reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a variety of memory management related checkers, such as
// leak, double free, and use-after-free.
//
// The following checkers are defined here:
//
//   * MallocChecker
//       Despite its name, it models all sorts of memory allocations and
//       de- or reallocation, including but not limited to malloc, free,
//       relloc, new, delete. It also reports on a variety of memory misuse
//       errors.
//       Many other checkers interact very closely with this checker, in fact,
//       most are merely options to this one. Other checkers may register
//       MallocChecker, but do not enable MallocChecker's reports (more details
//       to follow around its field, ChecksEnabled).
//       It also has a boolean "Optimistic" checker option, which if set to true
//       will cause the checker to model user defined memory management related
//       functions annotated via the attribute ownership_takes, ownership_holds
//       and ownership_returns.
//
//   * NewDeleteChecker
//       Enables the modeling of new, new[], delete, delete[] in MallocChecker,
//       and checks for related double-free and use-after-free errors.
//
//   * NewDeleteLeaksChecker
//       Checks for leaks related to new, new[], delete, delete[].
//       Depends on NewDeleteChecker.
//
//   * MismatchedDeallocatorChecker
//       Enables checking whether memory is deallocated with the correspending
//       allocation function in MallocChecker, such as malloc() allocated
//       regions are only freed by free(), new by delete, new[] by delete[].
//
//  InnerPointerChecker interacts very closely with MallocChecker, but unlike
//  the above checkers, it has it's own file, hence the many InnerPointerChecker
//  related headers and non-static functions.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "InterCheckerAPI.h"
#include "clang/AST/Attr.h"
#include "clang/AST/ParentMap.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Lexer.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "AllocationState.h"
#include <climits>
#include <utility>

using namespace clang;
using namespace ento;

//===----------------------------------------------------------------------===//
// The types of allocation we're modeling.
//===----------------------------------------------------------------------===//

namespace {

// Used to check correspondence between allocators and deallocators.
enum AllocationFamily {
  AF_None,
  AF_Malloc,
  AF_CXXNew,
  AF_CXXNewArray,
  AF_IfNameIndex,
  AF_Alloca,
  AF_InnerBuffer
};

struct MemFunctionInfoTy;

} // end of anonymous namespace

/// Determine family of a deallocation expression.
static AllocationFamily
getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C,
                    const Stmt *S);

/// Print names of allocators and deallocators.
///
/// \returns true on success.
static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C,
                                  const Expr *E);

/// Print expected name of an allocator based on the deallocator's
/// family derived from the DeallocExpr.
static void printExpectedAllocName(raw_ostream &os,
                                   const MemFunctionInfoTy &MemFunctionInfo,
                                   CheckerContext &C, const Expr *E);

/// Print expected name of a deallocator based on the allocator's
/// family.
static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family);

//===----------------------------------------------------------------------===//
// The state of a symbol, in terms of memory management.
//===----------------------------------------------------------------------===//

namespace {

class RefState {
  enum Kind {
    // Reference to allocated memory.
    Allocated,
    // Reference to zero-allocated memory.
    AllocatedOfSizeZero,
    // Reference to released/freed memory.
    Released,
    // The responsibility for freeing resources has transferred from
    // this reference. A relinquished symbol should not be freed.
    Relinquished,
    // We are no longer guaranteed to have observed all manipulations
    // of this pointer/memory. For example, it could have been
    // passed as a parameter to an opaque function.
    Escaped
  };

  const Stmt *S;

  Kind K;
  AllocationFamily Family;

  RefState(Kind k, const Stmt *s, AllocationFamily family)
      : S(s), K(k), Family(family) {
    assert(family != AF_None);
  }

public:
  bool isAllocated() const { return K == Allocated; }
  bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
  bool isReleased() const { return K == Released; }
  bool isRelinquished() const { return K == Relinquished; }
  bool isEscaped() const { return K == Escaped; }
  AllocationFamily getAllocationFamily() const { return Family; }
  const Stmt *getStmt() const { return S; }

  bool operator==(const RefState &X) const {
    return K == X.K && S == X.S && Family == X.Family;
  }

  static RefState getAllocated(AllocationFamily family, const Stmt *s) {
    return RefState(Allocated, s, family);
  }
  static RefState getAllocatedOfSizeZero(const RefState *RS) {
    return RefState(AllocatedOfSizeZero, RS->getStmt(),
                    RS->getAllocationFamily());
  }
  static RefState getReleased(AllocationFamily family, const Stmt *s) {
    return RefState(Released, s, family);
  }
  static RefState getRelinquished(AllocationFamily family, const Stmt *s) {
    return RefState(Relinquished, s, family);
  }
  static RefState getEscaped(const RefState *RS) {
    return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
  }

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddInteger(K);
    ID.AddPointer(S);
    ID.AddInteger(Family);
  }

  LLVM_DUMP_METHOD void dump(raw_ostream &OS) const {
    switch (K) {
#define CASE(ID) case ID: OS << #ID; break;
    CASE(Allocated)
    CASE(AllocatedOfSizeZero)
    CASE(Released)
    CASE(Relinquished)
    CASE(Escaped)
    }
  }

  LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
};

} // end of anonymous namespace

REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)

/// Check if the memory associated with this symbol was released.
static bool isReleased(SymbolRef Sym, CheckerContext &C);

/// Update the RefState to reflect the new memory allocation.
/// The optional \p RetVal parameter specifies the newly allocated pointer
/// value; if unspecified, the value of expression \p E is used.
static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
                                            ProgramStateRef State,
                                            AllocationFamily Family = AF_Malloc,
                                            Optional<SVal> RetVal = None);

//===----------------------------------------------------------------------===//
// The modeling of memory reallocation.
//
// The terminology 'toPtr' and 'fromPtr' will be used:
//   toPtr = realloc(fromPtr, 20);
//===----------------------------------------------------------------------===//

REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef)

namespace {

/// The state of 'fromPtr' after reallocation is known to have failed.
enum OwnershipAfterReallocKind {
  // The symbol needs to be freed (e.g.: realloc)
  OAR_ToBeFreedAfterFailure,
  // The symbol has been freed (e.g.: reallocf)
  OAR_FreeOnFailure,
  // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where
  // 'fromPtr' was allocated:
  //    void Haha(int *ptr) {
  //      ptr = realloc(ptr, 67);
  //      // ...
  //    }
  // ).
  OAR_DoNotTrackAfterFailure
};

/// Stores information about the 'fromPtr' symbol after reallocation.
///
/// This is important because realloc may fail, and that needs special modeling.
/// Whether reallocation failed or not will not be known until later, so we'll
/// store whether upon failure 'fromPtr' will be freed, or needs to be freed
/// later, etc.
struct ReallocPair {

  // The 'fromPtr'.
  SymbolRef ReallocatedSym;
  OwnershipAfterReallocKind Kind;

  ReallocPair(SymbolRef S, OwnershipAfterReallocKind K)
      : ReallocatedSym(S), Kind(K) {}
  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddInteger(Kind);
    ID.AddPointer(ReallocatedSym);
  }
  bool operator==(const ReallocPair &X) const {
    return ReallocatedSym == X.ReallocatedSym &&
           Kind == X.Kind;
  }
};

} // end of anonymous namespace

REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)

//===----------------------------------------------------------------------===//
// Kinds of memory operations, information about resource managing functions.
//===----------------------------------------------------------------------===//

namespace {

enum class MemoryOperationKind { MOK_Allocate, MOK_Free, MOK_Any };

struct MemFunctionInfoTy {
  /// The value of the MallocChecker:Optimistic is stored in this variable.
  ///
  /// In pessimistic mode, the checker assumes that it does not know which
  /// functions might free the memory.
  /// In optimistic mode, the checker assumes that all user-defined functions
  /// which might free a pointer are annotated.
  DefaultBool ShouldIncludeOwnershipAnnotatedFunctions;

  // TODO: Change these to CallDescription, and get rid of lazy initialization.
  mutable IdentifierInfo *II_alloca = nullptr, *II_win_alloca = nullptr,
                         *II_malloc = nullptr, *II_free = nullptr,
                         *II_realloc = nullptr, *II_calloc = nullptr,
                         *II_valloc = nullptr, *II_reallocf = nullptr,
                         *II_strndup = nullptr, *II_strdup = nullptr,
                         *II_win_strdup = nullptr, *II_kmalloc = nullptr,
                         *II_if_nameindex = nullptr,
                         *II_if_freenameindex = nullptr, *II_wcsdup = nullptr,
                         *II_win_wcsdup = nullptr, *II_g_malloc = nullptr,
                         *II_g_malloc0 = nullptr, *II_g_realloc = nullptr,
                         *II_g_try_malloc = nullptr,
                         *II_g_try_malloc0 = nullptr,
                         *II_g_try_realloc = nullptr, *II_g_free = nullptr,
                         *II_g_memdup = nullptr, *II_g_malloc_n = nullptr,
                         *II_g_malloc0_n = nullptr, *II_g_realloc_n = nullptr,
                         *II_g_try_malloc_n = nullptr,
                         *II_g_try_malloc0_n = nullptr, *II_kfree = nullptr,
                         *II_g_try_realloc_n = nullptr;

  void initIdentifierInfo(ASTContext &C) const;

  ///@{
  /// Check if this is one of the functions which can allocate/reallocate
  /// memory pointed to by one of its arguments.
  bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const;
  bool isCMemFunction(const FunctionDecl *FD, ASTContext &C,
                      AllocationFamily Family,
                      MemoryOperationKind MemKind) const;

  /// Tells if the callee is one of the builtin new/delete operators, including
  /// placement operators and other standard overloads.
  bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const;
  ///@}
};

} // end of anonymous namespace

//===----------------------------------------------------------------------===//
// Definition of the MallocChecker class.
//===----------------------------------------------------------------------===//

namespace {

class MallocChecker
    : public Checker<check::DeadSymbols, check::PointerEscape,
                     check::ConstPointerEscape, check::PreStmt<ReturnStmt>,
                     check::EndFunction, check::PreCall,
                     check::PostStmt<CallExpr>, check::PostStmt<CXXNewExpr>,
                     check::NewAllocator, check::PreStmt<CXXDeleteExpr>,
                     check::PostStmt<BlockExpr>, check::PostObjCMessage,
                     check::Location, eval::Assume> {
public:
  MemFunctionInfoTy MemFunctionInfo;

  /// Many checkers are essentially built into this one, so enabling them will
  /// make MallocChecker perform additional modeling and reporting.
  enum CheckKind {
    /// When a subchecker is enabled but MallocChecker isn't, model memory
    /// management but do not emit warnings emitted with MallocChecker only
    /// enabled.
    CK_MallocChecker,
    CK_NewDeleteChecker,
    CK_NewDeleteLeaksChecker,
    CK_MismatchedDeallocatorChecker,
    CK_InnerPointerChecker,
    CK_NumCheckKinds
  };

  using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>;

  DefaultBool ChecksEnabled[CK_NumCheckKinds];
  CheckerNameRef CheckNames[CK_NumCheckKinds];

  void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
  void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const;
  void checkNewAllocator(const CXXNewExpr *NE, SVal Target,
                         CheckerContext &C) const;
  void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const;
  void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
  void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
  void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
  void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
  void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const;
  ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
                            bool Assumption) const;
  void checkLocation(SVal l, bool isLoad, const Stmt *S,
                     CheckerContext &C) const;

  ProgramStateRef checkPointerEscape(ProgramStateRef State,
                                    const InvalidatedSymbols &Escaped,
                                    const CallEvent *Call,
                                    PointerEscapeKind Kind) const;
  ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
                                          const InvalidatedSymbols &Escaped,
                                          const CallEvent *Call,
                                          PointerEscapeKind Kind) const;

  void printState(raw_ostream &Out, ProgramStateRef State,
                  const char *NL, const char *Sep) const override;

private:
  mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_DoubleDelete;
  mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
  mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];

  // TODO: Remove mutable by moving the initializtaion to the registry function.
  mutable Optional<uint64_t> KernelZeroFlagVal;

  /// Process C++ operator new()'s allocation, which is the part of C++
  /// new-expression that goes before the constructor.
  void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C,
                            SVal Target) const;

  /// Perform a zero-allocation check.
  ///
  /// \param [in] E The expression that allocates memory.
  /// \param [in] IndexOfSizeArg Index of the argument that specifies the size
  ///   of the memory that needs to be allocated. E.g. for malloc, this would be
  ///   0.
  /// \param [in] RetVal Specifies the newly allocated pointer value;
  ///   if unspecified, the value of expression \p E is used.
  static ProgramStateRef ProcessZeroAllocCheck(CheckerContext &C, const Expr *E,
                                               const unsigned IndexOfSizeArg,
                                               ProgramStateRef State,
                                               Optional<SVal> RetVal = None);

