reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// C Language Family Type Representation
///
/// This file defines the clang::Type interface and subclasses, used to
/// represent types for languages in the C family.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_TYPE_H
#define LLVM_CLANG_AST_TYPE_H

#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/TemplateName.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/AttrKinds.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/Visibility.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/type_traits.h"
#include "llvm/Support/TrailingObjects.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <string>
#include <type_traits>
#include <utility>

namespace clang {

class ExtQuals;
class QualType;
class TagDecl;
class Type;

enum {
  TypeAlignmentInBits = 4,
  TypeAlignment = 1 << TypeAlignmentInBits
};

} // namespace clang

namespace llvm {

  template <typename T>
  struct PointerLikeTypeTraits;
  template<>
  struct PointerLikeTypeTraits< ::clang::Type*> {
    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }

    static inline ::clang::Type *getFromVoidPointer(void *P) {
      return static_cast< ::clang::Type*>(P);
    }

    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
  };

  template<>
  struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }

    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
      return static_cast< ::clang::ExtQuals*>(P);
    }

    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
  };

} // namespace llvm

namespace clang {

class ASTContext;
template <typename> class CanQual;
class CXXRecordDecl;
class DeclContext;
class EnumDecl;
class Expr;
class ExtQualsTypeCommonBase;
class FunctionDecl;
class IdentifierInfo;
class NamedDecl;
class ObjCInterfaceDecl;
class ObjCProtocolDecl;
class ObjCTypeParamDecl;
struct PrintingPolicy;
class RecordDecl;
class Stmt;
class TagDecl;
class TemplateArgument;
class TemplateArgumentListInfo;
class TemplateArgumentLoc;
class TemplateTypeParmDecl;
class TypedefNameDecl;
class UnresolvedUsingTypenameDecl;

using CanQualType = CanQual<Type>;

// Provide forward declarations for all of the *Type classes.
#define TYPE(Class, Base) class Class##Type;
#include "clang/AST/TypeNodes.inc"

/// The collection of all-type qualifiers we support.
/// Clang supports five independent qualifiers:
/// * C99: const, volatile, and restrict
/// * MS: __unaligned
/// * Embedded C (TR18037): address spaces
/// * Objective C: the GC attributes (none, weak, or strong)
class Qualifiers {
public:
  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
    Const    = 0x1,
    Restrict = 0x2,
    Volatile = 0x4,
    CVRMask = Const | Volatile | Restrict
  };

  enum GC {
    GCNone = 0,
    Weak,
    Strong
  };

  enum ObjCLifetime {
    /// There is no lifetime qualification on this type.
    OCL_None,

    /// This object can be modified without requiring retains or
    /// releases.
    OCL_ExplicitNone,

    /// Assigning into this object requires the old value to be
    /// released and the new value to be retained.  The timing of the
    /// release of the old value is inexact: it may be moved to
    /// immediately after the last known point where the value is
    /// live.
    OCL_Strong,

    /// Reading or writing from this object requires a barrier call.
    OCL_Weak,

    /// Assigning into this object requires a lifetime extension.
    OCL_Autoreleasing
  };

  enum {
    /// The maximum supported address space number.
    /// 23 bits should be enough for anyone.
    MaxAddressSpace = 0x7fffffu,

    /// The width of the "fast" qualifier mask.
    FastWidth = 3,

    /// The fast qualifier mask.
    FastMask = (1 << FastWidth) - 1
  };

  /// Returns the common set of qualifiers while removing them from
  /// the given sets.
  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
    // If both are only CVR-qualified, bit operations are sufficient.
    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
      Qualifiers Q;
      Q.Mask = L.Mask & R.Mask;
      L.Mask &= ~Q.Mask;
      R.Mask &= ~Q.Mask;
      return Q;
    }

    Qualifiers Q;
    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
    Q.addCVRQualifiers(CommonCRV);
    L.removeCVRQualifiers(CommonCRV);
    R.removeCVRQualifiers(CommonCRV);

    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
      Q.setObjCGCAttr(L.getObjCGCAttr());
      L.removeObjCGCAttr();
      R.removeObjCGCAttr();
    }

    if (L.getObjCLifetime() == R.getObjCLifetime()) {
      Q.setObjCLifetime(L.getObjCLifetime());
      L.removeObjCLifetime();
      R.removeObjCLifetime();
    }

    if (L.getAddressSpace() == R.getAddressSpace()) {
      Q.setAddressSpace(L.getAddressSpace());
      L.removeAddressSpace();
      R.removeAddressSpace();
    }
    return Q;
  }

  static Qualifiers fromFastMask(unsigned Mask) {
    Qualifiers Qs;
    Qs.addFastQualifiers(Mask);
    return Qs;
  }

  static Qualifiers fromCVRMask(unsigned CVR) {
    Qualifiers Qs;
    Qs.addCVRQualifiers(CVR);
    return Qs;
  }

  static Qualifiers fromCVRUMask(unsigned CVRU) {
    Qualifiers Qs;
    Qs.addCVRUQualifiers(CVRU);
    return Qs;
  }

  // Deserialize qualifiers from an opaque representation.
  static Qualifiers fromOpaqueValue(unsigned opaque) {
    Qualifiers Qs;
    Qs.Mask = opaque;
    return Qs;
  }

  // Serialize these qualifiers into an opaque representation.
  unsigned getAsOpaqueValue() const {
    return Mask;
  }

  bool hasConst() const { return Mask & Const; }
  bool hasOnlyConst() const { return Mask == Const; }
  void removeConst() { Mask &= ~Const; }
  void addConst() { Mask |= Const; }

  bool hasVolatile() const { return Mask & Volatile; }
  bool hasOnlyVolatile() const { return Mask == Volatile; }
  void removeVolatile() { Mask &= ~Volatile; }
  void addVolatile() { Mask |= Volatile; }

  bool hasRestrict() const { return Mask & Restrict; }
  bool hasOnlyRestrict() const { return Mask == Restrict; }
  void removeRestrict() { Mask &= ~Restrict; }
  void addRestrict() { Mask |= Restrict; }

  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
  unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }

  void setCVRQualifiers(unsigned mask) {
    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    Mask = (Mask & ~CVRMask) | mask;
  }
  void removeCVRQualifiers(unsigned mask) {
    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    Mask &= ~mask;
  }
  void removeCVRQualifiers() {
    removeCVRQualifiers(CVRMask);
  }
  void addCVRQualifiers(unsigned mask) {
    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    Mask |= mask;
  }
  void addCVRUQualifiers(unsigned mask) {
    assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits");
    Mask |= mask;
  }

  bool hasUnaligned() const { return Mask & UMask; }
  void setUnaligned(bool flag) {
    Mask = (Mask & ~UMask) | (flag ? UMask : 0);
  }
  void removeUnaligned() { Mask &= ~UMask; }
  void addUnaligned() { Mask |= UMask; }

  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
  void setObjCGCAttr(GC type) {
    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
  }
  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
  void addObjCGCAttr(GC type) {
    assert(type);
    setObjCGCAttr(type);
  }
  Qualifiers withoutObjCGCAttr() const {
    Qualifiers qs = *this;
    qs.removeObjCGCAttr();
    return qs;
  }
  Qualifiers withoutObjCLifetime() const {
    Qualifiers qs = *this;
    qs.removeObjCLifetime();
    return qs;
  }
  Qualifiers withoutAddressSpace() const {
    Qualifiers qs = *this;
    qs.removeAddressSpace();
    return qs;
  }

  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
  ObjCLifetime getObjCLifetime() const {
    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
  }
  void setObjCLifetime(ObjCLifetime type) {
    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
  }
  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
  void addObjCLifetime(ObjCLifetime type) {
    assert(type);
    assert(!hasObjCLifetime());
    Mask |= (type << LifetimeShift);
  }

  /// True if the lifetime is neither None or ExplicitNone.
  bool hasNonTrivialObjCLifetime() const {
    ObjCLifetime lifetime = getObjCLifetime();
    return (lifetime > OCL_ExplicitNone);
  }

  /// True if the lifetime is either strong or weak.
  bool hasStrongOrWeakObjCLifetime() const {
    ObjCLifetime lifetime = getObjCLifetime();
    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
  }

