reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
//== ProgramState.h - Path-sensitive "State" for tracking values -*- C++ -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the state of the program along the analysisa path.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H

#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Environment.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/Support/Allocator.h"
#include <utility>

namespace llvm {
class APSInt;
}

namespace clang {
class ASTContext;

namespace ento {

class AnalysisManager;
class CallEvent;
class CallEventManager;

typedef std::unique_ptr<ConstraintManager>(*ConstraintManagerCreator)(
    ProgramStateManager &, SubEngine *);
typedef std::unique_ptr<StoreManager>(*StoreManagerCreator)(
    ProgramStateManager &);

//===----------------------------------------------------------------------===//
// ProgramStateTrait - Traits used by the Generic Data Map of a ProgramState.
//===----------------------------------------------------------------------===//

template <typename T> struct ProgramStatePartialTrait;

template <typename T> struct ProgramStateTrait {
  typedef typename T::data_type data_type;
  static inline void *MakeVoidPtr(data_type D) { return (void*) D; }
  static inline data_type MakeData(void *const* P) {
    return P ? (data_type) *P : (data_type) 0;
  }
};

/// \class ProgramState
/// ProgramState - This class encapsulates:
///
///    1. A mapping from expressions to values (Environment)
///    2. A mapping from locations to values (Store)
///    3. Constraints on symbolic values (GenericDataMap)
///
///  Together these represent the "abstract state" of a program.
///
///  ProgramState is intended to be used as a functional object; that is,
///  once it is created and made "persistent" in a FoldingSet, its
///  values will never change.
class ProgramState : public llvm::FoldingSetNode {
public:
  typedef llvm::ImmutableSet<llvm::APSInt*>                IntSetTy;
  typedef llvm::ImmutableMap<void*, void*>                 GenericDataMap;

private:
  void operator=(const ProgramState& R) = delete;

  friend class ProgramStateManager;
  friend class ExplodedGraph;
  friend class ExplodedNode;

  ProgramStateManager *stateMgr;
  Environment Env;           // Maps a Stmt to its current SVal.
  Store store;               // Maps a location to its current value.
  GenericDataMap   GDM;      // Custom data stored by a client of this class.
  unsigned refCount;

  /// makeWithStore - Return a ProgramState with the same values as the current
  ///  state with the exception of using the specified Store.
  ProgramStateRef makeWithStore(const StoreRef &store) const;

  void setStore(const StoreRef &storeRef);

public:
  /// This ctor is used when creating the first ProgramState object.
  ProgramState(ProgramStateManager *mgr, const Environment& env,
          StoreRef st, GenericDataMap gdm);

  /// Copy ctor - We must explicitly define this or else the "Next" ptr
  ///  in FoldingSetNode will also get copied.
  ProgramState(const ProgramState &RHS);

  ~ProgramState();

  int64_t getID() const;

  /// Return the ProgramStateManager associated with this state.
  ProgramStateManager &getStateManager() const {
    return *stateMgr;
  }

  AnalysisManager &getAnalysisManager() const;

  /// Return the ConstraintManager.
  ConstraintManager &getConstraintManager() const;

  /// getEnvironment - Return the environment associated with this state.
  ///  The environment is the mapping from expressions to values.
  const Environment& getEnvironment() const { return Env; }

  /// Return the store associated with this state.  The store
  ///  is a mapping from locations to values.
  Store getStore() const { return store; }


  /// getGDM - Return the generic data map associated with this state.
  GenericDataMap getGDM() const { return GDM; }

  void setGDM(GenericDataMap gdm) { GDM = gdm; }

  /// Profile - Profile the contents of a ProgramState object for use in a
  ///  FoldingSet.  Two ProgramState objects are considered equal if they
  ///  have the same Environment, Store, and GenericDataMap.
  static void Profile(llvm::FoldingSetNodeID& ID, const ProgramState *V) {
    V->Env.Profile(ID);
    ID.AddPointer(V->store);
    V->GDM.Profile(ID);
  }

