reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines the Decl subclasses.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_DECL_H
#define LLVM_CLANG_AST_DECL_H

#include "clang/AST/APValue.h"
#include "clang/AST/ASTContextAllocate.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/Type.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/PragmaKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/Visibility.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TrailingObjects.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <string>
#include <utility>

namespace clang {

class ASTContext;
struct ASTTemplateArgumentListInfo;
class Attr;
class CompoundStmt;
class DependentFunctionTemplateSpecializationInfo;
class EnumDecl;
class Expr;
class FunctionTemplateDecl;
class FunctionTemplateSpecializationInfo;
class FunctionTypeLoc;
class LabelStmt;
class MemberSpecializationInfo;
class Module;
class NamespaceDecl;
class ParmVarDecl;
class RecordDecl;
class Stmt;
class StringLiteral;
class TagDecl;
class TemplateArgumentList;
class TemplateArgumentListInfo;
class TemplateParameterList;
class TypeAliasTemplateDecl;
class TypeLoc;
class UnresolvedSetImpl;
class VarTemplateDecl;

/// A container of type source information.
///
/// A client can read the relevant info using TypeLoc wrappers, e.g:
/// @code
/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
/// TL.getBeginLoc().print(OS, SrcMgr);
/// @endcode
class alignas(8) TypeSourceInfo {
  // Contains a memory block after the class, used for type source information,
  // allocated by ASTContext.
  friend class ASTContext;

  QualType Ty;

  TypeSourceInfo(QualType ty) : Ty(ty) {}

public:
  /// Return the type wrapped by this type source info.
  QualType getType() const { return Ty; }

  /// Return the TypeLoc wrapper for the type source info.
  TypeLoc getTypeLoc() const; // implemented in TypeLoc.h

  /// Override the type stored in this TypeSourceInfo. Use with caution!
  void overrideType(QualType T) { Ty = T; }
};

/// The top declaration context.
class TranslationUnitDecl : public Decl, public DeclContext {
  ASTContext &Ctx;

  /// The (most recently entered) anonymous namespace for this
  /// translation unit, if one has been created.
  NamespaceDecl *AnonymousNamespace = nullptr;

  explicit TranslationUnitDecl(ASTContext &ctx);

  virtual void anchor();

public:
  ASTContext &getASTContext() const { return Ctx; }

  NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
  void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }

  static TranslationUnitDecl *Create(ASTContext &C);

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == TranslationUnit; }
  static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
    return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
  }
  static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
    return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
  }
};

/// Represents a `#pragma comment` line. Always a child of
/// TranslationUnitDecl.
class PragmaCommentDecl final
    : public Decl,
      private llvm::TrailingObjects<PragmaCommentDecl, char> {
  friend class ASTDeclReader;
  friend class ASTDeclWriter;
  friend TrailingObjects;

  PragmaMSCommentKind CommentKind;

  PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
                    PragmaMSCommentKind CommentKind)
      : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}

  virtual void anchor();

public:
  static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
                                   SourceLocation CommentLoc,
                                   PragmaMSCommentKind CommentKind,
                                   StringRef Arg);
  static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
                                               unsigned ArgSize);

  PragmaMSCommentKind getCommentKind() const { return CommentKind; }

  StringRef getArg() const { return getTrailingObjects<char>(); }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == PragmaComment; }
};

/// Represents a `#pragma detect_mismatch` line. Always a child of
/// TranslationUnitDecl.
class PragmaDetectMismatchDecl final
    : public Decl,
      private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
  friend class ASTDeclReader;
  friend class ASTDeclWriter;
  friend TrailingObjects;

  size_t ValueStart;

  PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
                           size_t ValueStart)
      : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}

  virtual void anchor();

public:
  static PragmaDetectMismatchDecl *Create(const ASTContext &C,
                                          TranslationUnitDecl *DC,
                                          SourceLocation Loc, StringRef Name,
                                          StringRef Value);
  static PragmaDetectMismatchDecl *
  CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);

  StringRef getName() const { return getTrailingObjects<char>(); }
  StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
};

/// Declaration context for names declared as extern "C" in C++. This
/// is neither the semantic nor lexical context for such declarations, but is
/// used to check for conflicts with other extern "C" declarations. Example:
///
/// \code
///   namespace N { extern "C" void f(); } // #1
///   void N::f() {}                       // #2
///   namespace M { extern "C" void f(); } // #3
/// \endcode
///
/// The semantic context of #1 is namespace N and its lexical context is the
/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
/// context is the TU. However, both declarations are also visible in the
/// extern "C" context.
///
/// The declaration at #3 finds it is a redeclaration of \c N::f through
/// lookup in the extern "C" context.
class ExternCContextDecl : public Decl, public DeclContext {
  explicit ExternCContextDecl(TranslationUnitDecl *TU)
    : Decl(ExternCContext, TU, SourceLocation()),
      DeclContext(ExternCContext) {}

  virtual void anchor();

public:
  static ExternCContextDecl *Create(const ASTContext &C,
                                    TranslationUnitDecl *TU);

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == ExternCContext; }
  static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
    return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
  }
  static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
    return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
  }
};

/// This represents a decl that may have a name.  Many decls have names such
/// as ObjCMethodDecl, but not \@class, etc.
///
/// Note that not every NamedDecl is actually named (e.g., a struct might
/// be anonymous), and not every name is an identifier.
class NamedDecl : public Decl {
  /// The name of this declaration, which is typically a normal
  /// identifier but may also be a special kind of name (C++
  /// constructor, Objective-C selector, etc.)
  DeclarationName Name;

  virtual void anchor();

private:
  NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;

protected:
  NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
      : Decl(DK, DC, L), Name(N) {}

public:
  /// Get the identifier that names this declaration, if there is one.
  ///
  /// This will return NULL if this declaration has no name (e.g., for
  /// an unnamed class) or if the name is a special name (C++ constructor,
  /// Objective-C selector, etc.).
  IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }

  /// Get the name of identifier for this declaration as a StringRef.
  ///
  /// This requires that the declaration have a name and that it be a simple
  /// identifier.
  StringRef getName() const {
    assert(Name.isIdentifier() && "Name is not a simple identifier");
    return getIdentifier() ? getIdentifier()->getName() : "";
  }

  /// Get a human-readable name for the declaration, even if it is one of the
  /// special kinds of names (C++ constructor, Objective-C selector, etc).
  ///
  /// Creating this name requires expensive string manipulation, so it should
  /// be called only when performance doesn't matter. For simple declarations,
  /// getNameAsCString() should suffice.
  //
  // FIXME: This function should be renamed to indicate that it is not just an
  // alternate form of getName(), and clients should move as appropriate.
  //
  // FIXME: Deprecated, move clients to getName().
  std::string getNameAsString() const { return Name.getAsString(); }

  virtual void printName(raw_ostream &os) const;

  /// Get the actual, stored name of the declaration, which may be a special
  /// name.
  DeclarationName getDeclName() const { return Name; }

  /// Set the name of this declaration.
  void setDeclName(DeclarationName N) { Name = N; }

  /// Returns a human-readable qualified name for this declaration, like
  /// A::B::i, for i being member of namespace A::B.
  ///
  /// If the declaration is not a member of context which can be named (record,
  /// namespace), it will return the same result as printName().
  ///
  /// Creating this name is expensive, so it should be called only when
  /// performance doesn't matter.
  void printQualifiedName(raw_ostream &OS) const;
  void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;

  /// Print only the nested name specifier part of a fully-qualified name,
  /// including the '::' at the end. E.g.
  ///    when `printQualifiedName(D)` prints "A::B::i",
  ///    this function prints "A::B::".
  void printNestedNameSpecifier(raw_ostream &OS) const;
  void printNestedNameSpecifier(raw_ostream &OS,
                                const PrintingPolicy &Policy) const;

  // FIXME: Remove string version.
  std::string getQualifiedNameAsString() const;

  /// Appends a human-readable name for this declaration into the given stream.
  ///
  /// This is the method invoked by Sema when displaying a NamedDecl
  /// in a diagnostic.  It does not necessarily produce the same
  /// result as printName(); for example, class template
  /// specializations are printed with their template arguments.
  virtual void getNameForDiagnostic(raw_ostream &OS,
                                    const PrintingPolicy &Policy,
                                    bool Qualified) const;

  /// Determine whether this declaration, if known to be well-formed within
  /// its context, will replace the declaration OldD if introduced into scope.
  ///
  /// A declaration will replace another declaration if, for example, it is
  /// a redeclaration of the same variable or function, but not if it is a
  /// declaration of a different kind (function vs. class) or an overloaded
  /// function.
  ///
  /// \param IsKnownNewer \c true if this declaration is known to be newer
  /// than \p OldD (for instance, if this declaration is newly-created).
  bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;

  /// Determine whether this declaration has linkage.
  bool hasLinkage() const;

  using Decl::isModulePrivate;
  using Decl::setModulePrivate;

  /// Determine whether this declaration is a C++ class member.
  bool isCXXClassMember() const {
    const DeclContext *DC = getDeclContext();

    // C++0x [class.mem]p1:
    //   The enumerators of an unscoped enumeration defined in
    //   the class are members of the class.
    if (isa<EnumDecl>(DC))
      DC = DC->getRedeclContext();

    return DC->isRecord();
  }

  /// Determine whether the given declaration is an instance member of
  /// a C++ class.
  bool isCXXInstanceMember() const;

  /// Determine what kind of linkage this entity has.
  ///
  /// This is not the linkage as defined by the standard or the codegen notion
  /// of linkage. It is just an implementation detail that is used to compute
  /// those.
  Linkage getLinkageInternal() const;

  /// Get the linkage from a semantic point of view. Entities in
  /// anonymous namespaces are external (in c++98).
  Linkage getFormalLinkage() const {
    return clang::getFormalLinkage(getLinkageInternal());
  }

  /// True if this decl has external linkage.
  bool hasExternalFormalLinkage() const {
    return isExternalFormalLinkage(getLinkageInternal());
  }

  bool isExternallyVisible() const {
    return clang::isExternallyVisible(getLinkageInternal());
  }

  /// Determine whether this declaration can be redeclared in a
  /// different translation unit.
  bool isExternallyDeclarable() const {
    return isExternallyVisible() && !getOwningModuleForLinkage();
  }

  /// Determines the visibility of this entity.
  Visibility getVisibility() const {
    return getLinkageAndVisibility().getVisibility();
  }

  /// Determines the linkage and visibility of this entity.
  LinkageInfo getLinkageAndVisibility() const;

  /// Kinds of explicit visibility.
  enum ExplicitVisibilityKind {
    /// Do an LV computation for, ultimately, a type.
    /// Visibility may be restricted by type visibility settings and
    /// the visibility of template arguments.
    VisibilityForType,

    /// Do an LV computation for, ultimately, a non-type declaration.
    /// Visibility may be restricted by value visibility settings and
    /// the visibility of template arguments.
    VisibilityForValue
  };

  /// If visibility was explicitly specified for this
  /// declaration, return that visibility.
  Optional<Visibility>
  getExplicitVisibility(ExplicitVisibilityKind kind) const;

  /// True if the computed linkage is valid. Used for consistency
  /// checking. Should always return true.
  bool isLinkageValid() const;

  /// True if something has required us to compute the linkage
  /// of this declaration.
  ///
  /// Language features which can retroactively change linkage (like a
  /// typedef name for linkage purposes) may need to consider this,
  /// but hopefully only in transitory ways during parsing.
  bool hasLinkageBeenComputed() const {
    return hasCachedLinkage();
  }

  /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
  /// the underlying named decl.
  NamedDecl *getUnderlyingDecl() {
    // Fast-path the common case.
    if (this->getKind() != UsingShadow &&
        this->getKind() != ConstructorUsingShadow &&
        this->getKind() != ObjCCompatibleAlias &&
        this->getKind() != NamespaceAlias)
      return this;

    return getUnderlyingDeclImpl();
  }
  const NamedDecl *getUnderlyingDecl() const {
    return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
  }

  NamedDecl *getMostRecentDecl() {
    return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
  }
  const NamedDecl *getMostRecentDecl() const {
    return const_cast<NamedDecl*>(this)->getMostRecentDecl();
  }

  ObjCStringFormatFamily getObjCFStringFormattingFamily() const;

  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
};

inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
  ND.printName(OS);
  return OS;
}

/// Represents the declaration of a label.  Labels also have a
/// corresponding LabelStmt, which indicates the position that the label was
/// defined at.  For normal labels, the location of the decl is the same as the
/// location of the statement.  For GNU local labels (__label__), the decl
/// location is where the __label__ is.
class LabelDecl : public NamedDecl {
  LabelStmt *TheStmt;
  StringRef MSAsmName;
  bool MSAsmNameResolved = false;

  /// For normal labels, this is the same as the main declaration
  /// label, i.e., the location of the identifier; for GNU local labels,
  /// this is the location of the __label__ keyword.
  SourceLocation LocStart;

  LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
            LabelStmt *S, SourceLocation StartL)
      : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}

  void anchor() override;

public:
  static LabelDecl *Create(ASTContext &C, DeclContext *DC,
                           SourceLocation IdentL, IdentifierInfo *II);
  static LabelDecl *Create(ASTContext &C, DeclContext *DC,
                           SourceLocation IdentL, IdentifierInfo *II,
                           SourceLocation GnuLabelL);
  static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  LabelStmt *getStmt() const { return TheStmt; }
  void setStmt(LabelStmt *T) { TheStmt = T; }

  bool isGnuLocal() const { return LocStart != getLocation(); }
  void setLocStart(SourceLocation L) { LocStart = L; }

  SourceRange getSourceRange() const override LLVM_READONLY {
    return SourceRange(LocStart, getLocation());
  }

  bool isMSAsmLabel() const { return !MSAsmName.empty(); }
  bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
  void setMSAsmLabel(StringRef Name);
  StringRef getMSAsmLabel() const { return MSAsmName; }
  void setMSAsmLabelResolved() { MSAsmNameResolved = true; }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == Label; }
};

/// Represent a C++ namespace.
class NamespaceDecl : public NamedDecl, public DeclContext,
                      public Redeclarable<NamespaceDecl>
{
  /// The starting location of the source range, pointing
  /// to either the namespace or the inline keyword.
  SourceLocation LocStart;

  /// The ending location of the source range.
  SourceLocation RBraceLoc;

  /// A pointer to either the anonymous namespace that lives just inside
  /// this namespace or to the first namespace in the chain (the latter case
  /// only when this is not the first in the chain), along with a
  /// boolean value indicating whether this is an inline namespace.
  llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;

  NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
                SourceLocation StartLoc, SourceLocation IdLoc,
                IdentifierInfo *Id, NamespaceDecl *PrevDecl);

  using redeclarable_base = Redeclarable<NamespaceDecl>;

  NamespaceDecl *getNextRedeclarationImpl() override;
  NamespaceDecl *getPreviousDeclImpl() override;
  NamespaceDecl *getMostRecentDeclImpl() override;

public:
  friend class ASTDeclReader;
  friend class ASTDeclWriter;

  static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
                               bool Inline, SourceLocation StartLoc,
                               SourceLocation IdLoc, IdentifierInfo *Id,
                               NamespaceDecl *PrevDecl);

  static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  using redecl_range = redeclarable_base::redecl_range;
  using redecl_iterator = redeclarable_base::redecl_iterator;

  using redeclarable_base::redecls_begin;
  using redeclarable_base::redecls_end;
  using redeclarable_base::redecls;
  using redeclarable_base::getPreviousDecl;
  using redeclarable_base::getMostRecentDecl;
  using redeclarable_base::isFirstDecl;

  /// Returns true if this is an anonymous namespace declaration.
  ///
  /// For example:
  /// \code
  ///   namespace {
  ///     ...
  ///   };
  /// \endcode
  /// q.v. C++ [namespace.unnamed]
  bool isAnonymousNamespace() const {
    return !getIdentifier();
  }

  /// Returns true if this is an inline namespace declaration.
  bool isInline() const {
    return AnonOrFirstNamespaceAndInline.getInt();
  }

  /// Set whether this is an inline namespace declaration.
  void setInline(bool Inline) {
    AnonOrFirstNamespaceAndInline.setInt(Inline);
  }

  /// Get the original (first) namespace declaration.
  NamespaceDecl *getOriginalNamespace();

  /// Get the original (first) namespace declaration.
  const NamespaceDecl *getOriginalNamespace() const;

