, unsigned i);
  void visitInstruction(Instruction &I);
  void visitTerminator(Instruction &I);
  void visitBranchInst(BranchInst &BI);
  void visitReturnInst(ReturnInst &RI);
  void visitSwitchInst(SwitchInst &SI);
  void visitIndirectBrInst(IndirectBrInst &BI);
  void visitCallBrInst(CallBrInst &CBI);
  void visitSelectInst(SelectInst &SI);
  void visitUserOp1(Instruction &I);
  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
  void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
  void visitFenceInst(FenceInst &FI);
  void visitAllocaInst(AllocaInst &AI);
  void visitExtractValueInst(ExtractValueInst &EVI);
  void visitInsertValueInst(InsertValueInst &IVI);
  void visitEHPadPredecessors(Instruction &I);
  void visitLandingPadInst(LandingPadInst &LPI);
  void visitResumeInst(ResumeInst &RI);
  void visitCatchPadInst(CatchPadInst &CPI);
  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
  void visitCleanupPadInst(CleanupPadInst &CPI);
  void visitFuncletPadInst(FuncletPadInst &FPI);
  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
  void visitCleanupReturnInst(CleanupReturnInst &CRI);

  void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
  void verifySwiftErrorValue(const Value *SwiftErrorVal);
  void verifyMustTailCall(CallInst &CI);
  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
                        unsigned ArgNo, std::string &Suffix);
  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
                            const Value *V);
  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
                           const Value *V, bool IsIntrinsic);
  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);

  void visitConstantExprsRecursively(const Constant *EntryC);
  void visitConstantExpr(const ConstantExpr *CE);
  void verifyStatepoint(const CallBase &Call);
  void verifyFrameRecoverIndices();
  void verifySiblingFuncletUnwinds();

  void verifyFragmentExpression(const DbgVariableIntrinsic &I);
  template <typename ValueOrMetadata>
  void verifyFragmentExpression(const DIVariable &V,
                                DIExpression::FragmentInfo Fragment,
                                ValueOrMetadata *Desc);
  void verifyFnArgs(const DbgVariableIntrinsic &I);

  /// Module-level debug info verification...
  void verifyCompileUnits();

  /// Module-level verification that all @llvm.experimental.deoptimize
  /// declarations share the same calling convention.
  void verifyDeoptimizeCallingConvs();

  /// Verify all-or-nothing property of DIFile source attribute within a CU.
  void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
};

} // end anonymous namespace

/// We know that cond should be true, if not print an error message.
#define Assert(C, ...) \
  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)

/// We know that a debug info condition should be true, if not print
/// an error message.
#define AssertDI(C, ...) \
  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)

void Verifier::visit(Instruction &I) {
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
  InstVisitor<Verifier>::visit(I);
}

// Helper to recursively iterate over indirect users. By
// returning false, the callback can ask to stop recursing
// further.
static void forEachUser(const Value *User,
                        SmallPtrSet<const Value *, 32> &Visited,
                        llvm::function_ref<bool(const Value *)> Callback) {
  if (!Visited.insert(User).second)
    return;
  for (const Value *TheNextUser : User->materialized_users())
    if (Callback(TheNextUser))
      forEachUser(TheNextUser, Visited, Callback);
}

void Verifier::visitGlobalValue(const GlobalValue &GV) {
  Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
         "Global is external, but doesn't have external or weak linkage!", &GV);

  Assert(GV.getAlignment() <= Value::MaximumAlignment,
         "huge alignment values are unsupported", &GV);
  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
         "Only global variables can have appending linkage!", &GV);

  if (GV.hasAppendingLinkage()) {
    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    Assert(GVar && GVar->getValueType()->isArrayTy(),
           "Only global arrays can have appending linkage!", GVar);
  }

  if (GV.isDeclarationForLinker())
    Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);

  if (GV.hasDLLImportStorageClass()) {
    Assert(!GV.isDSOLocal(),
           "GlobalValue with DLLImport Storage is dso_local!", &GV);

    Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
               GV.hasAvailableExternallyLinkage(),
           "Global is marked as dllimport, but not external", &GV);
  }

  if (GV.hasLocalLinkage())
    Assert(GV.isDSOLocal(),
           "GlobalValue with private or internal linkage must be dso_local!",
           &GV);

  if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
    Assert(GV.isDSOLocal(),
           "GlobalValue with non default visibility must be dso_local!", &GV);

  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
    if (const Instruction *I = dyn_cast<Instruction>(V)) {
      if (!I->getParent() || !I->getParent()->getParent())
        CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
                    I);
      else if (I->getParent()->getParent()->getParent() != &M)
        CheckFailed("Global is referenced in a different module!", &GV, &M, I,
                    I->getParent()->getParent(),
                    I->getParent()->getParent()->getParent());
      return false;
    } else if (const Function *F = dyn_cast<Function>(V)) {
      if (F->getParent() != &M)
        CheckFailed("Global is used by function in a different module", &GV, &M,
                    F, F->getParent());
      return false;
    }
    return true;
  });
}

void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
  if (GV.hasInitializer()) {
    Assert(GV.getInitializer()->getType() == GV.getValueType(),
           "Global variable initializer type does not match global "
           "variable type!",
           &GV);
    // If the global has common linkage, it must have a zero initializer and
    // cannot be constant.
    if (GV.hasCommonLinkage()) {
      Assert(GV.getInitializer()->isNullValue(),
             "'common' global must have a zero initializer!", &GV);
      Assert(!GV.isConstant(), "'common' global may not be marked constant!",
             &GV);
      Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
    }
  }

  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
                       GV.getName() == "llvm.global_dtors")) {
    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
           "invalid linkage for intrinsic global variable", &GV);
    // Don't worry about emitting an error for it not being an array,
    // visitGlobalValue will complain on appending non-array.
    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
      PointerType *FuncPtrTy =
          FunctionType::get(Type::getVoidTy(Context), false)->
          getPointerTo(DL.getProgramAddressSpace());
      Assert(STy &&
                 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
                 STy->getTypeAtIndex(1) == FuncPtrTy,
             "wrong type for intrinsic global variable", &GV);
      Assert(STy->getNumElements() == 3,
             "the third field of the element type is mandatory, "
             "specify i8* null to migrate from the obsoleted 2-field form");
      Type *ETy = STy->getTypeAtIndex(2);
      Assert(ETy->isPointerTy() &&
                 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
             "wrong type for intrinsic global variable", &GV);
    }
  }

  if (GV.hasName() && (GV.getName() == "llvm.used" ||
                       GV.getName() == "llvm.compiler.used")) {
    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
           "invalid linkage for intrinsic global variable", &GV);
    Type *GVType = GV.getValueType();
    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
      Assert(PTy, "wrong type for intrinsic global variable", &GV);
      if (GV.hasInitializer()) {
        const Constant *Init = GV.getInitializer();
        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
        Assert(InitArray, "wrong initalizer for intrinsic global variable",
               Init);
        for (Value *Op : InitArray->operands()) {
          Value *V = Op->stripPointerCasts();
          Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
                     isa<GlobalAlias>(V),
                 "invalid llvm.used member", V);
          Assert(V->hasName(), "members of llvm.used must be named", V);
        }
      }
    }
  }

  // Visit any debug info attachments.
  SmallVector<MDNode *, 1> MDs;
  GV.getMetadata(LLVMContext::MD_dbg, MDs);
  for (auto *MD : MDs) {
    if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
      visitDIGlobalVariableExpression(*GVE);
    else
      AssertDI(false, "!dbg attachment of global variable must be a "
                      "DIGlobalVariableExpression");
  }

  // Scalable vectors cannot be global variables, since we don't know
  // the runtime size. If the global is a struct or an array containing
  // scalable vectors, that will be caught by the isValidElementType methods
  // in StructType or ArrayType instead.
  if (auto *VTy = dyn_cast<VectorType>(GV.getValueType()))
    Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV);

  if (!GV.hasInitializer()) {
    visitGlobalValue(GV);
    return;
  }

  // Walk any aggregate initializers looking for bitcasts between address spaces
  visitConstantExprsRecursively(GV.getInitializer());

  visitGlobalValue(GV);
}

void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
  SmallPtrSet<const GlobalAlias*, 4> Visited;
  Visited.insert(&GA);
  visitAliaseeSubExpr(Visited, GA, C);
}

void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
                                   const GlobalAlias &GA, const Constant &C) {
  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
    Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
           &GA);

    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
      Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);

      Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
             &GA);
    } else {
      // Only continue verifying subexpressions of GlobalAliases.
      // Do not recurse into global initializers.
      return;
    }
  }

  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
    visitConstantExprsRecursively(CE);

  for (const Use &U : C.operands()) {
    Value *V = &*U;
    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
    else if (const auto *C2 = dyn_cast<Constant>(V))
      visitAliaseeSubExpr(Visited, GA, *C2);
  }
}

void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
  Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
         "weak_odr, or external linkage!",
         &GA);
  const Constant *Aliasee = GA.getAliasee();
  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
  Assert(GA.getType() == Aliasee->getType(),
         "Alias and aliasee types should match!", &GA);

  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
         "Aliasee should be either GlobalValue or ConstantExpr", &GA);

  visitAliaseeSubExpr(GA, *Aliasee);

  visitGlobalValue(GA);
}

void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
  // There used to be various other llvm.dbg.* nodes, but we don't support
  // upgrading them and we want to reserve the namespace for future uses.
  if (NMD.getName().startswith("llvm.dbg."))
    AssertDI(NMD.getName() == "llvm.dbg.cu",
             "unrecognized named metadata node in the llvm.dbg namespace",
             &NMD);
  for (const MDNode *MD : NMD.operands()) {
    if (NMD.getName() == "llvm.dbg.cu")
      AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);

    if (!MD)
      continue;

    visitMDNode(*MD);
  }
}

void Verifier::visitMDNode(const MDNode &MD) {
  // Only visit each node once.  Metadata can be mutually recursive, so this
  // avoids infinite recursion here, as well as being an optimization.
  if (!MDNodes.insert(&MD).second)
    return;

  switch (MD.getMetadataID()) {
  default:
    llvm_unreachable("Invalid MDNode subclass");
  case Metadata::MDTupleKind:
    break;
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
  case Metadata::CLASS##Kind:                                                  \
    visit##CLASS(cast<CLASS>(MD));                                             \
    break;
#include "llvm/IR/Metadata.def"
  }

  for (const Metadata *Op : MD.operands()) {
    if (!Op)
      continue;
    Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
           &MD, Op);
    if (auto *N = dyn_cast<MDNode>(Op)) {
      visitMDNode(*N);
      continue;
    }
    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
      visitValueAsMetadata(*V, nullptr);
      continue;
    }
  }

  // Check these last, so we diagnose problems in operands first.
  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
}

void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
  Assert(MD.getValue(), "Expected valid value", &MD);
  Assert(!MD.getValue()->getType()->isMetadataTy(),
         "Unexpected metadata round-trip through values", &MD, MD.getValue());

  auto *L = dyn_cast<LocalAsMetadata>(&MD);
  if (!L)
    return;

  Assert(F, "function-local metadata used outside a function", L);

  // If this was an instruction, bb, or argument, verify that it is in the
  // function that we expect.
  Function *ActualF = nullptr;
  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
    Assert(I->getParent(), "function-local metadata not in basic block", L, I);
    ActualF = I->getParent()->getParent();
  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
    ActualF = BB->getParent();
  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
    ActualF = A->getParent();
  assert(ActualF && "Unimplemented function local metadata case!");

  Assert(ActualF == F, "function-local metadata used in wrong function", L);
}

void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
  Metadata *MD = MDV.getMetadata();
  if (auto *N = dyn_cast<MDNode>(MD)) {
    visitMDNode(*N);
    return;
  }

  // Only visit each node once.  Metadata can be mutually recursive, so this
  // avoids infinite recursion here, as well as being an optimization.
  if (!MDNodes.insert(MD).second)
    return;

  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
    visitValueAsMetadata(*V, F);
}

static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }

void Verifier::visitDILocation(const DILocation &N) {
  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
           "location requires a valid scope", &N, N.getRawScope());
  if (auto *IA = N.getRawInlinedAt())
    AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
    AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
}

void Verifier::visitGenericDINode(const GenericDINode &N) {
  AssertDI(N.getTag(), "invalid tag", &N);
}

void Verifier::visitDIScope(const DIScope &N) {
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
}

void Verifier::visitDISubrange(const DISubrange &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
  auto Count = N.getCount();
  AssertDI(Count, "Count must either be a signed constant or a DIVariable",
           &N);
  AssertDI(!Count.is<ConstantInt*>() ||
               Count.get<ConstantInt*>()->getSExtValue() >= -1,
           "invalid subrange count", &N);
}

void Verifier::visitDIEnumerator(const DIEnumerator &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
}

void Verifier::visitDIBasicType(const DIBasicType &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
               N.getTag() == dwarf::DW_TAG_unspecified_type,
           "invalid tag", &N);
  AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
            "has conflicting flags", &N);
}

void Verifier::visitDIDerivedType(const DIDerivedType &N) {
  // Common scope checks.
  visitDIScope(N);

  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
               N.getTag() == dwarf::DW_TAG_pointer_type ||
               N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
               N.getTag() == dwarf::DW_TAG_reference_type ||
               N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
               N.getTag() == dwarf::DW_TAG_const_type ||
               N.getTag() == dwarf::DW_TAG_volatile_type ||
               N.getTag() == dwarf::DW_TAG_restrict_type ||
               N.getTag() == dwarf::DW_TAG_atomic_type ||
               N.getTag() == dwarf::DW_TAG_member ||
               N.getTag() == dwarf::DW_TAG_inheritance ||
               N.getTag() == dwarf::DW_TAG_friend,
           "invalid tag", &N);
  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
    AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
             N.getRawExtraData());
  }

  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
           N.getRawBaseType());

  if (N.getDWARFAddressSpace()) {
    AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
                 N.getTag() == dwarf::DW_TAG_reference_type ||
                 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
             "DWARF address space only applies to pointer or reference types",
             &N);
  }
}

/// Detect mutually exclusive flags.
static bool hasConflictingReferenceFlags(unsigned Flags) {
  return ((Flags & DINode::FlagLValueReference) &&
          (Flags & DINode::FlagRValueReference)) ||
         ((Flags & DINode::FlagTypePassByValue) &&
          (Flags & DINode::FlagTypePassByReference));
}

void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
  auto *Params = dyn_cast<MDTuple>(&RawParams);
  AssertDI(Params, "invalid template params", &N, &RawParams);
  for (Metadata *Op : Params->operands()) {
    AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
             &N, Params, Op);
  }
}

void Verifier::visitDICompositeType(const DICompositeType &N) {
  // Common scope checks.
  visitDIScope(N);

  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
               N.getTag() == dwarf::DW_TAG_structure_type ||
               N.getTag() == dwarf::DW_TAG_union_type ||
               N.getTag() == dwarf::DW_TAG_enumeration_type ||
               N.getTag() == dwarf::DW_TAG_class_type ||
               N.getTag() == dwarf::DW_TAG_variant_part,
           "invalid tag", &N);

  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
           N.getRawBaseType());

  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
           "invalid composite elements", &N, N.getRawElements());
  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
           N.getRawVTableHolder());
  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
           "invalid reference flags", &N);
  unsigned DIBlockByRefStruct = 1 << 4;
  AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
           "DIBlockByRefStruct on DICompositeType is no longer supported", &N);

  if (N.isVector()) {
    const DINodeArray Elements = N.getElements();
    AssertDI(Elements.size() == 1 &&
             Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
             "invalid vector, expected one element of type subrange", &N);
  }

  if (auto *Params = N.getRawTemplateParams())
    visitTemplateParams(N, *Params);

  if (N.getTag() == dwarf::DW_TAG_class_type ||
      N.getTag() == dwarf::DW_TAG_union_type) {
    AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
             "class/union requires a filename", &N, N.getFile());
  }

  if (auto *D = N.getRawDiscriminator()) {
    AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
             "discriminator can only appear on variant part");
  }
}

void Verifier::visitDISubroutineType(const DISubroutineType &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
  if (auto *Types = N.getRawTypeArray()) {
    AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
    for (Metadata *Ty : N.getTypeArray()->operands()) {
      AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
    }
  }
  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
           "invalid reference flags", &N);
}

void Verifier::visitDIFile(const DIFile &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
  Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
  if (Checksum) {
    AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
             "invalid checksum kind", &N);
    size_t Size;
    switch (Checksum->Kind) {
    case DIFile::CSK_MD5:
      Size = 32;
      break;
    case DIFile::CSK_SHA1:
      Size = 40;
      break;
    }
    AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
    AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
             "invalid checksum", &N);
  }
}

void Verifier::visitDICompileUnit(const DICompileUnit &N) {
  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);

  // Don't bother verifying the compilation directory or producer string
  // as those could be empty.
  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
           N.getRawFile());
  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
           N.getFile());

  verifySourceDebugInfo(N, *N.getFile());

  AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
           "invalid emission kind", &N);

  if (auto *Array = N.getRawEnumTypes()) {
    AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
    for (Metadata *Op : N.getEnumTypes()->operands()) {
      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
      AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
               "invalid enum type", &N, N.getEnumTypes(), Op);
    }
  }
  if (auto *Array = N.getRawRetainedTypes()) {
    AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
    for (Metadata *Op : N.getRetainedTypes()->operands()) {
      AssertDI(Op && (isa<DIType>(Op) ||
                      (isa<DISubprogram>(Op) &&
                       !cast<DISubprogram>(Op)->isDefinition())),
               "invalid retained type", &N, Op);
    }
  }
  if (auto *Array = N.getRawGlobalVariables()) {
    AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
    for (Metadata *Op : N.getGlobalVariables()->operands()) {
      AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
               "invalid global variable ref", &N, Op);
    }
  }
  if (auto *Array = N.getRawImportedEntities()) {
    AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
    for (Metadata *Op : N.getImportedEntities()->operands()) {
      AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
               &N, Op);
    }
  }
  if (auto *Array = N.getRawMacros()) {
    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
    for (Metadata *Op : N.getMacros()->operands()) {
      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
    }
  }
  CUVisited.insert(&N);
}

void Verifier::visitDISubprogram(const DISubprogram &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
  else
    AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
  if (auto *T = N.getRawType())
    AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
           N.getRawContainingType());
  if (auto *Params = N.getRawTemplateParams())
    visitTemplateParams(N, *Params);
  if (auto *S = N.getRawDeclaration())
    AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
             "invalid subprogram declaration", &N, S);
  if (auto *RawNode = N.getRawRetainedNodes()) {
    auto *Node = dyn_cast<MDTuple>(RawNode);
    AssertDI(Node, "invalid retained nodes list", &N, RawNode);
    for (Metadata *Op : Node->operands()) {
      AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
               "invalid retained nodes, expected DILocalVariable or DILabel",
               &N, Node, Op);
    }
  }
  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
           "invalid reference flags", &N);

  auto *Unit = N.getRawUnit();
  if (N.isDefinition()) {
    // Subprogram definitions (not part of the type hierarchy).
    AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
    AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
    AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
    if (N.getFile())
      verifySourceDebugInfo(*N.getUnit(), *N.getFile());
  } else {
    // Subprogram declarations (part of the type hierarchy).
    AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
  }

  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
    auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
    AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
    for (Metadata *Op : ThrownTypes->operands())
      AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
               Op);
  }

  if (N.areAllCallsDescribed())
    AssertDI(N.isDefinition(),
             "DIFlagAllCallsDescribed must be attached to a definition");
}

void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
           "invalid local scope", &N, N.getRawScope());
  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
    AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
}

void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
  visitDILexicalBlockBase(N);

  AssertDI(N.getLine() || !N.getColumn(),
           "cannot have column info without line info", &N);
}

void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
  visitDILexicalBlockBase(N);
}

void Verifier::visitDICommonBlock(const DICommonBlock &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
  if (auto *S = N.getRawScope())
    AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
  if (auto *S = N.getRawDecl())
    AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
}

void Verifier::visitDINamespace(const DINamespace &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
  if (auto *S = N.getRawScope())
    AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
}

void Verifier::visitDIMacro(const DIMacro &N) {
  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
               N.getMacinfoType() == dwarf::DW_MACINFO_undef,
           "invalid macinfo type", &N);
  AssertDI(!N.getName().empty(), "anonymous macro", &N);
  if (!N.getValue().empty()) {
    assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
  }
}

void Verifier::visitDIMacroFile(const DIMacroFile &N) {
  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
           "invalid macinfo type", &N);
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);

  if (auto *Array = N.getRawElements()) {
    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
    for (Metadata *Op : N.getElements()->operands()) {
      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
    }
  }
}

void Verifier::visitDIModule(const DIModule &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
  AssertDI(!N.getName().empty(), "anonymous module", &N);
}

void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
}

void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
  visitDITemplateParameter(N);

  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
           &N);
}

void Verifier::visitDITemplateValueParameter(
    const DITemplateValueParameter &N) {
  visitDITemplateParameter(N);

  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
               N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
               N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
           "invalid tag", &N);
}

void Verifier::visitDIVariable(const DIVariable &N) {
  if (auto *S = N.getRawScope())
    AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
}

void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
  // Checks common to all variables.
  visitDIVariable(N);

  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
  AssertDI(N.getType(), "missing global variable type", &N);
  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
    AssertDI(isa<DIDerivedType>(Member),
             "invalid static data member declaration", &N, Member);
  }
}

void Verifier::visitDILocalVariable(const DILocalVariable &N) {
  // Checks common to all variables.
  visitDIVariable(N);

  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
           "local variable requires a valid scope", &N, N.getRawScope());
  if (auto Ty = N.getType())
    AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
}

void Verifier::visitDILabel(const DILabel &N) {
  if (auto *S = N.getRawScope())
    AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);

  AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
           "label requires a valid scope", &N, N.getRawScope());
}

void Verifier::visitDIExpression(const DIExpression &N) {
  AssertDI(N.isValid(), "invalid expression", &N);
}

void Verifier::visitDIGlobalVariableExpression(
    const DIGlobalVariableExpression &GVE) {
  AssertDI(GVE.getVariable(), "missing variable");
  if (auto *Var = GVE.getVariable())
    visitDIGlobalVariable(*Var);
  if (auto *Expr = GVE.getExpression()) {
    visitDIExpression(*Expr);
    if (auto Fragment = Expr->getFragmentInfo())
      verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
  }
}

void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
  if (auto *T = N.getRawType())
    AssertDI(isType(T), "invalid type ref", &N, T);
  if (auto *F = N.getRawFile())
    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
}

void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
               N.getTag() == dwarf::DW_TAG_imported_declaration,
           "invalid tag", &N);
  if (auto *S = N.getRawScope())
    AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
           N.getRawEntity());
}

void Verifier::visitComdat(const Comdat &C) {
  // In COFF the Module is invalid if the GlobalValue has private linkage.
  // Entities with private linkage don't have entries in the symbol table.
  if (TT.isOSBinFormatCOFF())
    if (const GlobalValue *GV = M.getNamedValue(C.getName()))
      Assert(!GV->hasPrivateLinkage(),
             "comdat global value has private linkage", GV);
}

void Verifier::visitModuleIdents(const Module &M) {
  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
  if (!Idents)
    return;

  // llvm.ident takes a list of metadata entry. Each entry has only one string.
  // Scan each llvm.ident entry and make sure that this requirement is met.
  for (const MDNode *N : Idents->operands()) {
    Assert(N->getNumOperands() == 1,
           "incorrect number of operands in llvm.ident metadata", N);
    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
           ("invalid value for llvm.ident metadata entry operand"
            "(the operand should be a string)"),
           N->getOperand(0));
  }
}

void Verifier::visitModuleCommandLines(const Module &M) {
  const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
  if (!CommandLines)
    return;

  // llvm.commandline takes a list of metadata entry. Each entry has only one
  // string. Scan each llvm.commandline entry and make sure that this
  // requirement is met.
  for (const MDNode *N : CommandLines->operands()) {
    Assert(N->getNumOperands() == 1,
           "incorrect number of operands in llvm.commandline metadata", N);
    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
           ("invalid value for llvm.commandline metadata entry operand"
            "(the operand should be a string)"),
           N->getOperand(0));
  }
}

void Verifier::visitModuleFlags(const Module &M) {
  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
  if (!Flags) return;

  // Scan each flag, and track the flags and requirements.
  DenseMap<const MDString*, const MDNode*> SeenIDs;
  SmallVector<const MDNode*, 16> Requirements;
  for (const MDNode *MDN : Flags->operands())
    visitModuleFlag(MDN, SeenIDs, Requirements);

  // Validate that the requirements in the module are valid.
  for (const MDNode *Requirement : Requirements) {
    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
    const Metadata *ReqValue = Requirement->getOperand(1);

    const MDNode *Op = SeenIDs.lookup(Flag);
    if (!Op) {
      CheckFailed("invalid requirement on flag, flag is not present in module",
                  Flag);
      continue;
    }

    if (Op->getOperand(2) != ReqValue) {
      CheckFailed(("invalid requirement on flag, "
                   "flag does not have the required value"),
                  Flag);
      continue;
    }
  }
}

void
Verifier::visitModuleFlag(const MDNode *Op,
                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
                          SmallVectorImpl<const MDNode *> &Requirements) {
  // Each module flag should have three arguments, the merge behavior (a
  // constant int), the flag ID (an MDString), and the value.
  Assert(Op->getNumOperands() == 3,
         "incorrect number of operands in module flag", Op);
  Module::ModFlagBehavior MFB;
  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
    Assert(
        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
        "invalid behavior operand in module flag (expected constant integer)",
        Op->getOperand(0));
    Assert(false,
           "invalid behavior operand in module flag (unexpected constant)",
           Op->getOperand(0));
  }
  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
         Op->getOperand(1));

  // Sanity check the values for behaviors with additional requirements.
  switch (MFB) {
  case Module::Error:
  case Module::Warning:
  case Module::Override:
    // These behavior types accept any value.
    break;

  case Module::Max: {
    Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
           "invalid value for 'max' module flag (expected constant integer)",
           Op->getOperand(2));
    break;
  }

  case Module::Require: {
    // The value should itself be an MDNode with two operands, a flag ID (an
    // MDString), and a value.
    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
    Assert(Value && Value->getNumOperands() == 2,
           "invalid value for 'require' module flag (expected metadata pair)",
           Op->getOperand(2));
    Assert(isa<MDString>(Value->getOperand(0)),
           ("invalid value for 'require' module flag "
            "(first value operand should be a string)"),
           Value->getOperand(0));

    // Append it to the list of requirements, to check once all module flags are
    // scanned.
    Requirements.push_back(Value);
    break;
  }

  case Module::Append:
  case Module::AppendUnique: {
    // These behavior types require the operand be an MDNode.
    Assert(isa<MDNode>(Op->getOperand(2)),
           "invalid value for 'append'-type module flag "
           "(expected a metadata node)",
           Op->getOperand(2));
    break;
  }
  }

  // Unless this is a "requires" flag, check the ID is unique.
  if (MFB != Module::Require) {
    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
    Assert(Inserted,
           "module flag identifiers must be unique (or of 'require' type)", ID);
  }

  if (ID->getString() == "wchar_size") {
    ConstantInt *Value
      = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
    Assert(Value, "wchar_size metadata requires constant integer argument");
  }

  if (ID->getString() == "Linker Options") {
    // If the llvm.linker.options named metadata exists, we assume that the
    // bitcode reader has upgraded the module flag. Otherwise the flag might
    // have been created by a client directly.
    Assert(M.getNamedMetadata("llvm.linker.options"),
           "'Linker Options' named metadata no longer supported");
  }

  if (ID->getString() == "CG Profile") {
    for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
      visitModuleFlagCGProfileEntry(MDO);
  }
}

void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
  auto CheckFunction = [&](const MDOperand &FuncMDO) {
    if (!FuncMDO)
      return;
    auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
    Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
           FuncMDO);
  };
  auto Node = dyn_cast_or_null<MDNode>(MDO);
  Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
  CheckFunction(Node->getOperand(0));
  CheckFunction(Node->getOperand(1));
  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
  Assert(Count && Count->getType()->isIntegerTy(),
         "expected an integer constant", Node->getOperand(2));
}

/// Return true if this attribute kind only applies to functions.
static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
  switch (Kind) {
  case Attribute::NoReturn:
  case Attribute::NoSync:
  case Attribute::WillReturn:
  case Attribute::NoCfCheck:
  case Attribute::NoUnwind:
  case Attribute::NoInline:
  case Attribute::NoFree:
  case Attribute::AlwaysInline:
  case Attribute::OptimizeForSize:
  case Attribute::StackProtect:
  case Attribute::StackProtectReq:
  case Attribute::StackProtectStrong:
  case Attribute::SafeStack:
  case Attribute::ShadowCallStack:
  case Attribute::NoRedZone:
  case Attribute::NoImplicitFloat:
  case Attribute::Naked:
  case Attribute::InlineHint:
  case Attribute::StackAlignment:
  case Attribute::UWTable:
  case Attribute::NonLazyBind:
  case Attribute::ReturnsTwice:
  case Attribute::SanitizeAddress:
  case Attribute::SanitizeHWAddress:
  case Attribute::SanitizeMemTag:
  case Attribute::SanitizeThread:
  case Attribute::SanitizeMemory:
  case Attribute::MinSize:
  case Attribute::NoDuplicate:
  case Attribute::Builtin:
  case Attribute::NoBuiltin:
  case Attribute::Cold:
  case Attribute::OptForFuzzing:
  case Attribute::OptimizeNone:
  case Attribute::JumpTable:
  case Attribute::Convergent:
  case Attribute::ArgMemOnly:
  case Attribute::NoRecurse:
  case Attribute::InaccessibleMemOnly:
  case Attribute::InaccessibleMemOrArgMemOnly:
  case Attribute::AllocSize:
  case Attribute::SpeculativeLoadHardening:
  case Attribute::Speculatable:
  case Attribute::StrictFP:
    return true;
  default:
    break;
  }
  return false;
}

/// Return true if this is a function attribute that can also appear on
/// arguments.
static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
         Kind == Attribute::ReadNone;
}

void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
                                    const Value *V) {
  for (Attribute A : Attrs) {
    if (A.isStringAttribute())
      continue;

    if (isFuncOnlyAttr(A.getKindAsEnum())) {
      if (!IsFunction) {
        CheckFailed("Attribute '" + A.getAsString() +
                        "' only applies to functions!",
                    V);
        return;
      }
    } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
      CheckFailed("Attribute '" + A.getAsString() +
                      "' does not apply to functions!",
                  V);
      return;
    }
  }
}

// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type.  The value V is printed in error messages.
void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
                                    const Value *V) {
  if (!Attrs.hasAttributes())
    return;

  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);

  if (Attrs.hasAttribute(Attribute::ImmArg)) {
    Assert(Attrs.getNumAttributes() == 1,
           "Attribute 'immarg' is incompatible with other attributes", V);
  }

  // Check for mutually incompatible attributes.  Only inreg is compatible with
  // sret.
  unsigned AttrCount = 0;
  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
               Attrs.hasAttribute(Attribute::InReg);
  AttrCount += Attrs.hasAttribute(Attribute::Nest);
  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
                         "and 'sret' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
           Attrs.hasAttribute(Attribute::ReadOnly)),
         "Attributes "
         "'inalloca and readonly' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
           Attrs.hasAttribute(Attribute::Returned)),
         "Attributes "
         "'sret and returned' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
           Attrs.hasAttribute(Attribute::SExt)),
         "Attributes "
         "'zeroext and signext' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
           Attrs.hasAttribute(Attribute::ReadOnly)),
         "Attributes "
         "'readnone and readonly' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
           Attrs.hasAttribute(Attribute::WriteOnly)),
         "Attributes "
         "'readnone and writeonly' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
           Attrs.hasAttribute(Attribute::WriteOnly)),
         "Attributes "
         "'readonly and writeonly' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
           Attrs.hasAttribute(Attribute::AlwaysInline)),
         "Attributes "
         "'noinline and alwaysinline' are incompatible!",
         V);

  if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
    Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
           "Attribute 'byval' type does not match parameter!", V);
  }

  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
         "Wrong types for attribute: " +
             AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
         V);

  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    SmallPtrSet<Type*, 4> Visited;
    if (!PTy->getElementType()->isSized(&Visited)) {
      Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
                 !Attrs.hasAttribute(Attribute::InAlloca),
             "Attributes 'byval' and 'inalloca' do not support unsized types!",
             V);
    }
    if (!isa<PointerType>(PTy->getElementType()))
      Assert(!Attrs.hasAttribute(Attribute::SwiftError),
             "Attribute 'swifterror' only applies to parameters "
             "with pointer to pointer type!",
             V);
  } else {
    Assert(!Attrs.hasAttribute(Attribute::ByVal),
           "Attribute 'byval' only applies to parameters with pointer type!",
           V);
    Assert(!Attrs.hasAttribute(Attribute::SwiftError),
           "Attribute 'swifterror' only applies to parameters "
           "with pointer type!",
           V);
  }
}

// Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
                                   const Value *V, bool IsIntrinsic) {
  if (Attrs.isEmpty())
    return;

  bool SawNest = false;
  bool SawReturned = false;
  bool SawSRet = false;
  bool SawSwiftSelf = false;
  bool SawSwiftError = false;

  // Verify return value attributes.
  AttributeSet RetAttrs = Attrs.getRetAttributes();
  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
          !RetAttrs.hasAttribute(Attribute::Nest) &&
          !RetAttrs.hasAttribute(Attribute::StructRet) &&
          !RetAttrs.hasAttribute(Attribute::NoCapture) &&
          !RetAttrs.hasAttribute(Attribute::Returned) &&
          !RetAttrs.hasAttribute(Attribute::InAlloca) &&
          !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
          !RetAttrs.hasAttribute(Attribute::SwiftError)),
         "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
         "'returned', 'swiftself', and 'swifterror' do not apply to return "
         "values!",
         V);
  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
          !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
          !RetAttrs.hasAttribute(Attribute::ReadNone)),
         "Attribute '" + RetAttrs.getAsString() +
             "' does not apply to function returns",
         V);
  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);

  // Verify parameter attributes.
  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
    Type *Ty = FT->getParamType(i);
    AttributeSet ArgAttrs = Attrs.getParamAttributes(i);

    if (!IsIntrinsic) {
      Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
             "immarg attribute only applies to intrinsics",V);
    }

    verifyParameterAttrs(ArgAttrs, Ty, V);

    if (ArgAttrs.hasAttribute(Attribute::Nest)) {
      Assert(!SawNest, "More than one parameter has attribute nest!", V);
      SawNest = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::Returned)) {
      Assert(!SawReturned, "More than one parameter has attribute returned!",
             V);
      Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
             "Incompatible argument and return types for 'returned' attribute",
             V);
      SawReturned = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
      Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
      Assert(i == 0 || i == 1,
             "Attribute 'sret' is not on first or second parameter!", V);
      SawSRet = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
      Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
      SawSwiftSelf = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
      Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
             V);
      SawSwiftError = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
      Assert(i == FT->getNumParams() - 1,
             "inalloca isn't on the last parameter!", V);
    }
  }

  if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
    return;