  /// Profile - Used to profile the contents of this object for inclusion
  ///  in a FoldingSet.
  void Profile(llvm::FoldingSetNodeID& ID) const {
    Profile(ID, this);
  }

  BasicValueFactory &getBasicVals() const;
  SymbolManager &getSymbolManager() const;

  //==---------------------------------------------------------------------==//
  // Constraints on values.
  //==---------------------------------------------------------------------==//
  //
  // Each ProgramState records constraints on symbolic values.  These constraints
  // are managed using the ConstraintManager associated with a ProgramStateManager.
  // As constraints gradually accrue on symbolic values, added constraints
  // may conflict and indicate that a state is infeasible (as no real values
  // could satisfy all the constraints).  This is the principal mechanism
  // for modeling path-sensitivity in ExprEngine/ProgramState.
  //
  // Various "assume" methods form the interface for adding constraints to
  // symbolic values.  A call to 'assume' indicates an assumption being placed
  // on one or symbolic values.  'assume' methods take the following inputs:
  //
  //  (1) A ProgramState object representing the current state.
  //
  //  (2) The assumed constraint (which is specific to a given "assume" method).
  //
  //  (3) A binary value "Assumption" that indicates whether the constraint is
  //      assumed to be true or false.
  //
  // The output of "assume*" is a new ProgramState object with the added constraints.
  // If no new state is feasible, NULL is returned.
  //

  /// Assumes that the value of \p cond is zero (if \p assumption is "false")
  /// or non-zero (if \p assumption is "true").
  ///
  /// This returns a new state with the added constraint on \p cond.
  /// If no new state is feasible, NULL is returned.
  LLVM_NODISCARD ProgramStateRef assume(DefinedOrUnknownSVal cond,
                                        bool assumption) const;

  /// Assumes both "true" and "false" for \p cond, and returns both
  /// corresponding states (respectively).
  ///
  /// This is more efficient than calling assume() twice. Note that one (but not
  /// both) of the returned states may be NULL.
  LLVM_NODISCARD std::pair<ProgramStateRef, ProgramStateRef>
  assume(DefinedOrUnknownSVal cond) const;

  LLVM_NODISCARD ProgramStateRef
  assumeInBound(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
                bool assumption, QualType IndexType = QualType()) const;

  /// Assumes that the value of \p Val is bounded with [\p From; \p To]
  /// (if \p assumption is "true") or it is fully out of this range
  /// (if \p assumption is "false").
  ///
  /// This returns a new state with the added constraint on \p cond.
  /// If no new state is feasible, NULL is returned.
  LLVM_NODISCARD ProgramStateRef assumeInclusiveRange(DefinedOrUnknownSVal Val,
                                                      const llvm::APSInt &From,
                                                      const llvm::APSInt &To,
                                                      bool assumption) const;

  /// Assumes given range both "true" and "false" for \p Val, and returns both
  /// corresponding states (respectively).
  ///
  /// This is more efficient than calling assume() twice. Note that one (but not
  /// both) of the returned states may be NULL.
  LLVM_NODISCARD std::pair<ProgramStateRef, ProgramStateRef>
  assumeInclusiveRange(DefinedOrUnknownSVal Val, const llvm::APSInt &From,
                       const llvm::APSInt &To) const;

  /// Check if the given SVal is not constrained to zero and is not
  ///        a zero constant.
  ConditionTruthVal isNonNull(SVal V) const;

  /// Check if the given SVal is constrained to zero or is a zero
  ///        constant.
  ConditionTruthVal isNull(SVal V) const;

  /// \return Whether values \p Lhs and \p Rhs are equal.
  ConditionTruthVal areEqual(SVal Lhs, SVal Rhs) const;

  /// Utility method for getting regions.
  const VarRegion* getRegion(const VarDecl *D, const LocationContext *LC) const;