  /// Model functions with the ownership_returns attribute.
  ///
  /// User-defined function may have the ownership_returns attribute, which
  /// annotates that the function returns with an object that was allocated on
  /// the heap, and passes the ownertship to the callee.
  ///
  ///   void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t);
  ///
  /// It has two parameters:
  ///   - first: name of the resource (e.g. 'malloc')
  ///   - (OPTIONAL) second: size of the allocated region
  ///
  /// \param [in] CE The expression that allocates memory.
  /// \param [in] Att The ownership_returns attribute.
  /// \param [in] State The \c ProgramState right before allocation.
  /// \returns The ProgramState right after allocation.
  ProgramStateRef MallocMemReturnsAttr(CheckerContext &C,
                                       const CallExpr *CE,
                                       const OwnershipAttr* Att,
                                       ProgramStateRef State) const;

  /// Models memory allocation.
  ///
  /// \param [in] CE The expression that allocates memory.
  /// \param [in] SizeEx Size of the memory that needs to be allocated.
  /// \param [in] Init The value the allocated memory needs to be initialized.
  /// with. For example, \c calloc initializes the allocated memory to 0,
  /// malloc leaves it undefined.
  /// \param [in] State The \c ProgramState right before allocation.
  /// \returns The ProgramState right after allocation.
  static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
                                      const Expr *SizeEx, SVal Init,
                                      ProgramStateRef State,
                                      AllocationFamily Family = AF_Malloc);

  /// Models memory allocation.
  ///
  /// \param [in] CE The expression that allocates memory.
  /// \param [in] Size Size of the memory that needs to be allocated.
  /// \param [in] Init The value the allocated memory needs to be initialized.
  /// with. For example, \c calloc initializes the allocated memory to 0,
  /// malloc leaves it undefined.
  /// \param [in] State The \c ProgramState right before allocation.
  /// \returns The ProgramState right after allocation.
  static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
                                      SVal Size, SVal Init,
                                      ProgramStateRef State,
                                      AllocationFamily Family = AF_Malloc);

  static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE,
                                       ProgramStateRef State, SVal Target);

  // Check if this malloc() for special flags. At present that means M_ZERO or
  // __GFP_ZERO (in which case, treat it like calloc).
  llvm::Optional<ProgramStateRef>
  performKernelMalloc(const CallExpr *CE, CheckerContext &C,
                      const ProgramStateRef &State) const;

  /// Model functions with the ownership_takes and ownership_holds attributes.
  ///
  /// User-defined function may have the ownership_takes and/or ownership_holds
  /// attributes, which annotates that the function frees the memory passed as a
  /// parameter.
  ///
  ///   void __attribute((ownership_takes(malloc, 1))) my_free(void *);
  ///   void __attribute((ownership_holds(malloc, 1))) my_hold(void *);
  ///
  /// They have two parameters:
  ///   - first: name of the resource (e.g. 'malloc')
  ///   - second: index of the parameter the attribute applies to
  ///
  /// \param [in] CE The expression that frees memory.
  /// \param [in] Att The ownership_takes or ownership_holds attribute.
  /// \param [in] State The \c ProgramState right before allocation.
  /// \returns The ProgramState right after deallocation.
  ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE,
                              const OwnershipAttr* Att,
                              ProgramStateRef State) const;

  /// Models memory deallocation.
  ///
  /// \param [in] CE The expression that frees memory.
  /// \param [in] State The \c ProgramState right before allocation.
  /// \param [in] Num Index of the argument that needs to be freed. This is
  ///   normally 0, but for custom free functions it may be different.
  /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
  ///   attribute.
  /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
  ///   to have been allocated, or in other words, the symbol to be freed was
  ///   registered as allocated by this checker. In the following case, \c ptr
  ///   isn't known to be allocated.
  ///      void Haha(int *ptr) {
  ///        ptr = realloc(ptr, 67);
  ///        // ...
  ///      }
  /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
  ///   we're modeling returns with Null on failure.
  /// \returns The ProgramState right after deallocation.
  ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE,
                             ProgramStateRef State, unsigned Num, bool Hold,
                             bool &IsKnownToBeAllocated,
                             bool ReturnsNullOnFailure = false) const;

  /// Models memory deallocation.
  ///
  /// \param [in] ArgExpr The variable who's pointee needs to be freed.
  /// \param [in] ParentExpr The expression that frees the memory.
  /// \param [in] State The \c ProgramState right before allocation.
  ///   normally 0, but for custom free functions it may be different.
  /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
  ///   attribute.
  /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
  ///   to have been allocated, or in other words, the symbol to be freed was
  ///   registered as allocated by this checker. In the following case, \c ptr
  ///   isn't known to be allocated.
  ///      void Haha(int *ptr) {
  ///        ptr = realloc(ptr, 67);
  ///        // ...
  ///      }
  /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
  ///   we're modeling returns with Null on failure.
  /// \returns The ProgramState right after deallocation.
  ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr,
                             const Expr *ParentExpr, ProgramStateRef State,
                             bool Hold, bool &IsKnownToBeAllocated,
                             bool ReturnsNullOnFailure = false) const;

  // TODO: Needs some refactoring, as all other deallocation modeling
  // functions are suffering from out parameters and messy code due to how
  // realloc is handled.
  //
  /// Models memory reallocation.
  ///
  /// \param [in] CE The expression that reallocated memory
  /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied
  ///   memory should be freed.
  /// \param [in] State The \c ProgramState right before reallocation.
  /// \param [in] SuffixWithN Whether the reallocation function we're modeling
  ///   has an '_n' suffix, such as g_realloc_n.
  /// \returns The ProgramState right after reallocation.
  ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE,
                                bool ShouldFreeOnFail, ProgramStateRef State,
                                bool SuffixWithN = false) const;

  /// Evaluates the buffer size that needs to be allocated.
  ///
  /// \param [in] Blocks The amount of blocks that needs to be allocated.
  /// \param [in] BlockBytes The size of a block.
  /// \returns The symbolic value of \p Blocks * \p BlockBytes.
  static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
                                   const Expr *BlockBytes);

  /// Models zero initialized array allocation.
  ///
  /// \param [in] CE The expression that reallocated memory
  /// \param [in] State The \c ProgramState right before reallocation.
  /// \returns The ProgramState right after allocation.
  static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE,
                                   ProgramStateRef State);

  /// See if deallocation happens in a suspicious context. If so, escape the
  /// pointers that otherwise would have been deallocated and return true.
  bool suppressDeallocationsInSuspiciousContexts(const CallExpr *CE,
                                                 CheckerContext &C) const;

  /// If in \p S  \p Sym is used, check whether \p Sym was already freed.
  bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;

  /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero
  /// sized memory region.
  void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
                             const Stmt *S) const;

  /// If in \p S \p Sym is being freed, check whether \p Sym was already freed.
  bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;

  /// Check if the function is known to free memory, or if it is
  /// "interesting" and should be modeled explicitly.
  ///
  /// \param [out] EscapingSymbol A function might not free memory in general,
  ///   but could be known to free a particular symbol. In this case, false is
  ///   returned and the single escaping symbol is returned through the out
  ///   parameter.
  ///
  /// We assume that pointers do not escape through calls to system functions
  /// not handled by this checker.
  bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
                                   ProgramStateRef State,
                                   SymbolRef &EscapingSymbol) const;

  /// Implementation of the checkPointerEscape callbacks.
  ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
                                        const InvalidatedSymbols &Escaped,
                                        const CallEvent *Call,
                                        PointerEscapeKind Kind,
                                        bool IsConstPointerEscape) const;

  // Implementation of the checkPreStmt and checkEndFunction callbacks.
  void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const;

  ///@{
  /// Tells if a given family/call/symbol is tracked by the current checker.
  /// Sets CheckKind to the kind of the checker responsible for this
  /// family/call/symbol.
  Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
                                        bool IsALeakCheck = false) const;
  Optional<CheckKind> getCheckIfTracked(CheckerContext &C,
                                        const Stmt *AllocDeallocStmt,
                                        bool IsALeakCheck = false) const;
  Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
                                        bool IsALeakCheck = false) const;
  ///@}
  static bool SummarizeValue(raw_ostream &os, SVal V);
  static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);

  void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
                     const Expr *DeallocExpr) const;
  void ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
                        SourceRange Range) const;
  void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range,
                               const Expr *DeallocExpr, const RefState *RS,
                               SymbolRef Sym, bool OwnershipTransferred) const;
  void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
                        const Expr *DeallocExpr,
                        const Expr *AllocExpr = nullptr) const;
  void ReportUseAfterFree(CheckerContext &C, SourceRange Range,
                          SymbolRef Sym) const;
  void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
                        SymbolRef Sym, SymbolRef PrevSym) const;

  void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const;

  void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range,
                              SymbolRef Sym) const;

  void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal,
                                 SourceRange Range, const Expr *FreeExpr) const;

  /// Find the location of the allocation for Sym on the path leading to the
  /// exploded node N.
  static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
                                    CheckerContext &C);

  void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
};

//===----------------------------------------------------------------------===//
// Definition of MallocBugVisitor.
//===----------------------------------------------------------------------===//

/// The bug visitor which allows us to print extra diagnostics along the
/// BugReport path. For example, showing the allocation site of the leaked
/// region.
class MallocBugVisitor final : public BugReporterVisitor {
protected:
  enum NotificationMode { Normal, ReallocationFailed };

  // The allocated region symbol tracked by the main analysis.
  SymbolRef Sym;

  // The mode we are in, i.e. what kind of diagnostics will be emitted.
  NotificationMode Mode;

  // A symbol from when the primary region should have been reallocated.
  SymbolRef FailedReallocSymbol;

  // A C++ destructor stack frame in which memory was released. Used for
  // miscellaneous false positive suppression.
  const StackFrameContext *ReleaseDestructorLC;

  bool IsLeak;

public:
  MallocBugVisitor(SymbolRef S, bool isLeak = false)
      : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr),
        ReleaseDestructorLC(nullptr), IsLeak(isLeak) {}

  static void *getTag() {
    static int Tag = 0;
    return &Tag;
  }

  void Profile(llvm::FoldingSetNodeID &ID) const override {
    ID.AddPointer(getTag());
    ID.AddPointer(Sym);
  }

  /// Did not track -> allocated. Other state (released) -> allocated.
  static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev,
                                 const Stmt *Stmt) {
    return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
            (RSCurr &&
             (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
            (!RSPrev ||
             !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
  }

  /// Did not track -> released. Other state (allocated) -> released.
  /// The statement associated with the release might be missing.
  static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev,
                                const Stmt *Stmt) {
    bool IsReleased =
        (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased());
    assert(!IsReleased ||
           (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) ||
           (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer));
    return IsReleased;
  }

  /// Did not track -> relinquished. Other state (allocated) -> relinquished.
  static inline bool isRelinquished(const RefState *RSCurr,
                                    const RefState *RSPrev, const Stmt *Stmt) {
    return (Stmt &&
            (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
             isa<ObjCPropertyRefExpr>(Stmt)) &&
            (RSCurr && RSCurr->isRelinquished()) &&
            (!RSPrev || !RSPrev->isRelinquished()));
  }

  /// If the expression is not a call, and the state change is
  /// released -> allocated, it must be the realloc return value
  /// check. If we have to handle more cases here, it might be cleaner just
  /// to track this extra bit in the state itself.
  static inline bool hasReallocFailed(const RefState *RSCurr,
                                      const RefState *RSPrev,
                                      const Stmt *Stmt) {
    return ((!Stmt || !isa<CallExpr>(Stmt)) &&
            (RSCurr &&
             (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
            (RSPrev &&
             !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
  }

  PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
                                   BugReporterContext &BRC,
                                   PathSensitiveBugReport &BR) override;

  PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC,
                                    const ExplodedNode *EndPathNode,
                                    PathSensitiveBugReport &BR) override {
    if (!IsLeak)
      return nullptr;

    PathDiagnosticLocation L = BR.getLocation();
    // Do not add the statement itself as a range in case of leak.
    return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(),
                                                      false);
  }

private:
  class StackHintGeneratorForReallocationFailed
      : public StackHintGeneratorForSymbol {
  public:
    StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
        : StackHintGeneratorForSymbol(S, M) {}

    std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override {
      // Printed parameters start at 1, not 0.
      ++ArgIndex;

      SmallString<200> buf;
      llvm::raw_svector_ostream os(buf);

      os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
         << " parameter failed";

      return os.str();
    }

    std::string getMessageForReturn(const CallExpr *CallExpr) override {
      return "Reallocation of returned value failed";
    }
  };
};

} // end anonymous namespace

// A map from the freed symbol to the symbol representing the return value of
// the free function.
REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)

namespace {
class StopTrackingCallback final : public SymbolVisitor {
  ProgramStateRef state;
public:
  StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {}
  ProgramStateRef getState() const { return state; }

  bool VisitSymbol(SymbolRef sym) override {
    state = state->remove<RegionState>(sym);
    return true;
  }
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Methods of MemFunctionInfoTy.
//===----------------------------------------------------------------------===//

void MemFunctionInfoTy::initIdentifierInfo(ASTContext &Ctx) const {
  if (II_malloc)
    return;
  II_alloca = &Ctx.Idents.get("alloca");
  II_malloc = &Ctx.Idents.get("malloc");
  II_free = &Ctx.Idents.get("free");
  II_realloc = &Ctx.Idents.get("realloc");
  II_reallocf = &Ctx.Idents.get("reallocf");
  II_calloc = &Ctx.Idents.get("calloc");
  II_valloc = &Ctx.Idents.get("valloc");
  II_strdup = &Ctx.Idents.get("strdup");
  II_strndup = &Ctx.Idents.get("strndup");
  II_wcsdup = &Ctx.Idents.get("wcsdup");
  II_kmalloc = &Ctx.Idents.get("kmalloc");
  II_kfree = &Ctx.Idents.get("kfree");
  II_if_nameindex = &Ctx.Idents.get("if_nameindex");
  II_if_freenameindex = &Ctx.Idents.get("if_freenameindex");