  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);

  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
           Attrs.hasFnAttribute(Attribute::ReadOnly)),
         "Attributes 'readnone and readonly' are incompatible!", V);

  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
           Attrs.hasFnAttribute(Attribute::WriteOnly)),
         "Attributes 'readnone and writeonly' are incompatible!", V);

  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
           Attrs.hasFnAttribute(Attribute::WriteOnly)),
         "Attributes 'readonly and writeonly' are incompatible!", V);

  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
           Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
         "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
         "incompatible!",
         V);

  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
           Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
         "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);

  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
           Attrs.hasFnAttribute(Attribute::AlwaysInline)),
         "Attributes 'noinline and alwaysinline' are incompatible!", V);

  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
    Assert(Attrs.hasFnAttribute(Attribute::NoInline),
           "Attribute 'optnone' requires 'noinline'!", V);

    Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
           "Attributes 'optsize and optnone' are incompatible!", V);

    Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
           "Attributes 'minsize and optnone' are incompatible!", V);
  }

  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
    const GlobalValue *GV = cast<GlobalValue>(V);
    Assert(GV->hasGlobalUnnamedAddr(),
           "Attribute 'jumptable' requires 'unnamed_addr'", V);
  }

  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
    std::pair<unsigned, Optional<unsigned>> Args =
        Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);

    auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
      if (ParamNo >= FT->getNumParams()) {
        CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
        return false;
      }

      if (!FT->getParamType(ParamNo)->isIntegerTy()) {
        CheckFailed("'allocsize' " + Name +
                        " argument must refer to an integer parameter",
                    V);
        return false;
      }

      return true;
    };

    if (!CheckParam("element size", Args.first))
      return;

    if (Args.second && !CheckParam("number of elements", *Args.second))
      return;
  }
}

void Verifier::verifyFunctionMetadata(
    ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
  for (const auto &Pair : MDs) {
    if (Pair.first == LLVMContext::MD_prof) {
      MDNode *MD = Pair.second;
      Assert(MD->getNumOperands() >= 2,
             "!prof annotations should have no less than 2 operands", MD);

      // Check first operand.
      Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
             MD);
      Assert(isa<MDString>(MD->getOperand(0)),
             "expected string with name of the !prof annotation", MD);
      MDString *MDS = cast<MDString>(MD->getOperand(0));
      StringRef ProfName = MDS->getString();
      Assert(ProfName.equals("function_entry_count") ||
                 ProfName.equals("synthetic_function_entry_count"),
             "first operand should be 'function_entry_count'"
             " or 'synthetic_function_entry_count'",
             MD);

      // Check second operand.
      Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
             MD);
      Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
             "expected integer argument to function_entry_count", MD);
    }
  }
}

void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
  if (!ConstantExprVisited.insert(EntryC).second)
    return;

  SmallVector<const Constant *, 16> Stack;
  Stack.push_back(EntryC);

  while (!Stack.empty()) {
    const Constant *C = Stack.pop_back_val();

    // Check this constant expression.
    if (const auto *CE = dyn_cast<ConstantExpr>(C))
      visitConstantExpr(CE);

    if (const auto *GV = dyn_cast<GlobalValue>(C)) {
      // Global Values get visited separately, but we do need to make sure
      // that the global value is in the correct module
      Assert(GV->getParent() == &M, "Referencing global in another module!",
             EntryC, &M, GV, GV->getParent());
      continue;
    }

    // Visit all sub-expressions.
    for (const Use &U : C->operands()) {
      const auto *OpC = dyn_cast<Constant>(U);
      if (!OpC)
        continue;
      if (!ConstantExprVisited.insert(OpC).second)
        continue;
      Stack.push_back(OpC);
    }
  }
}

void Verifier::visitConstantExpr(const ConstantExpr *CE) {
  if (CE->getOpcode() == Instruction::BitCast)
    Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
                                 CE->getType()),
           "Invalid bitcast", CE);

  if (CE->getOpcode() == Instruction::IntToPtr ||
      CE->getOpcode() == Instruction::PtrToInt) {
    auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
                      ? CE->getType()
                      : CE->getOperand(0)->getType();
    StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
                        ? "inttoptr not supported for non-integral pointers"
                        : "ptrtoint not supported for non-integral pointers";
    Assert(
        !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
        Msg);
  }
}

bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
  // There shouldn't be more attribute sets than there are parameters plus the
  // function and return value.
  return Attrs.getNumAttrSets() <= Params + 2;
}

/// Verify that statepoint intrinsic is well formed.
void Verifier::verifyStatepoint(const CallBase &Call) {
  assert(Call.getCalledFunction() &&
         Call.getCalledFunction()->getIntrinsicID() ==
             Intrinsic::experimental_gc_statepoint);

  Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
             !Call.onlyAccessesArgMemory(),
         "gc.statepoint must read and write all memory to preserve "
         "reordering restrictions required by safepoint semantics",
         Call);

  const int64_t NumPatchBytes =
      cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
  Assert(NumPatchBytes >= 0,
         "gc.statepoint number of patchable bytes must be "
         "positive",
         Call);

  const Value *Target = Call.getArgOperand(2);
  auto *PT = dyn_cast<PointerType>(Target->getType());
  Assert(PT && PT->getElementType()->isFunctionTy(),
         "gc.statepoint callee must be of function pointer type", Call, Target);
  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());

  const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
  Assert(NumCallArgs >= 0,
         "gc.statepoint number of arguments to underlying call "
         "must be positive",
         Call);
  const int NumParams = (int)TargetFuncType->getNumParams();
  if (TargetFuncType->isVarArg()) {
    Assert(NumCallArgs >= NumParams,
           "gc.statepoint mismatch in number of vararg call args", Call);

    // TODO: Remove this limitation
    Assert(TargetFuncType->getReturnType()->isVoidTy(),
           "gc.statepoint doesn't support wrapping non-void "
           "vararg functions yet",
           Call);
  } else
    Assert(NumCallArgs == NumParams,
           "gc.statepoint mismatch in number of call args", Call);

  const uint64_t Flags
    = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
         "unknown flag used in gc.statepoint flags argument", Call);

  // Verify that the types of the call parameter arguments match
  // the type of the wrapped callee.
  AttributeList Attrs = Call.getAttributes();
  for (int i = 0; i < NumParams; i++) {
    Type *ParamType = TargetFuncType->getParamType(i);
    Type *ArgType = Call.getArgOperand(5 + i)->getType();
    Assert(ArgType == ParamType,
           "gc.statepoint call argument does not match wrapped "
           "function type",
           Call);

    if (TargetFuncType->isVarArg()) {
      AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
      Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
             "Attribute 'sret' cannot be used for vararg call arguments!",
             Call);
    }
  }

  const int EndCallArgsInx = 4 + NumCallArgs;

  const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
  Assert(isa<ConstantInt>(NumTransitionArgsV),
         "gc.statepoint number of transition arguments "
         "must be constant integer",
         Call);
  const int NumTransitionArgs =
      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
  Assert(NumTransitionArgs >= 0,
         "gc.statepoint number of transition arguments must be positive", Call);
  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;

  const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
  Assert(isa<ConstantInt>(NumDeoptArgsV),
         "gc.statepoint number of deoptimization arguments "
         "must be constant integer",
         Call);
  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
  Assert(NumDeoptArgs >= 0,
         "gc.statepoint number of deoptimization arguments "
         "must be positive",
         Call);

  const int ExpectedNumArgs =
      7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
  Assert(ExpectedNumArgs <= (int)Call.arg_size(),
         "gc.statepoint too few arguments according to length fields", Call);

  // Check that the only uses of this gc.statepoint are gc.result or
  // gc.relocate calls which are tied to this statepoint and thus part
  // of the same statepoint sequence
  for (const User *U : Call.users()) {
    const CallInst *UserCall = dyn_cast<const CallInst>(U);
    Assert(UserCall, "illegal use of statepoint token", Call, U);
    if (!UserCall)
      continue;
    Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
           "gc.result or gc.relocate are the only value uses "
           "of a gc.statepoint",
           Call, U);
    if (isa<GCResultInst>(UserCall)) {
      Assert(UserCall->getArgOperand(0) == &Call,
             "gc.result connected to wrong gc.statepoint", Call, UserCall);
    } else if (isa<GCRelocateInst>(Call)) {
      Assert(UserCall->getArgOperand(0) == &Call,
             "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
    }
  }

  // Note: It is legal for a single derived pointer to be listed multiple
  // times.  It's non-optimal, but it is legal.  It can also happen after
  // insertion if we strip a bitcast away.
  // Note: It is really tempting to check that each base is relocated and
  // that a derived pointer is never reused as a base pointer.  This turns
  // out to be problematic since optimizations run after safepoint insertion
  // can recognize equality properties that the insertion logic doesn't know
  // about.  See example statepoint.ll in the verifier subdirectory
}

void Verifier::verifyFrameRecoverIndices() {
  for (auto &Counts : FrameEscapeInfo) {
    Function *F = Counts.first;
    unsigned EscapedObjectCount = Counts.second.first;
    unsigned MaxRecoveredIndex = Counts.second.second;
    Assert(MaxRecoveredIndex <= EscapedObjectCount,
           "all indices passed to llvm.localrecover must be less than the "
           "number of arguments passed to llvm.localescape in the parent "
           "function",
           F);
  }
}

static Instruction *getSuccPad(Instruction *Terminator) {
  BasicBlock *UnwindDest;
  if (auto *II = dyn_cast<InvokeInst>(Terminator))
    UnwindDest = II->getUnwindDest();
  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
    UnwindDest = CSI->getUnwindDest();
  else
    UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
  return UnwindDest->getFirstNonPHI();
}

void Verifier::verifySiblingFuncletUnwinds() {
  SmallPtrSet<Instruction *, 8> Visited;
  SmallPtrSet<Instruction *, 8> Active;
  for (const auto &Pair : SiblingFuncletInfo) {
    Instruction *PredPad = Pair.first;
    if (Visited.count(PredPad))
      continue;
    Active.insert(PredPad);
    Instruction *Terminator = Pair.second;
    do {
      Instruction *SuccPad = getSuccPad(Terminator);
      if (Active.count(SuccPad)) {
        // Found a cycle; report error
        Instruction *CyclePad = SuccPad;
        SmallVector<Instruction *, 8> CycleNodes;
        do {
          CycleNodes.push_back(CyclePad);
          Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
          if (CycleTerminator != CyclePad)
            CycleNodes.push_back(CycleTerminator);
          CyclePad = getSuccPad(CycleTerminator);
        } while (CyclePad != SuccPad);
        Assert(false, "EH pads can't handle each other's exceptions",
               ArrayRef<Instruction *>(CycleNodes));
      }
      // Don't re-walk a node we've already checked
      if (!Visited.insert(SuccPad).second)
        break;
      // Walk to this successor if it has a map entry.
      PredPad = SuccPad;
      auto TermI = SiblingFuncletInfo.find(PredPad);
      if (TermI == SiblingFuncletInfo.end())
        break;
      Terminator = TermI->second;
      Active.insert(PredPad);
    } while (true);
    // Each node only has one successor, so we've walked all the active
    // nodes' successors.
    Active.clear();
  }
}

// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(const Function &F) {
  visitGlobalValue(F);

  // Check function arguments.
  FunctionType *FT = F.getFunctionType();
  unsigned NumArgs = F.arg_size();

  Assert(&Context == &F.getContext(),
         "Function context does not match Module context!", &F);

  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
  Assert(FT->getNumParams() == NumArgs,
         "# formal arguments must match # of arguments for function type!", &F,
         FT);
  Assert(F.getReturnType()->isFirstClassType() ||
             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
         "Functions cannot return aggregate values!", &F);

  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
         "Invalid struct return type!", &F);

  AttributeList Attrs = F.getAttributes();

  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
         "Attribute after last parameter!", &F);

  bool isLLVMdotName = F.getName().size() >= 5 &&
                       F.getName().substr(0, 5) == "llvm.";

  // Check function attributes.
  verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);

  // On function declarations/definitions, we do not support the builtin
  // attribute. We do not check this in VerifyFunctionAttrs since that is
  // checking for Attributes that can/can not ever be on functions.
  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
         "Attribute 'builtin' can only be applied to a callsite.", &F);

  // Check that this function meets the restrictions on this calling convention.
  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
  // restrictions can be lifted.
  switch (F.getCallingConv()) {
  default:
  case CallingConv::C:
    break;
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
    Assert(F.getReturnType()->isVoidTy(),
           "Calling convention requires void return type", &F);
    LLVM_FALLTHROUGH;
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
    Assert(!F.hasStructRetAttr(),
           "Calling convention does not allow sret", &F);
    LLVM_FALLTHROUGH;
  case CallingConv::Fast:
  case CallingConv::Cold:
  case CallingConv::Intel_OCL_BI:
  case CallingConv::PTX_Kernel:
  case CallingConv::PTX_Device:
    Assert(!F.isVarArg(), "Calling convention does not support varargs or "
                          "perfect forwarding!",
           &F);
    break;
  }

  // Check that the argument values match the function type for this function...
  unsigned i = 0;
  for (const Argument &Arg : F.args()) {
    Assert(Arg.getType() == FT->getParamType(i),
           "Argument value does not match function argument type!", &Arg,
           FT->getParamType(i));
    Assert(Arg.getType()->isFirstClassType(),
           "Function arguments must have first-class types!", &Arg);
    if (!isLLVMdotName) {
      Assert(!Arg.getType()->isMetadataTy(),
             "Function takes metadata but isn't an intrinsic", &Arg, &F);
      Assert(!Arg.getType()->isTokenTy(),
             "Function takes token but isn't an intrinsic", &Arg, &F);
    }

    // Check that swifterror argument is only used by loads and stores.
    if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
      verifySwiftErrorValue(&Arg);
    }
    ++i;
  }

  if (!isLLVMdotName)
    Assert(!F.getReturnType()->isTokenTy(),
           "Functions returns a token but isn't an intrinsic", &F);

  // Get the function metadata attachments.
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  F.getAllMetadata(MDs);
  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
  verifyFunctionMetadata(MDs);

  // Check validity of the personality function
  if (F.hasPersonalityFn()) {
    auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
    if (Per)
      Assert(Per->getParent() == F.getParent(),
             "Referencing personality function in another module!",
             &F, F.getParent(), Per, Per->getParent());
  }

  if (F.isMaterializable()) {
    // Function has a body somewhere we can't see.
    Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
           MDs.empty() ? nullptr : MDs.front().second);
  } else if (F.isDeclaration()) {
    for (const auto &I : MDs) {
      // This is used for call site debug information.
      AssertDI(I.first != LLVMContext::MD_dbg ||
                   !cast<DISubprogram>(I.second)->isDistinct(),
               "function declaration may only have a unique !dbg attachment",
               &F);
      Assert(I.first != LLVMContext::MD_prof,
             "function declaration may not have a !prof attachment", &F);

      // Verify the metadata itself.
      visitMDNode(*I.second);
    }
    Assert(!F.hasPersonalityFn(),
           "Function declaration shouldn't have a personality routine", &F);
  } else {
    // Verify that this function (which has a body) is not named "llvm.*".  It
    // is not legal to define intrinsics.
    Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);

    // Check the entry node
    const BasicBlock *Entry = &F.getEntryBlock();
    Assert(pred_empty(Entry),
           "Entry block to function must not have predecessors!", Entry);

    // The address of the entry block cannot be taken, unless it is dead.
    if (Entry->hasAddressTaken()) {
      Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
             "blockaddress may not be used with the entry block!", Entry);
    }

    unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
    // Visit metadata attachments.
    for (const auto &I : MDs) {
      // Verify that the attachment is legal.
      switch (I.first) {
      default:
        break;
      case LLVMContext::MD_dbg: {
        ++NumDebugAttachments;
        AssertDI(NumDebugAttachments == 1,
                 "function must have a single !dbg attachment", &F, I.second);
        AssertDI(isa<DISubprogram>(I.second),
                 "function !dbg attachment must be a subprogram", &F, I.second);
        auto *SP = cast<DISubprogram>(I.second);
        const Function *&AttachedTo = DISubprogramAttachments[SP];
        AssertDI(!AttachedTo || AttachedTo == &F,
                 "DISubprogram attached to more than one function", SP, &F);
        AttachedTo = &F;
        break;
      }
      case LLVMContext::MD_prof:
        ++NumProfAttachments;
        Assert(NumProfAttachments == 1,
               "function must have a single !prof attachment", &F, I.second);
        break;
      }

      // Verify the metadata itself.
      visitMDNode(*I.second);
    }
  }

  // If this function is actually an intrinsic, verify that it is only used in
  // direct call/invokes, never having its "address taken".
  // Only do this if the module is materialized, otherwise we don't have all the
  // uses.
  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
    const User *U;
    if (F.hasAddressTaken(&U))
      Assert(false, "Invalid user of intrinsic instruction!", U);
  }

  auto *N = F.getSubprogram();
  HasDebugInfo = (N != nullptr);
  if (!HasDebugInfo)
    return;

  // Check that all !dbg attachments lead to back to N (or, at least, another
  // subprogram that describes the same function).
  //
  // FIXME: Check this incrementally while visiting !dbg attachments.
  // FIXME: Only check when N is the canonical subprogram for F.
  SmallPtrSet<const MDNode *, 32> Seen;
  auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
    // Be careful about using DILocation here since we might be dealing with
    // broken code (this is the Verifier after all).
    const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
    if (!DL)
      return;
    if (!Seen.insert(DL).second)
      return;