  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
  LangAS getAddressSpace() const {
    return static_cast<LangAS>(Mask >> AddressSpaceShift);
  }
  bool hasTargetSpecificAddressSpace() const {
    return isTargetAddressSpace(getAddressSpace());
  }
  /// Get the address space attribute value to be printed by diagnostics.
  unsigned getAddressSpaceAttributePrintValue() const {
    auto Addr = getAddressSpace();
    // This function is not supposed to be used with language specific
    // address spaces. If that happens, the diagnostic message should consider
    // printing the QualType instead of the address space value.
    assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace());
    if (Addr != LangAS::Default)
      return toTargetAddressSpace(Addr);
    // TODO: The diagnostic messages where Addr may be 0 should be fixed
    // since it cannot differentiate the situation where 0 denotes the default
    // address space or user specified __attribute__((address_space(0))).
    return 0;
  }
  void setAddressSpace(LangAS space) {
    assert((unsigned)space <= MaxAddressSpace);
    Mask = (Mask & ~AddressSpaceMask)
         | (((uint32_t) space) << AddressSpaceShift);
  }
  void removeAddressSpace() { setAddressSpace(LangAS::Default); }
  void addAddressSpace(LangAS space) {
    assert(space != LangAS::Default);
    setAddressSpace(space);
  }

  // Fast qualifiers are those that can be allocated directly
  // on a QualType object.
  bool hasFastQualifiers() const { return getFastQualifiers(); }
  unsigned getFastQualifiers() const { return Mask & FastMask; }
  void setFastQualifiers(unsigned mask) {
    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    Mask = (Mask & ~FastMask) | mask;
  }
  void removeFastQualifiers(unsigned mask) {
    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    Mask &= ~mask;
  }
  void removeFastQualifiers() {
    removeFastQualifiers(FastMask);
  }
  void addFastQualifiers(unsigned mask) {
    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    Mask |= mask;
  }

  /// Return true if the set contains any qualifiers which require an ExtQuals
  /// node to be allocated.
  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
  Qualifiers getNonFastQualifiers() const {
    Qualifiers Quals = *this;
    Quals.setFastQualifiers(0);
    return Quals;
  }

  /// Return true if the set contains any qualifiers.
  bool hasQualifiers() const { return Mask; }
  bool empty() const { return !Mask; }

  /// Add the qualifiers from the given set to this set.
  void addQualifiers(Qualifiers Q) {
    // If the other set doesn't have any non-boolean qualifiers, just
    // bit-or it in.
    if (!(Q.Mask & ~CVRMask))
      Mask |= Q.Mask;
    else {
      Mask |= (Q.Mask & CVRMask);
      if (Q.hasAddressSpace())
        addAddressSpace(Q.getAddressSpace());
      if (Q.hasObjCGCAttr())
        addObjCGCAttr(Q.getObjCGCAttr());
      if (Q.hasObjCLifetime())
        addObjCLifetime(Q.getObjCLifetime());
    }
  }

  /// Remove the qualifiers from the given set from this set.
  void removeQualifiers(Qualifiers Q) {
    // If the other set doesn't have any non-boolean qualifiers, just
    // bit-and the inverse in.
    if (!(Q.Mask & ~CVRMask))
      Mask &= ~Q.Mask;
    else {
      Mask &= ~(Q.Mask & CVRMask);
      if (getObjCGCAttr() == Q.getObjCGCAttr())
        removeObjCGCAttr();
      if (getObjCLifetime() == Q.getObjCLifetime())
        removeObjCLifetime();
      if (getAddressSpace() == Q.getAddressSpace())
        removeAddressSpace();
    }
  }

  /// Add the qualifiers from the given set to this set, given that
  /// they don't conflict.
  void addConsistentQualifiers(Qualifiers qs) {
    assert(getAddressSpace() == qs.getAddressSpace() ||
           !hasAddressSpace() || !qs.hasAddressSpace());
    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
    assert(getObjCLifetime() == qs.getObjCLifetime() ||
           !hasObjCLifetime() || !qs.hasObjCLifetime());
    Mask |= qs.Mask;
  }

  /// Returns true if address space A is equal to or a superset of B.
  /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
  /// overlapping address spaces.
  /// CL1.1 or CL1.2:
  ///   every address space is a superset of itself.
  /// CL2.0 adds:
  ///   __generic is a superset of any address space except for __constant.
  static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
    // Address spaces must match exactly.
    return A == B ||
           // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
           // for __constant can be used as __generic.
           (A == LangAS::opencl_generic && B != LangAS::opencl_constant);
  }

  /// Returns true if the address space in these qualifiers is equal to or
  /// a superset of the address space in the argument qualifiers.
  bool isAddressSpaceSupersetOf(Qualifiers other) const {
    return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
  }

  /// Determines if these qualifiers compatibly include another set.
  /// Generally this answers the question of whether an object with the other
  /// qualifiers can be safely used as an object with these qualifiers.
  bool compatiblyIncludes(Qualifiers other) const {
    return isAddressSpaceSupersetOf(other) &&
           // ObjC GC qualifiers can match, be added, or be removed, but can't
           // be changed.
           (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
            !other.hasObjCGCAttr()) &&
           // ObjC lifetime qualifiers must match exactly.
           getObjCLifetime() == other.getObjCLifetime() &&
           // CVR qualifiers may subset.
           (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
           // U qualifier may superset.
           (!other.hasUnaligned() || hasUnaligned());
  }

  /// Determines if these qualifiers compatibly include another set of
  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
  ///
  /// One set of Objective-C lifetime qualifiers compatibly includes the other
  /// if the lifetime qualifiers match, or if both are non-__weak and the
  /// including set also contains the 'const' qualifier, or both are non-__weak
  /// and one is None (which can only happen in non-ARC modes).
  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
    if (getObjCLifetime() == other.getObjCLifetime())
      return true;

    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
      return false;

    if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
      return true;

    return hasConst();
  }

  /// Determine whether this set of qualifiers is a strict superset of
  /// another set of qualifiers, not considering qualifier compatibility.
  bool isStrictSupersetOf(Qualifiers Other) const;

  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }

  explicit operator bool() const { return hasQualifiers(); }

  Qualifiers &operator+=(Qualifiers R) {
    addQualifiers(R);
    return *this;
  }

  // Union two qualifier sets.  If an enumerated qualifier appears
  // in both sets, use the one from the right.
  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
    L += R;
    return L;
  }

  Qualifiers &operator-=(Qualifiers R) {
    removeQualifiers(R);
    return *this;
  }

  /// Compute the difference between two qualifier sets.
  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
    L -= R;
    return L;
  }

  std::string getAsString() const;
  std::string getAsString(const PrintingPolicy &Policy) const;

  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
  void print(raw_ostream &OS, const PrintingPolicy &Policy,
             bool appendSpaceIfNonEmpty = false) const;

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddInteger(Mask);
  }

private:
  // bits:     |0 1 2|3|4 .. 5|6  ..  8|9   ...   31|
  //           |C R V|U|GCAttr|Lifetime|AddressSpace|
  uint32_t Mask = 0;

  static const uint32_t UMask = 0x8;
  static const uint32_t UShift = 3;
  static const uint32_t GCAttrMask = 0x30;
  static const uint32_t GCAttrShift = 4;
  static const uint32_t LifetimeMask = 0x1C0;
  static const uint32_t LifetimeShift = 6;
  static const uint32_t AddressSpaceMask =
      ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
  static const uint32_t AddressSpaceShift = 9;
};

/// A std::pair-like structure for storing a qualified type split
/// into its local qualifiers and its locally-unqualified type.
struct SplitQualType {
  /// The locally-unqualified type.
  const Type *Ty = nullptr;

  /// The local qualifiers.
  Qualifiers Quals;

  SplitQualType() = default;
  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}

  SplitQualType getSingleStepDesugaredType() const; // end of this file

  // Make std::tie work.
  std::pair<const Type *,Qualifiers> asPair() const {
    return std::pair<const Type *, Qualifiers>(Ty, Quals);
  }

  friend bool operator==(SplitQualType a, SplitQualType b) {
    return a.Ty == b.Ty && a.Quals == b.Quals;
  }
  friend bool operator!=(SplitQualType a, SplitQualType b) {
    return a.Ty != b.Ty || a.Quals != b.Quals;
  }
};

/// The kind of type we are substituting Objective-C type arguments into.
///
/// The kind of substitution affects the replacement of type parameters when
/// no concrete type information is provided, e.g., when dealing with an
/// unspecialized type.
enum class ObjCSubstitutionContext {
  /// An ordinary type.
  Ordinary,

  /// The result type of a method or function.
  Result,

  /// The parameter type of a method or function.
  Parameter,

  /// The type of a property.
  Property,

  /// The superclass of a type.
  Superclass,
};