  //MSVC uses `_`-prefixed instead, so we check for them too.
  II_win_strdup = &Ctx.Idents.get("_strdup");
  II_win_wcsdup = &Ctx.Idents.get("_wcsdup");
  II_win_alloca = &Ctx.Idents.get("_alloca");

  // Glib
  II_g_malloc = &Ctx.Idents.get("g_malloc");
  II_g_malloc0 = &Ctx.Idents.get("g_malloc0");
  II_g_realloc = &Ctx.Idents.get("g_realloc");
  II_g_try_malloc = &Ctx.Idents.get("g_try_malloc");
  II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0");
  II_g_try_realloc = &Ctx.Idents.get("g_try_realloc");
  II_g_free = &Ctx.Idents.get("g_free");
  II_g_memdup = &Ctx.Idents.get("g_memdup");
  II_g_malloc_n = &Ctx.Idents.get("g_malloc_n");
  II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n");
  II_g_realloc_n = &Ctx.Idents.get("g_realloc_n");
  II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n");
  II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n");
  II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n");
}

bool MemFunctionInfoTy::isMemFunction(const FunctionDecl *FD,
                                      ASTContext &C) const {
  if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any))
    return true;

  if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
    return true;

  if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any))
    return true;

  if (isStandardNewDelete(FD, C))
    return true;

  return false;
}

bool MemFunctionInfoTy::isCMemFunction(const FunctionDecl *FD, ASTContext &C,
                                       AllocationFamily Family,
                                       MemoryOperationKind MemKind) const {
  if (!FD)
    return false;

  bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any ||
                    MemKind == MemoryOperationKind::MOK_Free);
  bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any ||
                     MemKind == MemoryOperationKind::MOK_Allocate);

  if (FD->getKind() == Decl::Function) {
    const IdentifierInfo *FunI = FD->getIdentifier();
    initIdentifierInfo(C);

    if (Family == AF_Malloc && CheckFree) {
      if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf ||
          FunI == II_g_free || FunI == II_kfree)
        return true;
    }

    if (Family == AF_Malloc && CheckAlloc) {
      if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf ||
          FunI == II_calloc || FunI == II_valloc || FunI == II_strdup ||
          FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup ||
          FunI == II_win_wcsdup || FunI == II_kmalloc ||
          FunI == II_g_malloc || FunI == II_g_malloc0 ||
          FunI == II_g_realloc || FunI == II_g_try_malloc ||
          FunI == II_g_try_malloc0 || FunI == II_g_try_realloc ||
          FunI == II_g_memdup || FunI == II_g_malloc_n ||
          FunI == II_g_malloc0_n || FunI == II_g_realloc_n ||
          FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n ||
          FunI == II_g_try_realloc_n)
        return true;
    }

    if (Family == AF_IfNameIndex && CheckFree) {
      if (FunI == II_if_freenameindex)
        return true;
    }

    if (Family == AF_IfNameIndex && CheckAlloc) {
      if (FunI == II_if_nameindex)
        return true;
    }

    if (Family == AF_Alloca && CheckAlloc) {
      if (FunI == II_alloca || FunI == II_win_alloca)
        return true;
    }
  }

  if (Family != AF_Malloc)
    return false;

  if (ShouldIncludeOwnershipAnnotatedFunctions && FD->hasAttrs()) {
    for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
      OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
      if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) {
        if (CheckFree)
          return true;
      } else if (OwnKind == OwnershipAttr::Returns) {
        if (CheckAlloc)
          return true;
      }
    }
  }

  return false;
}
bool MemFunctionInfoTy::isStandardNewDelete(const FunctionDecl *FD,
                                            ASTContext &C) const {
  if (!FD)
    return false;

  OverloadedOperatorKind Kind = FD->getOverloadedOperator();
  if (Kind != OO_New && Kind != OO_Array_New &&
      Kind != OO_Delete && Kind != OO_Array_Delete)
    return false;

  // This is standard if and only if it's not defined in a user file.
  SourceLocation L = FD->getLocation();
  // If the header for operator delete is not included, it's still defined
  // in an invalid source location. Check to make sure we don't crash.
  return !L.isValid() || C.getSourceManager().isInSystemHeader(L);
}

//===----------------------------------------------------------------------===//
// Methods of MallocChecker and MallocBugVisitor.
//===----------------------------------------------------------------------===//

llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc(
  const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const {
  // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
  //
  // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
  //
  // One of the possible flags is M_ZERO, which means 'give me back an
  // allocation which is already zeroed', like calloc.

  // 2-argument kmalloc(), as used in the Linux kernel:
  //
  // void *kmalloc(size_t size, gfp_t flags);
  //
  // Has the similar flag value __GFP_ZERO.

  // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
  // code could be shared.

  ASTContext &Ctx = C.getASTContext();
  llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();

  if (!KernelZeroFlagVal.hasValue()) {
    if (OS == llvm::Triple::FreeBSD)
      KernelZeroFlagVal = 0x0100;
    else if (OS == llvm::Triple::NetBSD)
      KernelZeroFlagVal = 0x0002;
    else if (OS == llvm::Triple::OpenBSD)
      KernelZeroFlagVal = 0x0008;
    else if (OS == llvm::Triple::Linux)
      // __GFP_ZERO
      KernelZeroFlagVal = 0x8000;
    else
      // FIXME: We need a more general way of getting the M_ZERO value.
      // See also: O_CREAT in UnixAPIChecker.cpp.

      // Fall back to normal malloc behavior on platforms where we don't
      // know M_ZERO.
      return None;
  }

  // We treat the last argument as the flags argument, and callers fall-back to
  // normal malloc on a None return. This works for the FreeBSD kernel malloc
  // as well as Linux kmalloc.
  if (CE->getNumArgs() < 2)
    return None;

  const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1);
  const SVal V = C.getSVal(FlagsEx);
  if (!V.getAs<NonLoc>()) {
    // The case where 'V' can be a location can only be due to a bad header,
    // so in this case bail out.
    return None;
  }

  NonLoc Flags = V.castAs<NonLoc>();
  NonLoc ZeroFlag = C.getSValBuilder()
      .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
      .castAs<NonLoc>();
  SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
                                                      Flags, ZeroFlag,
                                                      FlagsEx->getType());
  if (MaskedFlagsUC.isUnknownOrUndef())
    return None;
  DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();

  // Check if maskedFlags is non-zero.
  ProgramStateRef TrueState, FalseState;
  std::tie(TrueState, FalseState) = State->assume(MaskedFlags);

  // If M_ZERO is set, treat this like calloc (initialized).
  if (TrueState && !FalseState) {
    SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
    return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState);
  }

  return None;
}

SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
                                         const Expr *BlockBytes) {
  SValBuilder &SB = C.getSValBuilder();
  SVal BlocksVal = C.getSVal(Blocks);
  SVal BlockBytesVal = C.getSVal(BlockBytes);
  ProgramStateRef State = C.getState();
  SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal,
                                SB.getContext().getSizeType());
  return TotalSize;
}

void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const {
  if (C.wasInlined)
    return;

  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD)
    return;

  ProgramStateRef State = C.getState();
  bool IsKnownToBeAllocatedMemory = false;

  if (FD->getKind() == Decl::Function) {
    MemFunctionInfo.initIdentifierInfo(C.getASTContext());
    IdentifierInfo *FunI = FD->getIdentifier();

    if (FunI == MemFunctionInfo.II_malloc ||
        FunI == MemFunctionInfo.II_g_malloc ||
        FunI == MemFunctionInfo.II_g_try_malloc) {
      switch (CE->getNumArgs()) {
      default:
        return;
      case 1:
        State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
        State = ProcessZeroAllocCheck(C, CE, 0, State);
        break;
      case 2:
        State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
        break;
      case 3:
        llvm::Optional<ProgramStateRef> MaybeState =
          performKernelMalloc(CE, C, State);
        if (MaybeState.hasValue())
          State = MaybeState.getValue();
        else
          State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
        break;
      }
    } else if (FunI == MemFunctionInfo.II_kmalloc) {
      if (CE->getNumArgs() < 1)
        return;
      llvm::Optional<ProgramStateRef> MaybeState =
        performKernelMalloc(CE, C, State);
      if (MaybeState.hasValue())
        State = MaybeState.getValue();
      else
        State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
    } else if (FunI == MemFunctionInfo.II_valloc) {
      if (CE->getNumArgs() < 1)
        return;
      State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
      State = ProcessZeroAllocCheck(C, CE, 0, State);
    } else if (FunI == MemFunctionInfo.II_realloc ||
               FunI == MemFunctionInfo.II_g_realloc ||
               FunI == MemFunctionInfo.II_g_try_realloc) {
      State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State);
      State = ProcessZeroAllocCheck(C, CE, 1, State);
    } else if (FunI == MemFunctionInfo.II_reallocf) {
      State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ true, State);
      State = ProcessZeroAllocCheck(C, CE, 1, State);
    } else if (FunI == MemFunctionInfo.II_calloc) {
      State = CallocMem(C, CE, State);
      State = ProcessZeroAllocCheck(C, CE, 0, State);
      State = ProcessZeroAllocCheck(C, CE, 1, State);
    } else if (FunI == MemFunctionInfo.II_free ||
               FunI == MemFunctionInfo.II_g_free ||
               FunI == MemFunctionInfo.II_kfree) {
      if (suppressDeallocationsInSuspiciousContexts(CE, C))
        return;

      State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory);
    } else if (FunI == MemFunctionInfo.II_strdup ||
               FunI == MemFunctionInfo.II_win_strdup ||
               FunI == MemFunctionInfo.II_wcsdup ||
               FunI == MemFunctionInfo.II_win_wcsdup) {
      State = MallocUpdateRefState(C, CE, State);
    } else if (FunI == MemFunctionInfo.II_strndup) {
      State = MallocUpdateRefState(C, CE, State);
    } else if (FunI == MemFunctionInfo.II_alloca ||
               FunI == MemFunctionInfo.II_win_alloca) {
      if (CE->getNumArgs() < 1)
        return;
      State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
                           AF_Alloca);
      State = ProcessZeroAllocCheck(C, CE, 0, State);
    } else if (MemFunctionInfo.isStandardNewDelete(FD, C.getASTContext())) {
      // Process direct calls to operator new/new[]/delete/delete[] functions
      // as distinct from new/new[]/delete/delete[] expressions that are
      // processed by the checkPostStmt callbacks for CXXNewExpr and
      // CXXDeleteExpr.
      switch (FD->getOverloadedOperator()) {
      case OO_New:
        State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
                             AF_CXXNew);
        State = ProcessZeroAllocCheck(C, CE, 0, State);
        break;
      case OO_Array_New:
        State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
                             AF_CXXNewArray);
        State = ProcessZeroAllocCheck(C, CE, 0, State);
        break;
      case OO_Delete:
      case OO_Array_Delete:
        State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory);
        break;
      default:
        llvm_unreachable("not a new/delete operator");
      }
    } else if (FunI == MemFunctionInfo.II_if_nameindex) {
      // Should we model this differently? We can allocate a fixed number of
      // elements with zeros in the last one.
      State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State,
                           AF_IfNameIndex);
    } else if (FunI == MemFunctionInfo.II_if_freenameindex) {
      State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory);
    } else if (FunI == MemFunctionInfo.II_g_malloc0 ||
               FunI == MemFunctionInfo.II_g_try_malloc0) {
      if (CE->getNumArgs() < 1)
        return;
      SValBuilder &svalBuilder = C.getSValBuilder();
      SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
      State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State);
      State = ProcessZeroAllocCheck(C, CE, 0, State);
    } else if (FunI == MemFunctionInfo.II_g_memdup) {
      if (CE->getNumArgs() < 2)
        return;
      State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State);
      State = ProcessZeroAllocCheck(C, CE, 1, State);
    } else if (FunI == MemFunctionInfo.II_g_malloc_n ||
               FunI == MemFunctionInfo.II_g_try_malloc_n ||
               FunI == MemFunctionInfo.II_g_malloc0_n ||
               FunI == MemFunctionInfo.II_g_try_malloc0_n) {
      if (CE->getNumArgs() < 2)
        return;
      SVal Init = UndefinedVal();
      if (FunI == MemFunctionInfo.II_g_malloc0_n ||
          FunI == MemFunctionInfo.II_g_try_malloc0_n) {
        SValBuilder &SB = C.getSValBuilder();
        Init = SB.makeZeroVal(SB.getContext().CharTy);
      }
      SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1));
      State = MallocMemAux(C, CE, TotalSize, Init, State);
      State = ProcessZeroAllocCheck(C, CE, 0, State);
      State = ProcessZeroAllocCheck(C, CE, 1, State);
    } else if (FunI == MemFunctionInfo.II_g_realloc_n ||
               FunI == MemFunctionInfo.II_g_try_realloc_n) {
      if (CE->getNumArgs() < 3)
        return;
      State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State,
                            /*SuffixWithN*/ true);
      State = ProcessZeroAllocCheck(C, CE, 1, State);
      State = ProcessZeroAllocCheck(C, CE, 2, State);
    }
  }

  if (MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions ||
      ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
    // Check all the attributes, if there are any.
    // There can be multiple of these attributes.
    if (FD->hasAttrs())
      for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
        switch (I->getOwnKind()) {
        case OwnershipAttr::Returns:
          State = MallocMemReturnsAttr(C, CE, I, State);
          break;
        case OwnershipAttr::Takes:
        case OwnershipAttr::Holds:
          State = FreeMemAttr(C, CE, I, State);
          break;
        }
      }
  }
  C.addTransition(State);
}