    Metadata *Parent = DL->getRawScope();
    AssertDI(Parent && isa<DILocalScope>(Parent),
             "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
             Parent);
    DILocalScope *Scope = DL->getInlinedAtScope();
    if (Scope && !Seen.insert(Scope).second)
      return;

    DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;

    // Scope and SP could be the same MDNode and we don't want to skip
    // validation in that case
    if (SP && ((Scope != SP) && !Seen.insert(SP).second))
      return;

    // FIXME: Once N is canonical, check "SP == &N".
    AssertDI(SP->describes(&F),
             "!dbg attachment points at wrong subprogram for function", N, &F,
             &I, DL, Scope, SP);
  };
  for (auto &BB : F)
    for (auto &I : BB) {
      VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
      // The llvm.loop annotations also contain two DILocations.
      if (auto MD = I.getMetadata(LLVMContext::MD_loop))
        for (unsigned i = 1; i < MD->getNumOperands(); ++i)
          VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
      if (BrokenDebugInfo)
        return;
    }
}

// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
  InstsInThisBlock.clear();

  // Ensure that basic blocks have terminators!
  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);

  // Check constraints that this basic block imposes on all of the PHI nodes in
  // it.
  if (isa<PHINode>(BB.front())) {
    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    llvm::sort(Preds);
    for (const PHINode &PN : BB.phis()) {
      // Ensure that PHI nodes have at least one entry!
      Assert(PN.getNumIncomingValues() != 0,
             "PHI nodes must have at least one entry.  If the block is dead, "
             "the PHI should be removed!",
             &PN);
      Assert(PN.getNumIncomingValues() == Preds.size(),
             "PHINode should have one entry for each predecessor of its "
             "parent basic block!",
             &PN);

      // Get and sort all incoming values in the PHI node...
      Values.clear();
      Values.reserve(PN.getNumIncomingValues());
      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
        Values.push_back(
            std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
      llvm::sort(Values);

      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
        // Check to make sure that if there is more than one entry for a
        // particular basic block in this PHI node, that the incoming values are
        // all identical.
        //
        Assert(i == 0 || Values[i].first != Values[i - 1].first ||
                   Values[i].second == Values[i - 1].second,
               "PHI node has multiple entries for the same basic block with "
               "different incoming values!",
               &PN, Values[i].first, Values[i].second, Values[i - 1].second);

        // Check to make sure that the predecessors and PHI node entries are
        // matched up.
        Assert(Values[i].first == Preds[i],
               "PHI node entries do not match predecessors!", &PN,
               Values[i].first, Preds[i]);
      }
    }
  }

  // Check that all instructions have their parent pointers set up correctly.
  for (auto &I : BB)
  {
    Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
  }
}

void Verifier::visitTerminator(Instruction &I) {
  // Ensure that terminators only exist at the end of the basic block.
  Assert(&I == I.getParent()->getTerminator(),
         "Terminator found in the middle of a basic block!", I.getParent());
  visitInstruction(I);
}

void Verifier::visitBranchInst(BranchInst &BI) {
  if (BI.isConditional()) {
    Assert(BI.getCondition()->getType()->isIntegerTy(1),
           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
  }
  visitTerminator(BI);
}

void Verifier::visitReturnInst(ReturnInst &RI) {
  Function *F = RI.getParent()->getParent();
  unsigned N = RI.getNumOperands();
  if (F->getReturnType()->isVoidTy())
    Assert(N == 0,
           "Found return instr that returns non-void in Function of void "
           "return type!",
           &RI, F->getReturnType());
  else
    Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
           "Function return type does not match operand "
           "type of return inst!",
           &RI, F->getReturnType());

  // Check to make sure that the return value has necessary properties for
  // terminators...
  visitTerminator(RI);
}

void Verifier::visitSwitchInst(SwitchInst &SI) {
  // Check to make sure that all of the constants in the switch instruction
  // have the same type as the switched-on value.
  Type *SwitchTy = SI.getCondition()->getType();
  SmallPtrSet<ConstantInt*, 32> Constants;
  for (auto &Case : SI.cases()) {
    Assert(Case.getCaseValue()->getType() == SwitchTy,
           "Switch constants must all be same type as switch value!", &SI);
    Assert(Constants.insert(Case.getCaseValue()).second,
           "Duplicate integer as switch case", &SI, Case.getCaseValue());
  }

  visitTerminator(SI);
}

void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
  Assert(BI.getAddress()->getType()->isPointerTy(),
         "Indirectbr operand must have pointer type!", &BI);
  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
    Assert(BI.getDestination(i)->getType()->isLabelTy(),
           "Indirectbr destinations must all have pointer type!", &BI);

  visitTerminator(BI);
}

void Verifier::visitCallBrInst(CallBrInst &CBI) {
  Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
         &CBI);
  Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
         &CBI);
  for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
    Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
           "Callbr successors must all have pointer type!", &CBI);
  for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
    Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
           "Using an unescaped label as a callbr argument!", &CBI);
    if (isa<BasicBlock>(CBI.getOperand(i)))
      for (unsigned j = i + 1; j != e; ++j)
        Assert(CBI.getOperand(i) != CBI.getOperand(j),
               "Duplicate callbr destination!", &CBI);
  }
  {
    SmallPtrSet<BasicBlock *, 4> ArgBBs;
    for (Value *V : CBI.args())
      if (auto *BA = dyn_cast<BlockAddress>(V))
        ArgBBs.insert(BA->getBasicBlock());
    for (BasicBlock *BB : CBI.getIndirectDests())
      Assert(ArgBBs.find(BB) != ArgBBs.end(),
             "Indirect label missing from arglist.", &CBI);
  }

  visitTerminator(CBI);
}

void Verifier::visitSelectInst(SelectInst &SI) {
  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
                                         SI.getOperand(2)),
         "Invalid operands for select instruction!", &SI);

  Assert(SI.getTrueValue()->getType() == SI.getType(),
         "Select values must have same type as select instruction!", &SI);
  visitInstruction(SI);
}

/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
  Assert(false, "User-defined operators should not live outside of a pass!", &I);
}

void Verifier::visitTruncInst(TruncInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "trunc source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);

  visitInstruction(I);
}

void Verifier::visitZExtInst(ZExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "zext source and destination must both be a vector or neither", &I);
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);

  visitInstruction(I);
}

void Verifier::visitSExtInst(SExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "sext source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);

  visitInstruction(I);
}

void Verifier::visitFPTruncInst(FPTruncInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();
  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "fptrunc source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);

  visitInstruction(I);
}

void Verifier::visitFPExtInst(FPExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "fpext source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);

  visitInstruction(I);
}

void Verifier::visitUIToFPInst(UIToFPInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "UIToFP source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isIntOrIntVectorTy(),
         "UIToFP source must be integer or integer vector", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
         &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
               cast<VectorType>(DestTy)->getNumElements(),
           "UIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitSIToFPInst(SIToFPInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "SIToFP source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isIntOrIntVectorTy(),
         "SIToFP source must be integer or integer vector", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
         &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
               cast<VectorType>(DestTy)->getNumElements(),
           "SIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToUIInst(FPToUIInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "FPToUI source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
         &I);
  Assert(DestTy->isIntOrIntVectorTy(),
         "FPToUI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
               cast<VectorType>(DestTy)->getNumElements(),
           "FPToUI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToSIInst(FPToSIInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "FPToSI source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
         &I);
  Assert(DestTy->isIntOrIntVectorTy(),
         "FPToSI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
               cast<VectorType>(DestTy)->getNumElements(),
           "FPToSI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);

  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
    Assert(!DL.isNonIntegralPointerType(PTy),
           "ptrtoint not supported for non-integral pointers");

  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
         &I);

  if (SrcTy->isVectorTy()) {
    VectorType *VSrc = cast<VectorType>(SrcTy);
    VectorType *VDest = cast<VectorType>(DestTy);
    Assert(VSrc->getNumElements() == VDest->getNumElements(),
           "PtrToInt Vector width mismatch", &I);
  }

  visitInstruction(I);
}

void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Assert(SrcTy->isIntOrIntVectorTy(),
         "IntToPtr source must be an integral", &I);
  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);

  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
    Assert(!DL.isNonIntegralPointerType(PTy),
           "inttoptr not supported for non-integral pointers");

  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
         &I);
  if (SrcTy->isVectorTy()) {
    VectorType *VSrc = cast<VectorType>(SrcTy);
    VectorType *VDest = cast<VectorType>(DestTy);
    Assert(VSrc->getNumElements() == VDest->getNumElements(),
           "IntToPtr Vector width mismatch", &I);
  }
  visitInstruction(I);
}

void Verifier::visitBitCastInst(BitCastInst &I) {
  Assert(
      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
      "Invalid bitcast", &I);
  visitInstruction(I);
}

void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
         &I);
  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
         &I);
  Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
         "AddrSpaceCast must be between different address spaces", &I);
  if (SrcTy->isVectorTy())
    Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
           "AddrSpaceCast vector pointer number of elements mismatch", &I);
  visitInstruction(I);
}

/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
  // Ensure that the PHI nodes are all grouped together at the top of the block.
  // This can be tested by checking whether the instruction before this is
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
  // then there is some other instruction before a PHI.
  Assert(&PN == &PN.getParent()->front() ||
             isa<PHINode>(--BasicBlock::iterator(&PN)),
         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());

  // Check that a PHI doesn't yield a Token.
  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");

  // Check that all of the values of the PHI node have the same type as the
  // result, and that the incoming blocks are really basic blocks.
  for (Value *IncValue : PN.incoming_values()) {
    Assert(PN.getType() == IncValue->getType(),
           "PHI node operands are not the same type as the result!", &PN);
  }

  // All other PHI node constraints are checked in the visitBasicBlock method.

  visitInstruction(PN);
}

void Verifier::visitCallBase(CallBase &Call) {
  Assert(Call.getCalledValue()->getType()->isPointerTy(),
         "Called function must be a pointer!", Call);
  PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());

  Assert(FPTy->getElementType()->isFunctionTy(),
         "Called function is not pointer to function type!", Call);

  Assert(FPTy->getElementType() == Call.getFunctionType(),
         "Called function is not the same type as the call!", Call);

  FunctionType *FTy = Call.getFunctionType();

  // Verify that the correct number of arguments are being passed
  if (FTy->isVarArg())
    Assert(Call.arg_size() >= FTy->getNumParams(),
           "Called function requires more parameters than were provided!",
           Call);
  else
    Assert(Call.arg_size() == FTy->getNumParams(),
           "Incorrect number of arguments passed to called function!", Call);

  // Verify that all arguments to the call match the function type.
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
    Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
           "Call parameter type does not match function signature!",
           Call.getArgOperand(i), FTy->getParamType(i), Call);

  AttributeList Attrs = Call.getAttributes();

  Assert(verifyAttributeCount(Attrs, Call.arg_size()),
         "Attribute after last parameter!", Call);

  bool IsIntrinsic = Call.getCalledFunction() &&
                     Call.getCalledFunction()->getName().startswith("llvm.");

  Function *Callee
    = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());

  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
    // Don't allow speculatable on call sites, unless the underlying function
    // declaration is also speculatable.
    Assert(Callee && Callee->isSpeculatable(),
           "speculatable attribute may not apply to call sites", Call);
  }

  // Verify call attributes.
  verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);

  // Conservatively check the inalloca argument.
  // We have a bug if we can find that there is an underlying alloca without
  // inalloca.
  if (Call.hasInAllocaArgument()) {
    Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
      Assert(AI->isUsedWithInAlloca(),
             "inalloca argument for call has mismatched alloca", AI, Call);
  }

  // For each argument of the callsite, if it has the swifterror argument,
  // make sure the underlying alloca/parameter it comes from has a swifterror as
  // well.
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
    if (Call.paramHasAttr(i, Attribute::SwiftError)) {
      Value *SwiftErrorArg = Call.getArgOperand(i);
      if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
        Assert(AI->isSwiftError(),
               "swifterror argument for call has mismatched alloca", AI, Call);
        continue;
      }
      auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
      Assert(ArgI,
             "swifterror argument should come from an alloca or parameter",
             SwiftErrorArg, Call);
      Assert(ArgI->hasSwiftErrorAttr(),
             "swifterror argument for call has mismatched parameter", ArgI,
             Call);
    }

    if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
      // Don't allow immarg on call sites, unless the underlying declaration
      // also has the matching immarg.
      Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
             "immarg may not apply only to call sites",
             Call.getArgOperand(i), Call);
    }

    if (Call.paramHasAttr(i, Attribute::ImmArg)) {
      Value *ArgVal = Call.getArgOperand(i);
      Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
             "immarg operand has non-immediate parameter", ArgVal, Call);
    }
  }

  if (FTy->isVarArg()) {
    // FIXME? is 'nest' even legal here?
    bool SawNest = false;
    bool SawReturned = false;

    for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
      if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
        SawNest = true;
      if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
        SawReturned = true;
    }

    // Check attributes on the varargs part.
    for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
      Type *Ty = Call.getArgOperand(Idx)->getType();
      AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
      verifyParameterAttrs(ArgAttrs, Ty, &Call);

      if (ArgAttrs.hasAttribute(Attribute::Nest)) {
        Assert(!SawNest, "More than one parameter has attribute nest!", Call);
        SawNest = true;
      }

      if (ArgAttrs.hasAttribute(Attribute::Returned)) {
        Assert(!SawReturned, "More than one parameter has attribute returned!",
               Call);
        Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
               "Incompatible argument and return types for 'returned' "
               "attribute",
               Call);
        SawReturned = true;
      }

      // Statepoint intrinsic is vararg but the wrapped function may be not.
      // Allow sret here and check the wrapped function in verifyStatepoint.
      if (!Call.getCalledFunction() ||
          Call.getCalledFunction()->getIntrinsicID() !=
              Intrinsic::experimental_gc_statepoint)
        Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
               "Attribute 'sret' cannot be used for vararg call arguments!",
               Call);

      if (ArgAttrs.hasAttribute(Attribute::InAlloca))
        Assert(Idx == Call.arg_size() - 1,
               "inalloca isn't on the last argument!", Call);
    }
  }

  // Verify that there's no metadata unless it's a direct call to an intrinsic.
  if (!IsIntrinsic) {
    for (Type *ParamTy : FTy->params()) {
      Assert(!ParamTy->isMetadataTy(),
             "Function has metadata parameter but isn't an intrinsic", Call);
      Assert(!ParamTy->isTokenTy(),
             "Function has token parameter but isn't an intrinsic", Call);
    }
  }

  // Verify that indirect calls don't return tokens.
  if (!Call.getCalledFunction())
    Assert(!FTy->getReturnType()->isTokenTy(),
           "Return type cannot be token for indirect call!");

  if (Function *F = Call.getCalledFunction())
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
      visitIntrinsicCall(ID, Call);

  // Verify that a callsite has at most one "deopt", at most one "funclet" and
  // at most one "gc-transition" operand bundle.
  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
       FoundGCTransitionBundle = false;
  for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
    OperandBundleUse BU = Call.getOperandBundleAt(i);
    uint32_t Tag = BU.getTagID();
    if (Tag == LLVMContext::OB_deopt) {
      Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
      FoundDeoptBundle = true;
    } else if (Tag == LLVMContext::OB_gc_transition) {
      Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
             Call);
      FoundGCTransitionBundle = true;
    } else if (Tag == LLVMContext::OB_funclet) {
      Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
      FoundFuncletBundle = true;
      Assert(BU.Inputs.size() == 1,
             "Expected exactly one funclet bundle operand", Call);
      Assert(isa<FuncletPadInst>(BU.Inputs.front()),
             "Funclet bundle operands should correspond to a FuncletPadInst",
             Call);
    }
  }

  // Verify that each inlinable callsite of a debug-info-bearing function in a
  // debug-info-bearing function has a debug location attached to it. Failure to
  // do so causes assertion failures when the inliner sets up inline scope info.
  if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
      Call.getCalledFunction()->getSubprogram())
    AssertDI(Call.getDebugLoc(),
             "inlinable function call in a function with "
             "debug info must have a !dbg location",
             Call);

  visitInstruction(Call);
}

/// Two types are "congruent" if they are identical, or if they are both pointer
/// types with different pointee types and the same address space.
static bool isTypeCongruent(Type *L, Type *R) {
  if (L == R)
    return true;
  PointerType *PL = dyn_cast<PointerType>(L);
  PointerType *PR = dyn_cast<PointerType>(R);
  if (!PL || !PR)
    return false;
  return PL->getAddressSpace() == PR->getAddressSpace();
}

static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
  static const Attribute::AttrKind ABIAttrs[] = {
      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
      Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
      Attribute::SwiftError};
  AttrBuilder Copy;
  for (auto AK : ABIAttrs) {
    if (Attrs.hasParamAttribute(I, AK))
      Copy.addAttribute(AK);
  }
  if (Attrs.hasParamAttribute(I, Attribute::Alignment))
    Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
  return Copy;
}

void Verifier::verifyMustTailCall(CallInst &CI) {
  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);

  // - The caller and callee prototypes must match.  Pointer types of
  //   parameters or return types may differ in pointee type, but not
  //   address space.
  Function *F = CI.getParent()->getParent();
  FunctionType *CallerTy = F->getFunctionType();
  FunctionType *CalleeTy = CI.getFunctionType();
  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
    Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
           "cannot guarantee tail call due to mismatched parameter counts",
           &CI);
    for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
      Assert(
          isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
          "cannot guarantee tail call due to mismatched parameter types", &CI);
    }
  }
  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
         "cannot guarantee tail call due to mismatched varargs", &CI);
  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
         "cannot guarantee tail call due to mismatched return types", &CI);

  // - The calling conventions of the caller and callee must match.
  Assert(F->getCallingConv() == CI.getCallingConv(),
         "cannot guarantee tail call due to mismatched calling conv", &CI);

