reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SSAUpdater class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
#include <cassert>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "ssaupdater"

using AvailableValsTy = DenseMap<BasicBlock *, Value *>;

static AvailableValsTy &getAvailableVals(void *AV) {
  return *static_cast<AvailableValsTy*>(AV);
}

SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
  : InsertedPHIs(NewPHI) {}

SSAUpdater::~SSAUpdater() {
  delete static_cast<AvailableValsTy*>(AV);
}

void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
  if (!AV)
    AV = new AvailableValsTy();
  else
    getAvailableVals(AV).clear();
  ProtoType = Ty;
  ProtoName = Name;
}

bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
  return getAvailableVals(AV).count(BB);
}

Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
  AvailableValsTy::iterator AVI = getAvailableVals(AV).find(BB);
  return (AVI != getAvailableVals(AV).end()) ? AVI->second : nullptr;
}

void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
  assert(ProtoType && "Need to initialize SSAUpdater");
  assert(ProtoType == V->getType() &&
         "All rewritten values must have the same type");
  getAvailableVals(AV)[BB] = V;
}

static bool IsEquivalentPHI(PHINode *PHI,
                        SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
  unsigned PHINumValues = PHI->getNumIncomingValues();
  if (PHINumValues != ValueMapping.size())
    return false;

  // Scan the phi to see if it matches.
  for (unsigned i = 0, e = PHINumValues; i != e; ++i)
    if (ValueMapping[PHI->getIncomingBlock(i)] !=
        PHI->getIncomingValue(i)) {
      return false;
    }

  return true;
}

Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
  Value *Res = GetValueAtEndOfBlockInternal(BB);
  return Res;
}

Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
  // If there is no definition of the renamed variable in this block, just use
  // GetValueAtEndOfBlock to do our work.
  if (!HasValueForBlock(BB))
    return GetValueAtEndOfBlock(BB);

  // Otherwise, we have the hard case.  Get the live-in values for each
  // predecessor.
  SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
  Value *SingularValue = nullptr;

  // We can get our predecessor info by walking the pred_iterator list, but it
  // is relatively slow.  If we already have PHI nodes in this block, walk one
  // of them to get the predecessor list instead.
  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
      BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
      Value *PredVal = GetValueAtEndOfBlock(PredBB);
      PredValues.push_back(std::make_pair(PredBB, PredVal));

      // Compute SingularValue.
      if (i == 0)
        SingularValue = PredVal;
      else if (PredVal != SingularValue)
        SingularValue = nullptr;
    }
  } else {
    bool isFirstPred = true;
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
      BasicBlock *PredBB = *PI;
      Value *PredVal = GetValueAtEndOfBlock(PredBB);
      PredValues.push_back(std::make_pair(PredBB, PredVal));

      // Compute SingularValue.
      if (isFirstPred) {
        SingularValue = PredVal;
        isFirstPred = false;
      } else if (PredVal != SingularValue)
        SingularValue = nullptr;
    }
  }

  // If there are no predecessors, just return undef.
  if (PredValues.empty())
    return UndefValue::get(ProtoType);

  // Otherwise, if all the merged values are the same, just use it.
  if (SingularValue)
    return SingularValue;

  // Otherwise, we do need a PHI: check to see if we already have one available
  // in this block that produces the right value.
  if (isa<PHINode>(BB->begin())) {
    SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
                                                         PredValues.end());
    for (PHINode &SomePHI : BB->phis()) {
      if (IsEquivalentPHI(&SomePHI, ValueMapping))
        return &SomePHI;
    }
  }

  // Ok, we have no way out, insert a new one now.
  PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
                                         ProtoName, &BB->front());

  // Fill in all the predecessors of the PHI.
  for (const auto &PredValue : PredValues)
    InsertedPHI->addIncoming(PredValue.second, PredValue.first);

  // See if the PHI node can be merged to a single value.  This can happen in
  // loop cases when we get a PHI of itself and one other value.
  if (Value *V =
          SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
    InsertedPHI->eraseFromParent();
    return V;
  }

  // Set the DebugLoc of the inserted PHI, if available.
  DebugLoc DL;
  if (const Instruction *I = BB->getFirstNonPHI())
      DL = I->getDebugLoc();
  InsertedPHI->setDebugLoc(DL);

  // If the client wants to know about all new instructions, tell it.
  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);

  LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
  return InsertedPHI;
}

void SSAUpdater::RewriteUse(Use &U) {
  Instruction *User = cast<Instruction>(U.getUser());