  /// Return true if this declaration is an original (first) declaration
  /// of the namespace. This is false for non-original (subsequent) namespace
  /// declarations and anonymous namespaces.
  bool isOriginalNamespace() const;

  /// Retrieve the anonymous namespace nested inside this namespace,
  /// if any.
  NamespaceDecl *getAnonymousNamespace() const {
    return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
  }

  void setAnonymousNamespace(NamespaceDecl *D) {
    getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
  }

  /// Retrieves the canonical declaration of this namespace.
  NamespaceDecl *getCanonicalDecl() override {
    return getOriginalNamespace();
  }
  const NamespaceDecl *getCanonicalDecl() const {
    return getOriginalNamespace();
  }

  SourceRange getSourceRange() const override LLVM_READONLY {
    return SourceRange(LocStart, RBraceLoc);
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
  SourceLocation getRBraceLoc() const { return RBraceLoc; }
  void setLocStart(SourceLocation L) { LocStart = L; }
  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == Namespace; }
  static DeclContext *castToDeclContext(const NamespaceDecl *D) {
    return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
  }
  static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
    return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
  }
};

/// Represent the declaration of a variable (in which case it is
/// an lvalue) a function (in which case it is a function designator) or
/// an enum constant.
class ValueDecl : public NamedDecl {
  QualType DeclType;

  void anchor() override;

protected:
  ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
            DeclarationName N, QualType T)
    : NamedDecl(DK, DC, L, N), DeclType(T) {}

public:
  QualType getType() const { return DeclType; }
  void setType(QualType newType) { DeclType = newType; }

  /// Determine whether this symbol is weakly-imported,
  ///        or declared with the weak or weak-ref attr.
  bool isWeak() const;

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
};

/// A struct with extended info about a syntactic
/// name qualifier, to be used for the case of out-of-line declarations.
struct QualifierInfo {
  NestedNameSpecifierLoc QualifierLoc;

  /// The number of "outer" template parameter lists.
  /// The count includes all of the template parameter lists that were matched
  /// against the template-ids occurring into the NNS and possibly (in the
  /// case of an explicit specialization) a final "template <>".
  unsigned NumTemplParamLists = 0;

  /// A new-allocated array of size NumTemplParamLists,
  /// containing pointers to the "outer" template parameter lists.
  /// It includes all of the template parameter lists that were matched
  /// against the template-ids occurring into the NNS and possibly (in the
  /// case of an explicit specialization) a final "template <>".
  TemplateParameterList** TemplParamLists = nullptr;

  QualifierInfo() = default;
  QualifierInfo(const QualifierInfo &) = delete;
  QualifierInfo& operator=(const QualifierInfo &) = delete;

  /// Sets info about "outer" template parameter lists.
  void setTemplateParameterListsInfo(ASTContext &Context,
                                     ArrayRef<TemplateParameterList *> TPLists);
};

/// Represents a ValueDecl that came out of a declarator.
/// Contains type source information through TypeSourceInfo.
class DeclaratorDecl : public ValueDecl {
  // A struct representing both a TInfo and a syntactic qualifier,
  // to be used for the (uncommon) case of out-of-line declarations.
  struct ExtInfo : public QualifierInfo {
    TypeSourceInfo *TInfo;
  };

  llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;

  /// The start of the source range for this declaration,
  /// ignoring outer template declarations.
  SourceLocation InnerLocStart;

  bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
  ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
  const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }

protected:
  DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
                 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
                 SourceLocation StartL)
      : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}

public:
  friend class ASTDeclReader;
  friend class ASTDeclWriter;

  TypeSourceInfo *getTypeSourceInfo() const {
    return hasExtInfo()
      ? getExtInfo()->TInfo
      : DeclInfo.get<TypeSourceInfo*>();
  }

  void setTypeSourceInfo(TypeSourceInfo *TI) {
    if (hasExtInfo())
      getExtInfo()->TInfo = TI;
    else
      DeclInfo = TI;
  }

  /// Return start of source range ignoring outer template declarations.
  SourceLocation getInnerLocStart() const { return InnerLocStart; }
  void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }

  /// Return start of source range taking into account any outer template
  /// declarations.
  SourceLocation getOuterLocStart() const;

  SourceRange getSourceRange() const override LLVM_READONLY;

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getOuterLocStart();
  }

  /// Retrieve the nested-name-specifier that qualifies the name of this
  /// declaration, if it was present in the source.
  NestedNameSpecifier *getQualifier() const {
    return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
                        : nullptr;
  }

  /// Retrieve the nested-name-specifier (with source-location
  /// information) that qualifies the name of this declaration, if it was
  /// present in the source.
  NestedNameSpecifierLoc getQualifierLoc() const {
    return hasExtInfo() ? getExtInfo()->QualifierLoc
                        : NestedNameSpecifierLoc();
  }

  void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);

  unsigned getNumTemplateParameterLists() const {
    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
  }

  TemplateParameterList *getTemplateParameterList(unsigned index) const {
    assert(index < getNumTemplateParameterLists());
    return getExtInfo()->TemplParamLists[index];
  }

  void setTemplateParameterListsInfo(ASTContext &Context,
                                     ArrayRef<TemplateParameterList *> TPLists);

  SourceLocation getTypeSpecStartLoc() const;

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) {
    return K >= firstDeclarator && K <= lastDeclarator;
  }
};

/// Structure used to store a statement, the constant value to
/// which it was evaluated (if any), and whether or not the statement
/// is an integral constant expression (if known).
struct EvaluatedStmt {
  /// Whether this statement was already evaluated.
  bool WasEvaluated : 1;

  /// Whether this statement is being evaluated.
  bool IsEvaluating : 1;

  /// Whether we already checked whether this statement was an
  /// integral constant expression.
  bool CheckedICE : 1;

  /// Whether we are checking whether this statement is an
  /// integral constant expression.
  bool CheckingICE : 1;

  /// Whether this statement is an integral constant expression,
  /// or in C++11, whether the statement is a constant expression. Only
  /// valid if CheckedICE is true.
  bool IsICE : 1;

  /// Whether this variable is known to have constant destruction. That is,
  /// whether running the destructor on the initial value is a side-effect
  /// (and doesn't inspect any state that might have changed during program
  /// execution). This is currently only computed if the destructor is
  /// non-trivial.
  bool HasConstantDestruction : 1;

  Stmt *Value;
  APValue Evaluated;

  EvaluatedStmt()
      : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
        CheckingICE(false), IsICE(false), HasConstantDestruction(false) {}
};

/// Represents a variable declaration or definition.
class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
public:
  /// Initialization styles.
  enum InitializationStyle {
    /// C-style initialization with assignment
    CInit,

    /// Call-style initialization (C++98)
    CallInit,

    /// Direct list-initialization (C++11)
    ListInit
  };

  /// Kinds of thread-local storage.
  enum TLSKind {
    /// Not a TLS variable.
    TLS_None,

    /// TLS with a known-constant initializer.
    TLS_Static,

    /// TLS with a dynamic initializer.
    TLS_Dynamic
  };

  /// Return the string used to specify the storage class \p SC.
  ///
  /// It is illegal to call this function with SC == None.
  static const char *getStorageClassSpecifierString(StorageClass SC);

protected:
  // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
  // have allocated the auxiliary struct of information there.
  //
  // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
  // this as *many* VarDecls are ParmVarDecls that don't have default
  // arguments. We could save some space by moving this pointer union to be
  // allocated in trailing space when necessary.
  using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;

  /// The initializer for this variable or, for a ParmVarDecl, the
  /// C++ default argument.
  mutable InitType Init;

private:
  friend class ASTDeclReader;
  friend class ASTNodeImporter;
  friend class StmtIteratorBase;

  class VarDeclBitfields {
    friend class ASTDeclReader;
    friend class VarDecl;

    unsigned SClass : 3;
    unsigned TSCSpec : 2;
    unsigned InitStyle : 2;

    /// Whether this variable is an ARC pseudo-__strong variable; see
    /// isARCPseudoStrong() for details.
    unsigned ARCPseudoStrong : 1;
  };
  enum { NumVarDeclBits = 8 };

protected:
  enum { NumParameterIndexBits = 8 };

  enum DefaultArgKind {
    DAK_None,
    DAK_Unparsed,
    DAK_Uninstantiated,
    DAK_Normal
  };

  class ParmVarDeclBitfields {
    friend class ASTDeclReader;
    friend class ParmVarDecl;

    unsigned : NumVarDeclBits;

    /// Whether this parameter inherits a default argument from a
    /// prior declaration.
    unsigned HasInheritedDefaultArg : 1;

    /// Describes the kind of default argument for this parameter. By default
    /// this is none. If this is normal, then the default argument is stored in
    /// the \c VarDecl initializer expression unless we were unable to parse
    /// (even an invalid) expression for the default argument.
    unsigned DefaultArgKind : 2;

    /// Whether this parameter undergoes K&R argument promotion.
    unsigned IsKNRPromoted : 1;

    /// Whether this parameter is an ObjC method parameter or not.
    unsigned IsObjCMethodParam : 1;

    /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
    /// Otherwise, the number of function parameter scopes enclosing
    /// the function parameter scope in which this parameter was
    /// declared.
    unsigned ScopeDepthOrObjCQuals : 7;

    /// The number of parameters preceding this parameter in the
    /// function parameter scope in which it was declared.
    unsigned ParameterIndex : NumParameterIndexBits;
  };

  class NonParmVarDeclBitfields {
    friend class ASTDeclReader;
    friend class ImplicitParamDecl;
    friend class VarDecl;

    unsigned : NumVarDeclBits;

    // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
    /// Whether this variable is a definition which was demoted due to
    /// module merge.
    unsigned IsThisDeclarationADemotedDefinition : 1;

    /// Whether this variable is the exception variable in a C++ catch
    /// or an Objective-C @catch statement.
    unsigned ExceptionVar : 1;

    /// Whether this local variable could be allocated in the return
    /// slot of its function, enabling the named return value optimization
    /// (NRVO).
    unsigned NRVOVariable : 1;

    /// Whether this variable is the for-range-declaration in a C++0x
    /// for-range statement.
    unsigned CXXForRangeDecl : 1;

    /// Whether this variable is the for-in loop declaration in Objective-C.
    unsigned ObjCForDecl : 1;

    /// Whether this variable is (C++1z) inline.
    unsigned IsInline : 1;

    /// Whether this variable has (C++1z) inline explicitly specified.
    unsigned IsInlineSpecified : 1;

    /// Whether this variable is (C++0x) constexpr.
    unsigned IsConstexpr : 1;

    /// Whether this variable is the implicit variable for a lambda
    /// init-capture.
    unsigned IsInitCapture : 1;

    /// Whether this local extern variable's previous declaration was
    /// declared in the same block scope. This controls whether we should merge
    /// the type of this declaration with its previous declaration.
    unsigned PreviousDeclInSameBlockScope : 1;

    /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
    /// something else.
    unsigned ImplicitParamKind : 3;

    unsigned EscapingByref : 1;
  };

  union {
    unsigned AllBits;
    VarDeclBitfields VarDeclBits;
    ParmVarDeclBitfields ParmVarDeclBits;
    NonParmVarDeclBitfields NonParmVarDeclBits;
  };

  VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
          SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
          TypeSourceInfo *TInfo, StorageClass SC);

  using redeclarable_base = Redeclarable<VarDecl>;

  VarDecl *getNextRedeclarationImpl() override {
    return getNextRedeclaration();
  }

  VarDecl *getPreviousDeclImpl() override {
    return getPreviousDecl();
  }

  VarDecl *getMostRecentDeclImpl() override {
    return getMostRecentDecl();
  }

public:
  using redecl_range = redeclarable_base::redecl_range;
  using redecl_iterator = redeclarable_base::redecl_iterator;

  using redeclarable_base::redecls_begin;
  using redeclarable_base::redecls_end;
  using redeclarable_base::redecls;
  using redeclarable_base::getPreviousDecl;
  using redeclarable_base::getMostRecentDecl;
  using redeclarable_base::isFirstDecl;

  static VarDecl *Create(ASTContext &C, DeclContext *DC,
                         SourceLocation StartLoc, SourceLocation IdLoc,
                         IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
                         StorageClass S);

  static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  SourceRange getSourceRange() const override LLVM_READONLY;

  /// Returns the storage class as written in the source. For the
  /// computed linkage of symbol, see getLinkage.
  StorageClass getStorageClass() const {
    return (StorageClass) VarDeclBits.SClass;
  }
  void setStorageClass(StorageClass SC);

  void setTSCSpec(ThreadStorageClassSpecifier TSC) {
    VarDeclBits.TSCSpec = TSC;
    assert(VarDeclBits.TSCSpec == TSC && "truncation");
  }
  ThreadStorageClassSpecifier getTSCSpec() const {
    return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
  }
  TLSKind getTLSKind() const;

  /// Returns true if a variable with function scope is a non-static local
  /// variable.
  bool hasLocalStorage() const {
    if (getStorageClass() == SC_None) {
      // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
      // used to describe variables allocated in global memory and which are
      // accessed inside a kernel(s) as read-only variables. As such, variables
      // in constant address space cannot have local storage.
      if (getType().getAddressSpace() == LangAS::opencl_constant)
        return false;
      // Second check is for C++11 [dcl.stc]p4.
      return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
    }

    // Global Named Register (GNU extension)
    if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
      return false;

    // Return true for:  Auto, Register.
    // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.

    return getStorageClass() >= SC_Auto;
  }

  /// Returns true if a variable with function scope is a static local
  /// variable.
  bool isStaticLocal() const {
    return (getStorageClass() == SC_Static ||
            // C++11 [dcl.stc]p4
            (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
      && !isFileVarDecl();
  }

  /// Returns true if a variable has extern or __private_extern__
  /// storage.
  bool hasExternalStorage() const {
    return getStorageClass() == SC_Extern ||
           getStorageClass() == SC_PrivateExtern;
  }

  /// Returns true for all variables that do not have local storage.
  ///
  /// This includes all global variables as well as static variables declared
  /// within a function.
  bool hasGlobalStorage() const { return !hasLocalStorage(); }

  /// Get the storage duration of this variable, per C++ [basic.stc].
  StorageDuration getStorageDuration() const {
    return hasLocalStorage() ? SD_Automatic :
           getTSCSpec() ? SD_Thread : SD_Static;
  }

  /// Compute the language linkage.
  LanguageLinkage getLanguageLinkage() const;

  /// Determines whether this variable is a variable with external, C linkage.
  bool isExternC() const;

  /// Determines whether this variable's context is, or is nested within,
  /// a C++ extern "C" linkage spec.
  bool isInExternCContext() const;

  /// Determines whether this variable's context is, or is nested within,
  /// a C++ extern "C++" linkage spec.
  bool isInExternCXXContext() const;

  /// Returns true for local variable declarations other than parameters.
  /// Note that this includes static variables inside of functions. It also
  /// includes variables inside blocks.
  ///
  ///   void foo() { int x; static int y; extern int z; }
  bool isLocalVarDecl() const {
    if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
      return false;
    if (const DeclContext *DC = getLexicalDeclContext())
      return DC->getRedeclContext()->isFunctionOrMethod();
    return false;
  }

  /// Similar to isLocalVarDecl but also includes parameters.
  bool isLocalVarDeclOrParm() const {
    return isLocalVarDecl() || getKind() == Decl::ParmVar;
  }

  /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
  bool isFunctionOrMethodVarDecl() const {
    if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
      return false;
    const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
    return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
  }

  /// Determines whether this is a static data member.
  ///
  /// This will only be true in C++, and applies to, e.g., the
  /// variable 'x' in:
  /// \code
  /// struct S {
  ///   static int x;
  /// };
  /// \endcode
  bool isStaticDataMember() const {
    // If it wasn't static, it would be a FieldDecl.
    return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
  }

  VarDecl *getCanonicalDecl() override;
  const VarDecl *getCanonicalDecl() const {
    return const_cast<VarDecl*>(this)->getCanonicalDecl();
  }

  enum DefinitionKind {
    /// This declaration is only a declaration.
    DeclarationOnly,

    /// This declaration is a tentative definition.
    TentativeDefinition,

    /// This declaration is definitely a definition.
    Definition
  };

  /// Check whether this declaration is a definition. If this could be
  /// a tentative definition (in C), don't check whether there's an overriding
  /// definition.
  DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
  DefinitionKind isThisDeclarationADefinition() const {
    return isThisDeclarationADefinition(getASTContext());
  }