/// A (possibly-)qualified type.
///
/// For efficiency, we don't store CV-qualified types as nodes on their
/// own: instead each reference to a type stores the qualifiers.  This
/// greatly reduces the number of nodes we need to allocate for types (for
/// example we only need one for 'int', 'const int', 'volatile int',
/// 'const volatile int', etc).
///
/// As an added efficiency bonus, instead of making this a pair, we
/// just store the two bits we care about in the low bits of the
/// pointer.  To handle the packing/unpacking, we make QualType be a
/// simple wrapper class that acts like a smart pointer.  A third bit
/// indicates whether there are extended qualifiers present, in which
/// case the pointer points to a special structure.
class QualType {
  friend class QualifierCollector;

  // Thankfully, these are efficiently composable.
  llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
                       Qualifiers::FastWidth> Value;

  const ExtQuals *getExtQualsUnsafe() const {
    return Value.getPointer().get<const ExtQuals*>();
  }

  const Type *getTypePtrUnsafe() const {
    return Value.getPointer().get<const Type*>();
  }

  const ExtQualsTypeCommonBase *getCommonPtr() const {
    assert(!isNull() && "Cannot retrieve a NULL type pointer");
    auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
  }

public:
  QualType() = default;
  QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
  QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}

  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }

  /// Retrieves a pointer to the underlying (unqualified) type.
  ///
  /// This function requires that the type not be NULL. If the type might be
  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
  const Type *getTypePtr() const;

  const Type *getTypePtrOrNull() const;

  /// Retrieves a pointer to the name of the base type.
  const IdentifierInfo *getBaseTypeIdentifier() const;

  /// Divides a QualType into its unqualified type and a set of local
  /// qualifiers.
  SplitQualType split() const;

  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }

  static QualType getFromOpaquePtr(const void *Ptr) {
    QualType T;
    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
    return T;
  }

  const Type &operator*() const {
    return *getTypePtr();
  }

  const Type *operator->() const {
    return getTypePtr();
  }

  bool isCanonical() const;
  bool isCanonicalAsParam() const;

  /// Return true if this QualType doesn't point to a type yet.
  bool isNull() const {
    return Value.getPointer().isNull();
  }

  /// Determine whether this particular QualType instance has the
  /// "const" qualifier set, without looking through typedefs that may have
  /// added "const" at a different level.
  bool isLocalConstQualified() const {
    return (getLocalFastQualifiers() & Qualifiers::Const);
  }

  /// Determine whether this type is const-qualified.
  bool isConstQualified() const;

  /// Determine whether this particular QualType instance has the
  /// "restrict" qualifier set, without looking through typedefs that may have
  /// added "restrict" at a different level.
  bool isLocalRestrictQualified() const {
    return (getLocalFastQualifiers() & Qualifiers::Restrict);
  }

  /// Determine whether this type is restrict-qualified.
  bool isRestrictQualified() const;

  /// Determine whether this particular QualType instance has the
  /// "volatile" qualifier set, without looking through typedefs that may have
  /// added "volatile" at a different level.
  bool isLocalVolatileQualified() const {
    return (getLocalFastQualifiers() & Qualifiers::Volatile);
  }

  /// Determine whether this type is volatile-qualified.
  bool isVolatileQualified() const;

  /// Determine whether this particular QualType instance has any
  /// qualifiers, without looking through any typedefs that might add
  /// qualifiers at a different level.
  bool hasLocalQualifiers() const {
    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
  }

  /// Determine whether this type has any qualifiers.
  bool hasQualifiers() const;

  /// Determine whether this particular QualType instance has any
  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
  /// instance.
  bool hasLocalNonFastQualifiers() const {
    return Value.getPointer().is<const ExtQuals*>();
  }

  /// Retrieve the set of qualifiers local to this particular QualType
  /// instance, not including any qualifiers acquired through typedefs or
  /// other sugar.
  Qualifiers getLocalQualifiers() const;

  /// Retrieve the set of qualifiers applied to this type.
  Qualifiers getQualifiers() const;

  /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
  /// local to this particular QualType instance, not including any qualifiers
  /// acquired through typedefs or other sugar.
  unsigned getLocalCVRQualifiers() const {
    return getLocalFastQualifiers();
  }

  /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
  /// applied to this type.
  unsigned getCVRQualifiers() const;

  bool isConstant(const ASTContext& Ctx) const {
    return QualType::isConstant(*this, Ctx);
  }

  /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
  bool isPODType(const ASTContext &Context) const;

  /// Return true if this is a POD type according to the rules of the C++98
  /// standard, regardless of the current compilation's language.
  bool isCXX98PODType(const ASTContext &Context) const;

  /// Return true if this is a POD type according to the more relaxed rules
  /// of the C++11 standard, regardless of the current compilation's language.
  /// (C++0x [basic.types]p9). Note that, unlike
  /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
  bool isCXX11PODType(const ASTContext &Context) const;

  /// Return true if this is a trivial type per (C++0x [basic.types]p9)
  bool isTrivialType(const ASTContext &Context) const;

  /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
  bool isTriviallyCopyableType(const ASTContext &Context) const;


  /// Returns true if it is a class and it might be dynamic.
  bool mayBeDynamicClass() const;

  /// Returns true if it is not a class or if the class might not be dynamic.
  bool mayBeNotDynamicClass() const;

  // Don't promise in the API that anything besides 'const' can be
  // easily added.

  /// Add the `const` type qualifier to this QualType.
  void addConst() {
    addFastQualifiers(Qualifiers::Const);
  }
  QualType withConst() const {
    return withFastQualifiers(Qualifiers::Const);
  }

  /// Add the `volatile` type qualifier to this QualType.
  void addVolatile() {
    addFastQualifiers(Qualifiers::Volatile);
  }
  QualType withVolatile() const {
    return withFastQualifiers(Qualifiers::Volatile);
  }

  /// Add the `restrict` qualifier to this QualType.
  void addRestrict() {
    addFastQualifiers(Qualifiers::Restrict);
  }
  QualType withRestrict() const {
    return withFastQualifiers(Qualifiers::Restrict);
  }

  QualType withCVRQualifiers(unsigned CVR) const {
    return withFastQualifiers(CVR);
  }

  void addFastQualifiers(unsigned TQs) {
    assert(!(TQs & ~Qualifiers::FastMask)
           && "non-fast qualifier bits set in mask!");
    Value.setInt(Value.getInt() | TQs);
  }

  void removeLocalConst();
  void removeLocalVolatile();
  void removeLocalRestrict();
  void removeLocalCVRQualifiers(unsigned Mask);

  void removeLocalFastQualifiers() { Value.setInt(0); }
  void removeLocalFastQualifiers(unsigned Mask) {
    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
    Value.setInt(Value.getInt() & ~Mask);
  }

  // Creates a type with the given qualifiers in addition to any
  // qualifiers already on this type.
  QualType withFastQualifiers(unsigned TQs) const {
    QualType T = *this;
    T.addFastQualifiers(TQs);
    return T;
  }

  // Creates a type with exactly the given fast qualifiers, removing
  // any existing fast qualifiers.
  QualType withExactLocalFastQualifiers(unsigned TQs) const {
    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
  }

  // Removes fast qualifiers, but leaves any extended qualifiers in place.
  QualType withoutLocalFastQualifiers() const {
    QualType T = *this;
    T.removeLocalFastQualifiers();
    return T;
  }

  QualType getCanonicalType() const;

  /// Return this type with all of the instance-specific qualifiers
  /// removed, but without removing any qualifiers that may have been applied
  /// through typedefs.
  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }

  /// Retrieve the unqualified variant of the given type,
  /// removing as little sugar as possible.
  ///
  /// This routine looks through various kinds of sugar to find the
  /// least-desugared type that is unqualified. For example, given:
  ///
  /// \code
  /// typedef int Integer;
  /// typedef const Integer CInteger;
  /// typedef CInteger DifferenceType;
  /// \endcode
  ///
  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
  ///
  /// The resulting type might still be qualified if it's sugar for an array
  /// type.  To strip qualifiers even from within a sugared array type, use
  /// ASTContext::getUnqualifiedArrayType.
  inline QualType getUnqualifiedType() const;

  /// Retrieve the unqualified variant of the given type, removing as little
  /// sugar as possible.
  ///
  /// Like getUnqualifiedType(), but also returns the set of
  /// qualifiers that were built up.
  ///
  /// The resulting type might still be qualified if it's sugar for an array
  /// type.  To strip qualifiers even from within a sugared array type, use
  /// ASTContext::getUnqualifiedArrayType.
  inline SplitQualType getSplitUnqualifiedType() const;

  /// Determine whether this type is more qualified than the other
  /// given type, requiring exact equality for non-CVR qualifiers.
  bool isMoreQualifiedThan(QualType Other) const;