  Value *V;
  if (PHINode *UserPN = dyn_cast<PHINode>(User))
    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
  else
    V = GetValueInMiddleOfBlock(User->getParent());

  // Notify that users of the existing value that it is being replaced.
  Value *OldVal = U.get();
  if (OldVal != V && OldVal->hasValueHandle())
    ValueHandleBase::ValueIsRAUWd(OldVal, V);

  U.set(V);
}

void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
  Instruction *User = cast<Instruction>(U.getUser());

  Value *V;
  if (PHINode *UserPN = dyn_cast<PHINode>(User))
    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
  else
    V = GetValueAtEndOfBlock(User->getParent());

  U.set(V);
}

namespace llvm {

template<>
class SSAUpdaterTraits<SSAUpdater> {
public:
  using BlkT = BasicBlock;
  using ValT = Value *;
  using PhiT = PHINode;
  using BlkSucc_iterator = succ_iterator;

  static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
  static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }

  class PHI_iterator {
  private:
    PHINode *PHI;
    unsigned idx;

  public:
    explicit PHI_iterator(PHINode *P) // begin iterator
      : PHI(P), idx(0) {}
    PHI_iterator(PHINode *P, bool) // end iterator
      : PHI(P), idx(PHI->getNumIncomingValues()) {}

    PHI_iterator &operator++() { ++idx; return *this; }
    bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
    bool operator!=(const PHI_iterator& x) const { return !operator==(x); }

    Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
    BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
  };

  static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
  static PHI_iterator PHI_end(PhiT *PHI) {
    return PHI_iterator(PHI, true);
  }

  /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
  /// vector, set Info->NumPreds, and allocate space in Info->Preds.
  static void FindPredecessorBlocks(BasicBlock *BB,
                                    SmallVectorImpl<BasicBlock *> *Preds) {
    // We can get our predecessor info by walking the pred_iterator list,
    // but it is relatively slow.  If we already have PHI nodes in this
    // block, walk one of them to get the predecessor list instead.
    if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
      Preds->append(SomePhi->block_begin(), SomePhi->block_end());
    } else {
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
        Preds->push_back(*PI);
    }
  }

  /// GetUndefVal - Get an undefined value of the same type as the value
  /// being handled.
  static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
    return UndefValue::get(Updater->ProtoType);
  }

  /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
  /// Reserve space for the operands but do not fill them in yet.
  static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
                               SSAUpdater *Updater) {
    PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
                                   Updater->ProtoName, &BB->front());
    return PHI;
  }

  /// AddPHIOperand - Add the specified value as an operand of the PHI for
  /// the specified predecessor block.
  static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
    PHI->addIncoming(Val, Pred);
  }

  /// InstrIsPHI - Check if an instruction is a PHI.
  ///
  static PHINode *InstrIsPHI(Instruction *I) {
    return dyn_cast<PHINode>(I);
  }

  /// ValueIsPHI - Check if a value is a PHI.
  static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
    return dyn_cast<PHINode>(Val);
  }

  /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
  /// operands, i.e., it was just added.
  static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
    PHINode *PHI = ValueIsPHI(Val, Updater);
    if (PHI && PHI->getNumIncomingValues() == 0)
      return PHI;
    return nullptr;
  }

  /// GetPHIValue - For the specified PHI instruction, return the value
  /// that it defines.
  static Value *GetPHIValue(PHINode *PHI) {
    return PHI;
  }
};

} // end namespace llvm

/// Check to see if AvailableVals has an entry for the specified BB and if so,
/// return it.  If not, construct SSA form by first calculating the required
/// placement of PHIs and then inserting new PHIs where needed.
Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
  AvailableValsTy &AvailableVals = getAvailableVals(AV);
  if (Value *V = AvailableVals[BB])
    return V;

  SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
  return Impl.GetValue(BB);
}

//===----------------------------------------------------------------------===//
// LoadAndStorePromoter Implementation
//===----------------------------------------------------------------------===//

LoadAndStorePromoter::
LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
                     SSAUpdater &S, StringRef BaseName) : SSA(S) {
  if (Insts.empty()) return;

  const Value *SomeVal;
  if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
    SomeVal = LI;
  else
    SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);

  if (BaseName.empty())
    BaseName = SomeVal->getName();
  SSA.Initialize(SomeVal->getType(), BaseName);
}

void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
  // First step: bucket up uses of the alloca by the block they occur in.
  // This is important because we have to handle multiple defs/uses in a block
  // ourselves: SSAUpdater is purely for cross-block references.
  DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;

  for (Instruction *User : Insts)
    UsesByBlock[User->getParent()].push_back(User);