  /// Check whether this variable is defined in this translation unit.
  DefinitionKind hasDefinition(ASTContext &) const;
  DefinitionKind hasDefinition() const {
    return hasDefinition(getASTContext());
  }

  /// Get the tentative definition that acts as the real definition in a TU.
  /// Returns null if there is a proper definition available.
  VarDecl *getActingDefinition();
  const VarDecl *getActingDefinition() const {
    return const_cast<VarDecl*>(this)->getActingDefinition();
  }

  /// Get the real (not just tentative) definition for this declaration.
  VarDecl *getDefinition(ASTContext &);
  const VarDecl *getDefinition(ASTContext &C) const {
    return const_cast<VarDecl*>(this)->getDefinition(C);
  }
  VarDecl *getDefinition() {
    return getDefinition(getASTContext());
  }
  const VarDecl *getDefinition() const {
    return const_cast<VarDecl*>(this)->getDefinition();
  }

  /// Determine whether this is or was instantiated from an out-of-line
  /// definition of a static data member.
  bool isOutOfLine() const override;

  /// Returns true for file scoped variable declaration.
  bool isFileVarDecl() const {
    Kind K = getKind();
    if (K == ParmVar || K == ImplicitParam)
      return false;

    if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
      return true;

    if (isStaticDataMember())
      return true;

    return false;
  }

  /// Get the initializer for this variable, no matter which
  /// declaration it is attached to.
  const Expr *getAnyInitializer() const {
    const VarDecl *D;
    return getAnyInitializer(D);
  }

  /// Get the initializer for this variable, no matter which
  /// declaration it is attached to. Also get that declaration.
  const Expr *getAnyInitializer(const VarDecl *&D) const;

  bool hasInit() const;
  const Expr *getInit() const {
    return const_cast<VarDecl *>(this)->getInit();
  }
  Expr *getInit();

  /// Retrieve the address of the initializer expression.
  Stmt **getInitAddress();

  void setInit(Expr *I);

  /// Get the initializing declaration of this variable, if any. This is
  /// usually the definition, except that for a static data member it can be
  /// the in-class declaration.
  VarDecl *getInitializingDeclaration();
  const VarDecl *getInitializingDeclaration() const {
    return const_cast<VarDecl *>(this)->getInitializingDeclaration();
  }

  /// Determine whether this variable's value might be usable in a
  /// constant expression, according to the relevant language standard.
  /// This only checks properties of the declaration, and does not check
  /// whether the initializer is in fact a constant expression.
  bool mightBeUsableInConstantExpressions(ASTContext &C) const;

  /// Determine whether this variable's value can be used in a
  /// constant expression, according to the relevant language standard,
  /// including checking whether it was initialized by a constant expression.
  bool isUsableInConstantExpressions(ASTContext &C) const;

  EvaluatedStmt *ensureEvaluatedStmt() const;

  /// Attempt to evaluate the value of the initializer attached to this
  /// declaration, and produce notes explaining why it cannot be evaluated or is
  /// not a constant expression. Returns a pointer to the value if evaluation
  /// succeeded, 0 otherwise.
  APValue *evaluateValue() const;
  APValue *evaluateValue(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;

  /// Return the already-evaluated value of this variable's
  /// initializer, or NULL if the value is not yet known. Returns pointer
  /// to untyped APValue if the value could not be evaluated.
  APValue *getEvaluatedValue() const;

  /// Evaluate the destruction of this variable to determine if it constitutes
  /// constant destruction.
  ///
  /// \pre isInitICE()
  /// \return \c true if this variable has constant destruction, \c false if
  ///         not.
  bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;

  /// Determines whether it is already known whether the
  /// initializer is an integral constant expression or not.
  bool isInitKnownICE() const;

  /// Determines whether the initializer is an integral constant
  /// expression, or in C++11, whether the initializer is a constant
  /// expression.
  ///
  /// \pre isInitKnownICE()
  bool isInitICE() const;

  /// Determine whether the value of the initializer attached to this
  /// declaration is an integral constant expression.
  bool checkInitIsICE() const;

  void setInitStyle(InitializationStyle Style) {
    VarDeclBits.InitStyle = Style;
  }

  /// The style of initialization for this declaration.
  ///
  /// C-style initialization is "int x = 1;". Call-style initialization is
  /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
  /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
  /// expression for class types. List-style initialization is C++11 syntax,
  /// e.g. "int x{1};". Clients can distinguish between different forms of
  /// initialization by checking this value. In particular, "int x = {1};" is
  /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
  /// Init expression in all three cases is an InitListExpr.
  InitializationStyle getInitStyle() const {
    return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
  }

  /// Whether the initializer is a direct-initializer (list or call).
  bool isDirectInit() const {
    return getInitStyle() != CInit;
  }

  /// If this definition should pretend to be a declaration.
  bool isThisDeclarationADemotedDefinition() const {
    return isa<ParmVarDecl>(this) ? false :
      NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
  }

  /// This is a definition which should be demoted to a declaration.
  ///
  /// In some cases (mostly module merging) we can end up with two visible
  /// definitions one of which needs to be demoted to a declaration to keep
  /// the AST invariants.
  void demoteThisDefinitionToDeclaration() {
    assert(isThisDeclarationADefinition() && "Not a definition!");
    assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
    NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
  }

  /// Determine whether this variable is the exception variable in a
  /// C++ catch statememt or an Objective-C \@catch statement.
  bool isExceptionVariable() const {
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
  }
  void setExceptionVariable(bool EV) {
    assert(!isa<ParmVarDecl>(this));
    NonParmVarDeclBits.ExceptionVar = EV;
  }

  /// Determine whether this local variable can be used with the named
  /// return value optimization (NRVO).
  ///
  /// The named return value optimization (NRVO) works by marking certain
  /// non-volatile local variables of class type as NRVO objects. These
  /// locals can be allocated within the return slot of their containing
  /// function, in which case there is no need to copy the object to the
  /// return slot when returning from the function. Within the function body,
  /// each return that returns the NRVO object will have this variable as its
  /// NRVO candidate.
  bool isNRVOVariable() const {
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
  }
  void setNRVOVariable(bool NRVO) {
    assert(!isa<ParmVarDecl>(this));
    NonParmVarDeclBits.NRVOVariable = NRVO;
  }

  /// Determine whether this variable is the for-range-declaration in
  /// a C++0x for-range statement.
  bool isCXXForRangeDecl() const {
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
  }
  void setCXXForRangeDecl(bool FRD) {
    assert(!isa<ParmVarDecl>(this));
    NonParmVarDeclBits.CXXForRangeDecl = FRD;
  }

  /// Determine whether this variable is a for-loop declaration for a
  /// for-in statement in Objective-C.
  bool isObjCForDecl() const {
    return NonParmVarDeclBits.ObjCForDecl;
  }

  void setObjCForDecl(bool FRD) {
    NonParmVarDeclBits.ObjCForDecl = FRD;
  }

  /// Determine whether this variable is an ARC pseudo-__strong variable. A
  /// pseudo-__strong variable has a __strong-qualified type but does not
  /// actually retain the object written into it. Generally such variables are
  /// also 'const' for safety. There are 3 cases where this will be set, 1) if
  /// the variable is annotated with the objc_externally_retained attribute, 2)
  /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
  /// loop.
  bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
  void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }

  /// Whether this variable is (C++1z) inline.
  bool isInline() const {
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
  }
  bool isInlineSpecified() const {
    return isa<ParmVarDecl>(this) ? false
                                  : NonParmVarDeclBits.IsInlineSpecified;
  }
  void setInlineSpecified() {
    assert(!isa<ParmVarDecl>(this));
    NonParmVarDeclBits.IsInline = true;
    NonParmVarDeclBits.IsInlineSpecified = true;
  }
  void setImplicitlyInline() {
    assert(!isa<ParmVarDecl>(this));
    NonParmVarDeclBits.IsInline = true;
  }

  /// Whether this variable is (C++11) constexpr.
  bool isConstexpr() const {
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
  }
  void setConstexpr(bool IC) {
    assert(!isa<ParmVarDecl>(this));
    NonParmVarDeclBits.IsConstexpr = IC;
  }

  /// Whether this variable is the implicit variable for a lambda init-capture.
  bool isInitCapture() const {
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
  }
  void setInitCapture(bool IC) {
    assert(!isa<ParmVarDecl>(this));
    NonParmVarDeclBits.IsInitCapture = IC;
  }

  /// Determine whether this variable is actually a function parameter pack or
  /// init-capture pack.
  bool isParameterPack() const;

  /// Whether this local extern variable declaration's previous declaration
  /// was declared in the same block scope. Only correct in C++.
  bool isPreviousDeclInSameBlockScope() const {
    return isa<ParmVarDecl>(this)
               ? false
               : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
  }
  void setPreviousDeclInSameBlockScope(bool Same) {
    assert(!isa<ParmVarDecl>(this));
    NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
  }

  /// Indicates the capture is a __block variable that is captured by a block
  /// that can potentially escape (a block for which BlockDecl::doesNotEscape
  /// returns false).
  bool isEscapingByref() const;

  /// Indicates the capture is a __block variable that is never captured by an
  /// escaping block.
  bool isNonEscapingByref() const;

  void setEscapingByref() {
    NonParmVarDeclBits.EscapingByref = true;
  }

  /// Retrieve the variable declaration from which this variable could
  /// be instantiated, if it is an instantiation (rather than a non-template).
  VarDecl *getTemplateInstantiationPattern() const;

  /// If this variable is an instantiated static data member of a
  /// class template specialization, returns the templated static data member
  /// from which it was instantiated.
  VarDecl *getInstantiatedFromStaticDataMember() const;

  /// If this variable is an instantiation of a variable template or a
  /// static data member of a class template, determine what kind of
  /// template specialization or instantiation this is.
  TemplateSpecializationKind getTemplateSpecializationKind() const;

  /// Get the template specialization kind of this variable for the purposes of
  /// template instantiation. This differs from getTemplateSpecializationKind()
  /// for an instantiation of a class-scope explicit specialization.
  TemplateSpecializationKind
  getTemplateSpecializationKindForInstantiation() const;

  /// If this variable is an instantiation of a variable template or a
  /// static data member of a class template, determine its point of
  /// instantiation.
  SourceLocation getPointOfInstantiation() const;

  /// If this variable is an instantiation of a static data member of a
  /// class template specialization, retrieves the member specialization
  /// information.
  MemberSpecializationInfo *getMemberSpecializationInfo() const;

  /// For a static data member that was instantiated from a static
  /// data member of a class template, set the template specialiation kind.
  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
                        SourceLocation PointOfInstantiation = SourceLocation());

  /// Specify that this variable is an instantiation of the
  /// static data member VD.
  void setInstantiationOfStaticDataMember(VarDecl *VD,
                                          TemplateSpecializationKind TSK);

  /// Retrieves the variable template that is described by this
  /// variable declaration.
  ///
  /// Every variable template is represented as a VarTemplateDecl and a
  /// VarDecl. The former contains template properties (such as
  /// the template parameter lists) while the latter contains the
  /// actual description of the template's
  /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
  /// VarDecl that from a VarTemplateDecl, while
  /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
  /// a VarDecl.
  VarTemplateDecl *getDescribedVarTemplate() const;

  void setDescribedVarTemplate(VarTemplateDecl *Template);

  // Is this variable known to have a definition somewhere in the complete
  // program? This may be true even if the declaration has internal linkage and
  // has no definition within this source file.
  bool isKnownToBeDefined() const;

  /// Is destruction of this variable entirely suppressed? If so, the variable
  /// need not have a usable destructor at all.
  bool isNoDestroy(const ASTContext &) const;

  /// Do we need to emit an exit-time destructor for this variable, and if so,
  /// what kind?
  QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
};

class ImplicitParamDecl : public VarDecl {
  void anchor() override;

public:
  /// Defines the kind of the implicit parameter: is this an implicit parameter
  /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
  /// context or something else.
  enum ImplicitParamKind : unsigned {
    /// Parameter for Objective-C 'self' argument
    ObjCSelf,

    /// Parameter for Objective-C '_cmd' argument
    ObjCCmd,

    /// Parameter for C++ 'this' argument
    CXXThis,

    /// Parameter for C++ virtual table pointers
    CXXVTT,

    /// Parameter for captured context
    CapturedContext,

    /// Other implicit parameter
    Other,
  };

  /// Create implicit parameter.
  static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
                                   SourceLocation IdLoc, IdentifierInfo *Id,
                                   QualType T, ImplicitParamKind ParamKind);
  static ImplicitParamDecl *Create(ASTContext &C, QualType T,
                                   ImplicitParamKind ParamKind);

  static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
                    IdentifierInfo *Id, QualType Type,
                    ImplicitParamKind ParamKind)
      : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
                /*TInfo=*/nullptr, SC_None) {
    NonParmVarDeclBits.ImplicitParamKind = ParamKind;
    setImplicit();
  }

  ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
      : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
                SourceLocation(), /*Id=*/nullptr, Type,
                /*TInfo=*/nullptr, SC_None) {
    NonParmVarDeclBits.ImplicitParamKind = ParamKind;
    setImplicit();
  }

  /// Returns the implicit parameter kind.
  ImplicitParamKind getParameterKind() const {
    return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
  }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == ImplicitParam; }
};

/// Represents a parameter to a function.
class ParmVarDecl : public VarDecl {
public:
  enum { MaxFunctionScopeDepth = 255 };
  enum { MaxFunctionScopeIndex = 255 };

protected:
  ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
              SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
              TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
      : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
    assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
    assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
    assert(ParmVarDeclBits.IsKNRPromoted == false);
    assert(ParmVarDeclBits.IsObjCMethodParam == false);
    setDefaultArg(DefArg);
  }

public:
  static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
                             SourceLocation StartLoc,
                             SourceLocation IdLoc, IdentifierInfo *Id,
                             QualType T, TypeSourceInfo *TInfo,
                             StorageClass S, Expr *DefArg);

  static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  SourceRange getSourceRange() const override LLVM_READONLY;

  void setObjCMethodScopeInfo(unsigned parameterIndex) {
    ParmVarDeclBits.IsObjCMethodParam = true;
    setParameterIndex(parameterIndex);
  }

  void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
    assert(!ParmVarDeclBits.IsObjCMethodParam);

    ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
    assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
           && "truncation!");

    setParameterIndex(parameterIndex);
  }

  bool isObjCMethodParameter() const {
    return ParmVarDeclBits.IsObjCMethodParam;
  }

  unsigned getFunctionScopeDepth() const {
    if (ParmVarDeclBits.IsObjCMethodParam) return 0;
    return ParmVarDeclBits.ScopeDepthOrObjCQuals;
  }

  /// Returns the index of this parameter in its prototype or method scope.
  unsigned getFunctionScopeIndex() const {
    return getParameterIndex();
  }

  ObjCDeclQualifier getObjCDeclQualifier() const {
    if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
    return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
  }
  void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
    assert(ParmVarDeclBits.IsObjCMethodParam);
    ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
  }

  /// True if the value passed to this parameter must undergo
  /// K&R-style default argument promotion:
  ///
  /// C99 6.5.2.2.
  ///   If the expression that denotes the called function has a type
  ///   that does not include a prototype, the integer promotions are
  ///   performed on each argument, and arguments that have type float
  ///   are promoted to double.
  bool isKNRPromoted() const {
    return ParmVarDeclBits.IsKNRPromoted;
  }
  void setKNRPromoted(bool promoted) {
    ParmVarDeclBits.IsKNRPromoted = promoted;
  }

  Expr *getDefaultArg();
  const Expr *getDefaultArg() const {
    return const_cast<ParmVarDecl *>(this)->getDefaultArg();
  }

  void setDefaultArg(Expr *defarg);

  /// Retrieve the source range that covers the entire default
  /// argument.
  SourceRange getDefaultArgRange() const;
  void setUninstantiatedDefaultArg(Expr *arg);
  Expr *getUninstantiatedDefaultArg();
  const Expr *getUninstantiatedDefaultArg() const {
    return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
  }

  /// Determines whether this parameter has a default argument,
  /// either parsed or not.
  bool hasDefaultArg() const;

  /// Determines whether this parameter has a default argument that has not
  /// yet been parsed. This will occur during the processing of a C++ class
  /// whose member functions have default arguments, e.g.,
  /// @code
  ///   class X {
  ///   public:
  ///     void f(int x = 17); // x has an unparsed default argument now
  ///   }; // x has a regular default argument now
  /// @endcode
  bool hasUnparsedDefaultArg() const {
    return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
  }

  bool hasUninstantiatedDefaultArg() const {
    return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
  }