  //==---------------------------------------------------------------------==//
  // Binding and retrieving values to/from the environment and symbolic store.
  //==---------------------------------------------------------------------==//

  /// Create a new state by binding the value 'V' to the statement 'S' in the
  /// state's environment.
  LLVM_NODISCARD ProgramStateRef BindExpr(const Stmt *S,
                                          const LocationContext *LCtx, SVal V,
                                          bool Invalidate = true) const;

  LLVM_NODISCARD ProgramStateRef bindLoc(Loc location, SVal V,
                                         const LocationContext *LCtx,
                                         bool notifyChanges = true) const;

  LLVM_NODISCARD ProgramStateRef bindLoc(SVal location, SVal V,
                                         const LocationContext *LCtx) const;

  /// Initializes the region of memory represented by \p loc with an initial
  /// value. Once initialized, all values loaded from any sub-regions of that
  /// region will be equal to \p V, unless overwritten later by the program.
  /// This method should not be used on regions that are already initialized.
  /// If you need to indicate that memory contents have suddenly become unknown
  /// within a certain region of memory, consider invalidateRegions().
  LLVM_NODISCARD ProgramStateRef
  bindDefaultInitial(SVal loc, SVal V, const LocationContext *LCtx) const;

  /// Performs C++ zero-initialization procedure on the region of memory
  /// represented by \p loc.
  LLVM_NODISCARD ProgramStateRef
  bindDefaultZero(SVal loc, const LocationContext *LCtx) const;

  LLVM_NODISCARD ProgramStateRef killBinding(Loc LV) const;

  /// Returns the state with bindings for the given regions
  ///  cleared from the store.
  ///
  /// Optionally invalidates global regions as well.
  ///
  /// \param Regions the set of regions to be invalidated.
  /// \param E the expression that caused the invalidation.
  /// \param BlockCount The number of times the current basic block has been
  //         visited.
  /// \param CausesPointerEscape the flag is set to true when
  ///        the invalidation entails escape of a symbol (representing a
  ///        pointer). For example, due to it being passed as an argument in a
  ///        call.
  /// \param IS the set of invalidated symbols.
  /// \param Call if non-null, the invalidated regions represent parameters to
  ///        the call and should be considered directly invalidated.
  /// \param ITraits information about special handling for a particular
  ///        region/symbol.
  LLVM_NODISCARD ProgramStateRef
  invalidateRegions(ArrayRef<const MemRegion *> Regions, const Expr *E,
                    unsigned BlockCount, const LocationContext *LCtx,
                    bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
                    const CallEvent *Call = nullptr,
                    RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;

  LLVM_NODISCARD ProgramStateRef
  invalidateRegions(ArrayRef<SVal> Regions, const Expr *E,
                    unsigned BlockCount, const LocationContext *LCtx,
                    bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
                    const CallEvent *Call = nullptr,
                    RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;

  /// enterStackFrame - Returns the state for entry to the given stack frame,
  ///  preserving the current state.
  LLVM_NODISCARD ProgramStateRef enterStackFrame(
      const CallEvent &Call, const StackFrameContext *CalleeCtx) const;

  /// Get the lvalue for a base class object reference.
  Loc getLValue(const CXXBaseSpecifier &BaseSpec, const SubRegion *Super) const;

  /// Get the lvalue for a base class object reference.
  Loc getLValue(const CXXRecordDecl *BaseClass, const SubRegion *Super,
                bool IsVirtual) const;

  /// Get the lvalue for a variable reference.
  Loc getLValue(const VarDecl *D, const LocationContext *LC) const;

  Loc getLValue(const CompoundLiteralExpr *literal,
                const LocationContext *LC) const;

  /// Get the lvalue for an ivar reference.
  SVal getLValue(const ObjCIvarDecl *decl, SVal base) const;

  /// Get the lvalue for a field reference.
  SVal getLValue(const FieldDecl *decl, SVal Base) const;