  /// Determine whether this type is at least as qualified as the other
  /// given type, requiring exact equality for non-CVR qualifiers.
  bool isAtLeastAsQualifiedAs(QualType Other) const;

  QualType getNonReferenceType() const;

  /// Determine the type of a (typically non-lvalue) expression with the
  /// specified result type.
  ///
  /// This routine should be used for expressions for which the return type is
  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
  /// an lvalue. It removes a top-level reference (since there are no
  /// expressions of reference type) and deletes top-level cvr-qualifiers
  /// from non-class types (in C++) or all types (in C).
  QualType getNonLValueExprType(const ASTContext &Context) const;

  /// Return the specified type with any "sugar" removed from
  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
  /// the type is already concrete, it returns it unmodified.  This is similar
  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
  /// concrete.
  ///
  /// Qualifiers are left in place.
  QualType getDesugaredType(const ASTContext &Context) const {
    return getDesugaredType(*this, Context);
  }

  SplitQualType getSplitDesugaredType() const {
    return getSplitDesugaredType(*this);
  }

  /// Return the specified type with one level of "sugar" removed from
  /// the type.
  ///
  /// This routine takes off the first typedef, typeof, etc. If the outer level
  /// of the type is already concrete, it returns it unmodified.
  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
    return getSingleStepDesugaredTypeImpl(*this, Context);
  }

  /// Returns the specified type after dropping any
  /// outer-level parentheses.
  QualType IgnoreParens() const {
    if (isa<ParenType>(*this))
      return QualType::IgnoreParens(*this);
    return *this;
  }

  /// Indicate whether the specified types and qualifiers are identical.
  friend bool operator==(const QualType &LHS, const QualType &RHS) {
    return LHS.Value == RHS.Value;
  }
  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
    return LHS.Value != RHS.Value;
  }
  friend bool operator<(const QualType &LHS, const QualType &RHS) {
    return LHS.Value < RHS.Value;
  }

  static std::string getAsString(SplitQualType split,
                                 const PrintingPolicy &Policy) {
    return getAsString(split.Ty, split.Quals, Policy);
  }
  static std::string getAsString(const Type *ty, Qualifiers qs,
                                 const PrintingPolicy &Policy);

  std::string getAsString() const;
  std::string getAsString(const PrintingPolicy &Policy) const;

  void print(raw_ostream &OS, const PrintingPolicy &Policy,
             const Twine &PlaceHolder = Twine(),
             unsigned Indentation = 0) const;

  static void print(SplitQualType split, raw_ostream &OS,
                    const PrintingPolicy &policy, const Twine &PlaceHolder,
                    unsigned Indentation = 0) {
    return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
  }

  static void print(const Type *ty, Qualifiers qs,
                    raw_ostream &OS, const PrintingPolicy &policy,
                    const Twine &PlaceHolder,
                    unsigned Indentation = 0);

  void getAsStringInternal(std::string &Str,
                           const PrintingPolicy &Policy) const;

  static void getAsStringInternal(SplitQualType split, std::string &out,
                                  const PrintingPolicy &policy) {
    return getAsStringInternal(split.Ty, split.Quals, out, policy);
  }

  static void getAsStringInternal(const Type *ty, Qualifiers qs,
                                  std::string &out,
                                  const PrintingPolicy &policy);

  class StreamedQualTypeHelper {
    const QualType &T;
    const PrintingPolicy &Policy;
    const Twine &PlaceHolder;
    unsigned Indentation;

  public:
    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
                           const Twine &PlaceHolder, unsigned Indentation)
        : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
          Indentation(Indentation) {}

    friend raw_ostream &operator<<(raw_ostream &OS,
                                   const StreamedQualTypeHelper &SQT) {
      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
      return OS;
    }
  };

  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
                                const Twine &PlaceHolder = Twine(),
                                unsigned Indentation = 0) const {
    return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
  }

  void dump(const char *s) const;
  void dump() const;
  void dump(llvm::raw_ostream &OS) const;

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddPointer(getAsOpaquePtr());
  }

  /// Return the address space of this type.
  inline LangAS getAddressSpace() const;

  /// Returns gc attribute of this type.
  inline Qualifiers::GC getObjCGCAttr() const;

  /// true when Type is objc's weak.
  bool isObjCGCWeak() const {
    return getObjCGCAttr() == Qualifiers::Weak;
  }

  /// true when Type is objc's strong.
  bool isObjCGCStrong() const {
    return getObjCGCAttr() == Qualifiers::Strong;
  }

  /// Returns lifetime attribute of this type.
  Qualifiers::ObjCLifetime getObjCLifetime() const {
    return getQualifiers().getObjCLifetime();
  }

  bool hasNonTrivialObjCLifetime() const {
    return getQualifiers().hasNonTrivialObjCLifetime();
  }

  bool hasStrongOrWeakObjCLifetime() const {
    return getQualifiers().hasStrongOrWeakObjCLifetime();
  }

  // true when Type is objc's weak and weak is enabled but ARC isn't.
  bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;

  enum PrimitiveDefaultInitializeKind {
    /// The type does not fall into any of the following categories. Note that
    /// this case is zero-valued so that values of this enum can be used as a
    /// boolean condition for non-triviality.
    PDIK_Trivial,

    /// The type is an Objective-C retainable pointer type that is qualified
    /// with the ARC __strong qualifier.
    PDIK_ARCStrong,

    /// The type is an Objective-C retainable pointer type that is qualified
    /// with the ARC __weak qualifier.
    PDIK_ARCWeak,

    /// The type is a struct containing a field whose type is not PCK_Trivial.
    PDIK_Struct
  };

  /// Functions to query basic properties of non-trivial C struct types.

  /// Check if this is a non-trivial type that would cause a C struct
  /// transitively containing this type to be non-trivial to default initialize
  /// and return the kind.
  PrimitiveDefaultInitializeKind
  isNonTrivialToPrimitiveDefaultInitialize() const;

  enum PrimitiveCopyKind {
    /// The type does not fall into any of the following categories. Note that
    /// this case is zero-valued so that values of this enum can be used as a
    /// boolean condition for non-triviality.
    PCK_Trivial,

    /// The type would be trivial except that it is volatile-qualified. Types
    /// that fall into one of the other non-trivial cases may additionally be
    /// volatile-qualified.
    PCK_VolatileTrivial,

    /// The type is an Objective-C retainable pointer type that is qualified
    /// with the ARC __strong qualifier.
    PCK_ARCStrong,

    /// The type is an Objective-C retainable pointer type that is qualified
    /// with the ARC __weak qualifier.
    PCK_ARCWeak,

    /// The type is a struct containing a field whose type is neither
    /// PCK_Trivial nor PCK_VolatileTrivial.
    /// Note that a C++ struct type does not necessarily match this; C++ copying
    /// semantics are too complex to express here, in part because they depend
    /// on the exact constructor or assignment operator that is chosen by
    /// overload resolution to do the copy.
    PCK_Struct
  };

  /// Check if this is a non-trivial type that would cause a C struct
  /// transitively containing this type to be non-trivial to copy and return the
  /// kind.
  PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;

  /// Check if this is a non-trivial type that would cause a C struct
  /// transitively containing this type to be non-trivial to destructively
  /// move and return the kind. Destructive move in this context is a C++-style
  /// move in which the source object is placed in a valid but unspecified state
  /// after it is moved, as opposed to a truly destructive move in which the
  /// source object is placed in an uninitialized state.
  PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;

  enum DestructionKind {
    DK_none,
    DK_cxx_destructor,
    DK_objc_strong_lifetime,
    DK_objc_weak_lifetime,
    DK_nontrivial_c_struct
  };

  /// Returns a nonzero value if objects of this type require
  /// non-trivial work to clean up after.  Non-zero because it's
  /// conceivable that qualifiers (objc_gc(weak)?) could make
  /// something require destruction.
  DestructionKind isDestructedType() const {
    return isDestructedTypeImpl(*this);
  }

  /// Check if this is or contains a C union that is non-trivial to
  /// default-initialize, which is a union that has a member that is non-trivial
  /// to default-initialize. If this returns true,
  /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
  bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;

  /// Check if this is or contains a C union that is non-trivial to destruct,
  /// which is a union that has a member that is non-trivial to destruct. If
  /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
  bool hasNonTrivialToPrimitiveDestructCUnion() const;

  /// Check if this is or contains a C union that is non-trivial to copy, which
  /// is a union that has a member that is non-trivial to copy. If this returns
  /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
  bool hasNonTrivialToPrimitiveCopyCUnion() const;

