reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
//===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_TINYPTRVECTOR_H
#define LLVM_ADT_TINYPTRVECTOR_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallVector.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <type_traits>

namespace llvm {

/// TinyPtrVector - This class is specialized for cases where there are
/// normally 0 or 1 element in a vector, but is general enough to go beyond that
/// when required.
///
/// NOTE: This container doesn't allow you to store a null pointer into it.
///
template <typename EltTy>
class TinyPtrVector {
public:
  using VecTy = SmallVector<EltTy, 4>;
  using value_type = typename VecTy::value_type;
  // EltTy must be the first pointer type so that is<EltTy> is true for the
  // default-constructed PtrUnion. This allows an empty TinyPtrVector to
  // naturally vend a begin/end iterator of type EltTy* without an additional
  // check for the empty state.
  using PtrUnion = PointerUnion<EltTy, VecTy *>;

private:
  PtrUnion Val;

public:
  TinyPtrVector() = default;

  ~TinyPtrVector() {
    if (VecTy *V = Val.template dyn_cast<VecTy*>())
      delete V;
  }

  TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
    if (VecTy *V = Val.template dyn_cast<VecTy*>())
      Val = new VecTy(*V);
  }

  TinyPtrVector &operator=(const TinyPtrVector &RHS) {
    if (this == &RHS)
      return *this;
    if (RHS.empty()) {
      this->clear();
      return *this;
    }

    // Try to squeeze into the single slot. If it won't fit, allocate a copied
    // vector.
    if (Val.template is<EltTy>()) {
      if (RHS.size() == 1)
        Val = RHS.front();
      else
        Val = new VecTy(*RHS.Val.template get<VecTy*>());
      return *this;
    }

    // If we have a full vector allocated, try to re-use it.
    if (RHS.Val.template is<EltTy>()) {
      Val.template get<VecTy*>()->clear();
      Val.template get<VecTy*>()->push_back(RHS.front());
    } else {
      *Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
    }
    return *this;
  }

  TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
    RHS.Val = (EltTy)nullptr;
  }

  TinyPtrVector &operator=(TinyPtrVector &&RHS) {
    if (this == &RHS)
      return *this;
    if (RHS.empty()) {
      this->clear();
      return *this;
    }

    // If this vector has been allocated on the heap, re-use it if cheap. If it
    // would require more copying, just delete it and we'll steal the other
    // side.
    if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
      if (RHS.Val.template is<EltTy>()) {
        V->clear();
        V->push_back(RHS.front());
        RHS.Val = EltTy();
        return *this;
      }
      delete V;
    }

    Val = RHS.Val;
    RHS.Val = EltTy();
    return *this;
  }

  TinyPtrVector(std::initializer_list<EltTy> IL)
      : Val(IL.size() == 0
                ? PtrUnion()
                : IL.size() == 1 ? PtrUnion(*IL.begin())
                                 : PtrUnion(new VecTy(IL.begin(), IL.end()))) {}

  /// Constructor from an ArrayRef.
  ///
  /// This also is a constructor for individual array elements due to the single
  /// element constructor for ArrayRef.
  explicit TinyPtrVector(ArrayRef<EltTy> Elts)
      : Val(Elts.empty()
                ? PtrUnion()
                : Elts.size() == 1
                      ? PtrUnion(Elts[0])
                      : PtrUnion(new VecTy(Elts.begin(), Elts.end()))) {}

  TinyPtrVector(size_t Count, EltTy Value)
      : Val(Count == 0 ? PtrUnion()
                       : Count == 1 ? PtrUnion(Value)
                                    : PtrUnion(new VecTy(Count, Value))) {}

  // implicit conversion operator to ArrayRef.
  operator ArrayRef<EltTy>() const {
    if (Val.isNull())
      return None;
    if (Val.template is<EltTy>())
      return *Val.getAddrOfPtr1();
    return *Val.template get<VecTy*>();
  }

  // implicit conversion operator to MutableArrayRef.
  operator MutableArrayRef<EltTy>() {
    if (Val.isNull())
      return None;
    if (Val.template is<EltTy>())
      return *Val.getAddrOfPtr1();
    return *Val.template get<VecTy*>();
  }