  /// Get the lvalue for an indirect field reference.
  SVal getLValue(const IndirectFieldDecl *decl, SVal Base) const;

  /// Get the lvalue for an array index.
  SVal getLValue(QualType ElementType, SVal Idx, SVal Base) const;

  /// Returns the SVal bound to the statement 'S' in the state's environment.
  SVal getSVal(const Stmt *S, const LocationContext *LCtx) const;

  SVal getSValAsScalarOrLoc(const Stmt *Ex, const LocationContext *LCtx) const;

  /// Return the value bound to the specified location.
  /// Returns UnknownVal() if none found.
  SVal getSVal(Loc LV, QualType T = QualType()) const;

  /// Returns the "raw" SVal bound to LV before any value simplfication.
  SVal getRawSVal(Loc LV, QualType T= QualType()) const;

  /// Return the value bound to the specified location.
  /// Returns UnknownVal() if none found.
  SVal getSVal(const MemRegion* R, QualType T = QualType()) const;

  /// Return the value bound to the specified location, assuming
  /// that the value is a scalar integer or an enumeration or a pointer.
  /// Returns UnknownVal() if none found or the region is not known to hold
  /// a value of such type.
  SVal getSValAsScalarOrLoc(const MemRegion *R) const;

  using region_iterator = const MemRegion **;

  /// Visits the symbols reachable from the given SVal using the provided
  /// SymbolVisitor.
  ///
  /// This is a convenience API. Consider using ScanReachableSymbols class
  /// directly when making multiple scans on the same state with the same
  /// visitor to avoid repeated initialization cost.
  /// \sa ScanReachableSymbols
  bool scanReachableSymbols(SVal val, SymbolVisitor& visitor) const;

  /// Visits the symbols reachable from the regions in the given
  /// MemRegions range using the provided SymbolVisitor.
  bool scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable,
                            SymbolVisitor &visitor) const;

  template <typename CB> CB scanReachableSymbols(SVal val) const;
  template <typename CB> CB
  scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable) const;

  //==---------------------------------------------------------------------==//
  // Accessing the Generic Data Map (GDM).
  //==---------------------------------------------------------------------==//

  void *const* FindGDM(void *K) const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  add(typename ProgramStateTrait<T>::key_type K) const;

  template <typename T>
  typename ProgramStateTrait<T>::data_type
  get() const {
    return ProgramStateTrait<T>::MakeData(FindGDM(ProgramStateTrait<T>::GDMIndex()));
  }

  template<typename T>
  typename ProgramStateTrait<T>::lookup_type
  get(typename ProgramStateTrait<T>::key_type key) const {
    void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
    return ProgramStateTrait<T>::Lookup(ProgramStateTrait<T>::MakeData(d), key);
  }

  template <typename T>
  typename ProgramStateTrait<T>::context_type get_context() const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  remove(typename ProgramStateTrait<T>::key_type K) const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  remove(typename ProgramStateTrait<T>::key_type K,
         typename ProgramStateTrait<T>::context_type C) const;

  template <typename T> LLVM_NODISCARD ProgramStateRef remove() const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  set(typename ProgramStateTrait<T>::data_type D) const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  set(typename ProgramStateTrait<T>::key_type K,
      typename ProgramStateTrait<T>::value_type E) const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  set(typename ProgramStateTrait<T>::key_type K,
      typename ProgramStateTrait<T>::value_type E,
      typename ProgramStateTrait<T>::context_type C) const;

  template<typename T>
  bool contains(typename ProgramStateTrait<T>::key_type key) const {
    void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
    return ProgramStateTrait<T>::Contains(ProgramStateTrait<T>::MakeData(d), key);
  }