  /// Specify that this parameter has an unparsed default argument.
  /// The argument will be replaced with a real default argument via
  /// setDefaultArg when the class definition enclosing the function
  /// declaration that owns this default argument is completed.
  void setUnparsedDefaultArg() {
    ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
  }

  bool hasInheritedDefaultArg() const {
    return ParmVarDeclBits.HasInheritedDefaultArg;
  }

  void setHasInheritedDefaultArg(bool I = true) {
    ParmVarDeclBits.HasInheritedDefaultArg = I;
  }

  QualType getOriginalType() const;

  /// Sets the function declaration that owns this
  /// ParmVarDecl. Since ParmVarDecls are often created before the
  /// FunctionDecls that own them, this routine is required to update
  /// the DeclContext appropriately.
  void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == ParmVar; }

private:
  enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };

  void setParameterIndex(unsigned parameterIndex) {
    if (parameterIndex >= ParameterIndexSentinel) {
      setParameterIndexLarge(parameterIndex);
      return;
    }

    ParmVarDeclBits.ParameterIndex = parameterIndex;
    assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
  }
  unsigned getParameterIndex() const {
    unsigned d = ParmVarDeclBits.ParameterIndex;
    return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
  }

  void setParameterIndexLarge(unsigned parameterIndex);
  unsigned getParameterIndexLarge() const;
};

enum class MultiVersionKind {
  None,
  Target,
  CPUSpecific,
  CPUDispatch
};

/// Represents a function declaration or definition.
///
/// Since a given function can be declared several times in a program,
/// there may be several FunctionDecls that correspond to that
/// function. Only one of those FunctionDecls will be found when
/// traversing the list of declarations in the context of the
/// FunctionDecl (e.g., the translation unit); this FunctionDecl
/// contains all of the information known about the function. Other,
/// previous declarations of the function are available via the
/// getPreviousDecl() chain.
class FunctionDecl : public DeclaratorDecl,
                     public DeclContext,
                     public Redeclarable<FunctionDecl> {
  // This class stores some data in DeclContext::FunctionDeclBits
  // to save some space. Use the provided accessors to access it.
public:
  /// The kind of templated function a FunctionDecl can be.
  enum TemplatedKind {
    // Not templated.
    TK_NonTemplate,
    // The pattern in a function template declaration.
    TK_FunctionTemplate,
    // A non-template function that is an instantiation or explicit
    // specialization of a member of a templated class.
    TK_MemberSpecialization,
    // An instantiation or explicit specialization of a function template.
    // Note: this might have been instantiated from a templated class if it
    // is a class-scope explicit specialization.
    TK_FunctionTemplateSpecialization,
    // A function template specialization that hasn't yet been resolved to a
    // particular specialized function template.
    TK_DependentFunctionTemplateSpecialization
  };

private:
  /// A new[]'d array of pointers to VarDecls for the formal
  /// parameters of this function.  This is null if a prototype or if there are
  /// no formals.
  ParmVarDecl **ParamInfo = nullptr;

  LazyDeclStmtPtr Body;

  unsigned ODRHash;

  /// End part of this FunctionDecl's source range.
  ///
  /// We could compute the full range in getSourceRange(). However, when we're
  /// dealing with a function definition deserialized from a PCH/AST file,
  /// we can only compute the full range once the function body has been
  /// de-serialized, so it's far better to have the (sometimes-redundant)
  /// EndRangeLoc.
  SourceLocation EndRangeLoc;

  /// The template or declaration that this declaration
  /// describes or was instantiated from, respectively.
  ///
  /// For non-templates, this value will be NULL. For function
  /// declarations that describe a function template, this will be a
  /// pointer to a FunctionTemplateDecl. For member functions
  /// of class template specializations, this will be a MemberSpecializationInfo
  /// pointer containing information about the specialization.
  /// For function template specializations, this will be a
  /// FunctionTemplateSpecializationInfo, which contains information about
  /// the template being specialized and the template arguments involved in
  /// that specialization.
  llvm::PointerUnion4<FunctionTemplateDecl *,
                      MemberSpecializationInfo *,
                      FunctionTemplateSpecializationInfo *,
                      DependentFunctionTemplateSpecializationInfo *>
    TemplateOrSpecialization;

  /// Provides source/type location info for the declaration name embedded in
  /// the DeclaratorDecl base class.
  DeclarationNameLoc DNLoc;

  /// Specify that this function declaration is actually a function
  /// template specialization.
  ///
  /// \param C the ASTContext.
  ///
  /// \param Template the function template that this function template
  /// specialization specializes.
  ///
  /// \param TemplateArgs the template arguments that produced this
  /// function template specialization from the template.
  ///
  /// \param InsertPos If non-NULL, the position in the function template
  /// specialization set where the function template specialization data will
  /// be inserted.
  ///
  /// \param TSK the kind of template specialization this is.
  ///
  /// \param TemplateArgsAsWritten location info of template arguments.
  ///
  /// \param PointOfInstantiation point at which the function template
  /// specialization was first instantiated.
  void setFunctionTemplateSpecialization(ASTContext &C,
                                         FunctionTemplateDecl *Template,
                                       const TemplateArgumentList *TemplateArgs,
                                         void *InsertPos,
                                         TemplateSpecializationKind TSK,
                          const TemplateArgumentListInfo *TemplateArgsAsWritten,
                                         SourceLocation PointOfInstantiation);

  /// Specify that this record is an instantiation of the
  /// member function FD.
  void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
                                        TemplateSpecializationKind TSK);

  void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);

  // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
  // need to access this bit but we want to avoid making ASTDeclWriter
  // a friend of FunctionDeclBitfields just for this.
  bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }

  /// Whether an ODRHash has been stored.
  bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }

  /// State that an ODRHash has been stored.
  void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }

protected:
  FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
               const DeclarationNameInfo &NameInfo, QualType T,
               TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
               ConstexprSpecKind ConstexprKind);

  using redeclarable_base = Redeclarable<FunctionDecl>;

  FunctionDecl *getNextRedeclarationImpl() override {
    return getNextRedeclaration();
  }

  FunctionDecl *getPreviousDeclImpl() override {
    return getPreviousDecl();
  }

  FunctionDecl *getMostRecentDeclImpl() override {
    return getMostRecentDecl();
  }

public:
  friend class ASTDeclReader;
  friend class ASTDeclWriter;

  using redecl_range = redeclarable_base::redecl_range;
  using redecl_iterator = redeclarable_base::redecl_iterator;

  using redeclarable_base::redecls_begin;
  using redeclarable_base::redecls_end;
  using redeclarable_base::redecls;
  using redeclarable_base::getPreviousDecl;
  using redeclarable_base::getMostRecentDecl;
  using redeclarable_base::isFirstDecl;

  static FunctionDecl *
  Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
         SourceLocation NLoc, DeclarationName N, QualType T,
         TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified = false,
         bool hasWrittenPrototype = true,
         ConstexprSpecKind ConstexprKind = CSK_unspecified) {
    DeclarationNameInfo NameInfo(N, NLoc);
    return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
                                isInlineSpecified, hasWrittenPrototype,
                                ConstexprKind);
  }

  static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
                              SourceLocation StartLoc,
                              const DeclarationNameInfo &NameInfo, QualType T,
                              TypeSourceInfo *TInfo, StorageClass SC,
                              bool isInlineSpecified, bool hasWrittenPrototype,
                              ConstexprSpecKind ConstexprKind);

  static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  DeclarationNameInfo getNameInfo() const {
    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
  }

  void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
                            bool Qualified) const override;

  void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }

  SourceRange getSourceRange() const override LLVM_READONLY;

  // Function definitions.
  //
  // A function declaration may be:
  // - a non defining declaration,
  // - a definition. A function may be defined because:
  //   - it has a body, or will have it in the case of late parsing.
  //   - it has an uninstantiated body. The body does not exist because the
  //     function is not used yet, but the declaration is considered a
  //     definition and does not allow other definition of this function.
  //   - it does not have a user specified body, but it does not allow
  //     redefinition, because it is deleted/defaulted or is defined through
  //     some other mechanism (alias, ifunc).

  /// Returns true if the function has a body.
  ///
  /// The function body might be in any of the (re-)declarations of this
  /// function. The variant that accepts a FunctionDecl pointer will set that
  /// function declaration to the actual declaration containing the body (if
  /// there is one).
  bool hasBody(const FunctionDecl *&Definition) const;

  bool hasBody() const override {
    const FunctionDecl* Definition;
    return hasBody(Definition);
  }

  /// Returns whether the function has a trivial body that does not require any
  /// specific codegen.
  bool hasTrivialBody() const;

  /// Returns true if the function has a definition that does not need to be
  /// instantiated.
  ///
  /// The variant that accepts a FunctionDecl pointer will set that function
  /// declaration to the declaration that is a definition (if there is one).
  bool isDefined(const FunctionDecl *&Definition) const;

  virtual bool isDefined() const {
    const FunctionDecl* Definition;
    return isDefined(Definition);
  }

  /// Get the definition for this declaration.
  FunctionDecl *getDefinition() {
    const FunctionDecl *Definition;
    if (isDefined(Definition))
      return const_cast<FunctionDecl *>(Definition);
    return nullptr;
  }
  const FunctionDecl *getDefinition() const {
    return const_cast<FunctionDecl *>(this)->getDefinition();
  }

  /// Retrieve the body (definition) of the function. The function body might be
  /// in any of the (re-)declarations of this function. The variant that accepts
  /// a FunctionDecl pointer will set that function declaration to the actual
  /// declaration containing the body (if there is one).
  /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
  /// unnecessary AST de-serialization of the body.
  Stmt *getBody(const FunctionDecl *&Definition) const;

  Stmt *getBody() const override {
    const FunctionDecl* Definition;
    return getBody(Definition);
  }

  /// Returns whether this specific declaration of the function is also a
  /// definition that does not contain uninstantiated body.
  ///
  /// This does not determine whether the function has been defined (e.g., in a
  /// previous definition); for that information, use isDefined.
  bool isThisDeclarationADefinition() const {
    return isDeletedAsWritten() || isDefaulted() || Body || hasSkippedBody() ||
           isLateTemplateParsed() || willHaveBody() || hasDefiningAttr();
  }

  /// Returns whether this specific declaration of the function has a body.
  bool doesThisDeclarationHaveABody() const {
    return Body || isLateTemplateParsed();
  }

  void setBody(Stmt *B);
  void setLazyBody(uint64_t Offset) { Body = Offset; }

  /// Whether this function is variadic.
  bool isVariadic() const;

  /// Whether this function is marked as virtual explicitly.
  bool isVirtualAsWritten() const {
    return FunctionDeclBits.IsVirtualAsWritten;
  }

  /// State that this function is marked as virtual explicitly.
  void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }

  /// Whether this virtual function is pure, i.e. makes the containing class
  /// abstract.
  bool isPure() const { return FunctionDeclBits.IsPure; }
  void setPure(bool P = true);

  /// Whether this templated function will be late parsed.
  bool isLateTemplateParsed() const {
    return FunctionDeclBits.IsLateTemplateParsed;
  }

  /// State that this templated function will be late parsed.
  void setLateTemplateParsed(bool ILT = true) {
    FunctionDeclBits.IsLateTemplateParsed = ILT;
  }

  /// Whether this function is "trivial" in some specialized C++ senses.
  /// Can only be true for default constructors, copy constructors,
  /// copy assignment operators, and destructors.  Not meaningful until
  /// the class has been fully built by Sema.
  bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
  void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }

  bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
  void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }

  /// Whether this function is defaulted per C++0x. Only valid for
  /// special member functions.
  bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
  void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }

  /// Whether this function is explicitly defaulted per C++0x. Only valid
  /// for special member functions.
  bool isExplicitlyDefaulted() const {
    return FunctionDeclBits.IsExplicitlyDefaulted;
  }

  /// State that this function is explicitly defaulted per C++0x. Only valid
  /// for special member functions.
  void setExplicitlyDefaulted(bool ED = true) {
    FunctionDeclBits.IsExplicitlyDefaulted = ED;
  }

  /// Whether falling off this function implicitly returns null/zero.
  /// If a more specific implicit return value is required, front-ends
  /// should synthesize the appropriate return statements.
  bool hasImplicitReturnZero() const {
    return FunctionDeclBits.HasImplicitReturnZero;
  }

  /// State that falling off this function implicitly returns null/zero.
  /// If a more specific implicit return value is required, front-ends
  /// should synthesize the appropriate return statements.
  void setHasImplicitReturnZero(bool IRZ) {
    FunctionDeclBits.HasImplicitReturnZero = IRZ;
  }

  /// Whether this function has a prototype, either because one
  /// was explicitly written or because it was "inherited" by merging
  /// a declaration without a prototype with a declaration that has a
  /// prototype.
  bool hasPrototype() const {
    return hasWrittenPrototype() || hasInheritedPrototype();
  }

  /// Whether this function has a written prototype.
  bool hasWrittenPrototype() const {
    return FunctionDeclBits.HasWrittenPrototype;
  }

  /// State that this function has a written prototype.
  void setHasWrittenPrototype(bool P = true) {
    FunctionDeclBits.HasWrittenPrototype = P;
  }

  /// Whether this function inherited its prototype from a
  /// previous declaration.
  bool hasInheritedPrototype() const {
    return FunctionDeclBits.HasInheritedPrototype;
  }

  /// State that this function inherited its prototype from a
  /// previous declaration.
  void setHasInheritedPrototype(bool P = true) {
    FunctionDeclBits.HasInheritedPrototype = P;
  }

  /// Whether this is a (C++11) constexpr function or constexpr constructor.
  bool isConstexpr() const {
    return FunctionDeclBits.ConstexprKind != CSK_unspecified;
  }
  void setConstexprKind(ConstexprSpecKind CSK) {
    FunctionDeclBits.ConstexprKind = CSK;
  }
  ConstexprSpecKind getConstexprKind() const {
    return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
  }
  bool isConstexprSpecified() const {
    return FunctionDeclBits.ConstexprKind == CSK_constexpr;
  }
  bool isConsteval() const {
    return FunctionDeclBits.ConstexprKind == CSK_consteval;
  }

  /// Whether the instantiation of this function is pending.
  /// This bit is set when the decision to instantiate this function is made
  /// and unset if and when the function body is created. That leaves out
  /// cases where instantiation did not happen because the template definition
  /// was not seen in this TU. This bit remains set in those cases, under the
  /// assumption that the instantiation will happen in some other TU.
  bool instantiationIsPending() const {
    return FunctionDeclBits.InstantiationIsPending;
  }

  /// State that the instantiation of this function is pending.
  /// (see instantiationIsPending)
  void setInstantiationIsPending(bool IC) {
    FunctionDeclBits.InstantiationIsPending = IC;
  }

  /// Indicates the function uses __try.
  bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
  void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }

  /// Whether this function has been deleted.
  ///
  /// A function that is "deleted" (via the C++0x "= delete" syntax)
  /// acts like a normal function, except that it cannot actually be
  /// called or have its address taken. Deleted functions are
  /// typically used in C++ overload resolution to attract arguments
  /// whose type or lvalue/rvalue-ness would permit the use of a
  /// different overload that would behave incorrectly. For example,
  /// one might use deleted functions to ban implicit conversion from
  /// a floating-point number to an Integer type:
  ///
  /// @code
  /// struct Integer {
  ///   Integer(long); // construct from a long
  ///   Integer(double) = delete; // no construction from float or double
  ///   Integer(long double) = delete; // no construction from long double
  /// };
  /// @endcode
  // If a function is deleted, its first declaration must be.
  bool isDeleted() const {
    return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
  }

  bool isDeletedAsWritten() const {
    return FunctionDeclBits.IsDeleted && !isDefaulted();
  }

  void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }

  /// Determines whether this function is "main", which is the
  /// entry point into an executable program.
  bool isMain() const;

  /// Determines whether this function is a MSVCRT user defined entry
  /// point.
  bool isMSVCRTEntryPoint() const;

  /// Determines whether this operator new or delete is one
  /// of the reserved global placement operators:
  ///    void *operator new(size_t, void *);
  ///    void *operator new[](size_t, void *);
  ///    void operator delete(void *, void *);
  ///    void operator delete[](void *, void *);
  /// These functions have special behavior under [new.delete.placement]:
  ///    These functions are reserved, a C++ program may not define
  ///    functions that displace the versions in the Standard C++ library.
  ///    The provisions of [basic.stc.dynamic] do not apply to these
  ///    reserved placement forms of operator new and operator delete.
  ///
  /// This function must be an allocation or deallocation function.
  bool isReservedGlobalPlacementOperator() const;