// Performs a 0-sized allocations check.
ProgramStateRef MallocChecker::ProcessZeroAllocCheck(
    CheckerContext &C, const Expr *E, const unsigned IndexOfSizeArg,
    ProgramStateRef State, Optional<SVal> RetVal) {
  if (!State)
    return nullptr;

  if (!RetVal)
    RetVal = C.getSVal(E);

  const Expr *Arg = nullptr;

  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
    Arg = CE->getArg(IndexOfSizeArg);
  }
  else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
    if (NE->isArray())
      Arg = *NE->getArraySize();
    else
      return State;
  }
  else
    llvm_unreachable("not a CallExpr or CXXNewExpr");

  assert(Arg);

  Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>();

  if (!DefArgVal)
    return State;

  // Check if the allocation size is 0.
  ProgramStateRef TrueState, FalseState;
  SValBuilder &SvalBuilder = C.getSValBuilder();
  DefinedSVal Zero =
      SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();

  std::tie(TrueState, FalseState) =
      State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));

  if (TrueState && !FalseState) {
    SymbolRef Sym = RetVal->getAsLocSymbol();
    if (!Sym)
      return State;

    const RefState *RS = State->get<RegionState>(Sym);
    if (RS) {
      if (RS->isAllocated())
        return TrueState->set<RegionState>(Sym,
                                          RefState::getAllocatedOfSizeZero(RS));
      else
        return State;
    } else {
      // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as
      // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not
      // tracked. Add zero-reallocated Sym to the state to catch references
      // to zero-allocated memory.
      return TrueState->add<ReallocSizeZeroSymbols>(Sym);
    }
  }

  // Assume the value is non-zero going forward.
  assert(FalseState);
  return FalseState;
}

static QualType getDeepPointeeType(QualType T) {
  QualType Result = T, PointeeType = T->getPointeeType();
  while (!PointeeType.isNull()) {
    Result = PointeeType;
    PointeeType = PointeeType->getPointeeType();
  }
  return Result;
}

/// \returns true if the constructor invoked by \p NE has an argument of a
/// pointer/reference to a record type.
static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) {

  const CXXConstructExpr *ConstructE = NE->getConstructExpr();
  if (!ConstructE)
    return false;

  if (!NE->getAllocatedType()->getAsCXXRecordDecl())
    return false;

  const CXXConstructorDecl *CtorD = ConstructE->getConstructor();

  // Iterate over the constructor parameters.
  for (const auto *CtorParam : CtorD->parameters()) {

    QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
    if (CtorParamPointeeT.isNull())
      continue;

    CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);

    if (CtorParamPointeeT->getAsCXXRecordDecl())
      return true;
  }

  return false;
}

void MallocChecker::processNewAllocation(const CXXNewExpr *NE,
                                         CheckerContext &C,
                                         SVal Target) const {
  if (!MemFunctionInfo.isStandardNewDelete(NE->getOperatorNew(),
                                           C.getASTContext()))
    return;

  const ParentMap &PM = C.getLocationContext()->getParentMap();

  // Non-trivial constructors have a chance to escape 'this', but marking all
  // invocations of trivial constructors as escaped would cause too great of
  // reduction of true positives, so let's just do that for constructors that
  // have an argument of a pointer-to-record type.
  if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE))
    return;

  ProgramStateRef State = C.getState();
  // The return value from operator new is bound to a specified initialization
  // value (if any) and we don't want to loose this value. So we call
  // MallocUpdateRefState() instead of MallocMemAux() which breaks the
  // existing binding.
  State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray
                                                           : AF_CXXNew, Target);
  State = addExtentSize(C, NE, State, Target);
  State = ProcessZeroAllocCheck(C, NE, 0, State, Target);
  C.addTransition(State);
}

void MallocChecker::checkPostStmt(const CXXNewExpr *NE,
                                  CheckerContext &C) const {
  if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator)
    processNewAllocation(NE, C, C.getSVal(NE));
}

void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target,
                                      CheckerContext &C) const {
  if (!C.wasInlined)
    processNewAllocation(NE, C, Target);
}

// Sets the extent value of the MemRegion allocated by
// new expression NE to its size in Bytes.
//
ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C,
                                             const CXXNewExpr *NE,
                                             ProgramStateRef State,
                                             SVal Target) {
  if (!State)
    return nullptr;
  SValBuilder &svalBuilder = C.getSValBuilder();
  SVal ElementCount;
  const SubRegion *Region;
  if (NE->isArray()) {
    const Expr *SizeExpr = *NE->getArraySize();
    ElementCount = C.getSVal(SizeExpr);
    // Store the extent size for the (symbolic)region
    // containing the elements.
    Region = Target.getAsRegion()
                 ->castAs<SubRegion>()
                 ->StripCasts()
                 ->castAs<SubRegion>();
  } else {
    ElementCount = svalBuilder.makeIntVal(1, true);
    Region = Target.getAsRegion()->castAs<SubRegion>();
  }

  // Set the region's extent equal to the Size in Bytes.
  QualType ElementType = NE->getAllocatedType();
  ASTContext &AstContext = C.getASTContext();
  CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType);

  if (ElementCount.getAs<NonLoc>()) {
    DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder);
    // size in Bytes = ElementCount*TypeSize
    SVal SizeInBytes = svalBuilder.evalBinOpNN(
        State, BO_Mul, ElementCount.castAs<NonLoc>(),
        svalBuilder.makeArrayIndex(TypeSize.getQuantity()),
        svalBuilder.getArrayIndexType());
    DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ(
        State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>());
    State = State->assume(extentMatchesSize, true);
  }
  return State;
}

void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE,
                                 CheckerContext &C) const {

  if (!ChecksEnabled[CK_NewDeleteChecker])
    if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
      checkUseAfterFree(Sym, C, DE->getArgument());

  if (!MemFunctionInfo.isStandardNewDelete(DE->getOperatorDelete(),
                                           C.getASTContext()))
    return;

  ProgramStateRef State = C.getState();
  bool IsKnownToBeAllocated;
  State = FreeMemAux(C, DE->getArgument(), DE, State,
                     /*Hold*/ false, IsKnownToBeAllocated);

  C.addTransition(State);
}

static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
  // If the first selector piece is one of the names below, assume that the
  // object takes ownership of the memory, promising to eventually deallocate it
  // with free().
  // Ex:  [NSData dataWithBytesNoCopy:bytes length:10];
  // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
  StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
  return FirstSlot == "dataWithBytesNoCopy" ||
         FirstSlot == "initWithBytesNoCopy" ||
         FirstSlot == "initWithCharactersNoCopy";
}

static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
  Selector S = Call.getSelector();

  // FIXME: We should not rely on fully-constrained symbols being folded.
  for (unsigned i = 1; i < S.getNumArgs(); ++i)
    if (S.getNameForSlot(i).equals("freeWhenDone"))
      return !Call.getArgSVal(i).isZeroConstant();

  return None;
}

void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
                                         CheckerContext &C) const {
  if (C.wasInlined)
    return;

  if (!isKnownDeallocObjCMethodName(Call))
    return;

  if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
    if (!*FreeWhenDone)
      return;

  bool IsKnownToBeAllocatedMemory;
  ProgramStateRef State =
      FreeMemAux(C, Call.getArgExpr(0), Call.getOriginExpr(), C.getState(),
                 /*Hold=*/true, IsKnownToBeAllocatedMemory,
                 /*RetNullOnFailure=*/true);

  C.addTransition(State);
}

ProgramStateRef
MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE,
                                    const OwnershipAttr *Att,
                                    ProgramStateRef State) const {
  if (!State)
    return nullptr;

  if (Att->getModule() != MemFunctionInfo.II_malloc)
    return nullptr;

  OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
  if (I != E) {
    return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(),
                        State);
  }
  return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State);
}

ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
                                            const CallExpr *CE,
                                            const Expr *SizeEx, SVal Init,
                                            ProgramStateRef State,
                                            AllocationFamily Family) {
  if (!State)
    return nullptr;

  return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family);
}

ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
                                           const CallExpr *CE,
                                           SVal Size, SVal Init,
                                           ProgramStateRef State,
                                           AllocationFamily Family) {
  if (!State)
    return nullptr;

  // We expect the malloc functions to return a pointer.
  if (!Loc::isLocType(CE->getType()))
    return nullptr;

  // Bind the return value to the symbolic value from the heap region.
  // TODO: We could rewrite post visit to eval call; 'malloc' does not have
  // side effects other than what we model here.
  unsigned Count = C.blockCount();
  SValBuilder &svalBuilder = C.getSValBuilder();
  const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
  DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
      .castAs<DefinedSVal>();
  State = State->BindExpr(CE, C.getLocationContext(), RetVal);

  // Fill the region with the initialization value.
  State = State->bindDefaultInitial(RetVal, Init, LCtx);

  // Set the region's extent equal to the Size parameter.
  const SymbolicRegion *R =
      dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
  if (!R)
    return nullptr;
  if (Optional<DefinedOrUnknownSVal> DefinedSize =
          Size.getAs<DefinedOrUnknownSVal>()) {
    SValBuilder &svalBuilder = C.getSValBuilder();
    DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
    DefinedOrUnknownSVal extentMatchesSize =
        svalBuilder.evalEQ(State, Extent, *DefinedSize);

    State = State->assume(extentMatchesSize, true);
    assert(State);
  }

  return MallocUpdateRefState(C, CE, State, Family);
}

static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
                                            ProgramStateRef State,
                                            AllocationFamily Family,
                                            Optional<SVal> RetVal) {
  if (!State)
    return nullptr;

  // Get the return value.
  if (!RetVal)
    RetVal = C.getSVal(E);

  // We expect the malloc functions to return a pointer.
  if (!RetVal->getAs<Loc>())
    return nullptr;

  SymbolRef Sym = RetVal->getAsLocSymbol();
  // This is a return value of a function that was not inlined, such as malloc()
  // or new(). We've checked that in the caller. Therefore, it must be a symbol.
  assert(Sym);

  // Set the symbol's state to Allocated.
  return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
}

ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
                                           const CallExpr *CE,
                                           const OwnershipAttr *Att,
                                           ProgramStateRef State) const {
  if (!State)
    return nullptr;

  if (Att->getModule() != MemFunctionInfo.II_malloc)
    return nullptr;

  bool IsKnownToBeAllocated = false;

  for (const auto &Arg : Att->args()) {
    ProgramStateRef StateI = FreeMemAux(
        C, CE, State, Arg.getASTIndex(),
        Att->getOwnKind() == OwnershipAttr::Holds, IsKnownToBeAllocated);
    if (StateI)
      State = StateI;
  }
  return State;
}

ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, const CallExpr *CE,
                                          ProgramStateRef State, unsigned Num,
                                          bool Hold, bool &IsKnownToBeAllocated,
                                          bool ReturnsNullOnFailure) const {
  if (!State)
    return nullptr;

  if (CE->getNumArgs() < (Num + 1))
    return nullptr;

  return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, IsKnownToBeAllocated,
                    ReturnsNullOnFailure);
}

/// Checks if the previous call to free on the given symbol failed - if free
/// failed, returns true. Also, returns the corresponding return value symbol.
static bool didPreviousFreeFail(ProgramStateRef State,
                                SymbolRef Sym, SymbolRef &RetStatusSymbol) {
  const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
  if (Ret) {
    assert(*Ret && "We should not store the null return symbol");
    ConstraintManager &CMgr = State->getConstraintManager();
    ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
    RetStatusSymbol = *Ret;
    return FreeFailed.isConstrainedTrue();
  }
  return false;
}

static AllocationFamily
getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C,
                    const Stmt *S) {

  if (!S)
    return AF_None;

  if (const CallExpr *CE = dyn_cast<CallExpr>(S)) {
    const FunctionDecl *FD = C.getCalleeDecl(CE);

    if (!FD)
      FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());