  // - All ABI-impacting function attributes, such as sret, byval, inreg,
  //   returned, and inalloca, must match.
  AttributeList CallerAttrs = F->getAttributes();
  AttributeList CalleeAttrs = CI.getAttributes();
  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
    Assert(CallerABIAttrs == CalleeABIAttrs,
           "cannot guarantee tail call due to mismatched ABI impacting "
           "function attributes",
           &CI, CI.getOperand(I));
  }

  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
  //   or a pointer bitcast followed by a ret instruction.
  // - The ret instruction must return the (possibly bitcasted) value
  //   produced by the call or void.
  Value *RetVal = &CI;
  Instruction *Next = CI.getNextNode();

  // Handle the optional bitcast.
  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
    Assert(BI->getOperand(0) == RetVal,
           "bitcast following musttail call must use the call", BI);
    RetVal = BI;
    Next = BI->getNextNode();
  }

  // Check the return.
  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
  Assert(Ret, "musttail call must precede a ret with an optional bitcast",
         &CI);
  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
         "musttail call result must be returned", Ret);
}

void Verifier::visitCallInst(CallInst &CI) {
  visitCallBase(CI);

  if (CI.isMustTailCall())
    verifyMustTailCall(CI);
}

void Verifier::visitInvokeInst(InvokeInst &II) {
  visitCallBase(II);

  // Verify that the first non-PHI instruction of the unwind destination is an
  // exception handling instruction.
  Assert(
      II.getUnwindDest()->isEHPad(),
      "The unwind destination does not have an exception handling instruction!",
      &II);

  visitTerminator(II);
}

/// visitUnaryOperator - Check the argument to the unary operator.
///
void Verifier::visitUnaryOperator(UnaryOperator &U) {
  Assert(U.getType() == U.getOperand(0)->getType(), 
         "Unary operators must have same type for"
         "operands and result!",
         &U);

  switch (U.getOpcode()) {
  // Check that floating-point arithmetic operators are only used with
  // floating-point operands.
  case Instruction::FNeg:
    Assert(U.getType()->isFPOrFPVectorTy(),
           "FNeg operator only works with float types!", &U);
    break;
  default:
    llvm_unreachable("Unknown UnaryOperator opcode!");
  }

  visitInstruction(U);
}

/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
         "Both operands to a binary operator are not of the same type!", &B);

  switch (B.getOpcode()) {
  // Check that integer arithmetic operators are only used with
  // integral operands.
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::SDiv:
  case Instruction::UDiv:
  case Instruction::SRem:
  case Instruction::URem:
    Assert(B.getType()->isIntOrIntVectorTy(),
           "Integer arithmetic operators only work with integral types!", &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Integer arithmetic operators must have same type "
           "for operands and result!",
           &B);
    break;
  // Check that floating-point arithmetic operators are only used with
  // floating-point operands.
  case Instruction::FAdd:
  case Instruction::FSub:
  case Instruction::FMul:
  case Instruction::FDiv:
  case Instruction::FRem:
    Assert(B.getType()->isFPOrFPVectorTy(),
           "Floating-point arithmetic operators only work with "
           "floating-point types!",
           &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Floating-point arithmetic operators must have same type "
           "for operands and result!",
           &B);
    break;
  // Check that logical operators are only used with integral operands.
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    Assert(B.getType()->isIntOrIntVectorTy(),
           "Logical operators only work with integral types!", &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Logical operators must have same type for operands and result!",
           &B);
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    Assert(B.getType()->isIntOrIntVectorTy(),
           "Shifts only work with integral types!", &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Shift return type must be same as operands!", &B);
    break;
  default:
    llvm_unreachable("Unknown BinaryOperator opcode!");
  }

  visitInstruction(B);
}

void Verifier::visitICmpInst(ICmpInst &IC) {
  // Check that the operands are the same type
  Type *Op0Ty = IC.getOperand(0)->getType();
  Type *Op1Ty = IC.getOperand(1)->getType();
  Assert(Op0Ty == Op1Ty,
         "Both operands to ICmp instruction are not of the same type!", &IC);
  // Check that the operands are the right type
  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
         "Invalid operand types for ICmp instruction", &IC);
  // Check that the predicate is valid.
  Assert(IC.isIntPredicate(),
         "Invalid predicate in ICmp instruction!", &IC);

  visitInstruction(IC);
}

void Verifier::visitFCmpInst(FCmpInst &FC) {
  // Check that the operands are the same type
  Type *Op0Ty = FC.getOperand(0)->getType();
  Type *Op1Ty = FC.getOperand(1)->getType();
  Assert(Op0Ty == Op1Ty,
         "Both operands to FCmp instruction are not of the same type!", &FC);
  // Check that the operands are the right type
  Assert(Op0Ty->isFPOrFPVectorTy(),
         "Invalid operand types for FCmp instruction", &FC);
  // Check that the predicate is valid.
  Assert(FC.isFPPredicate(),
         "Invalid predicate in FCmp instruction!", &FC);

  visitInstruction(FC);
}

void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
  Assert(
      ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
      "Invalid extractelement operands!", &EI);
  visitInstruction(EI);
}

void Verifier::visitInsertElementInst(InsertElementInst &IE) {
  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
                                            IE.getOperand(2)),
         "Invalid insertelement operands!", &IE);
  visitInstruction(IE);
}

void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
  Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
                                            SV.getOperand(2)),
         "Invalid shufflevector operands!", &SV);
  visitInstruction(SV);
}

void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();

  Assert(isa<PointerType>(TargetTy),
         "GEP base pointer is not a vector or a vector of pointers", &GEP);
  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);

  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
  Assert(all_of(
      Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
      "GEP indexes must be integers", &GEP);
  Type *ElTy =
      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);

  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
             GEP.getResultElementType() == ElTy,
         "GEP is not of right type for indices!", &GEP, ElTy);

  if (GEP.getType()->isVectorTy()) {
    // Additional checks for vector GEPs.
    unsigned GEPWidth = GEP.getType()->getVectorNumElements();
    if (GEP.getPointerOperandType()->isVectorTy())
      Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
             "Vector GEP result width doesn't match operand's", &GEP);
    for (Value *Idx : Idxs) {
      Type *IndexTy = Idx->getType();
      if (IndexTy->isVectorTy()) {
        unsigned IndexWidth = IndexTy->getVectorNumElements();
        Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
      }
      Assert(IndexTy->isIntOrIntVectorTy(),
             "All GEP indices should be of integer type");
    }
  }

  if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
    Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
           "GEP address space doesn't match type", &GEP);
  }

  visitInstruction(GEP);
}

static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}

void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
         "precondition violation");

  unsigned NumOperands = Range->getNumOperands();
  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
  unsigned NumRanges = NumOperands / 2;
  Assert(NumRanges >= 1, "It should have at least one range!", Range);

  ConstantRange LastRange(1, true); // Dummy initial value
  for (unsigned i = 0; i < NumRanges; ++i) {
    ConstantInt *Low =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
    Assert(Low, "The lower limit must be an integer!", Low);
    ConstantInt *High =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
    Assert(High, "The upper limit must be an integer!", High);
    Assert(High->getType() == Low->getType() && High->getType() == Ty,
           "Range types must match instruction type!", &I);

    APInt HighV = High->getValue();
    APInt LowV = Low->getValue();
    ConstantRange CurRange(LowV, HighV);
    Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
           "Range must not be empty!", Range);
    if (i != 0) {
      Assert(CurRange.intersectWith(LastRange).isEmptySet(),
             "Intervals are overlapping", Range);
      Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
             Range);
      Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
             Range);
    }
    LastRange = ConstantRange(LowV, HighV);
  }
  if (NumRanges > 2) {
    APInt FirstLow =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
    APInt FirstHigh =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
    ConstantRange FirstRange(FirstLow, FirstHigh);
    Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
           "Intervals are overlapping", Range);
    Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
           Range);
  }
}

void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
  unsigned Size = DL.getTypeSizeInBits(Ty);
  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
  Assert(!(Size & (Size - 1)),
         "atomic memory access' operand must have a power-of-two size", Ty, I);
}

void Verifier::visitLoadInst(LoadInst &LI) {
  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
  Assert(PTy, "Load operand must be a pointer.", &LI);
  Type *ElTy = LI.getType();
  Assert(LI.getAlignment() <= Value::MaximumAlignment,
         "huge alignment values are unsupported", &LI);
  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
  if (LI.isAtomic()) {
    Assert(LI.getOrdering() != AtomicOrdering::Release &&
               LI.getOrdering() != AtomicOrdering::AcquireRelease,
           "Load cannot have Release ordering", &LI);
    Assert(LI.getAlignment() != 0,
           "Atomic load must specify explicit alignment", &LI);
    Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
           "atomic load operand must have integer, pointer, or floating point "
           "type!",
           ElTy, &LI);
    checkAtomicMemAccessSize(ElTy, &LI);
  } else {
    Assert(LI.getSyncScopeID() == SyncScope::System,
           "Non-atomic load cannot have SynchronizationScope specified", &LI);
  }

  visitInstruction(LI);
}

void Verifier::visitStoreInst(StoreInst &SI) {
  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
  Assert(PTy, "Store operand must be a pointer.", &SI);
  Type *ElTy = PTy->getElementType();
  Assert(ElTy == SI.getOperand(0)->getType(),
         "Stored value type does not match pointer operand type!", &SI, ElTy);
  Assert(SI.getAlignment() <= Value::MaximumAlignment,
         "huge alignment values are unsupported", &SI);
  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
  if (SI.isAtomic()) {
    Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
               SI.getOrdering() != AtomicOrdering::AcquireRelease,
           "Store cannot have Acquire ordering", &SI);
    Assert(SI.getAlignment() != 0,
           "Atomic store must specify explicit alignment", &SI);
    Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
           "atomic store operand must have integer, pointer, or floating point "
           "type!",
           ElTy, &SI);
    checkAtomicMemAccessSize(ElTy, &SI);
  } else {
    Assert(SI.getSyncScopeID() == SyncScope::System,
           "Non-atomic store cannot have SynchronizationScope specified", &SI);
  }
  visitInstruction(SI);
}

/// Check that SwiftErrorVal is used as a swifterror argument in CS.
void Verifier::verifySwiftErrorCall(CallBase &Call,
                                    const Value *SwiftErrorVal) {
  unsigned Idx = 0;
  for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
    if (*I == SwiftErrorVal) {
      Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
             "swifterror value when used in a callsite should be marked "
             "with swifterror attribute",
             SwiftErrorVal, Call);
    }
  }
}

void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
  // Check that swifterror value is only used by loads, stores, or as
  // a swifterror argument.
  for (const User *U : SwiftErrorVal->users()) {
    Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
           isa<InvokeInst>(U),
           "swifterror value can only be loaded and stored from, or "
           "as a swifterror argument!",
           SwiftErrorVal, U);
    // If it is used by a store, check it is the second operand.
    if (auto StoreI = dyn_cast<StoreInst>(U))
      Assert(StoreI->getOperand(1) == SwiftErrorVal,
             "swifterror value should be the second operand when used "
             "by stores", SwiftErrorVal, U);
    if (auto *Call = dyn_cast<CallBase>(U))
      verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
  }
}

void Verifier::visitAllocaInst(AllocaInst &AI) {
  SmallPtrSet<Type*, 4> Visited;
  PointerType *PTy = AI.getType();
  // TODO: Relax this restriction?
  Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
         "Allocation instruction pointer not in the stack address space!",
         &AI);
  Assert(AI.getAllocatedType()->isSized(&Visited),
         "Cannot allocate unsized type", &AI);
  Assert(AI.getArraySize()->getType()->isIntegerTy(),
         "Alloca array size must have integer type", &AI);
  Assert(AI.getAlignment() <= Value::MaximumAlignment,
         "huge alignment values are unsupported", &AI);

  if (AI.isSwiftError()) {
    verifySwiftErrorValue(&AI);
  }

  visitInstruction(AI);
}

void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {

  // FIXME: more conditions???
  Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
         "cmpxchg instructions must be atomic.", &CXI);
  Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
         "cmpxchg instructions must be atomic.", &CXI);
  Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
         "cmpxchg instructions cannot be unordered.", &CXI);
  Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
         "cmpxchg instructions cannot be unordered.", &CXI);
  Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
         "cmpxchg instructions failure argument shall be no stronger than the "
         "success argument",
         &CXI);
  Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
             CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
         "cmpxchg failure ordering cannot include release semantics", &CXI);

  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
  Type *ElTy = PTy->getElementType();
  Assert(ElTy->isIntOrPtrTy(),
         "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
  checkAtomicMemAccessSize(ElTy, &CXI);
  Assert(ElTy == CXI.getOperand(1)->getType(),
         "Expected value type does not match pointer operand type!", &CXI,
         ElTy);
  Assert(ElTy == CXI.getOperand(2)->getType(),
         "Stored value type does not match pointer operand type!", &CXI, ElTy);
  visitInstruction(CXI);
}

void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
  Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
         "atomicrmw instructions must be atomic.", &RMWI);
  Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
         "atomicrmw instructions cannot be unordered.", &RMWI);
  auto Op = RMWI.getOperation();
  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
  Type *ElTy = PTy->getElementType();
  if (Op == AtomicRMWInst::Xchg) {
    Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
           AtomicRMWInst::getOperationName(Op) +
           " operand must have integer or floating point type!",
           &RMWI, ElTy);
  } else if (AtomicRMWInst::isFPOperation(Op)) {
    Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
           AtomicRMWInst::getOperationName(Op) +
           " operand must have floating point type!",
           &RMWI, ElTy);
  } else {
    Assert(ElTy->isIntegerTy(), "atomicrmw " +
           AtomicRMWInst::getOperationName(Op) +
           " operand must have integer type!",
           &RMWI, ElTy);
  }
  checkAtomicMemAccessSize(ElTy, &RMWI);
  Assert(ElTy == RMWI.getOperand(1)->getType(),
         "Argument value type does not match pointer operand type!", &RMWI,
         ElTy);
  Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
         "Invalid binary operation!", &RMWI);
  visitInstruction(RMWI);
}

void Verifier::visitFenceInst(FenceInst &FI) {
  const AtomicOrdering Ordering = FI.getOrdering();
  Assert(Ordering == AtomicOrdering::Acquire ||
             Ordering == AtomicOrdering::Release ||
             Ordering == AtomicOrdering::AcquireRelease ||
             Ordering == AtomicOrdering::SequentiallyConsistent,
         "fence instructions may only have acquire, release, acq_rel, or "
         "seq_cst ordering.",
         &FI);
  visitInstruction(FI);
}

void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
  Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
                                          EVI.getIndices()) == EVI.getType(),
         "Invalid ExtractValueInst operands!", &EVI);

  visitInstruction(EVI);
}

void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
  Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
                                          IVI.getIndices()) ==
             IVI.getOperand(1)->getType(),
         "Invalid InsertValueInst operands!", &IVI);

  visitInstruction(IVI);
}

static Value *getParentPad(Value *EHPad) {
  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
    return FPI->getParentPad();

  return cast<CatchSwitchInst>(EHPad)->getParentPad();
}

void Verifier::visitEHPadPredecessors(Instruction &I) {
  assert(I.isEHPad());

  BasicBlock *BB = I.getParent();
  Function *F = BB->getParent();

  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);

  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
    // The landingpad instruction defines its parent as a landing pad block. The
    // landing pad block may be branched to only by the unwind edge of an
    // invoke.
    for (BasicBlock *PredBB : predecessors(BB)) {
      const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
      Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
             "Block containing LandingPadInst must be jumped to "
             "only by the unwind edge of an invoke.",
             LPI);
    }
    return;
  }
  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
    if (!pred_empty(BB))
      Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
             "Block containg CatchPadInst must be jumped to "
             "only by its catchswitch.",
             CPI);
    Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
           "Catchswitch cannot unwind to one of its catchpads",
           CPI->getCatchSwitch(), CPI);
    return;
  }

  // Verify that each pred has a legal terminator with a legal to/from EH
  // pad relationship.
  Instruction *ToPad = &I;
  Value *ToPadParent = getParentPad(ToPad);
  for (BasicBlock *PredBB : predecessors(BB)) {
    Instruction *TI = PredBB->getTerminator();
    Value *FromPad;
    if (auto *II = dyn_cast<InvokeInst>(TI)) {
      Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
             "EH pad must be jumped to via an unwind edge", ToPad, II);
      if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
        FromPad = Bundle->Inputs[0];
      else
        FromPad = ConstantTokenNone::get(II->getContext());
    } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
      FromPad = CRI->getOperand(0);
      Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
      FromPad = CSI;
    } else {
      Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
    }

    // The edge may exit from zero or more nested pads.
    SmallSet<Value *, 8> Seen;
    for (;; FromPad = getParentPad(FromPad)) {
      Assert(FromPad != ToPad,
             "EH pad cannot handle exceptions raised within it", FromPad, TI);
      if (FromPad == ToPadParent) {
        // This is a legal unwind edge.
        break;
      }
      Assert(!isa<ConstantTokenNone>(FromPad),
             "A single unwind edge may only enter one EH pad", TI);
      Assert(Seen.insert(FromPad).second,
             "EH pad jumps through a cycle of pads", FromPad);
    }
  }
}

void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
  // The landingpad instruction is ill-formed if it doesn't have any clauses and
  // isn't a cleanup.
  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);

  visitEHPadPredecessors(LPI);

  if (!LandingPadResultTy)
    LandingPadResultTy = LPI.getType();
  else
    Assert(LandingPadResultTy == LPI.getType(),
           "The landingpad instruction should have a consistent result type "
           "inside a function.",
           &LPI);