  /// Determines whether this function is one of the replaceable
  /// global allocation functions:
  ///    void *operator new(size_t);
  ///    void *operator new(size_t, const std::nothrow_t &) noexcept;
  ///    void *operator new[](size_t);
  ///    void *operator new[](size_t, const std::nothrow_t &) noexcept;
  ///    void operator delete(void *) noexcept;
  ///    void operator delete(void *, std::size_t) noexcept;      [C++1y]
  ///    void operator delete(void *, const std::nothrow_t &) noexcept;
  ///    void operator delete[](void *) noexcept;
  ///    void operator delete[](void *, std::size_t) noexcept;    [C++1y]
  ///    void operator delete[](void *, const std::nothrow_t &) noexcept;
  /// These functions have special behavior under C++1y [expr.new]:
  ///    An implementation is allowed to omit a call to a replaceable global
  ///    allocation function. [...]
  ///
  /// If this function is an aligned allocation/deallocation function, return
  /// true through IsAligned.
  bool isReplaceableGlobalAllocationFunction(bool *IsAligned = nullptr) const;

  /// Determine whether this is a destroying operator delete.
  bool isDestroyingOperatorDelete() const;

  /// Compute the language linkage.
  LanguageLinkage getLanguageLinkage() const;

  /// Determines whether this function is a function with
  /// external, C linkage.
  bool isExternC() const;

  /// Determines whether this function's context is, or is nested within,
  /// a C++ extern "C" linkage spec.
  bool isInExternCContext() const;

  /// Determines whether this function's context is, or is nested within,
  /// a C++ extern "C++" linkage spec.
  bool isInExternCXXContext() const;

  /// Determines whether this is a global function.
  bool isGlobal() const;

  /// Determines whether this function is known to be 'noreturn', through
  /// an attribute on its declaration or its type.
  bool isNoReturn() const;

  /// True if the function was a definition but its body was skipped.
  bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
  void setHasSkippedBody(bool Skipped = true) {
    FunctionDeclBits.HasSkippedBody = Skipped;
  }

  /// True if this function will eventually have a body, once it's fully parsed.
  bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
  void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }

  /// True if this function is considered a multiversioned function.
  bool isMultiVersion() const {
    return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
  }

  /// Sets the multiversion state for this declaration and all of its
  /// redeclarations.
  void setIsMultiVersion(bool V = true) {
    getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
  }

  /// Gets the kind of multiversioning attribute this declaration has. Note that
  /// this can return a value even if the function is not multiversion, such as
  /// the case of 'target'.
  MultiVersionKind getMultiVersionKind() const;


  /// True if this function is a multiversioned dispatch function as a part of
  /// the cpu_specific/cpu_dispatch functionality.
  bool isCPUDispatchMultiVersion() const;
  /// True if this function is a multiversioned processor specific function as a
  /// part of the cpu_specific/cpu_dispatch functionality.
  bool isCPUSpecificMultiVersion() const;

  /// True if this function is a multiversioned dispatch function as a part of
  /// the target functionality.
  bool isTargetMultiVersion() const;

  void setPreviousDeclaration(FunctionDecl * PrevDecl);

  FunctionDecl *getCanonicalDecl() override;
  const FunctionDecl *getCanonicalDecl() const {
    return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
  }

  unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;

  // ArrayRef interface to parameters.
  ArrayRef<ParmVarDecl *> parameters() const {
    return {ParamInfo, getNumParams()};
  }
  MutableArrayRef<ParmVarDecl *> parameters() {
    return {ParamInfo, getNumParams()};
  }

  // Iterator access to formal parameters.
  using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
  using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;

  bool param_empty() const { return parameters().empty(); }
  param_iterator param_begin() { return parameters().begin(); }
  param_iterator param_end() { return parameters().end(); }
  param_const_iterator param_begin() const { return parameters().begin(); }
  param_const_iterator param_end() const { return parameters().end(); }
  size_t param_size() const { return parameters().size(); }

  /// Return the number of parameters this function must have based on its
  /// FunctionType.  This is the length of the ParamInfo array after it has been
  /// created.
  unsigned getNumParams() const;

  const ParmVarDecl *getParamDecl(unsigned i) const {
    assert(i < getNumParams() && "Illegal param #");
    return ParamInfo[i];
  }
  ParmVarDecl *getParamDecl(unsigned i) {
    assert(i < getNumParams() && "Illegal param #");
    return ParamInfo[i];
  }
  void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
    setParams(getASTContext(), NewParamInfo);
  }

  /// Returns the minimum number of arguments needed to call this function. This
  /// may be fewer than the number of function parameters, if some of the
  /// parameters have default arguments (in C++).
  unsigned getMinRequiredArguments() const;

  /// Find the source location information for how the type of this function
  /// was written. May be absent (for example if the function was declared via
  /// a typedef) and may contain a different type from that of the function
  /// (for example if the function type was adjusted by an attribute).
  FunctionTypeLoc getFunctionTypeLoc() const;

  QualType getReturnType() const {
    return getType()->castAs<FunctionType>()->getReturnType();
  }

  /// Attempt to compute an informative source range covering the
  /// function return type. This may omit qualifiers and other information with
  /// limited representation in the AST.
  SourceRange getReturnTypeSourceRange() const;

  /// Get the declared return type, which may differ from the actual return
  /// type if the return type is deduced.
  QualType getDeclaredReturnType() const {
    auto *TSI = getTypeSourceInfo();
    QualType T = TSI ? TSI->getType() : getType();
    return T->castAs<FunctionType>()->getReturnType();
  }

  /// Gets the ExceptionSpecificationType as declared.
  ExceptionSpecificationType getExceptionSpecType() const {
    auto *TSI = getTypeSourceInfo();
    QualType T = TSI ? TSI->getType() : getType();
    const auto *FPT = T->getAs<FunctionProtoType>();
    return FPT ? FPT->getExceptionSpecType() : EST_None;
  }

  /// Attempt to compute an informative source range covering the
  /// function exception specification, if any.
  SourceRange getExceptionSpecSourceRange() const;

  /// Determine the type of an expression that calls this function.
  QualType getCallResultType() const {
    return getType()->castAs<FunctionType>()->getCallResultType(
        getASTContext());
  }

  /// Returns the storage class as written in the source. For the
  /// computed linkage of symbol, see getLinkage.
  StorageClass getStorageClass() const {
    return static_cast<StorageClass>(FunctionDeclBits.SClass);
  }

  /// Sets the storage class as written in the source.
  void setStorageClass(StorageClass SClass) {
    FunctionDeclBits.SClass = SClass;
  }

  /// Determine whether the "inline" keyword was specified for this
  /// function.
  bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }

  /// Set whether the "inline" keyword was specified for this function.
  void setInlineSpecified(bool I) {
    FunctionDeclBits.IsInlineSpecified = I;
    FunctionDeclBits.IsInline = I;
  }

  /// Flag that this function is implicitly inline.
  void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }

  /// Determine whether this function should be inlined, because it is
  /// either marked "inline" or "constexpr" or is a member function of a class
  /// that was defined in the class body.
  bool isInlined() const { return FunctionDeclBits.IsInline; }

  bool isInlineDefinitionExternallyVisible() const;

  bool isMSExternInline() const;

  bool doesDeclarationForceExternallyVisibleDefinition() const;

  bool isStatic() const { return getStorageClass() == SC_Static; }

  /// Whether this function declaration represents an C++ overloaded
  /// operator, e.g., "operator+".
  bool isOverloadedOperator() const {
    return getOverloadedOperator() != OO_None;
  }

  OverloadedOperatorKind getOverloadedOperator() const;

  const IdentifierInfo *getLiteralIdentifier() const;

  /// If this function is an instantiation of a member function
  /// of a class template specialization, retrieves the function from
  /// which it was instantiated.
  ///
  /// This routine will return non-NULL for (non-templated) member
  /// functions of class templates and for instantiations of function
  /// templates. For example, given:
  ///
  /// \code
  /// template<typename T>
  /// struct X {
  ///   void f(T);
  /// };
  /// \endcode
  ///
  /// The declaration for X<int>::f is a (non-templated) FunctionDecl
  /// whose parent is the class template specialization X<int>. For
  /// this declaration, getInstantiatedFromFunction() will return
  /// the FunctionDecl X<T>::A. When a complete definition of
  /// X<int>::A is required, it will be instantiated from the
  /// declaration returned by getInstantiatedFromMemberFunction().
  FunctionDecl *getInstantiatedFromMemberFunction() const;

  /// What kind of templated function this is.
  TemplatedKind getTemplatedKind() const;

  /// If this function is an instantiation of a member function of a
  /// class template specialization, retrieves the member specialization
  /// information.
  MemberSpecializationInfo *getMemberSpecializationInfo() const;

  /// Specify that this record is an instantiation of the
  /// member function FD.
  void setInstantiationOfMemberFunction(FunctionDecl *FD,
                                        TemplateSpecializationKind TSK) {
    setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
  }

  /// Retrieves the function template that is described by this
  /// function declaration.
  ///
  /// Every function template is represented as a FunctionTemplateDecl
  /// and a FunctionDecl (or something derived from FunctionDecl). The
  /// former contains template properties (such as the template
  /// parameter lists) while the latter contains the actual
  /// description of the template's
  /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
  /// FunctionDecl that describes the function template,
  /// getDescribedFunctionTemplate() retrieves the
  /// FunctionTemplateDecl from a FunctionDecl.
  FunctionTemplateDecl *getDescribedFunctionTemplate() const;

  void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);

  /// Determine whether this function is a function template
  /// specialization.
  bool isFunctionTemplateSpecialization() const {
    return getPrimaryTemplate() != nullptr;
  }

  /// If this function is actually a function template specialization,
  /// retrieve information about this function template specialization.
  /// Otherwise, returns NULL.
  FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;

  /// Determines whether this function is a function template
  /// specialization or a member of a class template specialization that can
  /// be implicitly instantiated.
  bool isImplicitlyInstantiable() const;

  /// Determines if the given function was instantiated from a
  /// function template.
  bool isTemplateInstantiation() const;

  /// Retrieve the function declaration from which this function could
  /// be instantiated, if it is an instantiation (rather than a non-template
  /// or a specialization, for example).
  FunctionDecl *getTemplateInstantiationPattern() const;

  /// Retrieve the primary template that this function template
  /// specialization either specializes or was instantiated from.
  ///
  /// If this function declaration is not a function template specialization,
  /// returns NULL.
  FunctionTemplateDecl *getPrimaryTemplate() const;

  /// Retrieve the template arguments used to produce this function
  /// template specialization from the primary template.
  ///
  /// If this function declaration is not a function template specialization,
  /// returns NULL.
  const TemplateArgumentList *getTemplateSpecializationArgs() const;

  /// Retrieve the template argument list as written in the sources,
  /// if any.
  ///
  /// If this function declaration is not a function template specialization
  /// or if it had no explicit template argument list, returns NULL.
  /// Note that it an explicit template argument list may be written empty,
  /// e.g., template<> void foo<>(char* s);
  const ASTTemplateArgumentListInfo*
  getTemplateSpecializationArgsAsWritten() const;

  /// Specify that this function declaration is actually a function
  /// template specialization.
  ///
  /// \param Template the function template that this function template
  /// specialization specializes.
  ///
  /// \param TemplateArgs the template arguments that produced this
  /// function template specialization from the template.
  ///
  /// \param InsertPos If non-NULL, the position in the function template
  /// specialization set where the function template specialization data will
  /// be inserted.
  ///
  /// \param TSK the kind of template specialization this is.
  ///
  /// \param TemplateArgsAsWritten location info of template arguments.
  ///
  /// \param PointOfInstantiation point at which the function template
  /// specialization was first instantiated.
  void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
                const TemplateArgumentList *TemplateArgs,
                void *InsertPos,
                TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
                const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
                SourceLocation PointOfInstantiation = SourceLocation()) {
    setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
                                      InsertPos, TSK, TemplateArgsAsWritten,
                                      PointOfInstantiation);
  }

  /// Specifies that this function declaration is actually a
  /// dependent function template specialization.
  void setDependentTemplateSpecialization(ASTContext &Context,
                             const UnresolvedSetImpl &Templates,
                      const TemplateArgumentListInfo &TemplateArgs);

  DependentFunctionTemplateSpecializationInfo *
  getDependentSpecializationInfo() const;

  /// Determine what kind of template instantiation this function
  /// represents.
  TemplateSpecializationKind getTemplateSpecializationKind() const;

  /// Determine the kind of template specialization this function represents
  /// for the purpose of template instantiation.
  TemplateSpecializationKind
  getTemplateSpecializationKindForInstantiation() const;

  /// Determine what kind of template instantiation this function
  /// represents.
  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
                        SourceLocation PointOfInstantiation = SourceLocation());

  /// Retrieve the (first) point of instantiation of a function template
  /// specialization or a member of a class template specialization.
  ///
  /// \returns the first point of instantiation, if this function was
  /// instantiated from a template; otherwise, returns an invalid source
  /// location.
  SourceLocation getPointOfInstantiation() const;

  /// Determine whether this is or was instantiated from an out-of-line
  /// definition of a member function.
  bool isOutOfLine() const override;

  /// Identify a memory copying or setting function.
  /// If the given function is a memory copy or setting function, returns
  /// the corresponding Builtin ID. If the function is not a memory function,
  /// returns 0.
  unsigned getMemoryFunctionKind() const;

  /// Returns ODRHash of the function.  This value is calculated and
  /// stored on first call, then the stored value returned on the other calls.
  unsigned getODRHash();

  /// Returns cached ODRHash of the function.  This must have been previously
  /// computed and stored.
  unsigned getODRHash() const;

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) {
    return K >= firstFunction && K <= lastFunction;
  }
  static DeclContext *castToDeclContext(const FunctionDecl *D) {
    return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
  }
  static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
    return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
  }
};

/// Represents a member of a struct/union/class.
class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
  unsigned BitField : 1;
  unsigned Mutable : 1;
  mutable unsigned CachedFieldIndex : 30;

  /// The kinds of value we can store in InitializerOrBitWidth.
  ///
  /// Note that this is compatible with InClassInitStyle except for
  /// ISK_CapturedVLAType.
  enum InitStorageKind {
    /// If the pointer is null, there's nothing special.  Otherwise,
    /// this is a bitfield and the pointer is the Expr* storing the
    /// bit-width.
    ISK_NoInit = (unsigned) ICIS_NoInit,

    /// The pointer is an (optional due to delayed parsing) Expr*
    /// holding the copy-initializer.
    ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,

    /// The pointer is an (optional due to delayed parsing) Expr*
    /// holding the list-initializer.
    ISK_InClassListInit = (unsigned) ICIS_ListInit,

    /// The pointer is a VariableArrayType* that's been captured;
    /// the enclosing context is a lambda or captured statement.
    ISK_CapturedVLAType,
  };

  /// If this is a bitfield with a default member initializer, this
  /// structure is used to represent the two expressions.
  struct InitAndBitWidth {
    Expr *Init;
    Expr *BitWidth;
  };

  /// Storage for either the bit-width, the in-class initializer, or
  /// both (via InitAndBitWidth), or the captured variable length array bound.
  ///
  /// If the storage kind is ISK_InClassCopyInit or
  /// ISK_InClassListInit, but the initializer is null, then this
  /// field has an in-class initializer that has not yet been parsed
  /// and attached.
  // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
  // overwhelmingly common case that we have none of these things.
  llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;

protected:
  FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
            SourceLocation IdLoc, IdentifierInfo *Id,
            QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
            InClassInitStyle InitStyle)
    : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
      BitField(false), Mutable(Mutable), CachedFieldIndex(0),
      InitStorage(nullptr, (InitStorageKind) InitStyle) {
    if (BW)
      setBitWidth(BW);
  }

public:
  friend class ASTDeclReader;
  friend class ASTDeclWriter;

  static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
                           SourceLocation StartLoc, SourceLocation IdLoc,
                           IdentifierInfo *Id, QualType T,
                           TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
                           InClassInitStyle InitStyle);

  static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  /// Returns the index of this field within its record,
  /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
  unsigned getFieldIndex() const;

  /// Determines whether this field is mutable (C++ only).
  bool isMutable() const { return Mutable; }

  /// Determines whether this field is a bitfield.
  bool isBitField() const { return BitField; }