  /// Determine whether expressions of the given type are forbidden
  /// from being lvalues in C.
  ///
  /// The expression types that are forbidden to be lvalues are:
  ///   - 'void', but not qualified void
  ///   - function types
  ///
  /// The exact rule here is C99 6.3.2.1:
  ///   An lvalue is an expression with an object type or an incomplete
  ///   type other than void.
  bool isCForbiddenLValueType() const;

  /// Substitute type arguments for the Objective-C type parameters used in the
  /// subject type.
  ///
  /// \param ctx ASTContext in which the type exists.
  ///
  /// \param typeArgs The type arguments that will be substituted for the
  /// Objective-C type parameters in the subject type, which are generally
  /// computed via \c Type::getObjCSubstitutions. If empty, the type
  /// parameters will be replaced with their bounds or id/Class, as appropriate
  /// for the context.
  ///
  /// \param context The context in which the subject type was written.
  ///
  /// \returns the resulting type.
  QualType substObjCTypeArgs(ASTContext &ctx,
                             ArrayRef<QualType> typeArgs,
                             ObjCSubstitutionContext context) const;

  /// Substitute type arguments from an object type for the Objective-C type
  /// parameters used in the subject type.
  ///
  /// This operation combines the computation of type arguments for
  /// substitution (\c Type::getObjCSubstitutions) with the actual process of
  /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
  /// callers that need to perform a single substitution in isolation.
  ///
  /// \param objectType The type of the object whose member type we're
  /// substituting into. For example, this might be the receiver of a message
  /// or the base of a property access.
  ///
  /// \param dc The declaration context from which the subject type was
  /// retrieved, which indicates (for example) which type parameters should
  /// be substituted.
  ///
  /// \param context The context in which the subject type was written.
  ///
  /// \returns the subject type after replacing all of the Objective-C type
  /// parameters with their corresponding arguments.
  QualType substObjCMemberType(QualType objectType,
                               const DeclContext *dc,
                               ObjCSubstitutionContext context) const;

  /// Strip Objective-C "__kindof" types from the given type.
  QualType stripObjCKindOfType(const ASTContext &ctx) const;

  /// Remove all qualifiers including _Atomic.
  QualType getAtomicUnqualifiedType() const;

private:
  // These methods are implemented in a separate translation unit;
  // "static"-ize them to avoid creating temporary QualTypes in the
  // caller.
  static bool isConstant(QualType T, const ASTContext& Ctx);
  static QualType getDesugaredType(QualType T, const ASTContext &Context);
  static SplitQualType getSplitDesugaredType(QualType T);
  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
  static QualType getSingleStepDesugaredTypeImpl(QualType type,
                                                 const ASTContext &C);
  static QualType IgnoreParens(QualType T);
  static DestructionKind isDestructedTypeImpl(QualType type);

  /// Check if \param RD is or contains a non-trivial C union.
  static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
  static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
  static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
};

} // namespace clang

namespace llvm {

/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
/// to a specific Type class.
template<> struct simplify_type< ::clang::QualType> {
  using SimpleType = const ::clang::Type *;

  static SimpleType getSimplifiedValue(::clang::QualType Val) {
    return Val.getTypePtr();
  }
};

// Teach SmallPtrSet that QualType is "basically a pointer".
template<>
struct PointerLikeTypeTraits<clang::QualType> {
  static inline void *getAsVoidPointer(clang::QualType P) {
    return P.getAsOpaquePtr();
  }

  static inline clang::QualType getFromVoidPointer(void *P) {
    return clang::QualType::getFromOpaquePtr(P);
  }

  // Various qualifiers go in low bits.
  enum { NumLowBitsAvailable = 0 };
};

} // namespace llvm

namespace clang {

/// Base class that is common to both the \c ExtQuals and \c Type
/// classes, which allows \c QualType to access the common fields between the
/// two.
class ExtQualsTypeCommonBase {
  friend class ExtQuals;
  friend class QualType;
  friend class Type;

  /// The "base" type of an extended qualifiers type (\c ExtQuals) or
  /// a self-referential pointer (for \c Type).
  ///
  /// This pointer allows an efficient mapping from a QualType to its
  /// underlying type pointer.
  const Type *const BaseType;

  /// The canonical type of this type.  A QualType.
  QualType CanonicalType;

  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
      : BaseType(baseType), CanonicalType(canon) {}
};

/// We can encode up to four bits in the low bits of a
/// type pointer, but there are many more type qualifiers that we want
/// to be able to apply to an arbitrary type.  Therefore we have this
/// struct, intended to be heap-allocated and used by QualType to
/// store qualifiers.
///
/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
/// in three low bits on the QualType pointer; a fourth bit records whether
/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
/// Objective-C GC attributes) are much more rare.
class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
  // NOTE: changing the fast qualifiers should be straightforward as
  // long as you don't make 'const' non-fast.
  // 1. Qualifiers:
  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
  //       Fast qualifiers must occupy the low-order bits.
  //    b) Update Qualifiers::FastWidth and FastMask.
  // 2. QualType:
  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
  //    b) Update remove{Volatile,Restrict}, defined near the end of
  //       this header.
  // 3. ASTContext:
  //    a) Update get{Volatile,Restrict}Type.

  /// The immutable set of qualifiers applied by this node. Always contains
  /// extended qualifiers.
  Qualifiers Quals;

  ExtQuals *this_() { return this; }

public:
  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
      : ExtQualsTypeCommonBase(baseType,
                               canon.isNull() ? QualType(this_(), 0) : canon),
        Quals(quals) {
    assert(Quals.hasNonFastQualifiers()
           && "ExtQuals created with no fast qualifiers");
    assert(!Quals.hasFastQualifiers()
           && "ExtQuals created with fast qualifiers");
  }

  Qualifiers getQualifiers() const { return Quals; }

  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }

  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
  Qualifiers::ObjCLifetime getObjCLifetime() const {
    return Quals.getObjCLifetime();
  }

  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
  LangAS getAddressSpace() const { return Quals.getAddressSpace(); }

  const Type *getBaseType() const { return BaseType; }

public:
  void Profile(llvm::FoldingSetNodeID &ID) const {
    Profile(ID, getBaseType(), Quals);
  }

  static void Profile(llvm::FoldingSetNodeID &ID,
                      const Type *BaseType,
                      Qualifiers Quals) {
    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
    ID.AddPointer(BaseType);
    Quals.Profile(ID);
  }
};

/// The kind of C++11 ref-qualifier associated with a function type.
/// This determines whether a member function's "this" object can be an
/// lvalue, rvalue, or neither.
enum RefQualifierKind {
  /// No ref-qualifier was provided.
  RQ_None = 0,

  /// An lvalue ref-qualifier was provided (\c &).
  RQ_LValue,

  /// An rvalue ref-qualifier was provided (\c &&).
  RQ_RValue
};

/// Which keyword(s) were used to create an AutoType.
enum class AutoTypeKeyword {
  /// auto
  Auto,

  /// decltype(auto)
  DecltypeAuto,

  /// __auto_type (GNU extension)
  GNUAutoType
};

/// The base class of the type hierarchy.
///
/// A central concept with types is that each type always has a canonical
/// type.  A canonical type is the type with any typedef names stripped out
/// of it or the types it references.  For example, consider:
///
///  typedef int  foo;
///  typedef foo* bar;
///    'int *'    'foo *'    'bar'
///
/// There will be a Type object created for 'int'.  Since int is canonical, its
/// CanonicalType pointer points to itself.  There is also a Type for 'foo' (a
/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
/// there is a PointerType that represents 'int*', which, like 'int', is
/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
/// is also 'int*'.
///
/// Non-canonical types are useful for emitting diagnostics, without losing
/// information about typedefs being used.  Canonical types are useful for type
/// comparisons (they allow by-pointer equality tests) and useful for reasoning
/// about whether something has a particular form (e.g. is a function type),
/// because they implicitly, recursively, strip all typedefs out of a type.
///
/// Types, once created, are immutable.
///
class alignas(8) Type : public ExtQualsTypeCommonBase {
public:
  enum TypeClass {
#define TYPE(Class, Base) Class,
#define LAST_TYPE(Class) TypeLast = Class
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.inc"
  };

private:
  /// Bitfields required by the Type class.
  class TypeBitfields {
    friend class Type;
    template <class T> friend class TypePropertyCache;

    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
    unsigned TC : 8;

    /// Whether this type is a dependent type (C++ [temp.dep.type]).
    unsigned Dependent : 1;