  Function *F = LPI.getParent()->getParent();
  Assert(F->hasPersonalityFn(),
         "LandingPadInst needs to be in a function with a personality.", &LPI);

  // The landingpad instruction must be the first non-PHI instruction in the
  // block.
  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
         "LandingPadInst not the first non-PHI instruction in the block.",
         &LPI);

  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
    Constant *Clause = LPI.getClause(i);
    if (LPI.isCatch(i)) {
      Assert(isa<PointerType>(Clause->getType()),
             "Catch operand does not have pointer type!", &LPI);
    } else {
      Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
      Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
             "Filter operand is not an array of constants!", &LPI);
    }
  }

  visitInstruction(LPI);
}

void Verifier::visitResumeInst(ResumeInst &RI) {
  Assert(RI.getFunction()->hasPersonalityFn(),
         "ResumeInst needs to be in a function with a personality.", &RI);

  if (!LandingPadResultTy)
    LandingPadResultTy = RI.getValue()->getType();
  else
    Assert(LandingPadResultTy == RI.getValue()->getType(),
           "The resume instruction should have a consistent result type "
           "inside a function.",
           &RI);

  visitTerminator(RI);
}

void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
  BasicBlock *BB = CPI.getParent();

  Function *F = BB->getParent();
  Assert(F->hasPersonalityFn(),
         "CatchPadInst needs to be in a function with a personality.", &CPI);

  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
         CPI.getParentPad());

  // The catchpad instruction must be the first non-PHI instruction in the
  // block.
  Assert(BB->getFirstNonPHI() == &CPI,
         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);

  visitEHPadPredecessors(CPI);
  visitFuncletPadInst(CPI);
}

void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
         CatchReturn.getOperand(0));

  visitTerminator(CatchReturn);
}

void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
  BasicBlock *BB = CPI.getParent();

  Function *F = BB->getParent();
  Assert(F->hasPersonalityFn(),
         "CleanupPadInst needs to be in a function with a personality.", &CPI);

  // The cleanuppad instruction must be the first non-PHI instruction in the
  // block.
  Assert(BB->getFirstNonPHI() == &CPI,
         "CleanupPadInst not the first non-PHI instruction in the block.",
         &CPI);

  auto *ParentPad = CPI.getParentPad();
  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
         "CleanupPadInst has an invalid parent.", &CPI);

  visitEHPadPredecessors(CPI);
  visitFuncletPadInst(CPI);
}

void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
  User *FirstUser = nullptr;
  Value *FirstUnwindPad = nullptr;
  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
  SmallSet<FuncletPadInst *, 8> Seen;

  while (!Worklist.empty()) {
    FuncletPadInst *CurrentPad = Worklist.pop_back_val();
    Assert(Seen.insert(CurrentPad).second,
           "FuncletPadInst must not be nested within itself", CurrentPad);
    Value *UnresolvedAncestorPad = nullptr;
    for (User *U : CurrentPad->users()) {
      BasicBlock *UnwindDest;
      if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
        UnwindDest = CRI->getUnwindDest();
      } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
        // We allow catchswitch unwind to caller to nest
        // within an outer pad that unwinds somewhere else,
        // because catchswitch doesn't have a nounwind variant.
        // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
        if (CSI->unwindsToCaller())
          continue;
        UnwindDest = CSI->getUnwindDest();
      } else if (auto *II = dyn_cast<InvokeInst>(U)) {
        UnwindDest = II->getUnwindDest();
      } else if (isa<CallInst>(U)) {
        // Calls which don't unwind may be found inside funclet
        // pads that unwind somewhere else.  We don't *require*
        // such calls to be annotated nounwind.
        continue;
      } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
        // The unwind dest for a cleanup can only be found by
        // recursive search.  Add it to the worklist, and we'll
        // search for its first use that determines where it unwinds.
        Worklist.push_back(CPI);
        continue;
      } else {
        Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
        continue;
      }

      Value *UnwindPad;
      bool ExitsFPI;
      if (UnwindDest) {
        UnwindPad = UnwindDest->getFirstNonPHI();
        if (!cast<Instruction>(UnwindPad)->isEHPad())
          continue;
        Value *UnwindParent = getParentPad(UnwindPad);
        // Ignore unwind edges that don't exit CurrentPad.
        if (UnwindParent == CurrentPad)
          continue;
        // Determine whether the original funclet pad is exited,
        // and if we are scanning nested pads determine how many
        // of them are exited so we can stop searching their
        // children.
        Value *ExitedPad = CurrentPad;
        ExitsFPI = false;
        do {
          if (ExitedPad == &FPI) {
            ExitsFPI = true;
            // Now we can resolve any ancestors of CurrentPad up to
            // FPI, but not including FPI since we need to make sure
            // to check all direct users of FPI for consistency.
            UnresolvedAncestorPad = &FPI;
            break;
          }
          Value *ExitedParent = getParentPad(ExitedPad);
          if (ExitedParent == UnwindParent) {
            // ExitedPad is the ancestor-most pad which this unwind
            // edge exits, so we can resolve up to it, meaning that
            // ExitedParent is the first ancestor still unresolved.
            UnresolvedAncestorPad = ExitedParent;
            break;
          }
          ExitedPad = ExitedParent;
        } while (!isa<ConstantTokenNone>(ExitedPad));
      } else {
        // Unwinding to caller exits all pads.
        UnwindPad = ConstantTokenNone::get(FPI.getContext());
        ExitsFPI = true;
        UnresolvedAncestorPad = &FPI;
      }

      if (ExitsFPI) {
        // This unwind edge exits FPI.  Make sure it agrees with other
        // such edges.
        if (FirstUser) {
          Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
                                              "pad must have the same unwind "
                                              "dest",
                 &FPI, U, FirstUser);
        } else {
          FirstUser = U;
          FirstUnwindPad = UnwindPad;
          // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
          if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
              getParentPad(UnwindPad) == getParentPad(&FPI))
            SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
        }
      }
      // Make sure we visit all uses of FPI, but for nested pads stop as
      // soon as we know where they unwind to.
      if (CurrentPad != &FPI)
        break;
    }
    if (UnresolvedAncestorPad) {
      if (CurrentPad == UnresolvedAncestorPad) {
        // When CurrentPad is FPI itself, we don't mark it as resolved even if
        // we've found an unwind edge that exits it, because we need to verify
        // all direct uses of FPI.
        assert(CurrentPad == &FPI);
        continue;
      }
      // Pop off the worklist any nested pads that we've found an unwind
      // destination for.  The pads on the worklist are the uncles,
      // great-uncles, etc. of CurrentPad.  We've found an unwind destination
      // for all ancestors of CurrentPad up to but not including
      // UnresolvedAncestorPad.
      Value *ResolvedPad = CurrentPad;
      while (!Worklist.empty()) {
        Value *UnclePad = Worklist.back();
        Value *AncestorPad = getParentPad(UnclePad);
        // Walk ResolvedPad up the ancestor list until we either find the
        // uncle's parent or the last resolved ancestor.
        while (ResolvedPad != AncestorPad) {
          Value *ResolvedParent = getParentPad(ResolvedPad);
          if (ResolvedParent == UnresolvedAncestorPad) {
            break;
          }
          ResolvedPad = ResolvedParent;
        }
        // If the resolved ancestor search didn't find the uncle's parent,
        // then the uncle is not yet resolved.
        if (ResolvedPad != AncestorPad)
          break;
        // This uncle is resolved, so pop it from the worklist.
        Worklist.pop_back();
      }
    }
  }

  if (FirstUnwindPad) {
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
      BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
      Value *SwitchUnwindPad;
      if (SwitchUnwindDest)
        SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
      else
        SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
      Assert(SwitchUnwindPad == FirstUnwindPad,
             "Unwind edges out of a catch must have the same unwind dest as "
             "the parent catchswitch",
             &FPI, FirstUser, CatchSwitch);
    }
  }

  visitInstruction(FPI);
}

void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
  BasicBlock *BB = CatchSwitch.getParent();

  Function *F = BB->getParent();
  Assert(F->hasPersonalityFn(),
         "CatchSwitchInst needs to be in a function with a personality.",
         &CatchSwitch);

  // The catchswitch instruction must be the first non-PHI instruction in the
  // block.
  Assert(BB->getFirstNonPHI() == &CatchSwitch,
         "CatchSwitchInst not the first non-PHI instruction in the block.",
         &CatchSwitch);

  auto *ParentPad = CatchSwitch.getParentPad();
  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
         "CatchSwitchInst has an invalid parent.", ParentPad);

  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
    Instruction *I = UnwindDest->getFirstNonPHI();
    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
           "CatchSwitchInst must unwind to an EH block which is not a "
           "landingpad.",
           &CatchSwitch);

    // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
    if (getParentPad(I) == ParentPad)
      SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
  }

  Assert(CatchSwitch.getNumHandlers() != 0,
         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);

  for (BasicBlock *Handler : CatchSwitch.handlers()) {
    Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
  }

  visitEHPadPredecessors(CatchSwitch);
  visitTerminator(CatchSwitch);
}

void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
         CRI.getOperand(0));

  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
    Instruction *I = UnwindDest->getFirstNonPHI();
    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
           "CleanupReturnInst must unwind to an EH block which is not a "
           "landingpad.",
           &CRI);
  }

  visitTerminator(CRI);
}

void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
  Instruction *Op = cast<Instruction>(I.getOperand(i));
  // If the we have an invalid invoke, don't try to compute the dominance.
  // We already reject it in the invoke specific checks and the dominance
  // computation doesn't handle multiple edges.
  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
    if (II->getNormalDest() == II->getUnwindDest())
      return;
  }

  // Quick check whether the def has already been encountered in the same block.
  // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
  // uses are defined to happen on the incoming edge, not at the instruction.
  //
  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
  // wrapping an SSA value, assert that we've already encountered it.  See
  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
    return;

  const Use &U = I.getOperandUse(i);
  Assert(DT.dominates(Op, U),
         "Instruction does not dominate all uses!", Op, &I);
}

void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
         "apply only to pointer types", &I);
  Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
         "dereferenceable, dereferenceable_or_null apply only to load"
         " and inttoptr instructions, use attributes for calls or invokes", &I);
  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
         "take one operand!", &I);
  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
         "dereferenceable_or_null metadata value must be an i64!", &I);
}

void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
  Assert(MD->getNumOperands() >= 2,
         "!prof annotations should have no less than 2 operands", MD);

  // Check first operand.
  Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
  Assert(isa<MDString>(MD->getOperand(0)),
         "expected string with name of the !prof annotation", MD);
  MDString *MDS = cast<MDString>(MD->getOperand(0));
  StringRef ProfName = MDS->getString();

  // Check consistency of !prof branch_weights metadata.
  if (ProfName.equals("branch_weights")) {
    unsigned ExpectedNumOperands = 0;
    if (BranchInst *BI = dyn_cast<BranchInst>(&I))
      ExpectedNumOperands = BI->getNumSuccessors();
    else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
      ExpectedNumOperands = SI->getNumSuccessors();
    else if (isa<CallInst>(&I) || isa<InvokeInst>(&I))
      ExpectedNumOperands = 1;
    else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
      ExpectedNumOperands = IBI->getNumDestinations();
    else if (isa<SelectInst>(&I))
      ExpectedNumOperands = 2;
    else
      CheckFailed("!prof branch_weights are not allowed for this instruction",
                  MD);

    Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
           "Wrong number of operands", MD);
    for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
      auto &MDO = MD->getOperand(i);
      Assert(MDO, "second operand should not be null", MD);
      Assert(mdconst::dyn_extract<ConstantInt>(MDO),
             "!prof brunch_weights operand is not a const int");
    }
  }
}

/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
  BasicBlock *BB = I.getParent();
  Assert(BB, "Instruction not embedded in basic block!", &I);

  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
    for (User *U : I.users()) {
      Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
             "Only PHI nodes may reference their own value!", &I);
    }
  }

  // Check that void typed values don't have names
  Assert(!I.getType()->isVoidTy() || !I.hasName(),
         "Instruction has a name, but provides a void value!", &I);

  // Check that the return value of the instruction is either void or a legal
  // value type.
  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
         "Instruction returns a non-scalar type!", &I);

  // Check that the instruction doesn't produce metadata. Calls are already
  // checked against the callee type.
  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
         "Invalid use of metadata!", &I);

  // Check that all uses of the instruction, if they are instructions
  // themselves, actually have parent basic blocks.  If the use is not an
  // instruction, it is an error!
  for (Use &U : I.uses()) {
    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
      Assert(Used->getParent() != nullptr,
             "Instruction referencing"
             " instruction not embedded in a basic block!",
             &I, Used);
    else {
      CheckFailed("Use of instruction is not an instruction!", U);
      return;
    }
  }

  // Get a pointer to the call base of the instruction if it is some form of
  // call.
  const CallBase *CBI = dyn_cast<CallBase>(&I);

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);

    // Check to make sure that only first-class-values are operands to
    // instructions.
    if (!I.getOperand(i)->getType()->isFirstClassType()) {
      Assert(false, "Instruction operands must be first-class values!", &I);
    }

    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
      // Check to make sure that the "address of" an intrinsic function is never
      // taken.
      Assert(!F->isIntrinsic() ||
                 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
             "Cannot take the address of an intrinsic!", &I);
      Assert(
          !F->isIntrinsic() || isa<CallInst>(I) ||
              F->getIntrinsicID() == Intrinsic::donothing ||
              F->getIntrinsicID() == Intrinsic::coro_resume ||
              F->getIntrinsicID() == Intrinsic::coro_destroy ||
              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
              F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
              F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
          "Cannot invoke an intrinsic other than donothing, patchpoint, "
          "statepoint, coro_resume or coro_destroy",
          &I);
      Assert(F->getParent() == &M, "Referencing function in another module!",
             &I, &M, F, F->getParent());
    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
      Assert(OpBB->getParent() == BB->getParent(),
             "Referring to a basic block in another function!", &I);
    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
      Assert(OpArg->getParent() == BB->getParent(),
             "Referring to an argument in another function!", &I);
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
      Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
             &M, GV, GV->getParent());
    } else if (isa<Instruction>(I.getOperand(i))) {
      verifyDominatesUse(I, i);
    } else if (isa<InlineAsm>(I.getOperand(i))) {
      Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
             "Cannot take the address of an inline asm!", &I);
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
      if (CE->getType()->isPtrOrPtrVectorTy() ||
          !DL.getNonIntegralAddressSpaces().empty()) {
        // If we have a ConstantExpr pointer, we need to see if it came from an
        // illegal bitcast.  If the datalayout string specifies non-integral
        // address spaces then we also need to check for illegal ptrtoint and
        // inttoptr expressions.
        visitConstantExprsRecursively(CE);
      }
    }
  }

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
    Assert(I.getType()->isFPOrFPVectorTy(),
           "fpmath requires a floating point result!", &I);
    Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
    if (ConstantFP *CFP0 =
            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
      const APFloat &Accuracy = CFP0->getValueAPF();
      Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
             "fpmath accuracy must have float type", &I);
      Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
             "fpmath accuracy not a positive number!", &I);
    } else {
      Assert(false, "invalid fpmath accuracy!", &I);
    }
  }

  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
    Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
           "Ranges are only for loads, calls and invokes!", &I);
    visitRangeMetadata(I, Range, I.getType());
  }

  if (I.getMetadata(LLVMContext::MD_nonnull)) {
    Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
           &I);
    Assert(isa<LoadInst>(I),
           "nonnull applies only to load instructions, use attributes"
           " for calls or invokes",
           &I);
  }

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
    visitDereferenceableMetadata(I, MD);

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
    visitDereferenceableMetadata(I, MD);

  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
    TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);

  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
    Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
           &I);
    Assert(isa<LoadInst>(I), "align applies only to load instructions, "
           "use attributes for calls or invokes", &I);
    Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
    Assert(CI && CI->getType()->isIntegerTy(64),
           "align metadata value must be an i64!", &I);
    uint64_t Align = CI->getZExtValue();
    Assert(isPowerOf2_64(Align),
           "align metadata value must be a power of 2!", &I);
    Assert(Align <= Value::MaximumAlignment,
           "alignment is larger that implementation defined limit", &I);
  }

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
    visitProfMetadata(I, MD);

  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
    AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
    visitMDNode(*N);
  }

  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
    verifyFragmentExpression(*DII);

  InstsInThisBlock.insert(&I);
}

/// Allow intrinsics to be verified in different ways.
void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
  Function *IF = Call.getCalledFunction();
  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
         IF);

  // Verify that the intrinsic prototype lines up with what the .td files
  // describe.
  FunctionType *IFTy = IF->getFunctionType();
  bool IsVarArg = IFTy->isVarArg();

  SmallVector<Intrinsic::IITDescriptor, 8> Table;
  getIntrinsicInfoTableEntries(ID, Table);
  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;

  // Walk the descriptors to extract overloaded types.
  SmallVector<Type *, 4> ArgTys;
  Intrinsic::MatchIntrinsicTypesResult Res =
      Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
  Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
         "Intrinsic has incorrect return type!", IF);
  Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
         "Intrinsic has incorrect argument type!", IF);

  // Verify if the intrinsic call matches the vararg property.
  if (IsVarArg)
    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
           "Intrinsic was not defined with variable arguments!", IF);
  else
    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
           "Callsite was not defined with variable arguments!", IF);

  // All descriptors should be absorbed by now.
  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);

  // Now that we have the intrinsic ID and the actual argument types (and we
  // know they are legal for the intrinsic!) get the intrinsic name through the
  // usual means.  This allows us to verify the mangling of argument types into
  // the name.
  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
  Assert(ExpectedName == IF->getName(),
         "Intrinsic name not mangled correctly for type arguments! "
         "Should be: " +
             ExpectedName,
         IF);