  /// Determines whether this is an unnamed bitfield.
  bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }

  /// Determines whether this field is a
  /// representative for an anonymous struct or union. Such fields are
  /// unnamed and are implicitly generated by the implementation to
  /// store the data for the anonymous union or struct.
  bool isAnonymousStructOrUnion() const;

  Expr *getBitWidth() const {
    if (!BitField)
      return nullptr;
    void *Ptr = InitStorage.getPointer();
    if (getInClassInitStyle())
      return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
    return static_cast<Expr*>(Ptr);
  }

  unsigned getBitWidthValue(const ASTContext &Ctx) const;

  /// Set the bit-field width for this member.
  // Note: used by some clients (i.e., do not remove it).
  void setBitWidth(Expr *Width) {
    assert(!hasCapturedVLAType() && !BitField &&
           "bit width or captured type already set");
    assert(Width && "no bit width specified");
    InitStorage.setPointer(
        InitStorage.getInt()
            ? new (getASTContext())
                  InitAndBitWidth{getInClassInitializer(), Width}
            : static_cast<void*>(Width));
    BitField = true;
  }

  /// Remove the bit-field width from this member.
  // Note: used by some clients (i.e., do not remove it).
  void removeBitWidth() {
    assert(isBitField() && "no bitfield width to remove");
    InitStorage.setPointer(getInClassInitializer());
    BitField = false;
  }

  /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
  /// at all and instead act as a separator between contiguous runs of other
  /// bit-fields.
  bool isZeroLengthBitField(const ASTContext &Ctx) const;

  /// Determine if this field is a subobject of zero size, that is, either a
  /// zero-length bit-field or a field of empty class type with the
  /// [[no_unique_address]] attribute.
  bool isZeroSize(const ASTContext &Ctx) const;

  /// Get the kind of (C++11) default member initializer that this field has.
  InClassInitStyle getInClassInitStyle() const {
    InitStorageKind storageKind = InitStorage.getInt();
    return (storageKind == ISK_CapturedVLAType
              ? ICIS_NoInit : (InClassInitStyle) storageKind);
  }

  /// Determine whether this member has a C++11 default member initializer.
  bool hasInClassInitializer() const {
    return getInClassInitStyle() != ICIS_NoInit;
  }

  /// Get the C++11 default member initializer for this member, or null if one
  /// has not been set. If a valid declaration has a default member initializer,
  /// but this returns null, then we have not parsed and attached it yet.
  Expr *getInClassInitializer() const {
    if (!hasInClassInitializer())
      return nullptr;
    void *Ptr = InitStorage.getPointer();
    if (BitField)
      return static_cast<InitAndBitWidth*>(Ptr)->Init;
    return static_cast<Expr*>(Ptr);
  }

  /// Set the C++11 in-class initializer for this member.
  void setInClassInitializer(Expr *Init) {
    assert(hasInClassInitializer() && !getInClassInitializer());
    if (BitField)
      static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
    else
      InitStorage.setPointer(Init);
  }

  /// Remove the C++11 in-class initializer from this member.
  void removeInClassInitializer() {
    assert(hasInClassInitializer() && "no initializer to remove");
    InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
  }

  /// Determine whether this member captures the variable length array
  /// type.
  bool hasCapturedVLAType() const {
    return InitStorage.getInt() == ISK_CapturedVLAType;
  }

  /// Get the captured variable length array type.
  const VariableArrayType *getCapturedVLAType() const {
    return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
                                      InitStorage.getPointer())
                                : nullptr;
  }

  /// Set the captured variable length array type for this field.
  void setCapturedVLAType(const VariableArrayType *VLAType);

  /// Returns the parent of this field declaration, which
  /// is the struct in which this field is defined.
  const RecordDecl *getParent() const {
    return cast<RecordDecl>(getDeclContext());
  }

  RecordDecl *getParent() {
    return cast<RecordDecl>(getDeclContext());
  }

  SourceRange getSourceRange() const override LLVM_READONLY;

  /// Retrieves the canonical declaration of this field.
  FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
  const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
};

/// An instance of this object exists for each enum constant
/// that is defined.  For example, in "enum X {a,b}", each of a/b are
/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
/// TagType for the X EnumDecl.
class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
  Stmt *Init; // an integer constant expression
  llvm::APSInt Val; // The value.

protected:
  EnumConstantDecl(DeclContext *DC, SourceLocation L,
                   IdentifierInfo *Id, QualType T, Expr *E,
                   const llvm::APSInt &V)
    : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}

public:
  friend class StmtIteratorBase;

  static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
                                  SourceLocation L, IdentifierInfo *Id,
                                  QualType T, Expr *E,
                                  const llvm::APSInt &V);
  static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  const Expr *getInitExpr() const { return (const Expr*) Init; }
  Expr *getInitExpr() { return (Expr*) Init; }
  const llvm::APSInt &getInitVal() const { return Val; }

  void setInitExpr(Expr *E) { Init = (Stmt*) E; }
  void setInitVal(const llvm::APSInt &V) { Val = V; }

  SourceRange getSourceRange() const override LLVM_READONLY;

  /// Retrieves the canonical declaration of this enumerator.
  EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
  const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == EnumConstant; }
};

/// Represents a field injected from an anonymous union/struct into the parent
/// scope. These are always implicit.
class IndirectFieldDecl : public ValueDecl,
                          public Mergeable<IndirectFieldDecl> {
  NamedDecl **Chaining;
  unsigned ChainingSize;

  IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
                    DeclarationName N, QualType T,
                    MutableArrayRef<NamedDecl *> CH);

  void anchor() override;

public:
  friend class ASTDeclReader;

  static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
                                   SourceLocation L, IdentifierInfo *Id,
                                   QualType T, llvm::MutableArrayRef<NamedDecl *> CH);

  static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;

  ArrayRef<NamedDecl *> chain() const {
    return llvm::makeArrayRef(Chaining, ChainingSize);
  }
  chain_iterator chain_begin() const { return chain().begin(); }
  chain_iterator chain_end() const { return chain().end(); }

  unsigned getChainingSize() const { return ChainingSize; }

  FieldDecl *getAnonField() const {
    assert(chain().size() >= 2);
    return cast<FieldDecl>(chain().back());
  }

  VarDecl *getVarDecl() const {
    assert(chain().size() >= 2);
    return dyn_cast<VarDecl>(chain().front());
  }

  IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
  const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == IndirectField; }
};

/// Represents a declaration of a type.
class TypeDecl : public NamedDecl {
  friend class ASTContext;

  /// This indicates the Type object that represents
  /// this TypeDecl.  It is a cache maintained by
  /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
  /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
  mutable const Type *TypeForDecl = nullptr;

  /// The start of the source range for this declaration.
  SourceLocation LocStart;

  void anchor() override;

protected:
  TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
           SourceLocation StartL = SourceLocation())
    : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}

public:
  // Low-level accessor. If you just want the type defined by this node,
  // check out ASTContext::getTypeDeclType or one of
  // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
  // already know the specific kind of node this is.
  const Type *getTypeForDecl() const { return TypeForDecl; }
  void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
  void setLocStart(SourceLocation L) { LocStart = L; }
  SourceRange getSourceRange() const override LLVM_READONLY {
    if (LocStart.isValid())
      return SourceRange(LocStart, getLocation());
    else
      return SourceRange(getLocation());
  }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
};

/// Base class for declarations which introduce a typedef-name.
class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
  struct alignas(8) ModedTInfo {
    TypeSourceInfo *first;
    QualType second;
  };

  /// If int part is 0, we have not computed IsTransparentTag.
  /// Otherwise, IsTransparentTag is (getInt() >> 1).
  mutable llvm::PointerIntPair<
      llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
      MaybeModedTInfo;

  void anchor() override;

protected:
  TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
                  SourceLocation StartLoc, SourceLocation IdLoc,
                  IdentifierInfo *Id, TypeSourceInfo *TInfo)
      : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
        MaybeModedTInfo(TInfo, 0) {}

  using redeclarable_base = Redeclarable<TypedefNameDecl>;

  TypedefNameDecl *getNextRedeclarationImpl() override {
    return getNextRedeclaration();
  }

  TypedefNameDecl *getPreviousDeclImpl() override {
    return getPreviousDecl();
  }

  TypedefNameDecl *getMostRecentDeclImpl() override {
    return getMostRecentDecl();
  }

public:
  using redecl_range = redeclarable_base::redecl_range;
  using redecl_iterator = redeclarable_base::redecl_iterator;

  using redeclarable_base::redecls_begin;
  using redeclarable_base::redecls_end;
  using redeclarable_base::redecls;
  using redeclarable_base::getPreviousDecl;
  using redeclarable_base::getMostRecentDecl;
  using redeclarable_base::isFirstDecl;

  bool isModed() const {
    return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
  }

  TypeSourceInfo *getTypeSourceInfo() const {
    return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
                     : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
  }

  QualType getUnderlyingType() const {
    return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
                     : MaybeModedTInfo.getPointer()
                           .get<TypeSourceInfo *>()
                           ->getType();
  }

  void setTypeSourceInfo(TypeSourceInfo *newType) {
    MaybeModedTInfo.setPointer(newType);
  }

  void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
    MaybeModedTInfo.setPointer(new (getASTContext(), 8)
                                   ModedTInfo({unmodedTSI, modedTy}));
  }

  /// Retrieves the canonical declaration of this typedef-name.
  TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
  const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }

  /// Retrieves the tag declaration for which this is the typedef name for
  /// linkage purposes, if any.
  ///
  /// \param AnyRedecl Look for the tag declaration in any redeclaration of
  /// this typedef declaration.
  TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;

  /// Determines if this typedef shares a name and spelling location with its
  /// underlying tag type, as is the case with the NS_ENUM macro.
  bool isTransparentTag() const {
    if (MaybeModedTInfo.getInt())
      return MaybeModedTInfo.getInt() & 0x2;
    return isTransparentTagSlow();
  }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) {
    return K >= firstTypedefName && K <= lastTypedefName;
  }

private:
  bool isTransparentTagSlow() const;
};

/// Represents the declaration of a typedef-name via the 'typedef'
/// type specifier.
class TypedefDecl : public TypedefNameDecl {
  TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
              SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
      : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}

public:
  static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
                             SourceLocation StartLoc, SourceLocation IdLoc,
                             IdentifierInfo *Id, TypeSourceInfo *TInfo);
  static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  SourceRange getSourceRange() const override LLVM_READONLY;

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == Typedef; }
};

/// Represents the declaration of a typedef-name via a C++11
/// alias-declaration.
class TypeAliasDecl : public TypedefNameDecl {
  /// The template for which this is the pattern, if any.
  TypeAliasTemplateDecl *Template;

  TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
                SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
      : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
        Template(nullptr) {}

public:
  static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
                               SourceLocation StartLoc, SourceLocation IdLoc,
                               IdentifierInfo *Id, TypeSourceInfo *TInfo);
  static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  SourceRange getSourceRange() const override LLVM_READONLY;

  TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
  void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == TypeAlias; }
};

/// Represents the declaration of a struct/union/class/enum.
class TagDecl : public TypeDecl,
                public DeclContext,
                public Redeclarable<TagDecl> {
  // This class stores some data in DeclContext::TagDeclBits
  // to save some space. Use the provided accessors to access it.
public:
  // This is really ugly.
  using TagKind = TagTypeKind;

private:
  SourceRange BraceRange;

  // A struct representing syntactic qualifier info,
  // to be used for the (uncommon) case of out-of-line declarations.
  using ExtInfo = QualifierInfo;

  /// If the (out-of-line) tag declaration name
  /// is qualified, it points to the qualifier info (nns and range);
  /// otherwise, if the tag declaration is anonymous and it is part of
  /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
  /// otherwise, if the tag declaration is anonymous and it is used as a
  /// declaration specifier for variables, it points to the first VarDecl (used
  /// for mangling);
  /// otherwise, it is a null (TypedefNameDecl) pointer.
  llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;

  bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
  ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
  const ExtInfo *getExtInfo() const {
    return TypedefNameDeclOrQualifier.get<ExtInfo *>();
  }

protected:
  TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
          SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
          SourceLocation StartL);

  using redeclarable_base = Redeclarable<TagDecl>;

  TagDecl *getNextRedeclarationImpl() override {
    return getNextRedeclaration();
  }

  TagDecl *getPreviousDeclImpl() override {
    return getPreviousDecl();
  }

  TagDecl *getMostRecentDeclImpl() override {
    return getMostRecentDecl();
  }

  /// Completes the definition of this tag declaration.
  ///
  /// This is a helper function for derived classes.
  void completeDefinition();

  /// True if this decl is currently being defined.
  void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }

  /// Indicates whether it is possible for declarations of this kind
  /// to have an out-of-date definition.
  ///
  /// This option is only enabled when modules are enabled.
  void setMayHaveOutOfDateDef(bool V = true) {
    TagDeclBits.MayHaveOutOfDateDef = V;
  }

public:
  friend class ASTDeclReader;
  friend class ASTDeclWriter;

  using redecl_range = redeclarable_base::redecl_range;
  using redecl_iterator = redeclarable_base::redecl_iterator;

  using redeclarable_base::redecls_begin;
  using redeclarable_base::redecls_end;
  using redeclarable_base::redecls;
  using redeclarable_base::getPreviousDecl;
  using redeclarable_base::getMostRecentDecl;
  using redeclarable_base::isFirstDecl;

  SourceRange getBraceRange() const { return BraceRange; }
  void setBraceRange(SourceRange R) { BraceRange = R; }

  /// Return SourceLocation representing start of source
  /// range ignoring outer template declarations.
  SourceLocation getInnerLocStart() const { return getBeginLoc(); }

  /// Return SourceLocation representing start of source
  /// range taking into account any outer template declarations.
  SourceLocation getOuterLocStart() const;
  SourceRange getSourceRange() const override LLVM_READONLY;

  TagDecl *getCanonicalDecl() override;
  const TagDecl *getCanonicalDecl() const {
    return const_cast<TagDecl*>(this)->getCanonicalDecl();
  }

  /// Return true if this declaration is a completion definition of the type.
  /// Provided for consistency.
  bool isThisDeclarationADefinition() const {
    return isCompleteDefinition();
  }

  /// Return true if this decl has its body fully specified.
  bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }

  /// True if this decl has its body fully specified.
  void setCompleteDefinition(bool V = true) {
    TagDeclBits.IsCompleteDefinition = V;
  }

  /// Return true if this complete decl is
  /// required to be complete for some existing use.
  bool isCompleteDefinitionRequired() const {
    return TagDeclBits.IsCompleteDefinitionRequired;
  }

  /// True if this complete decl is
  /// required to be complete for some existing use.
  void setCompleteDefinitionRequired(bool V = true) {
    TagDeclBits.IsCompleteDefinitionRequired = V;
  }

  /// Return true if this decl is currently being defined.
  bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }

  /// True if this tag declaration is "embedded" (i.e., defined or declared
  /// for the very first time) in the syntax of a declarator.
  bool isEmbeddedInDeclarator() const {
    return TagDeclBits.IsEmbeddedInDeclarator;
  }

  /// True if this tag declaration is "embedded" (i.e., defined or declared
  /// for the very first time) in the syntax of a declarator.
  void setEmbeddedInDeclarator(bool isInDeclarator) {
    TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
  }

  /// True if this tag is free standing, e.g. "struct foo;".
  bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }

  /// True if this tag is free standing, e.g. "struct foo;".
  void setFreeStanding(bool isFreeStanding = true) {
    TagDeclBits.IsFreeStanding = isFreeStanding;
  }

  /// Indicates whether it is possible for declarations of this kind
  /// to have an out-of-date definition.
  ///
  /// This option is only enabled when modules are enabled.
  bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }

  /// Whether this declaration declares a type that is
  /// dependent, i.e., a type that somehow depends on template
  /// parameters.
  bool isDependentType() const { return isDependentContext(); }

  /// Starts the definition of this tag declaration.
  ///
  /// This method should be invoked at the beginning of the definition
  /// of this tag declaration. It will set the tag type into a state
  /// where it is in the process of being defined.
  void startDefinition();

  /// Returns the TagDecl that actually defines this
  ///  struct/union/class/enum.  When determining whether or not a
  ///  struct/union/class/enum has a definition, one should use this
  ///  method as opposed to 'isDefinition'.  'isDefinition' indicates
  ///  whether or not a specific TagDecl is defining declaration, not
  ///  whether or not the struct/union/class/enum type is defined.
  ///  This method returns NULL if there is no TagDecl that defines
  ///  the struct/union/class/enum.
  TagDecl *getDefinition() const;