    /// Whether this type somehow involves a template parameter, even
    /// if the resolution of the type does not depend on a template parameter.
    unsigned InstantiationDependent : 1;

    /// Whether this type is a variably-modified type (C99 6.7.5).
    unsigned VariablyModified : 1;

    /// Whether this type contains an unexpanded parameter pack
    /// (for C++11 variadic templates).
    unsigned ContainsUnexpandedParameterPack : 1;

    /// True if the cache (i.e. the bitfields here starting with
    /// 'Cache') is valid.
    mutable unsigned CacheValid : 1;

    /// Linkage of this type.
    mutable unsigned CachedLinkage : 3;

    /// Whether this type involves and local or unnamed types.
    mutable unsigned CachedLocalOrUnnamed : 1;

    /// Whether this type comes from an AST file.
    mutable unsigned FromAST : 1;

    bool isCacheValid() const {
      return CacheValid;
    }

    Linkage getLinkage() const {
      assert(isCacheValid() && "getting linkage from invalid cache");
      return static_cast<Linkage>(CachedLinkage);
    }

    bool hasLocalOrUnnamedType() const {
      assert(isCacheValid() && "getting linkage from invalid cache");
      return CachedLocalOrUnnamed;
    }
  };
  enum { NumTypeBits = 18 };

protected:
  // These classes allow subclasses to somewhat cleanly pack bitfields
  // into Type.

  class ArrayTypeBitfields {
    friend class ArrayType;

    unsigned : NumTypeBits;

    /// CVR qualifiers from declarations like
    /// 'int X[static restrict 4]'. For function parameters only.
    unsigned IndexTypeQuals : 3;

    /// Storage class qualifiers from declarations like
    /// 'int X[static restrict 4]'. For function parameters only.
    /// Actually an ArrayType::ArraySizeModifier.
    unsigned SizeModifier : 3;
  };

  class BuiltinTypeBitfields {
    friend class BuiltinType;

    unsigned : NumTypeBits;

    /// The kind (BuiltinType::Kind) of builtin type this is.
    unsigned Kind : 8;
  };

  /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
  /// Only common bits are stored here. Additional uncommon bits are stored
  /// in a trailing object after FunctionProtoType.
  class FunctionTypeBitfields {
    friend class FunctionProtoType;
    friend class FunctionType;

    unsigned : NumTypeBits;

    /// Extra information which affects how the function is called, like
    /// regparm and the calling convention.
    unsigned ExtInfo : 12;

    /// The ref-qualifier associated with a \c FunctionProtoType.
    ///
    /// This is a value of type \c RefQualifierKind.
    unsigned RefQualifier : 2;

    /// Used only by FunctionProtoType, put here to pack with the
    /// other bitfields.
    /// The qualifiers are part of FunctionProtoType because...
    ///
    /// C++ 8.3.5p4: The return type, the parameter type list and the
    /// cv-qualifier-seq, [...], are part of the function type.
    unsigned FastTypeQuals : Qualifiers::FastWidth;
    /// Whether this function has extended Qualifiers.
    unsigned HasExtQuals : 1;

    /// The number of parameters this function has, not counting '...'.
    /// According to [implimits] 8 bits should be enough here but this is
    /// somewhat easy to exceed with metaprogramming and so we would like to
    /// keep NumParams as wide as reasonably possible.
    unsigned NumParams : 16;

    /// The type of exception specification this function has.
    unsigned ExceptionSpecType : 4;

    /// Whether this function has extended parameter information.
    unsigned HasExtParameterInfos : 1;

    /// Whether the function is variadic.
    unsigned Variadic : 1;

    /// Whether this function has a trailing return type.
    unsigned HasTrailingReturn : 1;
  };

  class ObjCObjectTypeBitfields {
    friend class ObjCObjectType;

    unsigned : NumTypeBits;

    /// The number of type arguments stored directly on this object type.
    unsigned NumTypeArgs : 7;

    /// The number of protocols stored directly on this object type.
    unsigned NumProtocols : 6;

    /// Whether this is a "kindof" type.
    unsigned IsKindOf : 1;
  };

  class ReferenceTypeBitfields {
    friend class ReferenceType;

    unsigned : NumTypeBits;

    /// True if the type was originally spelled with an lvalue sigil.
    /// This is never true of rvalue references but can also be false
    /// on lvalue references because of C++0x [dcl.typedef]p9,
    /// as follows:
    ///
    ///   typedef int &ref;    // lvalue, spelled lvalue
    ///   typedef int &&rvref; // rvalue
    ///   ref &a;              // lvalue, inner ref, spelled lvalue
    ///   ref &&a;             // lvalue, inner ref
    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
    ///   rvref &&a;           // rvalue, inner ref
    unsigned SpelledAsLValue : 1;

    /// True if the inner type is a reference type.  This only happens
    /// in non-canonical forms.
    unsigned InnerRef : 1;
  };

  class TypeWithKeywordBitfields {
    friend class TypeWithKeyword;

    unsigned : NumTypeBits;

    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
    unsigned Keyword : 8;
  };

  enum { NumTypeWithKeywordBits = 8 };

  class ElaboratedTypeBitfields {
    friend class ElaboratedType;

    unsigned : NumTypeBits;
    unsigned : NumTypeWithKeywordBits;

    /// Whether the ElaboratedType has a trailing OwnedTagDecl.
    unsigned HasOwnedTagDecl : 1;
  };

  class VectorTypeBitfields {
    friend class VectorType;
    friend class DependentVectorType;

    unsigned : NumTypeBits;

    /// The kind of vector, either a generic vector type or some
    /// target-specific vector type such as for AltiVec or Neon.
    unsigned VecKind : 3;

    /// The number of elements in the vector.
    unsigned NumElements : 29 - NumTypeBits;

    enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
  };

  class AttributedTypeBitfields {
    friend class AttributedType;

    unsigned : NumTypeBits;

    /// An AttributedType::Kind
    unsigned AttrKind : 32 - NumTypeBits;
  };

  class AutoTypeBitfields {
    friend class AutoType;

    unsigned : NumTypeBits;

    /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
    /// or '__auto_type'?  AutoTypeKeyword value.
    unsigned Keyword : 2;
  };

  class SubstTemplateTypeParmPackTypeBitfields {
    friend class SubstTemplateTypeParmPackType;

    unsigned : NumTypeBits;

    /// The number of template arguments in \c Arguments, which is
    /// expected to be able to hold at least 1024 according to [implimits].
    /// However as this limit is somewhat easy to hit with template
    /// metaprogramming we'd prefer to keep it as large as possible.
    /// At the moment it has been left as a non-bitfield since this type
    /// safely fits in 64 bits as an unsigned, so there is no reason to
    /// introduce the performance impact of a bitfield.
    unsigned NumArgs;
  };

  class TemplateSpecializationTypeBitfields {
    friend class TemplateSpecializationType;

    unsigned : NumTypeBits;

    /// Whether this template specialization type is a substituted type alias.
    unsigned TypeAlias : 1;

    /// The number of template arguments named in this class template
    /// specialization, which is expected to be able to hold at least 1024
    /// according to [implimits]. However, as this limit is somewhat easy to
    /// hit with template metaprogramming we'd prefer to keep it as large
    /// as possible. At the moment it has been left as a non-bitfield since
    /// this type safely fits in 64 bits as an unsigned, so there is no reason
    /// to introduce the performance impact of a bitfield.
    unsigned NumArgs;
  };

  class DependentTemplateSpecializationTypeBitfields {
    friend class DependentTemplateSpecializationType;

    unsigned : NumTypeBits;
    unsigned : NumTypeWithKeywordBits;

    /// The number of template arguments named in this class template
    /// specialization, which is expected to be able to hold at least 1024
    /// according to [implimits]. However, as this limit is somewhat easy to
    /// hit with template metaprogramming we'd prefer to keep it as large
    /// as possible. At the moment it has been left as a non-bitfield since
    /// this type safely fits in 64 bits as an unsigned, so there is no reason
    /// to introduce the performance impact of a bitfield.
    unsigned NumArgs;
  };

  class PackExpansionTypeBitfields {
    friend class PackExpansionType;

    unsigned : NumTypeBits;