  // Pretty-printing.
  void printJson(raw_ostream &Out, const LocationContext *LCtx = nullptr,
                 const char *NL = "\n", unsigned int Space = 0,
                 bool IsDot = false) const;

  void printDOT(raw_ostream &Out, const LocationContext *LCtx = nullptr,
                unsigned int Space = 0) const;

  void dump() const;

private:
  friend void ProgramStateRetain(const ProgramState *state);
  friend void ProgramStateRelease(const ProgramState *state);

  /// \sa invalidateValues()
  /// \sa invalidateRegions()
  ProgramStateRef
  invalidateRegionsImpl(ArrayRef<SVal> Values,
                        const Expr *E, unsigned BlockCount,
                        const LocationContext *LCtx,
                        bool ResultsInSymbolEscape,
                        InvalidatedSymbols *IS,
                        RegionAndSymbolInvalidationTraits *HTraits,
                        const CallEvent *Call) const;
};

//===----------------------------------------------------------------------===//
// ProgramStateManager - Factory object for ProgramStates.
//===----------------------------------------------------------------------===//

class ProgramStateManager {
  friend class ProgramState;
  friend void ProgramStateRelease(const ProgramState *state);
private:
  /// Eng - The SubEngine that owns this state manager.
  SubEngine *Eng; /* Can be null. */

  EnvironmentManager                   EnvMgr;
  std::unique_ptr<StoreManager>        StoreMgr;
  std::unique_ptr<ConstraintManager>   ConstraintMgr;

  ProgramState::GenericDataMap::Factory     GDMFactory;

  typedef llvm::DenseMap<void*,std::pair<void*,void (*)(void*)> > GDMContextsTy;
  GDMContextsTy GDMContexts;

  /// StateSet - FoldingSet containing all the states created for analyzing
  ///  a particular function.  This is used to unique states.
  llvm::FoldingSet<ProgramState> StateSet;

  /// Object that manages the data for all created SVals.
  std::unique_ptr<SValBuilder> svalBuilder;

  /// Manages memory for created CallEvents.
  std::unique_ptr<CallEventManager> CallEventMgr;

  /// A BumpPtrAllocator to allocate states.
  llvm::BumpPtrAllocator &Alloc;

  /// A vector of ProgramStates that we can reuse.
  std::vector<ProgramState *> freeStates;

public:
  ProgramStateManager(ASTContext &Ctx,
                 StoreManagerCreator CreateStoreManager,
                 ConstraintManagerCreator CreateConstraintManager,
                 llvm::BumpPtrAllocator& alloc,
                 SubEngine *subeng);

  ~ProgramStateManager();

  ProgramStateRef getInitialState(const LocationContext *InitLoc);

  ASTContext &getContext() { return svalBuilder->getContext(); }
  const ASTContext &getContext() const { return svalBuilder->getContext(); }

  BasicValueFactory &getBasicVals() {
    return svalBuilder->getBasicValueFactory();
  }

  SValBuilder &getSValBuilder() {
    return *svalBuilder;
  }

  const SValBuilder &getSValBuilder() const {
    return *svalBuilder;
  }

  SymbolManager &getSymbolManager() {
    return svalBuilder->getSymbolManager();
  }
  const SymbolManager &getSymbolManager() const {
    return svalBuilder->getSymbolManager();
  }

  llvm::BumpPtrAllocator& getAllocator() { return Alloc; }

  MemRegionManager& getRegionManager() {
    return svalBuilder->getRegionManager();
  }
  const MemRegionManager &getRegionManager() const {
    return svalBuilder->getRegionManager();
  }

  CallEventManager &getCallEventManager() { return *CallEventMgr; }

  StoreManager &getStoreManager() { return *StoreMgr; }
  ConstraintManager &getConstraintManager() { return *ConstraintMgr; }
  SubEngine &getOwningEngine() { return *Eng; }

  ProgramStateRef removeDeadBindings(ProgramStateRef St,
                                    const StackFrameContext *LCtx,
                                    SymbolReaper& SymReaper);

public:

  SVal ArrayToPointer(Loc Array, QualType ElementTy) {
    return StoreMgr->ArrayToPointer(Array, ElementTy);
  }

  // Methods that manipulate the GDM.
  ProgramStateRef addGDM(ProgramStateRef St, void *Key, void *Data);
  ProgramStateRef removeGDM(ProgramStateRef state, void *Key);

  // Methods that query & manipulate the Store.

  void iterBindings(ProgramStateRef state, StoreManager::BindingsHandler& F) {
    StoreMgr->iterBindings(state->getStore(), F);
  }

  ProgramStateRef getPersistentState(ProgramState &Impl);
  ProgramStateRef getPersistentStateWithGDM(ProgramStateRef FromState,
                                           ProgramStateRef GDMState);

  bool haveEqualConstraints(ProgramStateRef S1, ProgramStateRef S2) const {
    return ConstraintMgr->haveEqualConstraints(S1, S2);
  }

  bool haveEqualEnvironments(ProgramStateRef S1, ProgramStateRef S2) const {
    return S1->Env == S2->Env;
  }

  bool haveEqualStores(ProgramStateRef S1, ProgramStateRef S2) const {
    return S1->store == S2->store;
  }

  //==---------------------------------------------------------------------==//
  // Generic Data Map methods.
  //==---------------------------------------------------------------------==//
  //
  // ProgramStateManager and ProgramState support a "generic data map" that allows
  // different clients of ProgramState objects to embed arbitrary data within a
  // ProgramState object.  The generic data map is essentially an immutable map
  // from a "tag" (that acts as the "key" for a client) and opaque values.
  // Tags/keys and values are simply void* values.  The typical way that clients
  // generate unique tags are by taking the address of a static variable.
  // Clients are responsible for ensuring that data values referred to by a
  // the data pointer are immutable (and thus are essentially purely functional
  // data).
  //
  // The templated methods below use the ProgramStateTrait<T> class
  // to resolve keys into the GDM and to return data values to clients.
  //

  // Trait based GDM dispatch.
  template <typename T>
  ProgramStateRef set(ProgramStateRef st, typename ProgramStateTrait<T>::data_type D) {
    return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
                  ProgramStateTrait<T>::MakeVoidPtr(D));
  }

  template<typename T>
  ProgramStateRef set(ProgramStateRef st,
                     typename ProgramStateTrait<T>::key_type K,
                     typename ProgramStateTrait<T>::value_type V,
                     typename ProgramStateTrait<T>::context_type C) {

    return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
     ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Set(st->get<T>(), K, V, C)));
  }

  template <typename T>
  ProgramStateRef add(ProgramStateRef st,
                     typename ProgramStateTrait<T>::key_type K,
                     typename ProgramStateTrait<T>::context_type C) {
    return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
        ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Add(st->get<T>(), K, C)));
  }

  template <typename T>
  ProgramStateRef remove(ProgramStateRef st,
                        typename ProgramStateTrait<T>::key_type K,
                        typename ProgramStateTrait<T>::context_type C) {

    return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
     ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Remove(st->get<T>(), K, C)));
  }

  template <typename T>
  ProgramStateRef remove(ProgramStateRef st) {
    return removeGDM(st, ProgramStateTrait<T>::GDMIndex());
  }

  void *FindGDMContext(void *index,
                       void *(*CreateContext)(llvm::BumpPtrAllocator&),
                       void  (*DeleteContext)(void*));

  template <typename T>
  typename ProgramStateTrait<T>::context_type get_context() {
    void *p = FindGDMContext(ProgramStateTrait<T>::GDMIndex(),
                             ProgramStateTrait<T>::CreateContext,
                             ProgramStateTrait<T>::DeleteContext);

    return ProgramStateTrait<T>::MakeContext(p);
  }
};