  StringRef getKindName() const {
    return TypeWithKeyword::getTagTypeKindName(getTagKind());
  }

  TagKind getTagKind() const {
    return static_cast<TagKind>(TagDeclBits.TagDeclKind);
  }

  void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }

  bool isStruct() const { return getTagKind() == TTK_Struct; }
  bool isInterface() const { return getTagKind() == TTK_Interface; }
  bool isClass()  const { return getTagKind() == TTK_Class; }
  bool isUnion()  const { return getTagKind() == TTK_Union; }
  bool isEnum()   const { return getTagKind() == TTK_Enum; }

  /// Is this tag type named, either directly or via being defined in
  /// a typedef of this type?
  ///
  /// C++11 [basic.link]p8:
  ///   A type is said to have linkage if and only if:
  ///     - it is a class or enumeration type that is named (or has a
  ///       name for linkage purposes) and the name has linkage; ...
  /// C++11 [dcl.typedef]p9:
  ///   If the typedef declaration defines an unnamed class (or enum),
  ///   the first typedef-name declared by the declaration to be that
  ///   class type (or enum type) is used to denote the class type (or
  ///   enum type) for linkage purposes only.
  ///
  /// C does not have an analogous rule, but the same concept is
  /// nonetheless useful in some places.
  bool hasNameForLinkage() const {
    return (getDeclName() || getTypedefNameForAnonDecl());
  }

  TypedefNameDecl *getTypedefNameForAnonDecl() const {
    return hasExtInfo() ? nullptr
                        : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
  }

  void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);

  /// Retrieve the nested-name-specifier that qualifies the name of this
  /// declaration, if it was present in the source.
  NestedNameSpecifier *getQualifier() const {
    return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
                        : nullptr;
  }

  /// Retrieve the nested-name-specifier (with source-location
  /// information) that qualifies the name of this declaration, if it was
  /// present in the source.
  NestedNameSpecifierLoc getQualifierLoc() const {
    return hasExtInfo() ? getExtInfo()->QualifierLoc
                        : NestedNameSpecifierLoc();
  }

  void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);

  unsigned getNumTemplateParameterLists() const {
    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
  }

  TemplateParameterList *getTemplateParameterList(unsigned i) const {
    assert(i < getNumTemplateParameterLists());
    return getExtInfo()->TemplParamLists[i];
  }

  void setTemplateParameterListsInfo(ASTContext &Context,
                                     ArrayRef<TemplateParameterList *> TPLists);

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }

  static DeclContext *castToDeclContext(const TagDecl *D) {
    return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
  }

  static TagDecl *castFromDeclContext(const DeclContext *DC) {
    return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
  }
};

/// Represents an enum.  In C++11, enums can be forward-declared
/// with a fixed underlying type, and in C we allow them to be forward-declared
/// with no underlying type as an extension.
class EnumDecl : public TagDecl {
  // This class stores some data in DeclContext::EnumDeclBits
  // to save some space. Use the provided accessors to access it.

  /// This represent the integer type that the enum corresponds
  /// to for code generation purposes.  Note that the enumerator constants may
  /// have a different type than this does.
  ///
  /// If the underlying integer type was explicitly stated in the source
  /// code, this is a TypeSourceInfo* for that type. Otherwise this type
  /// was automatically deduced somehow, and this is a Type*.
  ///
  /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
  /// some cases it won't.
  ///
  /// The underlying type of an enumeration never has any qualifiers, so
  /// we can get away with just storing a raw Type*, and thus save an
  /// extra pointer when TypeSourceInfo is needed.
  llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;

  /// The integer type that values of this type should
  /// promote to.  In C, enumerators are generally of an integer type
  /// directly, but gcc-style large enumerators (and all enumerators
  /// in C++) are of the enum type instead.
  QualType PromotionType;

  /// If this enumeration is an instantiation of a member enumeration
  /// of a class template specialization, this is the member specialization
  /// information.
  MemberSpecializationInfo *SpecializationInfo = nullptr;

  /// Store the ODRHash after first calculation.
  /// The corresponding flag HasODRHash is in EnumDeclBits
  /// and can be accessed with the provided accessors.
  unsigned ODRHash;

  EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
           SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
           bool Scoped, bool ScopedUsingClassTag, bool Fixed);

  void anchor() override;

  void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
                                    TemplateSpecializationKind TSK);

  /// Sets the width in bits required to store all the
  /// non-negative enumerators of this enum.
  void setNumPositiveBits(unsigned Num) {
    EnumDeclBits.NumPositiveBits = Num;
    assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
  }

  /// Returns the width in bits required to store all the
  /// negative enumerators of this enum. (see getNumNegativeBits)
  void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }

  /// True if this tag declaration is a scoped enumeration. Only
  /// possible in C++11 mode.
  void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }

  /// If this tag declaration is a scoped enum,
  /// then this is true if the scoped enum was declared using the class
  /// tag, false if it was declared with the struct tag. No meaning is
  /// associated if this tag declaration is not a scoped enum.
  void setScopedUsingClassTag(bool ScopedUCT = true) {
    EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
  }

  /// True if this is an Objective-C, C++11, or
  /// Microsoft-style enumeration with a fixed underlying type.
  void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }

  /// True if a valid hash is stored in ODRHash.
  bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
  void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }

public:
  friend class ASTDeclReader;

  EnumDecl *getCanonicalDecl() override {
    return cast<EnumDecl>(TagDecl::getCanonicalDecl());
  }
  const EnumDecl *getCanonicalDecl() const {
    return const_cast<EnumDecl*>(this)->getCanonicalDecl();
  }

  EnumDecl *getPreviousDecl() {
    return cast_or_null<EnumDecl>(
            static_cast<TagDecl *>(this)->getPreviousDecl());
  }
  const EnumDecl *getPreviousDecl() const {
    return const_cast<EnumDecl*>(this)->getPreviousDecl();
  }

  EnumDecl *getMostRecentDecl() {
    return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
  }
  const EnumDecl *getMostRecentDecl() const {
    return const_cast<EnumDecl*>(this)->getMostRecentDecl();
  }

  EnumDecl *getDefinition() const {
    return cast_or_null<EnumDecl>(TagDecl::getDefinition());
  }

  static EnumDecl *Create(ASTContext &C, DeclContext *DC,
                          SourceLocation StartLoc, SourceLocation IdLoc,
                          IdentifierInfo *Id, EnumDecl *PrevDecl,
                          bool IsScoped, bool IsScopedUsingClassTag,
                          bool IsFixed);
  static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  /// When created, the EnumDecl corresponds to a
  /// forward-declared enum. This method is used to mark the
  /// declaration as being defined; its enumerators have already been
  /// added (via DeclContext::addDecl). NewType is the new underlying
  /// type of the enumeration type.
  void completeDefinition(QualType NewType,
                          QualType PromotionType,
                          unsigned NumPositiveBits,
                          unsigned NumNegativeBits);

  // Iterates through the enumerators of this enumeration.
  using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
  using enumerator_range =
      llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;

  enumerator_range enumerators() const {
    return enumerator_range(enumerator_begin(), enumerator_end());
  }

  enumerator_iterator enumerator_begin() const {
    const EnumDecl *E = getDefinition();
    if (!E)
      E = this;
    return enumerator_iterator(E->decls_begin());
  }

  enumerator_iterator enumerator_end() const {
    const EnumDecl *E = getDefinition();
    if (!E)
      E = this;
    return enumerator_iterator(E->decls_end());
  }

  /// Return the integer type that enumerators should promote to.
  QualType getPromotionType() const { return PromotionType; }

  /// Set the promotion type.
  void setPromotionType(QualType T) { PromotionType = T; }

  /// Return the integer type this enum decl corresponds to.
  /// This returns a null QualType for an enum forward definition with no fixed
  /// underlying type.
  QualType getIntegerType() const {
    if (!IntegerType)
      return QualType();
    if (const Type *T = IntegerType.dyn_cast<const Type*>())
      return QualType(T, 0);
    return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
  }

  /// Set the underlying integer type.
  void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }

  /// Set the underlying integer type source info.
  void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }

  /// Return the type source info for the underlying integer type,
  /// if no type source info exists, return 0.
  TypeSourceInfo *getIntegerTypeSourceInfo() const {
    return IntegerType.dyn_cast<TypeSourceInfo*>();
  }

  /// Retrieve the source range that covers the underlying type if
  /// specified.
  SourceRange getIntegerTypeRange() const LLVM_READONLY;

  /// Returns the width in bits required to store all the
  /// non-negative enumerators of this enum.
  unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }

  /// Returns the width in bits required to store all the
  /// negative enumerators of this enum.  These widths include
  /// the rightmost leading 1;  that is:
  ///
  /// MOST NEGATIVE ENUMERATOR     PATTERN     NUM NEGATIVE BITS
  /// ------------------------     -------     -----------------
  ///                       -1     1111111                     1
  ///                      -10     1110110                     5
  ///                     -101     1001011                     8
  unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }

  /// Returns true if this is a C++11 scoped enumeration.
  bool isScoped() const { return EnumDeclBits.IsScoped; }

  /// Returns true if this is a C++11 scoped enumeration.
  bool isScopedUsingClassTag() const {
    return EnumDeclBits.IsScopedUsingClassTag;
  }

  /// Returns true if this is an Objective-C, C++11, or
  /// Microsoft-style enumeration with a fixed underlying type.
  bool isFixed() const { return EnumDeclBits.IsFixed; }

  unsigned getODRHash();

  /// Returns true if this can be considered a complete type.
  bool isComplete() const {
    // IntegerType is set for fixed type enums and non-fixed but implicitly
    // int-sized Microsoft enums.
    return isCompleteDefinition() || IntegerType;
  }

  /// Returns true if this enum is either annotated with
  /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
  bool isClosed() const;

  /// Returns true if this enum is annotated with flag_enum and isn't annotated
  /// with enum_extensibility(open).
  bool isClosedFlag() const;

  /// Returns true if this enum is annotated with neither flag_enum nor
  /// enum_extensibility(open).
  bool isClosedNonFlag() const;

  /// Retrieve the enum definition from which this enumeration could
  /// be instantiated, if it is an instantiation (rather than a non-template).
  EnumDecl *getTemplateInstantiationPattern() const;

  /// Returns the enumeration (declared within the template)
  /// from which this enumeration type was instantiated, or NULL if
  /// this enumeration was not instantiated from any template.
  EnumDecl *getInstantiatedFromMemberEnum() const;

  /// If this enumeration is a member of a specialization of a
  /// templated class, determine what kind of template specialization
  /// or instantiation this is.
  TemplateSpecializationKind getTemplateSpecializationKind() const;

  /// For an enumeration member that was instantiated from a member
  /// enumeration of a templated class, set the template specialiation kind.
  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
                        SourceLocation PointOfInstantiation = SourceLocation());

  /// If this enumeration is an instantiation of a member enumeration of
  /// a class template specialization, retrieves the member specialization
  /// information.
  MemberSpecializationInfo *getMemberSpecializationInfo() const {
    return SpecializationInfo;
  }

  /// Specify that this enumeration is an instantiation of the
  /// member enumeration ED.
  void setInstantiationOfMemberEnum(EnumDecl *ED,
                                    TemplateSpecializationKind TSK) {
    setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
  }

  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == Enum; }
};

/// Represents a struct/union/class.  For example:
///   struct X;                  // Forward declaration, no "body".
///   union Y { int A, B; };     // Has body with members A and B (FieldDecls).
/// This decl will be marked invalid if *any* members are invalid.
class RecordDecl : public TagDecl {
  // This class stores some data in DeclContext::RecordDeclBits
  // to save some space. Use the provided accessors to access it.
public:
  friend class DeclContext;
  /// Enum that represents the different ways arguments are passed to and
  /// returned from function calls. This takes into account the target-specific
  /// and version-specific rules along with the rules determined by the
  /// language.
  enum ArgPassingKind : unsigned {
    /// The argument of this type can be passed directly in registers.
    APK_CanPassInRegs,

    /// The argument of this type cannot be passed directly in registers.
    /// Records containing this type as a subobject are not forced to be passed
    /// indirectly. This value is used only in C++. This value is required by
    /// C++ because, in uncommon situations, it is possible for a class to have
    /// only trivial copy/move constructors even when one of its subobjects has
    /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
    /// constructor in the derived class is deleted).
    APK_CannotPassInRegs,

    /// The argument of this type cannot be passed directly in registers.
    /// Records containing this type as a subobject are forced to be passed
    /// indirectly.
    APK_CanNeverPassInRegs
  };

protected:
  RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
             SourceLocation StartLoc, SourceLocation IdLoc,
             IdentifierInfo *Id, RecordDecl *PrevDecl);

public:
  static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
                            SourceLocation StartLoc, SourceLocation IdLoc,
                            IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
  static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);

  RecordDecl *getPreviousDecl() {
    return cast_or_null<RecordDecl>(
            static_cast<TagDecl *>(this)->getPreviousDecl());
  }
  const RecordDecl *getPreviousDecl() const {
    return const_cast<RecordDecl*>(this)->getPreviousDecl();
  }

  RecordDecl *getMostRecentDecl() {
    return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
  }
  const RecordDecl *getMostRecentDecl() const {
    return const_cast<RecordDecl*>(this)->getMostRecentDecl();
  }

  bool hasFlexibleArrayMember() const {
    return RecordDeclBits.HasFlexibleArrayMember;
  }

  void setHasFlexibleArrayMember(bool V) {
    RecordDeclBits.HasFlexibleArrayMember = V;
  }

  /// Whether this is an anonymous struct or union. To be an anonymous
  /// struct or union, it must have been declared without a name and
  /// there must be no objects of this type declared, e.g.,
  /// @code
  ///   union { int i; float f; };
  /// @endcode
  /// is an anonymous union but neither of the following are:
  /// @code
  ///  union X { int i; float f; };
  ///  union { int i; float f; } obj;
  /// @endcode
  bool isAnonymousStructOrUnion() const {
    return RecordDeclBits.AnonymousStructOrUnion;
  }

  void setAnonymousStructOrUnion(bool Anon) {
    RecordDeclBits.AnonymousStructOrUnion = Anon;
  }

  bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
  void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }

  bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }

  void setHasVolatileMember(bool val) {
    RecordDeclBits.HasVolatileMember = val;
  }

  bool hasLoadedFieldsFromExternalStorage() const {
    return RecordDeclBits.LoadedFieldsFromExternalStorage;
  }

  void setHasLoadedFieldsFromExternalStorage(bool val) const {
    RecordDeclBits.LoadedFieldsFromExternalStorage = val;
  }

  /// Functions to query basic properties of non-trivial C structs.
  bool isNonTrivialToPrimitiveDefaultInitialize() const {
    return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
  }

  void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
    RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
  }

  bool isNonTrivialToPrimitiveCopy() const {
    return RecordDeclBits.NonTrivialToPrimitiveCopy;
  }

  void setNonTrivialToPrimitiveCopy(bool V) {
    RecordDeclBits.NonTrivialToPrimitiveCopy = V;
  }

  bool isNonTrivialToPrimitiveDestroy() const {
    return RecordDeclBits.NonTrivialToPrimitiveDestroy;
  }

  void setNonTrivialToPrimitiveDestroy(bool V) {
    RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
  }

  bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
    return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
  }

  void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
    RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
  }

  bool hasNonTrivialToPrimitiveDestructCUnion() const {
    return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
  }

  void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
    RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
  }

  bool hasNonTrivialToPrimitiveCopyCUnion() const {
    return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
  }

  void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
    RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
  }

  /// Determine whether this class can be passed in registers. In C++ mode,
  /// it must have at least one trivial, non-deleted copy or move constructor.
  /// FIXME: This should be set as part of completeDefinition.
  bool canPassInRegisters() const {
    return getArgPassingRestrictions() == APK_CanPassInRegs;
  }

  ArgPassingKind getArgPassingRestrictions() const {
    return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
  }

  void setArgPassingRestrictions(ArgPassingKind Kind) {
    RecordDeclBits.ArgPassingRestrictions = Kind;
  }

  bool isParamDestroyedInCallee() const {
    return RecordDeclBits.ParamDestroyedInCallee;
  }

  void setParamDestroyedInCallee(bool V) {
    RecordDeclBits.ParamDestroyedInCallee = V;
  }