  // Implicit conversion to ArrayRef<U> if EltTy* implicitly converts to U*.
  template<typename U,
           typename std::enable_if<
               std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value,
               bool>::type = false>
  operator ArrayRef<U>() const {
    return operator ArrayRef<EltTy>();
  }

  bool empty() const {
    // This vector can be empty if it contains no element, or if it
    // contains a pointer to an empty vector.
    if (Val.isNull()) return true;
    if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
      return Vec->empty();
    return false;
  }

  unsigned size() const {
    if (empty())
      return 0;
    if (Val.template is<EltTy>())
      return 1;
    return Val.template get<VecTy*>()->size();
  }

  using iterator = EltTy *;
  using const_iterator = const EltTy *;
  using reverse_iterator = std::reverse_iterator<iterator>;
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;

  iterator begin() {
    if (Val.template is<EltTy>())
      return Val.getAddrOfPtr1();

    return Val.template get<VecTy *>()->begin();
  }

  iterator end() {
    if (Val.template is<EltTy>())
      return begin() + (Val.isNull() ? 0 : 1);

    return Val.template get<VecTy *>()->end();
  }

  const_iterator begin() const {
    return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
  }

  const_iterator end() const {
    return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
  }

  reverse_iterator rbegin() { return reverse_iterator(end()); }
  reverse_iterator rend() { return reverse_iterator(begin()); }

  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }

  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

  EltTy operator[](unsigned i) const {
    assert(!Val.isNull() && "can't index into an empty vector");
    if (Val.template is<EltTy>()) {
      assert(i == 0 && "tinyvector index out of range");
      return Val.template get<EltTy>();
    }

    assert(i < Val.template get<VecTy*>()->size() &&
           "tinyvector index out of range");
    return (*Val.template get<VecTy*>())[i];
  }

  EltTy front() const {
    assert(!empty() && "vector empty");
    if (Val.template is<EltTy>())
      return Val.template get<EltTy>();
    return Val.template get<VecTy*>()->front();
  }

  EltTy back() const {
    assert(!empty() && "vector empty");
    if (Val.template is<EltTy>())
      return Val.template get<EltTy>();
    return Val.template get<VecTy*>()->back();
  }

  void push_back(EltTy NewVal) {
    // If we have nothing, add something.
    if (Val.isNull()) {
      Val = NewVal;
      assert(!Val.isNull() && "Can't add a null value");
      return;
    }

    // If we have a single value, convert to a vector.
    if (Val.template is<EltTy>()) {
      EltTy V = Val.template get<EltTy>();
      Val = new VecTy();
      Val.template get<VecTy*>()->push_back(V);
    }

    // Add the new value, we know we have a vector.
    Val.template get<VecTy*>()->push_back(NewVal);
  }

  void pop_back() {
    // If we have a single value, convert to empty.
    if (Val.template is<EltTy>())
      Val = (EltTy)nullptr;
    else if (VecTy *Vec = Val.template get<VecTy*>())
      Vec->pop_back();
  }

  void clear() {
    // If we have a single value, convert to empty.
    if (Val.template is<EltTy>()) {
      Val = EltTy();
    } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
      // If we have a vector form, just clear it.
      Vec->clear();
    }
    // Otherwise, we're already empty.
  }

  iterator erase(iterator I) {
    assert(I >= begin() && "Iterator to erase is out of bounds.");
    assert(I < end() && "Erasing at past-the-end iterator.");

    // If we have a single value, convert to empty.
    if (Val.template is<EltTy>()) {
      if (I == begin())
        Val = EltTy();
    } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
      // multiple items in a vector; just do the erase, there is no
      // benefit to collapsing back to a pointer
      return Vec->erase(I);
    }
    return end();
  }

  iterator erase(iterator S, iterator E) {
    assert(S >= begin() && "Range to erase is out of bounds.");
    assert(S <= E && "Trying to erase invalid range.");
    assert(E <= end() && "Trying to erase past the end.");

    if (Val.template is<EltTy>()) {
      if (S == begin() && S != E)
        Val = EltTy();
    } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
      return Vec->erase(S, E);
    }
    return end();
  }

  iterator insert(iterator I, const EltTy &Elt) {
    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    assert(I <= this->end() && "Inserting past the end of the vector.");
    if (I == end()) {
      push_back(Elt);
      return std::prev(end());
    }
    assert(!Val.isNull() && "Null value with non-end insert iterator.");
    if (Val.template is<EltTy>()) {
      EltTy V = Val.template get<EltTy>();
      assert(I == begin());
      Val = Elt;
      push_back(V);
      return begin();
    }

    return Val.template get<VecTy*>()->insert(I, Elt);
  }

  template<typename ItTy>
  iterator insert(iterator I, ItTy From, ItTy To) {
    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    assert(I <= this->end() && "Inserting past the end of the vector.");
    if (From == To)
      return I;

    // If we have a single value, convert to a vector.
    ptrdiff_t Offset = I - begin();
    if (Val.isNull()) {
      if (std::next(From) == To) {
        Val = *From;
        return begin();
      }

      Val = new VecTy();
    } else if (Val.template is<EltTy>()) {
      EltTy V = Val.template get<EltTy>();
      Val = new VecTy();
      Val.template get<VecTy*>()->push_back(V);
    }
    return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
  }
};

} // end namespace llvm

#endif // LLVM_ADT_TINYPTRVECTOR_H