    ASTContext &Ctx = C.getASTContext();

    if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc,
                                       MemoryOperationKind::MOK_Any))
      return AF_Malloc;

    if (MemFunctionInfo.isStandardNewDelete(FD, Ctx)) {
      OverloadedOperatorKind Kind = FD->getOverloadedOperator();
      if (Kind == OO_New || Kind == OO_Delete)
        return AF_CXXNew;
      else if (Kind == OO_Array_New || Kind == OO_Array_Delete)
        return AF_CXXNewArray;
    }

    if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex,
                                       MemoryOperationKind::MOK_Any))
      return AF_IfNameIndex;

    if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Alloca,
                                       MemoryOperationKind::MOK_Any))
      return AF_Alloca;

    return AF_None;
  }

  if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S))
    return NE->isArray() ? AF_CXXNewArray : AF_CXXNew;

  if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S))
    return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew;

  if (isa<ObjCMessageExpr>(S))
    return AF_Malloc;

  return AF_None;
}

static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C,
                                  const Expr *E) {
  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
    // FIXME: This doesn't handle indirect calls.
    const FunctionDecl *FD = CE->getDirectCallee();
    if (!FD)
      return false;

    os << *FD;
    if (!FD->isOverloadedOperator())
      os << "()";
    return true;
  }

  if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
    if (Msg->isInstanceMessage())
      os << "-";
    else
      os << "+";
    Msg->getSelector().print(os);
    return true;
  }

  if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
    os << "'"
       << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
       << "'";
    return true;
  }

  if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
    os << "'"
       << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
       << "'";
    return true;
  }

  return false;
}

static void printExpectedAllocName(raw_ostream &os,
                                   const MemFunctionInfoTy &MemFunctionInfo,
                                   CheckerContext &C, const Expr *E) {
  AllocationFamily Family = getAllocationFamily(MemFunctionInfo, C, E);

  switch(Family) {
    case AF_Malloc: os << "malloc()"; return;
    case AF_CXXNew: os << "'new'"; return;
    case AF_CXXNewArray: os << "'new[]'"; return;
    case AF_IfNameIndex: os << "'if_nameindex()'"; return;
    case AF_InnerBuffer: os << "container-specific allocator"; return;
    case AF_Alloca:
    case AF_None: llvm_unreachable("not a deallocation expression");
  }
}

static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) {
  switch(Family) {
    case AF_Malloc: os << "free()"; return;
    case AF_CXXNew: os << "'delete'"; return;
    case AF_CXXNewArray: os << "'delete[]'"; return;
    case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
    case AF_InnerBuffer: os << "container-specific deallocator"; return;
    case AF_Alloca:
    case AF_None: llvm_unreachable("suspicious argument");
  }
}

ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
                                          const Expr *ArgExpr,
                                          const Expr *ParentExpr,
                                          ProgramStateRef State, bool Hold,
                                          bool &IsKnownToBeAllocated,
                                          bool ReturnsNullOnFailure) const {

  if (!State)
    return nullptr;

  SVal ArgVal = C.getSVal(ArgExpr);
  if (!ArgVal.getAs<DefinedOrUnknownSVal>())
    return nullptr;
  DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();

  // Check for null dereferences.
  if (!location.getAs<Loc>())
    return nullptr;

  // The explicit NULL case, no operation is performed.
  ProgramStateRef notNullState, nullState;
  std::tie(notNullState, nullState) = State->assume(location);
  if (nullState && !notNullState)
    return nullptr;

  // Unknown values could easily be okay
  // Undefined values are handled elsewhere
  if (ArgVal.isUnknownOrUndef())
    return nullptr;

  const MemRegion *R = ArgVal.getAsRegion();

  // Nonlocs can't be freed, of course.
  // Non-region locations (labels and fixed addresses) also shouldn't be freed.
  if (!R) {
    ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
    return nullptr;
  }

  R = R->StripCasts();

  // Blocks might show up as heap data, but should not be free()d
  if (isa<BlockDataRegion>(R)) {
    ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
    return nullptr;
  }

  const MemSpaceRegion *MS = R->getMemorySpace();

  // Parameters, locals, statics, globals, and memory returned by
  // __builtin_alloca() shouldn't be freed.
  if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
    // FIXME: at the time this code was written, malloc() regions were
    // represented by conjured symbols, which are all in UnknownSpaceRegion.
    // This means that there isn't actually anything from HeapSpaceRegion
    // that should be freed, even though we allow it here.
    // Of course, free() can work on memory allocated outside the current
    // function, so UnknownSpaceRegion is always a possibility.
    // False negatives are better than false positives.

    if (isa<AllocaRegion>(R))
      ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
    else
      ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);

    return nullptr;
  }

  const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
  // Various cases could lead to non-symbol values here.
  // For now, ignore them.
  if (!SrBase)
    return nullptr;

  SymbolRef SymBase = SrBase->getSymbol();
  const RefState *RsBase = State->get<RegionState>(SymBase);
  SymbolRef PreviousRetStatusSymbol = nullptr;

  IsKnownToBeAllocated =
      RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero());

  if (RsBase) {

    // Memory returned by alloca() shouldn't be freed.
    if (RsBase->getAllocationFamily() == AF_Alloca) {
      ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
      return nullptr;
    }

    // Check for double free first.
    if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
        !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
      ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
                       SymBase, PreviousRetStatusSymbol);
      return nullptr;

    // If the pointer is allocated or escaped, but we are now trying to free it,
    // check that the call to free is proper.
    } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
               RsBase->isEscaped()) {

      // Check if an expected deallocation function matches the real one.
      bool DeallocMatchesAlloc =
          RsBase->getAllocationFamily() ==
          getAllocationFamily(MemFunctionInfo, C, ParentExpr);
      if (!DeallocMatchesAlloc) {
        ReportMismatchedDealloc(C, ArgExpr->getSourceRange(),
                                ParentExpr, RsBase, SymBase, Hold);
        return nullptr;
      }

      // Check if the memory location being freed is the actual location
      // allocated, or an offset.
      RegionOffset Offset = R->getAsOffset();
      if (Offset.isValid() &&
          !Offset.hasSymbolicOffset() &&
          Offset.getOffset() != 0) {
        const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
        ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
                         AllocExpr);
        return nullptr;
      }
    }
  }

  if (SymBase->getType()->isFunctionPointerType()) {
    ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
    return nullptr;
  }

  // Clean out the info on previous call to free return info.
  State = State->remove<FreeReturnValue>(SymBase);

  // Keep track of the return value. If it is NULL, we will know that free
  // failed.
  if (ReturnsNullOnFailure) {
    SVal RetVal = C.getSVal(ParentExpr);
    SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
    if (RetStatusSymbol) {
      C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
      State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
    }
  }

  AllocationFamily Family =
      RsBase ? RsBase->getAllocationFamily()
             : getAllocationFamily(MemFunctionInfo, C, ParentExpr);
  // Normal free.
  if (Hold)
    return State->set<RegionState>(SymBase,
                                   RefState::getRelinquished(Family,
                                                             ParentExpr));

  return State->set<RegionState>(SymBase,
                                 RefState::getReleased(Family, ParentExpr));
}

Optional<MallocChecker::CheckKind>
MallocChecker::getCheckIfTracked(AllocationFamily Family,
                                 bool IsALeakCheck) const {
  switch (Family) {
  case AF_Malloc:
  case AF_Alloca:
  case AF_IfNameIndex: {
    if (ChecksEnabled[CK_MallocChecker])
      return CK_MallocChecker;
    return None;
  }
  case AF_CXXNew:
  case AF_CXXNewArray: {
    if (IsALeakCheck) {
      if (ChecksEnabled[CK_NewDeleteLeaksChecker])
        return CK_NewDeleteLeaksChecker;
    }
    else {
      if (ChecksEnabled[CK_NewDeleteChecker])
        return CK_NewDeleteChecker;
    }
    return None;
  }
  case AF_InnerBuffer: {
    if (ChecksEnabled[CK_InnerPointerChecker])
      return CK_InnerPointerChecker;
    return None;
  }
  case AF_None: {
    llvm_unreachable("no family");
  }
  }
  llvm_unreachable("unhandled family");
}

Optional<MallocChecker::CheckKind>
MallocChecker::getCheckIfTracked(CheckerContext &C,
                                 const Stmt *AllocDeallocStmt,
                                 bool IsALeakCheck) const {
  return getCheckIfTracked(
      getAllocationFamily(MemFunctionInfo, C, AllocDeallocStmt), IsALeakCheck);
}

Optional<MallocChecker::CheckKind>
MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
                                 bool IsALeakCheck) const {
  if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym))
    return CK_MallocChecker;

  const RefState *RS = C.getState()->get<RegionState>(Sym);
  assert(RS);
  return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
}

bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
  if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
    os << "an integer (" << IntVal->getValue() << ")";
  else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
    os << "a constant address (" << ConstAddr->getValue() << ")";
  else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
    os << "the address of the label '" << Label->getLabel()->getName() << "'";
  else
    return false;

  return true;
}

bool MallocChecker::SummarizeRegion(raw_ostream &os,
                                    const MemRegion *MR) {
  switch (MR->getKind()) {
  case MemRegion::FunctionCodeRegionKind: {
    const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
    if (FD)
      os << "the address of the function '" << *FD << '\'';
    else
      os << "the address of a function";
    return true;
  }
  case MemRegion::BlockCodeRegionKind:
    os << "block text";
    return true;
  case MemRegion::BlockDataRegionKind:
    // FIXME: where the block came from?
    os << "a block";
    return true;
  default: {
    const MemSpaceRegion *MS = MR->getMemorySpace();

    if (isa<StackLocalsSpaceRegion>(MS)) {
      const VarRegion *VR = dyn_cast<VarRegion>(MR);
      const VarDecl *VD;
      if (VR)
        VD = VR->getDecl();
      else
        VD = nullptr;

      if (VD)
        os << "the address of the local variable '" << VD->getName() << "'";
      else
        os << "the address of a local stack variable";
      return true;
    }

    if (isa<StackArgumentsSpaceRegion>(MS)) {
      const VarRegion *VR = dyn_cast<VarRegion>(MR);
      const VarDecl *VD;
      if (VR)
        VD = VR->getDecl();
      else
        VD = nullptr;

      if (VD)
        os << "the address of the parameter '" << VD->getName() << "'";
      else
        os << "the address of a parameter";
      return true;
    }

    if (isa<GlobalsSpaceRegion>(MS)) {
      const VarRegion *VR = dyn_cast<VarRegion>(MR);
      const VarDecl *VD;
      if (VR)
        VD = VR->getDecl();
      else
        VD = nullptr;

      if (VD) {
        if (VD->isStaticLocal())
          os << "the address of the static variable '" << VD->getName() << "'";
        else
          os << "the address of the global variable '" << VD->getName() << "'";
      } else
        os << "the address of a global variable";
      return true;
    }

    return false;
  }
  }
}

void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal,
                                  SourceRange Range,
                                  const Expr *DeallocExpr) const {

  if (!ChecksEnabled[CK_MallocChecker] &&
      !ChecksEnabled[CK_NewDeleteChecker])
    return;

  Optional<MallocChecker::CheckKind> CheckKind =
      getCheckIfTracked(C, DeallocExpr);
  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_BadFree[*CheckKind])
      BT_BadFree[*CheckKind].reset(new BugType(
          CheckNames[*CheckKind], "Bad free", categories::MemoryError));

    SmallString<100> buf;
    llvm::raw_svector_ostream os(buf);

    const MemRegion *MR = ArgVal.getAsRegion();
    while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
      MR = ER->getSuperRegion();

    os << "Argument to ";
    if (!printAllocDeallocName(os, C, DeallocExpr))
      os << "deallocator";

    os << " is ";
    bool Summarized = MR ? SummarizeRegion(os, MR)
                         : SummarizeValue(os, ArgVal);
    if (Summarized)
      os << ", which is not memory allocated by ";
    else
      os << "not memory allocated by ";

    printExpectedAllocName(os, MemFunctionInfo, C, DeallocExpr);

    auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
                                                      os.str(), N);
    R->markInteresting(MR);
    R->addRange(Range);
    C.emitReport(std::move(R));
  }
}

void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
                                     SourceRange Range) const {

  Optional<MallocChecker::CheckKind> CheckKind;

  if (ChecksEnabled[CK_MallocChecker])
    CheckKind = CK_MallocChecker;
  else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
    CheckKind = CK_MismatchedDeallocatorChecker;
  else
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_FreeAlloca[*CheckKind])
      BT_FreeAlloca[*CheckKind].reset(new BugType(
          CheckNames[*CheckKind], "Free alloca()", categories::MemoryError));

    auto R = std::make_unique<PathSensitiveBugReport>(
        *BT_FreeAlloca[*CheckKind],
        "Memory allocated by alloca() should not be deallocated", N);
    R->markInteresting(ArgVal.getAsRegion());
    R->addRange(Range);
    C.emitReport(std::move(R));
  }
}

void MallocChecker::ReportMismatchedDealloc(CheckerContext &C,
                                            SourceRange Range,
                                            const Expr *DeallocExpr,
                                            const RefState *RS,
                                            SymbolRef Sym,
                                            bool OwnershipTransferred) const {

  if (!ChecksEnabled[CK_MismatchedDeallocatorChecker])
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_MismatchedDealloc)
      BT_MismatchedDealloc.reset(
          new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
                      "Bad deallocator", categories::MemoryError));