  // If the intrinsic takes MDNode arguments, verify that they are either global
  // or are local to *this* function.
  for (Value *V : Call.args())
    if (auto *MD = dyn_cast<MetadataAsValue>(V))
      visitMetadataAsValue(*MD, Call.getCaller());

  switch (ID) {
  default:
    break;
  case Intrinsic::coro_id: {
    auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
    if (isa<ConstantPointerNull>(InfoArg))
      break;
    auto *GV = dyn_cast<GlobalVariable>(InfoArg);
    Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
      "info argument of llvm.coro.begin must refer to an initialized "
      "constant");
    Constant *Init = GV->getInitializer();
    Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
      "info argument of llvm.coro.begin must refer to either a struct or "
      "an array");
    break;
  }
  case Intrinsic::experimental_constrained_fadd:
  case Intrinsic::experimental_constrained_fsub:
  case Intrinsic::experimental_constrained_fmul:
  case Intrinsic::experimental_constrained_fdiv:
  case Intrinsic::experimental_constrained_frem:
  case Intrinsic::experimental_constrained_fma:
  case Intrinsic::experimental_constrained_fptosi:
  case Intrinsic::experimental_constrained_fptoui:
  case Intrinsic::experimental_constrained_fptrunc:
  case Intrinsic::experimental_constrained_fpext:
  case Intrinsic::experimental_constrained_sqrt:
  case Intrinsic::experimental_constrained_pow:
  case Intrinsic::experimental_constrained_powi:
  case Intrinsic::experimental_constrained_sin:
  case Intrinsic::experimental_constrained_cos:
  case Intrinsic::experimental_constrained_exp:
  case Intrinsic::experimental_constrained_exp2:
  case Intrinsic::experimental_constrained_log:
  case Intrinsic::experimental_constrained_log10:
  case Intrinsic::experimental_constrained_log2:
  case Intrinsic::experimental_constrained_rint:
  case Intrinsic::experimental_constrained_nearbyint:
  case Intrinsic::experimental_constrained_maxnum:
  case Intrinsic::experimental_constrained_minnum:
  case Intrinsic::experimental_constrained_ceil:
  case Intrinsic::experimental_constrained_floor:
  case Intrinsic::experimental_constrained_round:
  case Intrinsic::experimental_constrained_trunc:
    visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
    break;
  case Intrinsic::dbg_declare: // llvm.dbg.declare
    Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
           "invalid llvm.dbg.declare intrinsic call 1", Call);
    visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
    break;
  case Intrinsic::dbg_addr: // llvm.dbg.addr
    visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
    break;
  case Intrinsic::dbg_value: // llvm.dbg.value
    visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
    break;
  case Intrinsic::dbg_label: // llvm.dbg.label
    visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
    break;
  case Intrinsic::memcpy:
  case Intrinsic::memmove:
  case Intrinsic::memset: {
    const auto *MI = cast<MemIntrinsic>(&Call);
    auto IsValidAlignment = [&](unsigned Alignment) -> bool {
      return Alignment == 0 || isPowerOf2_32(Alignment);
    };
    Assert(IsValidAlignment(MI->getDestAlignment()),
           "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
           Call);
    if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
      Assert(IsValidAlignment(MTI->getSourceAlignment()),
             "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
             Call);
    }

    break;
  }
  case Intrinsic::memcpy_element_unordered_atomic:
  case Intrinsic::memmove_element_unordered_atomic:
  case Intrinsic::memset_element_unordered_atomic: {
    const auto *AMI = cast<AtomicMemIntrinsic>(&Call);

    ConstantInt *ElementSizeCI =
        cast<ConstantInt>(AMI->getRawElementSizeInBytes());
    const APInt &ElementSizeVal = ElementSizeCI->getValue();
    Assert(ElementSizeVal.isPowerOf2(),
           "element size of the element-wise atomic memory intrinsic "
           "must be a power of 2",
           Call);

    if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
      uint64_t Length = LengthCI->getZExtValue();
      uint64_t ElementSize = AMI->getElementSizeInBytes();
      Assert((Length % ElementSize) == 0,
             "constant length must be a multiple of the element size in the "
             "element-wise atomic memory intrinsic",
             Call);
    }

    auto IsValidAlignment = [&](uint64_t Alignment) {
      return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
    };
    uint64_t DstAlignment = AMI->getDestAlignment();
    Assert(IsValidAlignment(DstAlignment),
           "incorrect alignment of the destination argument", Call);
    if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
      uint64_t SrcAlignment = AMT->getSourceAlignment();
      Assert(IsValidAlignment(SrcAlignment),
             "incorrect alignment of the source argument", Call);
    }
    break;
  }
  case Intrinsic::gcroot:
  case Intrinsic::gcwrite:
  case Intrinsic::gcread:
    if (ID == Intrinsic::gcroot) {
      AllocaInst *AI =
          dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
      Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
      Assert(isa<Constant>(Call.getArgOperand(1)),
             "llvm.gcroot parameter #2 must be a constant.", Call);
      if (!AI->getAllocatedType()->isPointerTy()) {
        Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
               "llvm.gcroot parameter #1 must either be a pointer alloca, "
               "or argument #2 must be a non-null constant.",
               Call);
      }
    }

    Assert(Call.getParent()->getParent()->hasGC(),
           "Enclosing function does not use GC.", Call);
    break;
  case Intrinsic::init_trampoline:
    Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
           "llvm.init_trampoline parameter #2 must resolve to a function.",
           Call);
    break;
  case Intrinsic::prefetch:
    Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
           cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
           "invalid arguments to llvm.prefetch", Call);
    break;
  case Intrinsic::stackprotector:
    Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
           "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
    break;
  case Intrinsic::localescape: {
    BasicBlock *BB = Call.getParent();
    Assert(BB == &BB->getParent()->front(),
           "llvm.localescape used outside of entry block", Call);
    Assert(!SawFrameEscape,
           "multiple calls to llvm.localescape in one function", Call);
    for (Value *Arg : Call.args()) {
      if (isa<ConstantPointerNull>(Arg))
        continue; // Null values are allowed as placeholders.
      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
      Assert(AI && AI->isStaticAlloca(),
             "llvm.localescape only accepts static allocas", Call);
    }
    FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
    SawFrameEscape = true;
    break;
  }
  case Intrinsic::localrecover: {
    Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
    Function *Fn = dyn_cast<Function>(FnArg);
    Assert(Fn && !Fn->isDeclaration(),
           "llvm.localrecover first "
           "argument must be function defined in this module",
           Call);
    auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
    auto &Entry = FrameEscapeInfo[Fn];
    Entry.second = unsigned(
        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
    break;
  }

  case Intrinsic::experimental_gc_statepoint:
    if (auto *CI = dyn_cast<CallInst>(&Call))
      Assert(!CI->isInlineAsm(),
             "gc.statepoint support for inline assembly unimplemented", CI);
    Assert(Call.getParent()->getParent()->hasGC(),
           "Enclosing function does not use GC.", Call);

    verifyStatepoint(Call);
    break;
  case Intrinsic::experimental_gc_result: {
    Assert(Call.getParent()->getParent()->hasGC(),
           "Enclosing function does not use GC.", Call);
    // Are we tied to a statepoint properly?
    const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
    const Function *StatepointFn =
        StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
    Assert(StatepointFn && StatepointFn->isDeclaration() &&
               StatepointFn->getIntrinsicID() ==
                   Intrinsic::experimental_gc_statepoint,
           "gc.result operand #1 must be from a statepoint", Call,
           Call.getArgOperand(0));

    // Assert that result type matches wrapped callee.
    const Value *Target = StatepointCall->getArgOperand(2);
    auto *PT = cast<PointerType>(Target->getType());
    auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
    Assert(Call.getType() == TargetFuncType->getReturnType(),
           "gc.result result type does not match wrapped callee", Call);
    break;
  }
  case Intrinsic::experimental_gc_relocate: {
    Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);

    Assert(isa<PointerType>(Call.getType()->getScalarType()),
           "gc.relocate must return a pointer or a vector of pointers", Call);

    // Check that this relocate is correctly tied to the statepoint

    // This is case for relocate on the unwinding path of an invoke statepoint
    if (LandingPadInst *LandingPad =
            dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {

      const BasicBlock *InvokeBB =
          LandingPad->getParent()->getUniquePredecessor();

      // Landingpad relocates should have only one predecessor with invoke
      // statepoint terminator
      Assert(InvokeBB, "safepoints should have unique landingpads",
             LandingPad->getParent());
      Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
             InvokeBB);
      Assert(isStatepoint(InvokeBB->getTerminator()),
             "gc relocate should be linked to a statepoint", InvokeBB);
    } else {
      // In all other cases relocate should be tied to the statepoint directly.
      // This covers relocates on a normal return path of invoke statepoint and
      // relocates of a call statepoint.
      auto Token = Call.getArgOperand(0);
      Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
             "gc relocate is incorrectly tied to the statepoint", Call, Token);
    }

    // Verify rest of the relocate arguments.
    const CallBase &StatepointCall =
        *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());

    // Both the base and derived must be piped through the safepoint.
    Value *Base = Call.getArgOperand(1);
    Assert(isa<ConstantInt>(Base),
           "gc.relocate operand #2 must be integer offset", Call);

    Value *Derived = Call.getArgOperand(2);
    Assert(isa<ConstantInt>(Derived),
           "gc.relocate operand #3 must be integer offset", Call);

    const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
    const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
    // Check the bounds
    Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
           "gc.relocate: statepoint base index out of bounds", Call);
    Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
           "gc.relocate: statepoint derived index out of bounds", Call);

    // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
    // section of the statepoint's argument.
    Assert(StatepointCall.arg_size() > 0,
           "gc.statepoint: insufficient arguments");
    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
           "gc.statement: number of call arguments must be constant integer");
    const unsigned NumCallArgs =
        cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
    Assert(StatepointCall.arg_size() > NumCallArgs + 5,
           "gc.statepoint: mismatch in number of call arguments");
    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
           "gc.statepoint: number of transition arguments must be "
           "a constant integer");
    const int NumTransitionArgs =
        cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
            ->getZExtValue();
    const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
           "gc.statepoint: number of deoptimization arguments must be "
           "a constant integer");
    const int NumDeoptArgs =
        cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
            ->getZExtValue();
    const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
    const int GCParamArgsEnd = StatepointCall.arg_size();
    Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
           "gc.relocate: statepoint base index doesn't fall within the "
           "'gc parameters' section of the statepoint call",
           Call);
    Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
           "gc.relocate: statepoint derived index doesn't fall within the "
           "'gc parameters' section of the statepoint call",
           Call);

    // Relocated value must be either a pointer type or vector-of-pointer type,
    // but gc_relocate does not need to return the same pointer type as the
    // relocated pointer. It can be casted to the correct type later if it's
    // desired. However, they must have the same address space and 'vectorness'
    GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
    Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
           "gc.relocate: relocated value must be a gc pointer", Call);

    auto ResultType = Call.getType();
    auto DerivedType = Relocate.getDerivedPtr()->getType();
    Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
           "gc.relocate: vector relocates to vector and pointer to pointer",
           Call);
    Assert(
        ResultType->getPointerAddressSpace() ==
            DerivedType->getPointerAddressSpace(),
        "gc.relocate: relocating a pointer shouldn't change its address space",
        Call);
    break;
  }
  case Intrinsic::eh_exceptioncode:
  case Intrinsic::eh_exceptionpointer: {
    Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
           "eh.exceptionpointer argument must be a catchpad", Call);
    break;
  }
  case Intrinsic::masked_load: {
    Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
           Call);

    Value *Ptr = Call.getArgOperand(0);
    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
    Value *Mask = Call.getArgOperand(2);
    Value *PassThru = Call.getArgOperand(3);
    Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
           Call);
    Assert(Alignment->getValue().isPowerOf2(),
           "masked_load: alignment must be a power of 2", Call);

    // DataTy is the overloaded type
    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
    Assert(DataTy == Call.getType(),
           "masked_load: return must match pointer type", Call);
    Assert(PassThru->getType() == DataTy,
           "masked_load: pass through and data type must match", Call);
    Assert(Mask->getType()->getVectorNumElements() ==
               DataTy->getVectorNumElements(),
           "masked_load: vector mask must be same length as data", Call);
    break;
  }
  case Intrinsic::masked_store: {
    Value *Val = Call.getArgOperand(0);
    Value *Ptr = Call.getArgOperand(1);
    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
    Value *Mask = Call.getArgOperand(3);
    Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
           Call);
    Assert(Alignment->getValue().isPowerOf2(),
           "masked_store: alignment must be a power of 2", Call);

    // DataTy is the overloaded type
    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
    Assert(DataTy == Val->getType(),
           "masked_store: storee must match pointer type", Call);
    Assert(Mask->getType()->getVectorNumElements() ==
               DataTy->getVectorNumElements(),
           "masked_store: vector mask must be same length as data", Call);
    break;
  }

  case Intrinsic::experimental_guard: {
    Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
    Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
           "experimental_guard must have exactly one "
           "\"deopt\" operand bundle");
    break;
  }

  case Intrinsic::experimental_deoptimize: {
    Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
           Call);
    Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
           "experimental_deoptimize must have exactly one "
           "\"deopt\" operand bundle");
    Assert(Call.getType() == Call.getFunction()->getReturnType(),
           "experimental_deoptimize return type must match caller return type");

    if (isa<CallInst>(Call)) {
      auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
      Assert(RI,
             "calls to experimental_deoptimize must be followed by a return");

      if (!Call.getType()->isVoidTy() && RI)
        Assert(RI->getReturnValue() == &Call,
               "calls to experimental_deoptimize must be followed by a return "
               "of the value computed by experimental_deoptimize");
    }

    break;
  }
  case Intrinsic::sadd_sat:
  case Intrinsic::uadd_sat:
  case Intrinsic::ssub_sat:
  case Intrinsic::usub_sat: {
    Value *Op1 = Call.getArgOperand(0);
    Value *Op2 = Call.getArgOperand(1);
    Assert(Op1->getType()->isIntOrIntVectorTy(),
           "first operand of [us][add|sub]_sat must be an int type or vector "
           "of ints");
    Assert(Op2->getType()->isIntOrIntVectorTy(),
           "second operand of [us][add|sub]_sat must be an int type or vector "
           "of ints");
    break;
  }
  case Intrinsic::smul_fix:
  case Intrinsic::smul_fix_sat:
  case Intrinsic::umul_fix:
  case Intrinsic::umul_fix_sat: {
    Value *Op1 = Call.getArgOperand(0);
    Value *Op2 = Call.getArgOperand(1);
    Assert(Op1->getType()->isIntOrIntVectorTy(),
           "first operand of [us]mul_fix[_sat] must be an int type or vector "
           "of ints");
    Assert(Op2->getType()->isIntOrIntVectorTy(),
           "second operand of [us]mul_fix_[sat] must be an int type or vector "
           "of ints");

    auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
    Assert(Op3->getType()->getBitWidth() <= 32,
           "third argument of [us]mul_fix[_sat] must fit within 32 bits");

    if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) {
      Assert(
          Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
          "the scale of smul_fix[_sat] must be less than the width of the operands");
    } else {
      Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
             "the scale of umul_fix[_sat] must be less than or equal to the width of "
             "the operands");
    }
    break;
  }
  case Intrinsic::lround:
  case Intrinsic::llround:
  case Intrinsic::lrint:
  case Intrinsic::llrint: {
    Type *ValTy = Call.getArgOperand(0)->getType();
    Type *ResultTy = Call.getType();
    Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
           "Intrinsic does not support vectors", &Call);
    break;
  }
  };
}

/// Carefully grab the subprogram from a local scope.
///
/// This carefully grabs the subprogram from a local scope, avoiding the
/// built-in assertions that would typically fire.
static DISubprogram *getSubprogram(Metadata *LocalScope) {
  if (!LocalScope)
    return nullptr;

  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
    return SP;

  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
    return getSubprogram(LB->getRawScope());

  // Just return null; broken scope chains are checked elsewhere.
  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
  return nullptr;
}

void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
  unsigned NumOperands = FPI.getNumArgOperands();
  bool HasExceptionMD = false;
  bool HasRoundingMD = false;
  switch (FPI.getIntrinsicID()) {
  case Intrinsic::experimental_constrained_sqrt:
  case Intrinsic::experimental_constrained_sin:
  case Intrinsic::experimental_constrained_cos:
  case Intrinsic::experimental_constrained_exp:
  case Intrinsic::experimental_constrained_exp2:
  case Intrinsic::experimental_constrained_log:
  case Intrinsic::experimental_constrained_log10:
  case Intrinsic::experimental_constrained_log2:
  case Intrinsic::experimental_constrained_rint:
  case Intrinsic::experimental_constrained_nearbyint:
  case Intrinsic::experimental_constrained_ceil:
  case Intrinsic::experimental_constrained_floor:
  case Intrinsic::experimental_constrained_round:
  case Intrinsic::experimental_constrained_trunc:
    Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
           &FPI);
    HasExceptionMD = true;
    HasRoundingMD = true;
    break;

  case Intrinsic::experimental_constrained_fma:
    Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",
           &FPI);
    HasExceptionMD = true;
    HasRoundingMD = true;
    break;

  case Intrinsic::experimental_constrained_fadd:
  case Intrinsic::experimental_constrained_fsub:
  case Intrinsic::experimental_constrained_fmul:
  case Intrinsic::experimental_constrained_fdiv:
  case Intrinsic::experimental_constrained_frem:
  case Intrinsic::experimental_constrained_pow:
  case Intrinsic::experimental_constrained_powi:
  case Intrinsic::experimental_constrained_maxnum:
  case Intrinsic::experimental_constrained_minnum:
    Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",
           &FPI);
    HasExceptionMD = true;
    HasRoundingMD = true;
    break;

  case Intrinsic::experimental_constrained_fptosi:
  case Intrinsic::experimental_constrained_fptoui: { 
    Assert((NumOperands == 2),
           "invalid arguments for constrained FP intrinsic", &FPI);
    HasExceptionMD = true;