    /// The number of expansions that this pack expansion will
    /// generate when substituted (+1), which is expected to be able to
    /// hold at least 1024 according to [implimits]. However, as this limit
    /// is somewhat easy to hit with template metaprogramming we'd prefer to
    /// keep it as large as possible. At the moment it has been left as a
    /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
    /// there is no reason to introduce the performance impact of a bitfield.
    ///
    /// This field will only have a non-zero value when some of the parameter
    /// packs that occur within the pattern have been substituted but others
    /// have not.
    unsigned NumExpansions;
  };

  union {
    TypeBitfields TypeBits;
    ArrayTypeBitfields ArrayTypeBits;
    AttributedTypeBitfields AttributedTypeBits;
    AutoTypeBitfields AutoTypeBits;
    BuiltinTypeBitfields BuiltinTypeBits;
    FunctionTypeBitfields FunctionTypeBits;
    ObjCObjectTypeBitfields ObjCObjectTypeBits;
    ReferenceTypeBitfields ReferenceTypeBits;
    TypeWithKeywordBitfields TypeWithKeywordBits;
    ElaboratedTypeBitfields ElaboratedTypeBits;
    VectorTypeBitfields VectorTypeBits;
    SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
    TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
    DependentTemplateSpecializationTypeBitfields
      DependentTemplateSpecializationTypeBits;
    PackExpansionTypeBitfields PackExpansionTypeBits;

    static_assert(sizeof(TypeBitfields) <= 8,
                  "TypeBitfields is larger than 8 bytes!");
    static_assert(sizeof(ArrayTypeBitfields) <= 8,
                  "ArrayTypeBitfields is larger than 8 bytes!");
    static_assert(sizeof(AttributedTypeBitfields) <= 8,
                  "AttributedTypeBitfields is larger than 8 bytes!");
    static_assert(sizeof(AutoTypeBitfields) <= 8,
                  "AutoTypeBitfields is larger than 8 bytes!");
    static_assert(sizeof(BuiltinTypeBitfields) <= 8,
                  "BuiltinTypeBitfields is larger than 8 bytes!");
    static_assert(sizeof(FunctionTypeBitfields) <= 8,
                  "FunctionTypeBitfields is larger than 8 bytes!");
    static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
                  "ObjCObjectTypeBitfields is larger than 8 bytes!");
    static_assert(sizeof(ReferenceTypeBitfields) <= 8,
                  "ReferenceTypeBitfields is larger than 8 bytes!");
    static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
                  "TypeWithKeywordBitfields is larger than 8 bytes!");
    static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
                  "ElaboratedTypeBitfields is larger than 8 bytes!");
    static_assert(sizeof(VectorTypeBitfields) <= 8,
                  "VectorTypeBitfields is larger than 8 bytes!");
    static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
                  "SubstTemplateTypeParmPackTypeBitfields is larger"
                  " than 8 bytes!");
    static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
                  "TemplateSpecializationTypeBitfields is larger"
                  " than 8 bytes!");
    static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
                  "DependentTemplateSpecializationTypeBitfields is larger"
                  " than 8 bytes!");
    static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
                  "PackExpansionTypeBitfields is larger than 8 bytes");
  };

private:
  template <class T> friend class TypePropertyCache;

  /// Set whether this type comes from an AST file.
  void setFromAST(bool V = true) const {
    TypeBits.FromAST = V;
  }

protected:
  friend class ASTContext;

  Type(TypeClass tc, QualType canon, bool Dependent,
       bool InstantiationDependent, bool VariablyModified,
       bool ContainsUnexpandedParameterPack)
      : ExtQualsTypeCommonBase(this,
                               canon.isNull() ? QualType(this_(), 0) : canon) {
    TypeBits.TC = tc;
    TypeBits.Dependent = Dependent;
    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
    TypeBits.VariablyModified = VariablyModified;
    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
    TypeBits.CacheValid = false;
    TypeBits.CachedLocalOrUnnamed = false;
    TypeBits.CachedLinkage = NoLinkage;
    TypeBits.FromAST = false;
  }

  // silence VC++ warning C4355: 'this' : used in base member initializer list
  Type *this_() { return this; }

  void setDependent(bool D = true) {
    TypeBits.Dependent = D;
    if (D)
      TypeBits.InstantiationDependent = true;
  }

  void setInstantiationDependent(bool D = true) {
    TypeBits.InstantiationDependent = D; }

  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }

  void setContainsUnexpandedParameterPack(bool PP = true) {
    TypeBits.ContainsUnexpandedParameterPack = PP;
  }

public:
  friend class ASTReader;
  friend class ASTWriter;

  Type(const Type &) = delete;
  Type(Type &&) = delete;
  Type &operator=(const Type &) = delete;
  Type &operator=(Type &&) = delete;

  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }

  /// Whether this type comes from an AST file.
  bool isFromAST() const { return TypeBits.FromAST; }

  /// Whether this type is or contains an unexpanded parameter
  /// pack, used to support C++0x variadic templates.
  ///
  /// A type that contains a parameter pack shall be expanded by the
  /// ellipsis operator at some point. For example, the typedef in the
  /// following example contains an unexpanded parameter pack 'T':
  ///
  /// \code
  /// template<typename ...T>
  /// struct X {
  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
  /// };
  /// \endcode
  ///
  /// Note that this routine does not specify which
  bool containsUnexpandedParameterPack() const {
    return TypeBits.ContainsUnexpandedParameterPack;
  }

  /// Determines if this type would be canonical if it had no further
  /// qualification.
  bool isCanonicalUnqualified() const {
    return CanonicalType == QualType(this, 0);
  }

  /// Pull a single level of sugar off of this locally-unqualified type.
  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;

  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
  /// object types, function types, and incomplete types.

  /// Return true if this is an incomplete type.
  /// A type that can describe objects, but which lacks information needed to
  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
  /// routine will need to determine if the size is actually required.
  ///
  /// Def If non-null, and the type refers to some kind of declaration
  /// that can be completed (such as a C struct, C++ class, or Objective-C
  /// class), will be set to the declaration.
  bool isIncompleteType(NamedDecl **Def = nullptr) const;

  /// Return true if this is an incomplete or object
  /// type, in other words, not a function type.
  bool isIncompleteOrObjectType() const {
    return !isFunctionType();
  }

  /// Determine whether this type is an object type.
  bool isObjectType() const {
    // C++ [basic.types]p8:
    //   An object type is a (possibly cv-qualified) type that is not a
    //   function type, not a reference type, and not a void type.
    return !isReferenceType() && !isFunctionType() && !isVoidType();
  }

  /// Return true if this is a literal type
  /// (C++11 [basic.types]p10)
  bool isLiteralType(const ASTContext &Ctx) const;

  /// Test if this type is a standard-layout type.
  /// (C++0x [basic.type]p9)
  bool isStandardLayoutType() const;

  /// Helper methods to distinguish type categories. All type predicates
  /// operate on the canonical type, ignoring typedefs and qualifiers.

  /// Returns true if the type is a builtin type.
  bool isBuiltinType() const;

  /// Test for a particular builtin type.
  bool isSpecificBuiltinType(unsigned K) const;

  /// Test for a type which does not represent an actual type-system type but
  /// is instead used as a placeholder for various convenient purposes within
  /// Clang.  All such types are BuiltinTypes.
  bool isPlaceholderType() const;
  const BuiltinType *getAsPlaceholderType() const;

  /// Test for a specific placeholder type.
  bool isSpecificPlaceholderType(unsigned K) const;

  /// Test for a placeholder type other than Overload; see
  /// BuiltinType::isNonOverloadPlaceholderType.
  bool isNonOverloadPlaceholderType() const;

  /// isIntegerType() does *not* include complex integers (a GCC extension).
  /// isComplexIntegerType() can be used to test for complex integers.
  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
  bool isEnumeralType() const;

  /// Determine whether this type is a scoped enumeration type.
  bool isScopedEnumeralType() const;
  bool isBooleanType() const;
  bool isCharType() const;
  bool isWideCharType() const;
  bool isChar8Type() const;
  bool isChar16Type() const;
  bool isChar32Type() const;
  bool isAnyCharacterType() const;
  bool isIntegralType(const ASTContext &Ctx) const;

  /// Determine whether this type is an integral or enumeration type.
  bool isIntegralOrEnumerationType() const;

  /// Determine whether this type is an integral or unscoped enumeration type.
  bool isIntegralOrUnscopedEnumerationType() const;

  /// Floating point categories.
  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
  /// isComplexType() does *not* include complex integers (a GCC extension).
  /// isComplexIntegerType() can be used to test for complex integers.
  bool isComplexType() const;      // C99 6.2.5p11 (complex)
  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
  bool isFloat16Type() const;      // C11 extension ISO/IEC TS 18661
  bool isFloat128Type() const;
  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
  bool isVoidType() const;         // C99 6.2.5p19
  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
  bool isAggregateType() const;
  bool isFundamentalType() const;
  bool isCompoundType() const;