  // Okay, now we can iterate over all the blocks in the function with uses,
  // processing them.  Keep track of which loads are loading a live-in value.
  // Walk the uses in the use-list order to be determinstic.
  SmallVector<LoadInst *, 32> LiveInLoads;
  DenseMap<Value *, Value *> ReplacedLoads;

  for (Instruction *User : Insts) {
    BasicBlock *BB = User->getParent();
    TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];

    // If this block has already been processed, ignore this repeat use.
    if (BlockUses.empty()) continue;

    // Okay, this is the first use in the block.  If this block just has a
    // single user in it, we can rewrite it trivially.
    if (BlockUses.size() == 1) {
      // If it is a store, it is a trivial def of the value in the block.
      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
        updateDebugInfo(SI);
        SSA.AddAvailableValue(BB, SI->getOperand(0));
      } else
        // Otherwise it is a load, queue it to rewrite as a live-in load.
        LiveInLoads.push_back(cast<LoadInst>(User));
      BlockUses.clear();
      continue;
    }

    // Otherwise, check to see if this block is all loads.
    bool HasStore = false;
    for (Instruction *I : BlockUses) {
      if (isa<StoreInst>(I)) {
        HasStore = true;
        break;
      }
    }

    // If so, we can queue them all as live in loads.  We don't have an
    // efficient way to tell which on is first in the block and don't want to
    // scan large blocks, so just add all loads as live ins.
    if (!HasStore) {
      for (Instruction *I : BlockUses)
        LiveInLoads.push_back(cast<LoadInst>(I));
      BlockUses.clear();
      continue;
    }

    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
    // Since SSAUpdater is purely for cross-block values, we need to determine
    // the order of these instructions in the block.  If the first use in the
    // block is a load, then it uses the live in value.  The last store defines
    // the live out value.  We handle this by doing a linear scan of the block.
    Value *StoredValue = nullptr;
    for (Instruction &I : *BB) {
      if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
        // If this is a load from an unrelated pointer, ignore it.
        if (!isInstInList(L, Insts)) continue;

        // If we haven't seen a store yet, this is a live in use, otherwise
        // use the stored value.
        if (StoredValue) {
          replaceLoadWithValue(L, StoredValue);
          L->replaceAllUsesWith(StoredValue);
          ReplacedLoads[L] = StoredValue;
        } else {
          LiveInLoads.push_back(L);
        }
        continue;
      }

      if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
        // If this is a store to an unrelated pointer, ignore it.
        if (!isInstInList(SI, Insts)) continue;
        updateDebugInfo(SI);

        // Remember that this is the active value in the block.
        StoredValue = SI->getOperand(0);
      }
    }

    // The last stored value that happened is the live-out for the block.
    assert(StoredValue && "Already checked that there is a store in block");
    SSA.AddAvailableValue(BB, StoredValue);
    BlockUses.clear();
  }

  // Okay, now we rewrite all loads that use live-in values in the loop,
  // inserting PHI nodes as necessary.
  for (LoadInst *ALoad : LiveInLoads) {
    Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
    replaceLoadWithValue(ALoad, NewVal);

    // Avoid assertions in unreachable code.
    if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
    ALoad->replaceAllUsesWith(NewVal);
    ReplacedLoads[ALoad] = NewVal;
  }

  // Allow the client to do stuff before we start nuking things.
  doExtraRewritesBeforeFinalDeletion();

  // Now that everything is rewritten, delete the old instructions from the
  // function.  They should all be dead now.
  for (Instruction *User : Insts) {
    // If this is a load that still has uses, then the load must have been added
    // as a live value in the SSAUpdate data structure for a block (e.g. because
    // the loaded value was stored later).  In this case, we need to recursively
    // propagate the updates until we get to the real value.
    if (!User->use_empty()) {
      Value *NewVal = ReplacedLoads[User];
      assert(NewVal && "not a replaced load?");

      // Propagate down to the ultimate replacee.  The intermediately loads
      // could theoretically already have been deleted, so we don't want to
      // dereference the Value*'s.
      DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
      while (RLI != ReplacedLoads.end()) {
        NewVal = RLI->second;
        RLI = ReplacedLoads.find(NewVal);
      }

      replaceLoadWithValue(cast<LoadInst>(User), NewVal);
      User->replaceAllUsesWith(NewVal);
    }

    instructionDeleted(User);
    User->eraseFromParent();
  }
}

bool
LoadAndStorePromoter::isInstInList(Instruction *I,
                                   const SmallVectorImpl<Instruction *> &Insts)
                                   const {
  return is_contained(Insts, I);
}