//===----------------------------------------------------------------------===//
// Out-of-line method definitions for ProgramState.
//===----------------------------------------------------------------------===//

inline ConstraintManager &ProgramState::getConstraintManager() const {
  return stateMgr->getConstraintManager();
}

inline const VarRegion* ProgramState::getRegion(const VarDecl *D,
                                                const LocationContext *LC) const
{
  return getStateManager().getRegionManager().getVarRegion(D, LC);
}

inline ProgramStateRef ProgramState::assume(DefinedOrUnknownSVal Cond,
                                      bool Assumption) const {
  if (Cond.isUnknown())
    return this;

  return getStateManager().ConstraintMgr
      ->assume(this, Cond.castAs<DefinedSVal>(), Assumption);
}

inline std::pair<ProgramStateRef , ProgramStateRef >
ProgramState::assume(DefinedOrUnknownSVal Cond) const {
  if (Cond.isUnknown())
    return std::make_pair(this, this);

  return getStateManager().ConstraintMgr
      ->assumeDual(this, Cond.castAs<DefinedSVal>());
}

inline ProgramStateRef ProgramState::assumeInclusiveRange(
    DefinedOrUnknownSVal Val, const llvm::APSInt &From, const llvm::APSInt &To,
    bool Assumption) const {
  if (Val.isUnknown())
    return this;

  assert(Val.getAs<NonLoc>() && "Only NonLocs are supported!");

  return getStateManager().ConstraintMgr->assumeInclusiveRange(
      this, Val.castAs<NonLoc>(), From, To, Assumption);
}

inline std::pair<ProgramStateRef, ProgramStateRef>
ProgramState::assumeInclusiveRange(DefinedOrUnknownSVal Val,
                                   const llvm::APSInt &From,
                                   const llvm::APSInt &To) const {
  if (Val.isUnknown())
    return std::make_pair(this, this);

  assert(Val.getAs<NonLoc>() && "Only NonLocs are supported!");

  return getStateManager().ConstraintMgr->assumeInclusiveRangeDual(
      this, Val.castAs<NonLoc>(), From, To);
}

inline ProgramStateRef ProgramState::bindLoc(SVal LV, SVal V, const LocationContext *LCtx) const {
  if (Optional<Loc> L = LV.getAs<Loc>())
    return bindLoc(*L, V, LCtx);
  return this;
}

inline Loc ProgramState::getLValue(const CXXBaseSpecifier &BaseSpec,
                                   const SubRegion *Super) const {
  const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
  return loc::MemRegionVal(
           getStateManager().getRegionManager().getCXXBaseObjectRegion(
                                            Base, Super, BaseSpec.isVirtual()));
}

inline Loc ProgramState::getLValue(const CXXRecordDecl *BaseClass,
                                   const SubRegion *Super,
                                   bool IsVirtual) const {
  return loc::MemRegionVal(
           getStateManager().getRegionManager().getCXXBaseObjectRegion(
                                                  BaseClass, Super, IsVirtual));
}

inline Loc ProgramState::getLValue(const VarDecl *VD,
                               const LocationContext *LC) const {
  return getStateManager().StoreMgr->getLValueVar(VD, LC);
}

inline Loc ProgramState::getLValue(const CompoundLiteralExpr *literal,
                               const LocationContext *LC) const {
  return getStateManager().StoreMgr->getLValueCompoundLiteral(literal, LC);
}

inline SVal ProgramState::getLValue(const ObjCIvarDecl *D, SVal Base) const {
  return getStateManager().StoreMgr->getLValueIvar(D, Base);
}

inline SVal ProgramState::getLValue(const FieldDecl *D, SVal Base) const {
  return getStateManager().StoreMgr->getLValueField(D, Base);
}

inline SVal ProgramState::getLValue(const IndirectFieldDecl *D,
                                    SVal Base) const {
  StoreManager &SM = *getStateManager().StoreMgr;
  for (const auto *I : D->chain()) {
    Base = SM.getLValueField(cast<FieldDecl>(I), Base);
  }