    Value *Operand = FPI.getArgOperand(0);
    uint64_t NumSrcElem = 0;
    Assert(Operand->getType()->isFPOrFPVectorTy(),
           "Intrinsic first argument must be floating point", &FPI);
    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
      NumSrcElem = OperandT->getNumElements();
    }

    Operand = &FPI;
    Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
           "Intrinsic first argument and result disagree on vector use", &FPI);
    Assert(Operand->getType()->isIntOrIntVectorTy(),
           "Intrinsic result must be an integer", &FPI);
    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
      Assert(NumSrcElem == OperandT->getNumElements(),
             "Intrinsic first argument and result vector lengths must be equal",
             &FPI);
    }
  }
    break;

  case Intrinsic::experimental_constrained_fptrunc:
  case Intrinsic::experimental_constrained_fpext: {
    if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
      Assert((NumOperands == 3),
             "invalid arguments for constrained FP intrinsic", &FPI);
      HasRoundingMD = true;
    } else {
      Assert((NumOperands == 2),
             "invalid arguments for constrained FP intrinsic", &FPI);
    }
    HasExceptionMD = true;

    Value *Operand = FPI.getArgOperand(0);
    Type *OperandTy = Operand->getType();
    Value *Result = &FPI;
    Type *ResultTy = Result->getType();
    Assert(OperandTy->isFPOrFPVectorTy(),
           "Intrinsic first argument must be FP or FP vector", &FPI);
    Assert(ResultTy->isFPOrFPVectorTy(),
           "Intrinsic result must be FP or FP vector", &FPI);
    Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
           "Intrinsic first argument and result disagree on vector use", &FPI);
    if (OperandTy->isVectorTy()) {
      auto *OperandVecTy = cast<VectorType>(OperandTy);
      auto *ResultVecTy = cast<VectorType>(ResultTy);
      Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
             "Intrinsic first argument and result vector lengths must be equal",
             &FPI);
    }
    if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
      Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
             "Intrinsic first argument's type must be larger than result type",
             &FPI);
    } else {
      Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
             "Intrinsic first argument's type must be smaller than result type",
             &FPI);
    }
  } 
    break;

  default:
    llvm_unreachable("Invalid constrained FP intrinsic!");
  }

  // If a non-metadata argument is passed in a metadata slot then the
  // error will be caught earlier when the incorrect argument doesn't
  // match the specification in the intrinsic call table. Thus, no
  // argument type check is needed here.

  if (HasExceptionMD) {
    Assert(FPI.getExceptionBehavior().hasValue(),
           "invalid exception behavior argument", &FPI);
  }
  if (HasRoundingMD) {
    Assert(FPI.getRoundingMode().hasValue(),
           "invalid rounding mode argument", &FPI);
  }
}

void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
  AssertDI(isa<ValueAsMetadata>(MD) ||
             (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
         "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
         "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
         DII.getRawVariable());
  AssertDI(isa<DIExpression>(DII.getRawExpression()),
         "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
         DII.getRawExpression());

  // Ignore broken !dbg attachments; they're checked elsewhere.
  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
    if (!isa<DILocation>(N))
      return;

  BasicBlock *BB = DII.getParent();
  Function *F = BB ? BB->getParent() : nullptr;

  // The scopes for variables and !dbg attachments must agree.
  DILocalVariable *Var = DII.getVariable();
  DILocation *Loc = DII.getDebugLoc();
  AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
           &DII, BB, F);

  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
  if (!VarSP || !LocSP)
    return; // Broken scope chains are checked elsewhere.

  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
                               " variable and !dbg attachment",
           &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
           Loc->getScope()->getSubprogram());

  // This check is redundant with one in visitLocalVariable().
  AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
           Var->getRawType());
  verifyFnArgs(DII);
}

void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
  AssertDI(isa<DILabel>(DLI.getRawLabel()),
         "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
         DLI.getRawLabel());

  // Ignore broken !dbg attachments; they're checked elsewhere.
  if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
    if (!isa<DILocation>(N))
      return;

  BasicBlock *BB = DLI.getParent();
  Function *F = BB ? BB->getParent() : nullptr;

  // The scopes for variables and !dbg attachments must agree.
  DILabel *Label = DLI.getLabel();
  DILocation *Loc = DLI.getDebugLoc();
  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
         &DLI, BB, F);

  DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
  if (!LabelSP || !LocSP)
    return;

  AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
                             " label and !dbg attachment",
           &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
           Loc->getScope()->getSubprogram());
}

void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());

  // We don't know whether this intrinsic verified correctly.
  if (!V || !E || !E->isValid())
    return;

  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
  auto Fragment = E->getFragmentInfo();
  if (!Fragment)
    return;

  // The frontend helps out GDB by emitting the members of local anonymous
  // unions as artificial local variables with shared storage. When SROA splits
  // the storage for artificial local variables that are smaller than the entire
  // union, the overhang piece will be outside of the allotted space for the
  // variable and this check fails.
  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
  if (V->isArtificial())
    return;

  verifyFragmentExpression(*V, *Fragment, &I);
}

template <typename ValueOrMetadata>
void Verifier::verifyFragmentExpression(const DIVariable &V,
                                        DIExpression::FragmentInfo Fragment,
                                        ValueOrMetadata *Desc) {
  // If there's no size, the type is broken, but that should be checked
  // elsewhere.
  auto VarSize = V.getSizeInBits();
  if (!VarSize)
    return;

  unsigned FragSize = Fragment.SizeInBits;
  unsigned FragOffset = Fragment.OffsetInBits;
  AssertDI(FragSize + FragOffset <= *VarSize,
         "fragment is larger than or outside of variable", Desc, &V);
  AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
}

void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
  // This function does not take the scope of noninlined function arguments into
  // account. Don't run it if current function is nodebug, because it may
  // contain inlined debug intrinsics.
  if (!HasDebugInfo)
    return;

  // For performance reasons only check non-inlined ones.
  if (I.getDebugLoc()->getInlinedAt())
    return;

  DILocalVariable *Var = I.getVariable();
  AssertDI(Var, "dbg intrinsic without variable");

  unsigned ArgNo = Var->getArg();
  if (!ArgNo)
    return;

  // Verify there are no duplicate function argument debug info entries.
  // These will cause hard-to-debug assertions in the DWARF backend.
  if (DebugFnArgs.size() < ArgNo)
    DebugFnArgs.resize(ArgNo, nullptr);

  auto *Prev = DebugFnArgs[ArgNo - 1];
  DebugFnArgs[ArgNo - 1] = Var;
  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
           Prev, Var);
}

void Verifier::verifyCompileUnits() {
  // When more than one Module is imported into the same context, such as during
  // an LTO build before linking the modules, ODR type uniquing may cause types
  // to point to a different CU. This check does not make sense in this case.
  if (M.getContext().isODRUniquingDebugTypes())
    return;
  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
  SmallPtrSet<const Metadata *, 2> Listed;
  if (CUs)
    Listed.insert(CUs->op_begin(), CUs->op_end());
  for (auto *CU : CUVisited)
    AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
  CUVisited.clear();
}

void Verifier::verifyDeoptimizeCallingConvs() {
  if (DeoptimizeDeclarations.empty())
    return;

  const Function *First = DeoptimizeDeclarations[0];
  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
    Assert(First->getCallingConv() == F->getCallingConv(),
           "All llvm.experimental.deoptimize declarations must have the same "
           "calling convention",
           First, F);
  }
}

void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
  bool HasSource = F.getSource().hasValue();
  if (!HasSourceDebugInfo.count(&U))
    HasSourceDebugInfo[&U] = HasSource;
  AssertDI(HasSource == HasSourceDebugInfo[&U],
           "inconsistent use of embedded source");
}

//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
  Function &F = const_cast<Function &>(f);

  // Don't use a raw_null_ostream.  Printing IR is expensive.
  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());

  // Note that this function's return value is inverted from what you would
  // expect of a function called "verify".
  return !V.verify(F);
}

bool llvm::verifyModule(const Module &M, raw_ostream *OS,
                        bool *BrokenDebugInfo) {
  // Don't use a raw_null_ostream.  Printing IR is expensive.
  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);

  bool Broken = false;
  for (const Function &F : M)
    Broken |= !V.verify(F);

  Broken |= !V.verify();
  if (BrokenDebugInfo)
    *BrokenDebugInfo = V.hasBrokenDebugInfo();
  // Note that this function's return value is inverted from what you would
  // expect of a function called "verify".
  return Broken;
}

namespace {

struct VerifierLegacyPass : public FunctionPass {
  static char ID;

  std::unique_ptr<Verifier> V;
  bool FatalErrors = true;

  VerifierLegacyPass() : FunctionPass(ID) {
    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
  }
  explicit VerifierLegacyPass(bool FatalErrors)
      : FunctionPass(ID),
        FatalErrors(FatalErrors) {
    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool doInitialization(Module &M) override {
    V = std::make_unique<Verifier>(
        &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
    return false;
  }

  bool runOnFunction(Function &F) override {
    if (!V->verify(F) && FatalErrors) {
      errs() << "in function " << F.getName() << '\n'; 
      report_fatal_error("Broken function found, compilation aborted!");
    }
    return false;
  }

  bool doFinalization(Module &M) override {
    bool HasErrors = false;
    for (Function &F : M)
      if (F.isDeclaration())
        HasErrors |= !V->verify(F);

    HasErrors |= !V->verify();
    if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
      report_fatal_error("Broken module found, compilation aborted!");
    return false;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
  }
};

} // end anonymous namespace

/// Helper to issue failure from the TBAA verification
template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
  if (Diagnostic)
    return Diagnostic->CheckFailed(Args...);
}

#define AssertTBAA(C, ...)                                                     \
  do {                                                                         \
    if (!(C)) {                                                                \
      CheckFailed(__VA_ARGS__);                                                \
      return false;                                                            \
    }                                                                          \
  } while (false)

/// Verify that \p BaseNode can be used as the "base type" in the struct-path
/// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
/// struct-type node describing an aggregate data structure (like a struct).
TBAAVerifier::TBAABaseNodeSummary
TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
                                 bool IsNewFormat) {
  if (BaseNode->getNumOperands() < 2) {
    CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
    return {true, ~0u};
  }

  auto Itr = TBAABaseNodes.find(BaseNode);
  if (Itr != TBAABaseNodes.end())
    return Itr->second;

  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
  (void)InsertResult;
  assert(InsertResult.second && "We just checked!");
  return Result;
}

TBAAVerifier::TBAABaseNodeSummary
TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
                                     bool IsNewFormat) {
  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};

  if (BaseNode->getNumOperands() == 2) {
    // Scalar nodes can only be accessed at offset 0.
    return isValidScalarTBAANode(BaseNode)
               ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
               : InvalidNode;
  }

  if (IsNewFormat) {
    if (BaseNode->getNumOperands() % 3 != 0) {
      CheckFailed("Access tag nodes must have the number of operands that is a "
                  "multiple of 3!", BaseNode);
      return InvalidNode;
    }
  } else {
    if (BaseNode->getNumOperands() % 2 != 1) {
      CheckFailed("Struct tag nodes must have an odd number of operands!",
                  BaseNode);
      return InvalidNode;
    }
  }

  // Check the type size field.
  if (IsNewFormat) {
    auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
        BaseNode->getOperand(1));
    if (!TypeSizeNode) {
      CheckFailed("Type size nodes must be constants!", &I, BaseNode);
      return InvalidNode;
    }
  }

  // Check the type name field. In the new format it can be anything.
  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
    CheckFailed("Struct tag nodes have a string as their first operand",
                BaseNode);
    return InvalidNode;
  }

  bool Failed = false;

  Optional<APInt> PrevOffset;
  unsigned BitWidth = ~0u;

  // We've already checked that BaseNode is not a degenerate root node with one
  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
           Idx += NumOpsPerField) {
    const MDOperand &FieldTy = BaseNode->getOperand(Idx);
    const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
    if (!isa<MDNode>(FieldTy)) {
      CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
      Failed = true;
      continue;
    }

    auto *OffsetEntryCI =
        mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
    if (!OffsetEntryCI) {
      CheckFailed("Offset entries must be constants!", &I, BaseNode);
      Failed = true;
      continue;
    }

    if (BitWidth == ~0u)
      BitWidth = OffsetEntryCI->getBitWidth();

    if (OffsetEntryCI->getBitWidth() != BitWidth) {
      CheckFailed(
          "Bitwidth between the offsets and struct type entries must match", &I,
          BaseNode);
      Failed = true;
      continue;
    }

    // NB! As far as I can tell, we generate a non-strictly increasing offset
    // sequence only from structs that have zero size bit fields.  When
    // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
    // pick the field lexically the latest in struct type metadata node.  This
    // mirrors the actual behavior of the alias analysis implementation.
    bool IsAscending =
        !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());

    if (!IsAscending) {
      CheckFailed("Offsets must be increasing!", &I, BaseNode);
      Failed = true;
    }

    PrevOffset = OffsetEntryCI->getValue();

    if (IsNewFormat) {
      auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
          BaseNode->getOperand(Idx + 2));
      if (!MemberSizeNode) {
        CheckFailed("Member size entries must be constants!", &I, BaseNode);
        Failed = true;
        continue;
      }
    }
  }

  return Failed ? InvalidNode
                : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
}

static bool IsRootTBAANode(const MDNode *MD) {
  return MD->getNumOperands() < 2;
}

static bool IsScalarTBAANodeImpl(const MDNode *MD,
                                 SmallPtrSetImpl<const MDNode *> &Visited) {
  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
    return false;

  if (!isa<MDString>(MD->getOperand(0)))
    return false;

  if (MD->getNumOperands() == 3) {
    auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
    if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
      return false;
  }

  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
  return Parent && Visited.insert(Parent).second &&
         (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
}

bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
  auto ResultIt = TBAAScalarNodes.find(MD);
  if (ResultIt != TBAAScalarNodes.end())
    return ResultIt->second;

  SmallPtrSet<const MDNode *, 4> Visited;
  bool Result = IsScalarTBAANodeImpl(MD, Visited);
  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
  (void)InsertResult;
  assert(InsertResult.second && "Just checked!");

  return Result;
}

/// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
/// Offset in place to be the offset within the field node returned.
///
/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
                                                   const MDNode *BaseNode,
                                                   APInt &Offset,
                                                   bool IsNewFormat) {
  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");

  // Scalar nodes have only one possible "field" -- their parent in the access
  // hierarchy.  Offset must be zero at this point, but our caller is supposed
  // to Assert that.
  if (BaseNode->getNumOperands() == 2)
    return cast<MDNode>(BaseNode->getOperand(1));

  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
           Idx += NumOpsPerField) {
    auto *OffsetEntryCI =
        mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
    if (OffsetEntryCI->getValue().ugt(Offset)) {
      if (Idx == FirstFieldOpNo) {
        CheckFailed("Could not find TBAA parent in struct type node", &I,
                    BaseNode, &Offset);
        return nullptr;
      }

      unsigned PrevIdx = Idx - NumOpsPerField;
      auto *PrevOffsetEntryCI =
          mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
      Offset -= PrevOffsetEntryCI->getValue();
      return cast<MDNode>(BaseNode->getOperand(PrevIdx));
    }
  }

  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
      BaseNode->getOperand(LastIdx + 1));
  Offset -= LastOffsetEntryCI->getValue();
  return cast<MDNode>(BaseNode->getOperand(LastIdx));
}

static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
  if (!Type || Type->getNumOperands() < 3)
    return false;

  // In the new format type nodes shall have a reference to the parent type as
  // its first operand.
  MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
  if (!Parent)
    return false;

  return true;
}

bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
  AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
                 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
                 isa<AtomicCmpXchgInst>(I),
             "This instruction shall not have a TBAA access tag!", &I);

  bool IsStructPathTBAA =
      isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;

  AssertTBAA(
      IsStructPathTBAA,
      "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);

  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));

  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);

  if (IsNewFormat) {
    AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
               "Access tag metadata must have either 4 or 5 operands", &I, MD);
  } else {
    AssertTBAA(MD->getNumOperands() < 5,
               "Struct tag metadata must have either 3 or 4 operands", &I, MD);
  }

  // Check the access size field.
  if (IsNewFormat) {
    auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
        MD->getOperand(3));
    AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
  }

  // Check the immutability flag.
  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
    auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
        MD->getOperand(ImmutabilityFlagOpNo));
    AssertTBAA(IsImmutableCI,
               "Immutability tag on struct tag metadata must be a constant",
               &I, MD);
    AssertTBAA(
        IsImmutableCI->isZero() || IsImmutableCI->isOne(),
        "Immutability part of the struct tag metadata must be either 0 or 1",
        &I, MD);
  }

  AssertTBAA(BaseNode && AccessType,
             "Malformed struct tag metadata: base and access-type "
             "should be non-null and point to Metadata nodes",
             &I, MD, BaseNode, AccessType);

  if (!IsNewFormat) {
    AssertTBAA(isValidScalarTBAANode(AccessType),
               "Access type node must be a valid scalar type", &I, MD,
               AccessType);
  }

  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
  AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);

  APInt Offset = OffsetCI->getValue();
  bool SeenAccessTypeInPath = false;

  SmallPtrSet<MDNode *, 4> StructPath;

  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
       BaseNode = getFieldNodeFromTBAABaseNode(