    SmallString<100> buf;
    llvm::raw_svector_ostream os(buf);

    const Expr *AllocExpr = cast<Expr>(RS->getStmt());
    SmallString<20> AllocBuf;
    llvm::raw_svector_ostream AllocOs(AllocBuf);
    SmallString<20> DeallocBuf;
    llvm::raw_svector_ostream DeallocOs(DeallocBuf);

    if (OwnershipTransferred) {
      if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
        os << DeallocOs.str() << " cannot";
      else
        os << "Cannot";

      os << " take ownership of memory";

      if (printAllocDeallocName(AllocOs, C, AllocExpr))
        os << " allocated by " << AllocOs.str();
    } else {
      os << "Memory";
      if (printAllocDeallocName(AllocOs, C, AllocExpr))
        os << " allocated by " << AllocOs.str();

      os << " should be deallocated by ";
        printExpectedDeallocName(os, RS->getAllocationFamily());

      if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
        os << ", not " << DeallocOs.str();
    }

    auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc,
                                                      os.str(), N);
    R->markInteresting(Sym);
    R->addRange(Range);
    R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
    C.emitReport(std::move(R));
  }
}

void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal,
                                     SourceRange Range, const Expr *DeallocExpr,
                                     const Expr *AllocExpr) const {


  if (!ChecksEnabled[CK_MallocChecker] &&
      !ChecksEnabled[CK_NewDeleteChecker])
    return;

  Optional<MallocChecker::CheckKind> CheckKind =
      getCheckIfTracked(C, AllocExpr);
  if (!CheckKind.hasValue())
    return;

  ExplodedNode *N = C.generateErrorNode();
  if (!N)
    return;

  if (!BT_OffsetFree[*CheckKind])
    BT_OffsetFree[*CheckKind].reset(new BugType(
        CheckNames[*CheckKind], "Offset free", categories::MemoryError));

  SmallString<100> buf;
  llvm::raw_svector_ostream os(buf);
  SmallString<20> AllocNameBuf;
  llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);

  const MemRegion *MR = ArgVal.getAsRegion();
  assert(MR && "Only MemRegion based symbols can have offset free errors");

  RegionOffset Offset = MR->getAsOffset();
  assert((Offset.isValid() &&
          !Offset.hasSymbolicOffset() &&
          Offset.getOffset() != 0) &&
         "Only symbols with a valid offset can have offset free errors");

  int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();

  os << "Argument to ";
  if (!printAllocDeallocName(os, C, DeallocExpr))
    os << "deallocator";
  os << " is offset by "
     << offsetBytes
     << " "
     << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
     << " from the start of ";
  if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr))
    os << "memory allocated by " << AllocNameOs.str();
  else
    os << "allocated memory";

  auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind],
                                                    os.str(), N);
  R->markInteresting(MR->getBaseRegion());
  R->addRange(Range);
  C.emitReport(std::move(R));
}

void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range,
                                       SymbolRef Sym) const {

  if (!ChecksEnabled[CK_MallocChecker] &&
      !ChecksEnabled[CK_NewDeleteChecker] &&
      !ChecksEnabled[CK_InnerPointerChecker])
    return;

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_UseFree[*CheckKind])
      BT_UseFree[*CheckKind].reset(new BugType(
          CheckNames[*CheckKind], "Use-after-free", categories::MemoryError));

    AllocationFamily AF =
        C.getState()->get<RegionState>(Sym)->getAllocationFamily();

    auto R = std::make_unique<PathSensitiveBugReport>(
        *BT_UseFree[*CheckKind],
        AF == AF_InnerBuffer
            ? "Inner pointer of container used after re/deallocation"
            : "Use of memory after it is freed",
        N);

    R->markInteresting(Sym);
    R->addRange(Range);
    R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));

    if (AF == AF_InnerBuffer)
      R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym));

    C.emitReport(std::move(R));
  }
}

void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range,
                                     bool Released, SymbolRef Sym,
                                     SymbolRef PrevSym) const {

  if (!ChecksEnabled[CK_MallocChecker] &&
      !ChecksEnabled[CK_NewDeleteChecker])
    return;

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_DoubleFree[*CheckKind])
      BT_DoubleFree[*CheckKind].reset(new BugType(
          CheckNames[*CheckKind], "Double free", categories::MemoryError));

    auto R = std::make_unique<PathSensitiveBugReport>(
        *BT_DoubleFree[*CheckKind],
        (Released ? "Attempt to free released memory"
                  : "Attempt to free non-owned memory"),
        N);
    R->addRange(Range);
    R->markInteresting(Sym);
    if (PrevSym)
      R->markInteresting(PrevSym);
    R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
    C.emitReport(std::move(R));
  }
}

void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const {

  if (!ChecksEnabled[CK_NewDeleteChecker])
    return;

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_DoubleDelete)
      BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
                                        "Double delete",
                                        categories::MemoryError));

    auto R = std::make_unique<PathSensitiveBugReport>(
        *BT_DoubleDelete, "Attempt to delete released memory", N);

    R->markInteresting(Sym);
    R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
    C.emitReport(std::move(R));
  }
}

void MallocChecker::ReportUseZeroAllocated(CheckerContext &C,
                                           SourceRange Range,
                                           SymbolRef Sym) const {

  if (!ChecksEnabled[CK_MallocChecker] &&
      !ChecksEnabled[CK_NewDeleteChecker])
    return;

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);

  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_UseZerroAllocated[*CheckKind])
      BT_UseZerroAllocated[*CheckKind].reset(
          new BugType(CheckNames[*CheckKind], "Use of zero allocated",
                      categories::MemoryError));

    auto R = std::make_unique<PathSensitiveBugReport>(
        *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N);

    R->addRange(Range);
    if (Sym) {
      R->markInteresting(Sym);
      R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
    }
    C.emitReport(std::move(R));
  }
}

void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal,
                                              SourceRange Range,
                                              const Expr *FreeExpr) const {
  if (!ChecksEnabled[CK_MallocChecker])
    return;

  Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr);
  if (!CheckKind.hasValue())
    return;

  if (ExplodedNode *N = C.generateErrorNode()) {
    if (!BT_BadFree[*CheckKind])
      BT_BadFree[*CheckKind].reset(new BugType(
          CheckNames[*CheckKind], "Bad free", categories::MemoryError));

    SmallString<100> Buf;
    llvm::raw_svector_ostream Os(Buf);

    const MemRegion *MR = ArgVal.getAsRegion();
    while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
      MR = ER->getSuperRegion();

    Os << "Argument to ";
    if (!printAllocDeallocName(Os, C, FreeExpr))
      Os << "deallocator";

    Os << " is a function pointer";

    auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
                                                      Os.str(), N);
    R->markInteresting(MR);
    R->addRange(Range);
    C.emitReport(std::move(R));
  }
}

ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C,
                                             const CallExpr *CE,
                                             bool ShouldFreeOnFail,
                                             ProgramStateRef State,
                                             bool SuffixWithN) const {
  if (!State)
    return nullptr;

  if (SuffixWithN && CE->getNumArgs() < 3)
    return nullptr;
  else if (CE->getNumArgs() < 2)
    return nullptr;

  const Expr *arg0Expr = CE->getArg(0);
  SVal Arg0Val = C.getSVal(arg0Expr);
  if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
    return nullptr;
  DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();

  SValBuilder &svalBuilder = C.getSValBuilder();

  DefinedOrUnknownSVal PtrEQ =
    svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());

  // Get the size argument.
  const Expr *Arg1 = CE->getArg(1);

  // Get the value of the size argument.
  SVal TotalSize = C.getSVal(Arg1);
  if (SuffixWithN)
    TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2));
  if (!TotalSize.getAs<DefinedOrUnknownSVal>())
    return nullptr;

  // Compare the size argument to 0.
  DefinedOrUnknownSVal SizeZero =
    svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(),
                       svalBuilder.makeIntValWithPtrWidth(0, false));

  ProgramStateRef StatePtrIsNull, StatePtrNotNull;
  std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
  ProgramStateRef StateSizeIsZero, StateSizeNotZero;
  std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
  // We only assume exceptional states if they are definitely true; if the
  // state is under-constrained, assume regular realloc behavior.
  bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
  bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;

  // If the ptr is NULL and the size is not 0, the call is equivalent to
  // malloc(size).
  if (PrtIsNull && !SizeIsZero) {
    ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize,
                                               UndefinedVal(), StatePtrIsNull);
    return stateMalloc;
  }

  if (PrtIsNull && SizeIsZero)
    return State;

  // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
  assert(!PrtIsNull);
  SymbolRef FromPtr = arg0Val.getAsSymbol();
  SVal RetVal = C.getSVal(CE);
  SymbolRef ToPtr = RetVal.getAsSymbol();
  if (!FromPtr || !ToPtr)
    return nullptr;

  bool IsKnownToBeAllocated = false;

  // If the size is 0, free the memory.
  if (SizeIsZero)
    // The semantics of the return value are:
    // If size was equal to 0, either NULL or a pointer suitable to be passed
    // to free() is returned. We just free the input pointer and do not add
    // any constrains on the output pointer.
    if (ProgramStateRef stateFree =
            FreeMemAux(C, CE, StateSizeIsZero, 0, false, IsKnownToBeAllocated))
      return stateFree;

  // Default behavior.
  if (ProgramStateRef stateFree =
          FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocated)) {

    ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize,
                                                UnknownVal(), stateFree);
    if (!stateRealloc)
      return nullptr;

    OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure;
    if (ShouldFreeOnFail)
      Kind = OAR_FreeOnFailure;
    else if (!IsKnownToBeAllocated)
      Kind = OAR_DoNotTrackAfterFailure;

    // Record the info about the reallocated symbol so that we could properly
    // process failed reallocation.
    stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
                                                   ReallocPair(FromPtr, Kind));
    // The reallocated symbol should stay alive for as long as the new symbol.
    C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
    return stateRealloc;
  }
  return nullptr;
}

ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE,
                                         ProgramStateRef State) {
  if (!State)
    return nullptr;

  if (CE->getNumArgs() < 2)
    return nullptr;

  SValBuilder &svalBuilder = C.getSValBuilder();
  SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
  SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1));

  return MallocMemAux(C, CE, TotalSize, zeroVal, State);
}

MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N,
                                                         SymbolRef Sym,
                                                         CheckerContext &C) {
  const LocationContext *LeakContext = N->getLocationContext();
  // Walk the ExplodedGraph backwards and find the first node that referred to
  // the tracked symbol.
  const ExplodedNode *AllocNode = N;
  const MemRegion *ReferenceRegion = nullptr;

  while (N) {
    ProgramStateRef State = N->getState();
    if (!State->get<RegionState>(Sym))
      break;

    // Find the most recent expression bound to the symbol in the current
    // context.
      if (!ReferenceRegion) {
        if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
          SVal Val = State->getSVal(MR);
          if (Val.getAsLocSymbol() == Sym) {
            const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>();
            // Do not show local variables belonging to a function other than
            // where the error is reported.
            if (!VR ||
                (VR->getStackFrame() == LeakContext->getStackFrame()))
              ReferenceRegion = MR;
          }
        }
      }

    // Allocation node, is the last node in the current or parent context in
    // which the symbol was tracked.
    const LocationContext *NContext = N->getLocationContext();
    if (NContext == LeakContext ||
        NContext->isParentOf(LeakContext))
      AllocNode = N;
    N = N->pred_empty() ? nullptr : *(N->pred_begin());
  }

  return LeakInfo(AllocNode, ReferenceRegion);
}

void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N,
                               CheckerContext &C) const {

  if (!ChecksEnabled[CK_MallocChecker] &&
      !ChecksEnabled[CK_NewDeleteLeaksChecker])
    return;

  const RefState *RS = C.getState()->get<RegionState>(Sym);
  assert(RS && "cannot leak an untracked symbol");
  AllocationFamily Family = RS->getAllocationFamily();

  if (Family == AF_Alloca)
    return;

  Optional<MallocChecker::CheckKind>
      CheckKind = getCheckIfTracked(Family, true);

  if (!CheckKind.hasValue())
    return;

  assert(N);
  if (!BT_Leak[*CheckKind]) {
    // Leaks should not be reported if they are post-dominated by a sink:
    // (1) Sinks are higher importance bugs.
    // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
    //     with __noreturn functions such as assert() or exit(). We choose not
    //     to report leaks on such paths.
    BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak",
                                          categories::MemoryError,
                                          /*SuppressOnSink=*/true));
  }