  return Base;
}

inline SVal ProgramState::getLValue(QualType ElementType, SVal Idx, SVal Base) const{
  if (Optional<NonLoc> N = Idx.getAs<NonLoc>())
    return getStateManager().StoreMgr->getLValueElement(ElementType, *N, Base);
  return UnknownVal();
}

inline SVal ProgramState::getSVal(const Stmt *Ex,
                                  const LocationContext *LCtx) const{
  return Env.getSVal(EnvironmentEntry(Ex, LCtx),
                     *getStateManager().svalBuilder);
}

inline SVal
ProgramState::getSValAsScalarOrLoc(const Stmt *S,
                                   const LocationContext *LCtx) const {
  if (const Expr *Ex = dyn_cast<Expr>(S)) {
    QualType T = Ex->getType();
    if (Ex->isGLValue() || Loc::isLocType(T) ||
        T->isIntegralOrEnumerationType())
      return getSVal(S, LCtx);
  }

  return UnknownVal();
}

inline SVal ProgramState::getRawSVal(Loc LV, QualType T) const {
  return getStateManager().StoreMgr->getBinding(getStore(), LV, T);
}

inline SVal ProgramState::getSVal(const MemRegion* R, QualType T) const {
  return getStateManager().StoreMgr->getBinding(getStore(),
                                                loc::MemRegionVal(R),
                                                T);
}

inline BasicValueFactory &ProgramState::getBasicVals() const {
  return getStateManager().getBasicVals();
}

inline SymbolManager &ProgramState::getSymbolManager() const {
  return getStateManager().getSymbolManager();
}

template<typename T>
ProgramStateRef ProgramState::add(typename ProgramStateTrait<T>::key_type K) const {
  return getStateManager().add<T>(this, K, get_context<T>());
}

template <typename T>
typename ProgramStateTrait<T>::context_type ProgramState::get_context() const {
  return getStateManager().get_context<T>();
}

template<typename T>
ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K) const {
  return getStateManager().remove<T>(this, K, get_context<T>());
}

template<typename T>
ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K,
                               typename ProgramStateTrait<T>::context_type C) const {
  return getStateManager().remove<T>(this, K, C);
}

template <typename T>
ProgramStateRef ProgramState::remove() const {
  return getStateManager().remove<T>(this);
}

template<typename T>
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::data_type D) const {
  return getStateManager().set<T>(this, D);
}

template<typename T>
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
                            typename ProgramStateTrait<T>::value_type E) const {
  return getStateManager().set<T>(this, K, E, get_context<T>());
}

template<typename T>
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
                            typename ProgramStateTrait<T>::value_type E,
                            typename ProgramStateTrait<T>::context_type C) const {
  return getStateManager().set<T>(this, K, E, C);
}

template <typename CB>
CB ProgramState::scanReachableSymbols(SVal val) const {
  CB cb(this);
  scanReachableSymbols(val, cb);
  return cb;
}

template <typename CB>
CB ProgramState::scanReachableSymbols(
    llvm::iterator_range<region_iterator> Reachable) const {
  CB cb(this);
  scanReachableSymbols(Reachable, cb);
  return cb;
}

/// \class ScanReachableSymbols
/// A utility class that visits the reachable symbols using a custom
/// SymbolVisitor. Terminates recursive traversal when the visitor function
/// returns false.
class ScanReachableSymbols {
  typedef llvm::DenseSet<const void*> VisitedItems;

  VisitedItems visited;
  ProgramStateRef state;
  SymbolVisitor &visitor;
public:
  ScanReachableSymbols(ProgramStateRef st, SymbolVisitor &v)
      : state(std::move(st)), visitor(v) {}

  bool scan(nonloc::LazyCompoundVal val);
  bool scan(nonloc::CompoundVal val);
  bool scan(SVal val);
  bool scan(const MemRegion *R);
  bool scan(const SymExpr *sym);
};

} // end ento namespace

} // end clang namespace

#endif