  /// Determines whether this declaration represents the
  /// injected class name.
  ///
  /// The injected class name in C++ is the name of the class that
  /// appears inside the class itself. For example:
  ///
  /// \code
  /// struct C {
  ///   // C is implicitly declared here as a synonym for the class name.
  /// };
  ///
  /// C::C c; // same as "C c;"
  /// \endcode
  bool isInjectedClassName() const;

  /// Determine whether this record is a class describing a lambda
  /// function object.
  bool isLambda() const;

  /// Determine whether this record is a record for captured variables in
  /// CapturedStmt construct.
  bool isCapturedRecord() const;

  /// Mark the record as a record for captured variables in CapturedStmt
  /// construct.
  void setCapturedRecord();

  /// Returns the RecordDecl that actually defines
  ///  this struct/union/class.  When determining whether or not a
  ///  struct/union/class is completely defined, one should use this
  ///  method as opposed to 'isCompleteDefinition'.
  ///  'isCompleteDefinition' indicates whether or not a specific
  ///  RecordDecl is a completed definition, not whether or not the
  ///  record type is defined.  This method returns NULL if there is
  ///  no RecordDecl that defines the struct/union/tag.
  RecordDecl *getDefinition() const {
    return cast_or_null<RecordDecl>(TagDecl::getDefinition());
  }

  // Iterator access to field members. The field iterator only visits
  // the non-static data members of this class, ignoring any static
  // data members, functions, constructors, destructors, etc.
  using field_iterator = specific_decl_iterator<FieldDecl>;
  using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;

  field_range fields() const { return field_range(field_begin(), field_end()); }
  field_iterator field_begin() const;

  field_iterator field_end() const {
    return field_iterator(decl_iterator());
  }

  // Whether there are any fields (non-static data members) in this record.
  bool field_empty() const {
    return field_begin() == field_end();
  }

  /// Note that the definition of this type is now complete.
  virtual void completeDefinition();

  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) {
    return K >= firstRecord && K <= lastRecord;
  }

  /// Get whether or not this is an ms_struct which can
  /// be turned on with an attribute, pragma, or -mms-bitfields
  /// commandline option.
  bool isMsStruct(const ASTContext &C) const;

  /// Whether we are allowed to insert extra padding between fields.
  /// These padding are added to help AddressSanitizer detect
  /// intra-object-overflow bugs.
  bool mayInsertExtraPadding(bool EmitRemark = false) const;

  /// Finds the first data member which has a name.
  /// nullptr is returned if no named data member exists.
  const FieldDecl *findFirstNamedDataMember() const;

private:
  /// Deserialize just the fields.
  void LoadFieldsFromExternalStorage() const;
};

class FileScopeAsmDecl : public Decl {
  StringLiteral *AsmString;
  SourceLocation RParenLoc;

  FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
                   SourceLocation StartL, SourceLocation EndL)
    : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}

  virtual void anchor();

public:
  static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
                                  StringLiteral *Str, SourceLocation AsmLoc,
                                  SourceLocation RParenLoc);

  static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  SourceLocation getAsmLoc() const { return getLocation(); }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
  SourceRange getSourceRange() const override LLVM_READONLY {
    return SourceRange(getAsmLoc(), getRParenLoc());
  }

  const StringLiteral *getAsmString() const { return AsmString; }
  StringLiteral *getAsmString() { return AsmString; }
  void setAsmString(StringLiteral *Asm) { AsmString = Asm; }

  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == FileScopeAsm; }
};

/// Represents a block literal declaration, which is like an
/// unnamed FunctionDecl.  For example:
/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
class BlockDecl : public Decl, public DeclContext {
  // This class stores some data in DeclContext::BlockDeclBits
  // to save some space. Use the provided accessors to access it.
public:
  /// A class which contains all the information about a particular
  /// captured value.
  class Capture {
    enum {
      flag_isByRef = 0x1,
      flag_isNested = 0x2
    };

    /// The variable being captured.
    llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;

    /// The copy expression, expressed in terms of a DeclRef (or
    /// BlockDeclRef) to the captured variable.  Only required if the
    /// variable has a C++ class type.
    Expr *CopyExpr;

  public:
    Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
      : VariableAndFlags(variable,
                  (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
        CopyExpr(copy) {}

    /// The variable being captured.
    VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }

    /// Whether this is a "by ref" capture, i.e. a capture of a __block
    /// variable.
    bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }

    bool isEscapingByref() const {
      return getVariable()->isEscapingByref();
    }

    bool isNonEscapingByref() const {
      return getVariable()->isNonEscapingByref();
    }

    /// Whether this is a nested capture, i.e. the variable captured
    /// is not from outside the immediately enclosing function/block.
    bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }

    bool hasCopyExpr() const { return CopyExpr != nullptr; }
    Expr *getCopyExpr() const { return CopyExpr; }
    void setCopyExpr(Expr *e) { CopyExpr = e; }
  };

private:
  /// A new[]'d array of pointers to ParmVarDecls for the formal
  /// parameters of this function.  This is null if a prototype or if there are
  /// no formals.
  ParmVarDecl **ParamInfo = nullptr;
  unsigned NumParams = 0;

  Stmt *Body = nullptr;
  TypeSourceInfo *SignatureAsWritten = nullptr;

  const Capture *Captures = nullptr;
  unsigned NumCaptures = 0;

  unsigned ManglingNumber = 0;
  Decl *ManglingContextDecl = nullptr;

protected:
  BlockDecl(DeclContext *DC, SourceLocation CaretLoc);

public:
  static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
  static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  SourceLocation getCaretLocation() const { return getLocation(); }

  bool isVariadic() const { return BlockDeclBits.IsVariadic; }
  void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }

  CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
  Stmt *getBody() const override { return (Stmt*) Body; }
  void setBody(CompoundStmt *B) { Body = (Stmt*) B; }

  void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
  TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }

  // ArrayRef access to formal parameters.
  ArrayRef<ParmVarDecl *> parameters() const {
    return {ParamInfo, getNumParams()};
  }
  MutableArrayRef<ParmVarDecl *> parameters() {
    return {ParamInfo, getNumParams()};
  }

  // Iterator access to formal parameters.
  using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
  using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;

  bool param_empty() const { return parameters().empty(); }
  param_iterator param_begin() { return parameters().begin(); }
  param_iterator param_end() { return parameters().end(); }
  param_const_iterator param_begin() const { return parameters().begin(); }
  param_const_iterator param_end() const { return parameters().end(); }
  size_t param_size() const { return parameters().size(); }

  unsigned getNumParams() const { return NumParams; }

  const ParmVarDecl *getParamDecl(unsigned i) const {
    assert(i < getNumParams() && "Illegal param #");
    return ParamInfo[i];
  }
  ParmVarDecl *getParamDecl(unsigned i) {
    assert(i < getNumParams() && "Illegal param #");
    return ParamInfo[i];
  }

  void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);

  /// True if this block (or its nested blocks) captures
  /// anything of local storage from its enclosing scopes.
  bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }

  /// Returns the number of captured variables.
  /// Does not include an entry for 'this'.
  unsigned getNumCaptures() const { return NumCaptures; }

  using capture_const_iterator = ArrayRef<Capture>::const_iterator;

  ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }

  capture_const_iterator capture_begin() const { return captures().begin(); }
  capture_const_iterator capture_end() const { return captures().end(); }

  bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
  void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }

  bool blockMissingReturnType() const {
    return BlockDeclBits.BlockMissingReturnType;
  }

  void setBlockMissingReturnType(bool val = true) {
    BlockDeclBits.BlockMissingReturnType = val;
  }

  bool isConversionFromLambda() const {
    return BlockDeclBits.IsConversionFromLambda;
  }

  void setIsConversionFromLambda(bool val = true) {
    BlockDeclBits.IsConversionFromLambda = val;
  }

  bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
  void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }

  bool canAvoidCopyToHeap() const {
    return BlockDeclBits.CanAvoidCopyToHeap;
  }
  void setCanAvoidCopyToHeap(bool B = true) {
    BlockDeclBits.CanAvoidCopyToHeap = B;
  }

  bool capturesVariable(const VarDecl *var) const;

  void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
                   bool CapturesCXXThis);

  unsigned getBlockManglingNumber() const { return ManglingNumber; }

  Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }

  void setBlockMangling(unsigned Number, Decl *Ctx) {
    ManglingNumber = Number;
    ManglingContextDecl = Ctx;
  }

  SourceRange getSourceRange() const override LLVM_READONLY;

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == Block; }
  static DeclContext *castToDeclContext(const BlockDecl *D) {
    return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
  }
  static BlockDecl *castFromDeclContext(const DeclContext *DC) {
    return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
  }
};

/// Represents the body of a CapturedStmt, and serves as its DeclContext.
class CapturedDecl final
    : public Decl,
      public DeclContext,
      private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
protected:
  size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
    return NumParams;
  }

private:
  /// The number of parameters to the outlined function.
  unsigned NumParams;

  /// The position of context parameter in list of parameters.
  unsigned ContextParam;

  /// The body of the outlined function.
  llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;

  explicit CapturedDecl(DeclContext *DC, unsigned NumParams);

  ImplicitParamDecl *const *getParams() const {
    return getTrailingObjects<ImplicitParamDecl *>();
  }

  ImplicitParamDecl **getParams() {
    return getTrailingObjects<ImplicitParamDecl *>();
  }

public:
  friend class ASTDeclReader;
  friend class ASTDeclWriter;
  friend TrailingObjects;

  static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
                              unsigned NumParams);
  static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
                                          unsigned NumParams);

  Stmt *getBody() const override;
  void setBody(Stmt *B);

  bool isNothrow() const;
  void setNothrow(bool Nothrow = true);

  unsigned getNumParams() const { return NumParams; }

  ImplicitParamDecl *getParam(unsigned i) const {
    assert(i < NumParams);
    return getParams()[i];
  }
  void setParam(unsigned i, ImplicitParamDecl *P) {
    assert(i < NumParams);
    getParams()[i] = P;
  }

  // ArrayRef interface to parameters.
  ArrayRef<ImplicitParamDecl *> parameters() const {
    return {getParams(), getNumParams()};
  }
  MutableArrayRef<ImplicitParamDecl *> parameters() {
    return {getParams(), getNumParams()};
  }

  /// Retrieve the parameter containing captured variables.
  ImplicitParamDecl *getContextParam() const {
    assert(ContextParam < NumParams);
    return getParam(ContextParam);
  }
  void setContextParam(unsigned i, ImplicitParamDecl *P) {
    assert(i < NumParams);
    ContextParam = i;
    setParam(i, P);
  }
  unsigned getContextParamPosition() const { return ContextParam; }

  using param_iterator = ImplicitParamDecl *const *;
  using param_range = llvm::iterator_range<param_iterator>;

  /// Retrieve an iterator pointing to the first parameter decl.
  param_iterator param_begin() const { return getParams(); }
  /// Retrieve an iterator one past the last parameter decl.
  param_iterator param_end() const { return getParams() + NumParams; }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == Captured; }
  static DeclContext *castToDeclContext(const CapturedDecl *D) {
    return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
  }
  static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
    return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
  }
};

/// Describes a module import declaration, which makes the contents
/// of the named module visible in the current translation unit.
///
/// An import declaration imports the named module (or submodule). For example:
/// \code
///   @import std.vector;
/// \endcode
///
/// Import declarations can also be implicitly generated from
/// \#include/\#import directives.
class ImportDecl final : public Decl,
                         llvm::TrailingObjects<ImportDecl, SourceLocation> {
  friend class ASTContext;
  friend class ASTDeclReader;
  friend class ASTReader;
  friend TrailingObjects;

  /// The imported module, along with a bit that indicates whether
  /// we have source-location information for each identifier in the module
  /// name.
  ///
  /// When the bit is false, we only have a single source location for the
  /// end of the import declaration.
  llvm::PointerIntPair<Module *, 1, bool> ImportedAndComplete;

  /// The next import in the list of imports local to the translation
  /// unit being parsed (not loaded from an AST file).
  ImportDecl *NextLocalImport = nullptr;

  ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
             ArrayRef<SourceLocation> IdentifierLocs);

  ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
             SourceLocation EndLoc);

  ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}

public:
  /// Create a new module import declaration.
  static ImportDecl *Create(ASTContext &C, DeclContext *DC,
                            SourceLocation StartLoc, Module *Imported,
                            ArrayRef<SourceLocation> IdentifierLocs);

  /// Create a new module import declaration for an implicitly-generated
  /// import.
  static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
                                    SourceLocation StartLoc, Module *Imported,
                                    SourceLocation EndLoc);

  /// Create a new, deserialized module import declaration.
  static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
                                        unsigned NumLocations);

  /// Retrieve the module that was imported by the import declaration.
  Module *getImportedModule() const { return ImportedAndComplete.getPointer(); }

  /// Retrieves the locations of each of the identifiers that make up
  /// the complete module name in the import declaration.
  ///
  /// This will return an empty array if the locations of the individual
  /// identifiers aren't available.
  ArrayRef<SourceLocation> getIdentifierLocs() const;

  SourceRange getSourceRange() const override LLVM_READONLY;

  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == Import; }
};

/// Represents a C++ Modules TS module export declaration.
///
/// For example:
/// \code
///   export void foo();
/// \endcode
class ExportDecl final : public Decl, public DeclContext {
  virtual void anchor();

private:
  friend class ASTDeclReader;

  /// The source location for the right brace (if valid).
  SourceLocation RBraceLoc;

  ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
      : Decl(Export, DC, ExportLoc), DeclContext(Export),
        RBraceLoc(SourceLocation()) {}

public:
  static ExportDecl *Create(ASTContext &C, DeclContext *DC,
                            SourceLocation ExportLoc);
  static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  SourceLocation getExportLoc() const { return getLocation(); }
  SourceLocation getRBraceLoc() const { return RBraceLoc; }
  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }

  bool hasBraces() const { return RBraceLoc.isValid(); }

  SourceLocation getEndLoc() const LLVM_READONLY {
    if (hasBraces())
      return RBraceLoc;
    // No braces: get the end location of the (only) declaration in context
    // (if present).
    return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
  }

  SourceRange getSourceRange() const override LLVM_READONLY {
    return SourceRange(getLocation(), getEndLoc());
  }

  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == Export; }
  static DeclContext *castToDeclContext(const ExportDecl *D) {
    return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
  }
  static ExportDecl *castFromDeclContext(const DeclContext *DC) {
    return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
  }
};

/// Represents an empty-declaration.
class EmptyDecl : public Decl {
  EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}

  virtual void anchor();

public:
  static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
                           SourceLocation L);
  static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);

  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
  static bool classofKind(Kind K) { return K == Empty; }
};

/// Insertion operator for diagnostics.  This allows sending NamedDecl's
/// into a diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
                                           const NamedDecl* ND) {
  DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
                  DiagnosticsEngine::ak_nameddecl);
  return DB;
}
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
                                           const NamedDecl* ND) {
  PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
                  DiagnosticsEngine::ak_nameddecl);
  return PD;
}

template<typename decl_type>
void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
  // Note: This routine is implemented here because we need both NamedDecl
  // and Redeclarable to be defined.
  assert(RedeclLink.isFirst() &&
         "setPreviousDecl on a decl already in a redeclaration chain");

  if (PrevDecl) {
    // Point to previous. Make sure that this is actually the most recent
    // redeclaration, or we can build invalid chains. If the most recent
    // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
    First = PrevDecl->getFirstDecl();
    assert(First->RedeclLink.isFirst() && "Expected first");
    decl_type *MostRecent = First->getNextRedeclaration();
    RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));

    // If the declaration was previously visible, a redeclaration of it remains
    // visible even if it wouldn't be visible by itself.
    static_cast<decl_type*>(this)->IdentifierNamespace |=
      MostRecent->getIdentifierNamespace() &
      (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
  } else {
    // Make this first.
    First = static_cast<decl_type*>(this);
  }

  // First one will point to this one as latest.
  First->RedeclLink.setLatest(static_cast<decl_type*>(this));

  assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
         cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
}

// Inline function definitions.

/// Check if the given decl is complete.
///
/// We use this function to break a cycle between the inline definitions in
/// Type.h and Decl.h.
inline bool IsEnumDeclComplete(EnumDecl *ED) {
  return ED->isComplete();
}

/// Check if the given decl is scoped.
///
/// We use this function to break a cycle between the inline definitions in
/// Type.h and Decl.h.
inline bool IsEnumDeclScoped(EnumDecl *ED) {
  return ED->isScoped();
}

} // namespace clang

#endif // LLVM_CLANG_AST_DECL_H