  // Most bug reports are cached at the location where they occurred.
  // With leaks, we want to unique them by the location where they were
  // allocated, and only report a single path.
  PathDiagnosticLocation LocUsedForUniqueing;
  const ExplodedNode *AllocNode = nullptr;
  const MemRegion *Region = nullptr;
  std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);

  const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics();
  if (AllocationStmt)
    LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
                                              C.getSourceManager(),
                                              AllocNode->getLocationContext());

  SmallString<200> buf;
  llvm::raw_svector_ostream os(buf);
  if (Region && Region->canPrintPretty()) {
    os << "Potential leak of memory pointed to by ";
    Region->printPretty(os);
  } else {
    os << "Potential memory leak";
  }

  auto R = std::make_unique<PathSensitiveBugReport>(
      *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
      AllocNode->getLocationContext()->getDecl());
  R->markInteresting(Sym);
  R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true));
  C.emitReport(std::move(R));
}

void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
                                     CheckerContext &C) const
{
  ProgramStateRef state = C.getState();
  RegionStateTy OldRS = state->get<RegionState>();
  RegionStateTy::Factory &F = state->get_context<RegionState>();

  RegionStateTy RS = OldRS;
  SmallVector<SymbolRef, 2> Errors;
  for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
    if (SymReaper.isDead(I->first)) {
      if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
        Errors.push_back(I->first);
      // Remove the dead symbol from the map.
      RS = F.remove(RS, I->first);
    }
  }

  if (RS == OldRS) {
    // We shouldn't have touched other maps yet.
    assert(state->get<ReallocPairs>() ==
           C.getState()->get<ReallocPairs>());
    assert(state->get<FreeReturnValue>() ==
           C.getState()->get<FreeReturnValue>());
    return;
  }

  // Cleanup the Realloc Pairs Map.
  ReallocPairsTy RP = state->get<ReallocPairs>();
  for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
    if (SymReaper.isDead(I->first) ||
        SymReaper.isDead(I->second.ReallocatedSym)) {
      state = state->remove<ReallocPairs>(I->first);
    }
  }

  // Cleanup the FreeReturnValue Map.
  FreeReturnValueTy FR = state->get<FreeReturnValue>();
  for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
    if (SymReaper.isDead(I->first) ||
        SymReaper.isDead(I->second)) {
      state = state->remove<FreeReturnValue>(I->first);
    }
  }

  // Generate leak node.
  ExplodedNode *N = C.getPredecessor();
  if (!Errors.empty()) {
    static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
    N = C.generateNonFatalErrorNode(C.getState(), &Tag);
    if (N) {
      for (SmallVectorImpl<SymbolRef>::iterator
           I = Errors.begin(), E = Errors.end(); I != E; ++I) {
        reportLeak(*I, N, C);
      }
    }
  }

  C.addTransition(state->set<RegionState>(RS), N);
}

void MallocChecker::checkPreCall(const CallEvent &Call,
                                 CheckerContext &C) const {

  if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) {
    SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
    if (!Sym || checkDoubleDelete(Sym, C))
      return;
  }

  // We will check for double free in the post visit.
  if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
    const FunctionDecl *FD = FC->getDecl();
    if (!FD)
      return;

    ASTContext &Ctx = C.getASTContext();
    if (ChecksEnabled[CK_MallocChecker] &&
        (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc,
                                        MemoryOperationKind::MOK_Free) ||
         MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex,
                                        MemoryOperationKind::MOK_Free)))
      return;
  }

  // Check if the callee of a method is deleted.
  if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
    SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
    if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
      return;
  }

  // Check arguments for being used after free.
  for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
    SVal ArgSVal = Call.getArgSVal(I);
    if (ArgSVal.getAs<Loc>()) {
      SymbolRef Sym = ArgSVal.getAsSymbol();
      if (!Sym)
        continue;
      if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
        return;
    }
  }
}

void MallocChecker::checkPreStmt(const ReturnStmt *S,
                                 CheckerContext &C) const {
  checkEscapeOnReturn(S, C);
}

// In the CFG, automatic destructors come after the return statement.
// This callback checks for returning memory that is freed by automatic
// destructors, as those cannot be reached in checkPreStmt().
void MallocChecker::checkEndFunction(const ReturnStmt *S,
                                     CheckerContext &C) const {
  checkEscapeOnReturn(S, C);
}

void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S,
                                        CheckerContext &C) const {
  if (!S)
    return;

  const Expr *E = S->getRetValue();
  if (!E)
    return;

  // Check if we are returning a symbol.
  ProgramStateRef State = C.getState();
  SVal RetVal = C.getSVal(E);
  SymbolRef Sym = RetVal.getAsSymbol();
  if (!Sym)
    // If we are returning a field of the allocated struct or an array element,
    // the callee could still free the memory.
    // TODO: This logic should be a part of generic symbol escape callback.
    if (const MemRegion *MR = RetVal.getAsRegion())
      if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
        if (const SymbolicRegion *BMR =
              dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
          Sym = BMR->getSymbol();

  // Check if we are returning freed memory.
  if (Sym)
    checkUseAfterFree(Sym, C, E);
}

// TODO: Blocks should be either inlined or should call invalidate regions
// upon invocation. After that's in place, special casing here will not be
// needed.
void MallocChecker::checkPostStmt(const BlockExpr *BE,
                                  CheckerContext &C) const {

  // Scan the BlockDecRefExprs for any object the retain count checker
  // may be tracking.
  if (!BE->getBlockDecl()->hasCaptures())
    return;

  ProgramStateRef state = C.getState();
  const BlockDataRegion *R =
    cast<BlockDataRegion>(C.getSVal(BE).getAsRegion());

  BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
                                            E = R->referenced_vars_end();

  if (I == E)
    return;

  SmallVector<const MemRegion*, 10> Regions;
  const LocationContext *LC = C.getLocationContext();
  MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();

  for ( ; I != E; ++I) {
    const VarRegion *VR = I.getCapturedRegion();
    if (VR->getSuperRegion() == R) {
      VR = MemMgr.getVarRegion(VR->getDecl(), LC);
    }
    Regions.push_back(VR);
  }

  state =
    state->scanReachableSymbols<StopTrackingCallback>(Regions).getState();
  C.addTransition(state);
}

static bool isReleased(SymbolRef Sym, CheckerContext &C) {
  assert(Sym);
  const RefState *RS = C.getState()->get<RegionState>(Sym);
  return (RS && RS->isReleased());
}

bool MallocChecker::suppressDeallocationsInSuspiciousContexts(
    const CallExpr *CE, CheckerContext &C) const {
  if (CE->getNumArgs() == 0)
    return false;

  StringRef FunctionStr = "";
  if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl()))
    if (const Stmt *Body = FD->getBody())
      if (Body->getBeginLoc().isValid())
        FunctionStr =
            Lexer::getSourceText(CharSourceRange::getTokenRange(
                                     {FD->getBeginLoc(), Body->getBeginLoc()}),
                                 C.getSourceManager(), C.getLangOpts());

  // We do not model the Integer Set Library's retain-count based allocation.
  if (!FunctionStr.contains("__isl_"))
    return false;

  ProgramStateRef State = C.getState();

  for (const Expr *Arg : CE->arguments())
    if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol())
      if (const RefState *RS = State->get<RegionState>(Sym))
        State = State->set<RegionState>(Sym, RefState::getEscaped(RS));

  C.addTransition(State);
  return true;
}

bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
                                      const Stmt *S) const {

  if (isReleased(Sym, C)) {
    ReportUseAfterFree(C, S->getSourceRange(), Sym);
    return true;
  }

  return false;
}

void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
                                          const Stmt *S) const {
  assert(Sym);

  if (const RefState *RS = C.getState()->get<RegionState>(Sym)) {
    if (RS->isAllocatedOfSizeZero())
      ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym);
  }
  else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) {
    ReportUseZeroAllocated(C, S->getSourceRange(), Sym);
  }
}

bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {

  if (isReleased(Sym, C)) {
    ReportDoubleDelete(C, Sym);
    return true;
  }
  return false;
}

// Check if the location is a freed symbolic region.
void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
                                  CheckerContext &C) const {
  SymbolRef Sym = l.getLocSymbolInBase();
  if (Sym) {
    checkUseAfterFree(Sym, C, S);
    checkUseZeroAllocated(Sym, C, S);
  }
}

// If a symbolic region is assumed to NULL (or another constant), stop tracking
// it - assuming that allocation failed on this path.
ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
                                              SVal Cond,
                                              bool Assumption) const {
  RegionStateTy RS = state->get<RegionState>();
  for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
    // If the symbol is assumed to be NULL, remove it from consideration.
    ConstraintManager &CMgr = state->getConstraintManager();
    ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
    if (AllocFailed.isConstrainedTrue())
      state = state->remove<RegionState>(I.getKey());
  }

  // Realloc returns 0 when reallocation fails, which means that we should
  // restore the state of the pointer being reallocated.
  ReallocPairsTy RP = state->get<ReallocPairs>();
  for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
    // If the symbol is assumed to be NULL, remove it from consideration.
    ConstraintManager &CMgr = state->getConstraintManager();
    ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
    if (!AllocFailed.isConstrainedTrue())
      continue;

    SymbolRef ReallocSym = I.getData().ReallocatedSym;
    if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
      if (RS->isReleased()) {
        switch (I.getData().Kind) {
        case OAR_ToBeFreedAfterFailure:
          state = state->set<RegionState>(ReallocSym,
              RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
          break;
        case OAR_DoNotTrackAfterFailure:
          state = state->remove<RegionState>(ReallocSym);
          break;
        default:
          assert(I.getData().Kind == OAR_FreeOnFailure);
        }
      }
    }
    state = state->remove<ReallocPairs>(I.getKey());
  }

  return state;
}

bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
                                              const CallEvent *Call,
                                              ProgramStateRef State,
                                              SymbolRef &EscapingSymbol) const {
  assert(Call);
  EscapingSymbol = nullptr;

  // For now, assume that any C++ or block call can free memory.
  // TODO: If we want to be more optimistic here, we'll need to make sure that
  // regions escape to C++ containers. They seem to do that even now, but for
  // mysterious reasons.
  if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
    return true;

  // Check Objective-C messages by selector name.
  if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
    // If it's not a framework call, or if it takes a callback, assume it
    // can free memory.
    if (!Call->isInSystemHeader() || Call->argumentsMayEscape())
      return true;

    // If it's a method we know about, handle it explicitly post-call.
    // This should happen before the "freeWhenDone" check below.
    if (isKnownDeallocObjCMethodName(*Msg))
      return false;

    // If there's a "freeWhenDone" parameter, but the method isn't one we know
    // about, we can't be sure that the object will use free() to deallocate the
    // memory, so we can't model it explicitly. The best we can do is use it to
    // decide whether the pointer escapes.
    if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
      return *FreeWhenDone;

    // If the first selector piece ends with "NoCopy", and there is no
    // "freeWhenDone" parameter set to zero, we know ownership is being
    // transferred. Again, though, we can't be sure that the object will use
    // free() to deallocate the memory, so we can't model it explicitly.
    StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
    if (FirstSlot.endswith("NoCopy"))
      return true;

    // If the first selector starts with addPointer, insertPointer,
    // or replacePointer, assume we are dealing with NSPointerArray or similar.
    // This is similar to C++ containers (vector); we still might want to check
    // that the pointers get freed by following the container itself.
    if (FirstSlot.startswith("addPointer") ||
        FirstSlot.startswith("insertPointer") ||
        FirstSlot.startswith("replacePointer") ||
        FirstSlot.equals("valueWithPointer")) {
      return true;
    }

    // We should escape receiver on call to 'init'. This is especially relevant
    // to the receiver, as the corresponding symbol is usually not referenced
    // after the call.
    if (Msg->getMethodFamily() == OMF_init) {
      EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
      return true;
    }

    // Otherwise, assume that the method does not free memory.
    // Most framework methods do not free memory.
    return false;
  }

  // At this point the only thing left to handle is straight function calls.
  const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
  if (!FD)
    return true;

  ASTContext &ASTC = State->getStateManager().getContext();

  // If it's one of the allocation functions we can reason about, we model
  // its behavior explicitly.
  if (MemFunctionInfo.isMemFunction(FD, ASTC))
    return false;

  // If it's not a system call, assume it frees memory.
  if (!Call->isInSystemHeader())
    return true;

  // White list the system functions whose arguments escape.
  const IdentifierInfo *II = FD->getIdentifier();
  if (!II)
    return true;
  StringRef FName = II->getName();

  // White list the 'XXXNoCopy' CoreFoundation functions.
  // We specifically check these before
  if (FName.endswith("NoCopy")) {
    // Look for the deallocator argument. We know that the memory ownership
    // is not transferred only if the deallocator argument is
    // 'kCFAllocatorNull'.
    for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
      const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
      if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
        StringRef DeallocatorName = DE->getFoundDecl()->getName();
        if (DeallocatorName == "kCFAllocatorNull")
          return false;
      }
    }
    return true;
  }

  // Associating streams with malloced buffers. The pointer can escape if
  // 'closefn' is specified (and if that function does free memory),
  // but it will not if closefn is not specified.
  // Currently, we do not inspect the 'closefn' function (PR12101).
  if (FName == "funopen")
    if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
      return false;

  // Do not warn on pointers passed to 'setbuf' when used with std streams,
  // these leaks might be intentional when setting the buffer for stdio.
  // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
  if (FName == "setbuf" || FName =="setbuffer" ||
      FName == "setlinebuf" || FName == "setvbuf") {
    if (Call->getNumArgs() >= 1) {
      const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
      if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
        if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
          if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
            return true;
    }
  }

  // A bunch of other functions which either take ownership of a pointer or
  // wrap the result up in a struct or object, meaning it can be freed later.
  // (See RetainCountChecker.) Not all the parameters here are invalidated,
  // but the Malloc checker cannot differentiate between them. The right way
  // of doing this would be to implement a pointer escapes callback.
  if (FName == "CGBitmapContextCreate" ||
      FName == "CGBitmapContextCreateWithData" ||
      FName == "CVPixelBufferCreateWithBytes" ||
      FName == "CVPixelBufferCreateWithPlanarBytes" ||
      FName == "OSAtomicEnqueue") {
    return true;
  }

  if (FName == "postEvent" &&
      FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
    return true;
  }

  if (FName == "postEvent" &&
      FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
    return true;
  }

  if (FName == "connectImpl" &&
      FD->getQualifiedNameAsString() == "QObject::connectImpl") {
    return true;
  }

  // Handle cases where we know a buffer's /address/ can escape.
  // Note that the above checks handle some special cases where we know that
  // even though the address escapes, it's still our responsibility to free the
  // buffer.
  if (Call->argumentsMayEscape())
    return true;

  // Otherwise, assume that the function does not free memory.
  // Most system calls do not free the memory.
  return false;
}

ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
                                             const InvalidatedSymbols &Escaped,
                                             const CallEvent *Call,
                                             PointerEscapeKind Kind) const {
  return checkPointerEscapeAux(State, Escaped, Call, Kind,
                               /*IsConstPointerEscape*/ false);
}

ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
                                              const InvalidatedSymbols &Escaped,
                                              const CallEvent *Call,
                                              PointerEscapeKind Kind) const {
  // If a const pointer escapes, it may not be freed(), but it could be deleted.
  return checkPointerEscapeAux(State, Escaped, Call, Kind,
                               /*IsConstPointerEscape*/ true);
}

static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
  return (RS->getAllocationFamily() == AF_CXXNewArray ||
          RS->getAllocationFamily() == AF_CXXNew);
}

ProgramStateRef MallocChecker::checkPointerEscapeAux(
    ProgramStateRef State, const InvalidatedSymbols &Escaped,
    const CallEvent *Call, PointerEscapeKind Kind,
    bool IsConstPointerEscape) const {
  // If we know that the call does not free memory, or we want to process the
  // call later, keep tracking the top level arguments.
  SymbolRef EscapingSymbol = nullptr;
  if (Kind == PSK_DirectEscapeOnCall &&
      !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
                                                    EscapingSymbol) &&
      !EscapingSymbol) {
    return State;
  }

  for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
       E = Escaped.end();
       I != E; ++I) {
    SymbolRef sym = *I;

    if (EscapingSymbol && EscapingSymbol != sym)
      continue;

    if (const RefState *RS = State->get<RegionState>(sym))
      if (RS->isAllocated() || RS->isAllocatedOfSizeZero())
        if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS))
          State = State->set<RegionState>(sym, RefState::getEscaped(RS));
  }
  return State;
}

static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
                                         ProgramStateRef prevState) {
  ReallocPairsTy currMap = currState->get<ReallocPairs>();
  ReallocPairsTy prevMap = prevState->get<ReallocPairs>();

  for (const ReallocPairsTy::value_type &Pair : prevMap) {
    SymbolRef sym = Pair.first;
    if (!currMap.lookup(sym))
      return sym;
  }

  return nullptr;
}

static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) {
  if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) {
    StringRef N = II->getName();
    if (N.contains_lower("ptr") || N.contains_lower("pointer")) {
      if (N.contains_lower("ref") || N.contains_lower("cnt") ||
          N.contains_lower("intrusive") || N.contains_lower("shared")) {
        return true;
      }
    }
  }
  return false;
}

PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N,
                                                   BugReporterContext &BRC,
                                                   PathSensitiveBugReport &BR) {
  ProgramStateRef state = N->getState();
  ProgramStateRef statePrev = N->getFirstPred()->getState();

  const RefState *RSCurr = state->get<RegionState>(Sym);
  const RefState *RSPrev = statePrev->get<RegionState>(Sym);

  const Stmt *S = N->getStmtForDiagnostics();
  // When dealing with containers, we sometimes want to give a note
  // even if the statement is missing.
  if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer))
    return nullptr;

  const LocationContext *CurrentLC = N->getLocationContext();

  // If we find an atomic fetch_add or fetch_sub within the destructor in which
  // the pointer was released (before the release), this is likely a destructor
  // of a shared pointer.
  // Because we don't model atomics, and also because we don't know that the
  // original reference count is positive, we should not report use-after-frees
  // on objects deleted in such destructors. This can probably be improved
  // through better shared pointer modeling.
  if (ReleaseDestructorLC) {
    if (const auto *AE = dyn_cast<AtomicExpr>(S)) {
      AtomicExpr::AtomicOp Op = AE->getOp();
      if (Op == AtomicExpr::AO__c11_atomic_fetch_add ||
          Op == AtomicExpr::AO__c11_atomic_fetch_sub) {
        if (ReleaseDestructorLC == CurrentLC ||
            ReleaseDestructorLC->isParentOf(CurrentLC)) {
          BR.markInvalid(getTag(), S);
        }
      }
    }
  }

  // FIXME: We will eventually need to handle non-statement-based events
  // (__attribute__((cleanup))).

  // Find out if this is an interesting point and what is the kind.
  StringRef Msg;
  std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr;
  SmallString<256> Buf;
  llvm::raw_svector_ostream OS(Buf);

  if (Mode == Normal) {
    if (isAllocated(RSCurr, RSPrev, S)) {
      Msg = "Memory is allocated";
      StackHint = std::make_unique<StackHintGeneratorForSymbol>(
          Sym, "Returned allocated memory");
    } else if (isReleased(RSCurr, RSPrev, S)) {
      const auto Family = RSCurr->getAllocationFamily();
      switch (Family) {
        case AF_Alloca:
        case AF_Malloc:
        case AF_CXXNew:
        case AF_CXXNewArray:
        case AF_IfNameIndex:
          Msg = "Memory is released";
          StackHint = std::make_unique<StackHintGeneratorForSymbol>(
              Sym, "Returning; memory was released");
          break;
        case AF_InnerBuffer: {
          const MemRegion *ObjRegion =
              allocation_state::getContainerObjRegion(statePrev, Sym);
          const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion);
          QualType ObjTy = TypedRegion->getValueType();
          OS << "Inner buffer of '" << ObjTy.getAsString() << "' ";

          if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) {
            OS << "deallocated by call to destructor";
            StackHint = std::make_unique<StackHintGeneratorForSymbol>(
                Sym, "Returning; inner buffer was deallocated");
          } else {
            OS << "reallocated by call to '";
            const Stmt *S = RSCurr->getStmt();
            if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) {
              OS << MemCallE->getMethodDecl()->getNameAsString();
            } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) {
              OS << OpCallE->getDirectCallee()->getNameAsString();
            } else if (const auto *CallE = dyn_cast<CallExpr>(S)) {
              auto &CEMgr = BRC.getStateManager().getCallEventManager();
              CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC);
              const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl());
              OS << (D ? D->getNameAsString() : "unknown");
            }
            OS << "'";
            StackHint = std::make_unique<StackHintGeneratorForSymbol>(
                Sym, "Returning; inner buffer was reallocated");
          }
          Msg = OS.str();
          break;
        }
        case AF_None:
          llvm_unreachable("Unhandled allocation family!");
      }

      // See if we're releasing memory while inlining a destructor
      // (or one of its callees). This turns on various common
      // false positive suppressions.
      bool FoundAnyDestructor = false;
      for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) {
        if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) {
          if (isReferenceCountingPointerDestructor(DD)) {
            // This immediately looks like a reference-counting destructor.
            // We're bad at guessing the original reference count of the object,
            // so suppress the report for now.
            BR.markInvalid(getTag(), DD);
          } else if (!FoundAnyDestructor) {
            assert(!ReleaseDestructorLC &&
                   "There can be only one release point!");
            // Suspect that it's a reference counting pointer destructor.
            // On one of the next nodes might find out that it has atomic
            // reference counting operations within it (see the code above),
            // and if so, we'd conclude that it likely is a reference counting
            // pointer destructor.
            ReleaseDestructorLC = LC->getStackFrame();
            // It is unlikely that releasing memory is delegated to a destructor
            // inside a destructor of a shared pointer, because it's fairly hard
            // to pass the information that the pointer indeed needs to be
            // released into it. So we're only interested in the innermost
            // destructor.
            FoundAnyDestructor = true;
          }
        }
      }
    } else if (isRelinquished(RSCurr, RSPrev, S)) {
      Msg = "Memory ownership is transferred";
      StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, "");
    } else if (hasReallocFailed(RSCurr, RSPrev, S)) {
      Mode = ReallocationFailed;
      Msg = "Reallocation failed";
      StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>(
          Sym, "Reallocation failed");

      if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
        // Is it possible to fail two reallocs WITHOUT testing in between?
        assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
          "We only support one failed realloc at a time.");
        BR.markInteresting(sym);
        FailedReallocSymbol = sym;
      }
    }

  // We are in a special mode if a reallocation failed later in the path.
  } else if (Mode == ReallocationFailed) {
    assert(FailedReallocSymbol && "No symbol to look for.");

    // Is this is the first appearance of the reallocated symbol?
    if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
      // We're at the reallocation point.
      Msg = "Attempt to reallocate memory";
      StackHint = std::make_unique<StackHintGeneratorForSymbol>(
          Sym, "Returned reallocated memory");
      FailedReallocSymbol = nullptr;
      Mode = Normal;
    }
  }

  if (Msg.empty()) {
    assert(!StackHint);
    return nullptr;
  }

  assert(StackHint);

  // Generate the extra diagnostic.
  PathDiagnosticLocation Pos;
  if (!S) {
    assert(RSCurr->getAllocationFamily() == AF_InnerBuffer);
    auto PostImplCall = N->getLocation().getAs<PostImplicitCall>();
    if (!PostImplCall)
      return nullptr;
    Pos = PathDiagnosticLocation(PostImplCall->getLocation(),
                                 BRC.getSourceManager());
  } else {
    Pos = PathDiagnosticLocation(S, BRC.getSourceManager(),
                                 N->getLocationContext());
  }

  auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true);
  BR.addCallStackHint(P, std::move(StackHint));
  return P;
}

void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
                               const char *NL, const char *Sep) const {

  RegionStateTy RS = State->get<RegionState>();

  if (!RS.isEmpty()) {
    Out << Sep << "MallocChecker :" << NL;
    for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
      const RefState *RefS = State->get<RegionState>(I.getKey());
      AllocationFamily Family = RefS->getAllocationFamily();
      Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
      if (!CheckKind.hasValue())
         CheckKind = getCheckIfTracked(Family, true);

      I.getKey()->dumpToStream(Out);
      Out << " : ";
      I.getData().dump(Out);
      if (CheckKind.hasValue())
        Out << " (" << CheckNames[*CheckKind].getName() << ")";
      Out << NL;
    }
  }
}

namespace clang {
namespace ento {
namespace allocation_state {

ProgramStateRef
markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) {
  AllocationFamily Family = AF_InnerBuffer;
  return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin));
}

} // end namespace allocation_state
} // end namespace ento
} // end namespace clang

// Intended to be used in InnerPointerChecker to register the part of
// MallocChecker connected to it.
void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) {
  MallocChecker *checker = mgr.getChecker<MallocChecker>();
  checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true;
  checker->CheckNames[MallocChecker::CK_InnerPointerChecker] =
      mgr.getCurrentCheckerName();
}

void ento::registerDynamicMemoryModeling(CheckerManager &mgr) {
  auto *checker = mgr.registerChecker<MallocChecker>();
  checker->MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions =
      mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic");
}

bool ento::shouldRegisterDynamicMemoryModeling(const LangOptions &LO) {
  return true;
}

#define REGISTER_CHECKER(name)                                                 \
  void ento::register##name(CheckerManager &mgr) {                             \
    MallocChecker *checker = mgr.getChecker<MallocChecker>();                  \
    checker->ChecksEnabled[MallocChecker::CK_##name] = true;                   \
    checker->CheckNames[MallocChecker::CK_##name] =                            \
        mgr.getCurrentCheckerName();                                           \
  }                                                                            \
                                                                               \
  bool ento::shouldRegister##name(const LangOptions &LO) { return true; }

REGISTER_CHECKER(MallocChecker)
REGISTER_CHECKER(NewDeleteChecker)
REGISTER_CHECKER(NewDeleteLeaksChecker)
REGISTER_CHECKER(MismatchedDeallocatorChecker)