  // Type Predicates: Check to see if this type is structurally the specified
  // type, ignoring typedefs and qualifiers.
  bool isFunctionType() const;
  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
  bool isPointerType() const;
  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
  bool isBlockPointerType() const;
  bool isVoidPointerType() const;
  bool isReferenceType() const;
  bool isLValueReferenceType() const;
  bool isRValueReferenceType() const;
  bool isFunctionPointerType() const;
  bool isFunctionReferenceType() const;
  bool isMemberPointerType() const;
  bool isMemberFunctionPointerType() const;
  bool isMemberDataPointerType() const;
  bool isArrayType() const;
  bool isConstantArrayType() const;
  bool isIncompleteArrayType() const;
  bool isVariableArrayType() const;
  bool isDependentSizedArrayType() const;
  bool isRecordType() const;
  bool isClassType() const;
  bool isStructureType() const;
  bool isObjCBoxableRecordType() const;
  bool isInterfaceType() const;
  bool isStructureOrClassType() const;
  bool isUnionType() const;
  bool isComplexIntegerType() const;            // GCC _Complex integer type.
  bool isVectorType() const;                    // GCC vector type.
  bool isExtVectorType() const;                 // Extended vector type.
  bool isDependentAddressSpaceType() const;     // value-dependent address space qualifier
  bool isObjCObjectPointerType() const;         // pointer to ObjC object
  bool isObjCRetainableType() const;            // ObjC object or block pointer
  bool isObjCLifetimeType() const;              // (array of)* retainable type
  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
  bool isObjCIndependentClassType() const;      // __attribute__((objc_independent_class))
  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
  // for the common case.
  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
  bool isObjCQualifiedIdType() const;           // id<foo>
  bool isObjCQualifiedClassType() const;        // Class<foo>
  bool isObjCObjectOrInterfaceType() const;
  bool isObjCIdType() const;                    // id
  bool isDecltypeType() const;
  /// Was this type written with the special inert-in-ARC __unsafe_unretained
  /// qualifier?
  ///
  /// This approximates the answer to the following question: if this
  /// translation unit were compiled in ARC, would this type be qualified
  /// with __unsafe_unretained?
  bool isObjCInertUnsafeUnretainedType() const {
    return hasAttr(attr::ObjCInertUnsafeUnretained);
  }

  /// Whether the type is Objective-C 'id' or a __kindof type of an
  /// object type, e.g., __kindof NSView * or __kindof id
  /// <NSCopying>.
  ///
  /// \param bound Will be set to the bound on non-id subtype types,
  /// which will be (possibly specialized) Objective-C class type, or
  /// null for 'id.
  bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
                                  const ObjCObjectType *&bound) const;

  bool isObjCClassType() const;                 // Class

  /// Whether the type is Objective-C 'Class' or a __kindof type of an
  /// Class type, e.g., __kindof Class <NSCopying>.
  ///
  /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
  /// here because Objective-C's type system cannot express "a class
  /// object for a subclass of NSFoo".
  bool isObjCClassOrClassKindOfType() const;

  bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
  bool isObjCSelType() const;                 // Class
  bool isObjCBuiltinType() const;               // 'id' or 'Class'
  bool isObjCARCBridgableType() const;
  bool isCARCBridgableType() const;
  bool isTemplateTypeParmType() const;          // C++ template type parameter
  bool isNullPtrType() const;                   // C++11 std::nullptr_t
  bool isNothrowT() const;                      // C++   std::nothrow_t
  bool isAlignValT() const;                     // C++17 std::align_val_t
  bool isStdByteType() const;                   // C++17 std::byte
  bool isAtomicType() const;                    // C11 _Atomic()

#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
  bool is##Id##Type() const;
#include "clang/Basic/OpenCLImageTypes.def"

  bool isImageType() const;                     // Any OpenCL image type

  bool isSamplerT() const;                      // OpenCL sampler_t
  bool isEventT() const;                        // OpenCL event_t
  bool isClkEventT() const;                     // OpenCL clk_event_t
  bool isQueueT() const;                        // OpenCL queue_t
  bool isReserveIDT() const;                    // OpenCL reserve_id_t

#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
  bool is##Id##Type() const;
#include "clang/Basic/OpenCLExtensionTypes.def"
  // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
  bool isOCLIntelSubgroupAVCType() const;
  bool isOCLExtOpaqueType() const;              // Any OpenCL extension type

  bool isPipeType() const;                      // OpenCL pipe type
  bool isOpenCLSpecificType() const;            // Any OpenCL specific type

  /// Determines if this type, which must satisfy
  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
  /// than implicitly __strong.
  bool isObjCARCImplicitlyUnretainedType() const;

  /// Return the implicit lifetime for this type, which must not be dependent.
  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;

  enum ScalarTypeKind {
    STK_CPointer,
    STK_BlockPointer,
    STK_ObjCObjectPointer,
    STK_MemberPointer,
    STK_Bool,
    STK_Integral,
    STK_Floating,
    STK_IntegralComplex,
    STK_FloatingComplex,
    STK_FixedPoint
  };

  /// Given that this is a scalar type, classify it.
  ScalarTypeKind getScalarTypeKind() const;

  /// Whether this type is a dependent type, meaning that its definition
  /// somehow depends on a template parameter (C++ [temp.dep.type]).
  bool isDependentType() const { return TypeBits.Dependent; }

  /// Determine whether this type is an instantiation-dependent type,
  /// meaning that the type involves a template parameter (even if the
  /// definition does not actually depend on the type substituted for that
  /// template parameter).
  bool isInstantiationDependentType() const {
    return TypeBits.InstantiationDependent;
  }

  /// Determine whether this type is an undeduced type, meaning that
  /// it somehow involves a C++11 'auto' type or similar which has not yet been
  /// deduced.
  bool isUndeducedType() const;

  /// Whether this type is a variably-modified type (C99 6.7.5).
  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }

  /// Whether this type involves a variable-length array type
  /// with a definite size.
  bool hasSizedVLAType() const;

  /// Whether this type is or contains a local or unnamed type.
  bool hasUnnamedOrLocalType() const;

  bool isOverloadableType() const;

  /// Determine wither this type is a C++ elaborated-type-specifier.
  bool isElaboratedTypeSpecifier() const;

  bool canDecayToPointerType() const;

  /// Whether this type is represented natively as a pointer.  This includes
  /// pointers, references, block pointers, and Objective-C interface,
  /// qualified id, and qualified interface types, as well as nullptr_t.
  bool hasPointerRepresentation() const;

  /// Whether this type can represent an objective pointer type for the
  /// purpose of GC'ability
  bool hasObjCPointerRepresentation() const;

  /// Determine whether this type has an integer representation
  /// of some sort, e.g., it is an integer type or a vector.
  bool hasIntegerRepresentation() const;

  /// Determine whether this type has an signed integer representation
  /// of some sort, e.g., it is an signed integer type or a vector.
  bool hasSignedIntegerRepresentation() const;

  /// Determine whether this type has an unsigned integer representation
  /// of some sort, e.g., it is an unsigned integer type or a vector.
  bool hasUnsignedIntegerRepresentation() const;

  /// Determine whether this type has a floating-point representation
  /// of some sort, e.g., it is a floating-point type or a vector thereof.
  bool hasFloatingRepresentation() const;

  // Type Checking Functions: Check to see if this type is structurally the
  // specified type, ignoring typedefs and qualifiers, and return a pointer to
  // the best type we can.
  const RecordType *getAsStructureType() const;
  /// NOTE: getAs*ArrayType are methods on ASTContext.
  const RecordType *getAsUnionType() const;
  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
  const ObjCObjectType *getAsObjCInterfaceType() const;

  // The following is a convenience method that returns an ObjCObjectPointerType
  // for object declared using an interface.
  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;

  /// Retrieves the CXXRecordDecl that this type refers to, either
  /// because the type is a RecordType or because it is the injected-class-name
  /// type of a class template or class template partial specialization.
  CXXRecordDecl *getAsCXXRecordDecl() const;

  /// Retrieves the RecordDecl this type refers to.
  RecordDecl *getAsRecordDecl() const;

  /// Retrieves the TagDecl that this type refers to, either
  /// because the type is a TagType or because it is the injected-class-name
  /// type of a class template or class template partial specialization.
  TagDecl *getAsTagDecl() const;

  /// If this is a pointer or reference to a RecordType, return the
  /// CXXRecordDecl that the type refers to.
  ///
  /// If this is not a pointer or reference, or the type being pointed to does
  /// not refer to a CXXRecordDecl, returns NULL.
  const CXXRecordDecl *getPointeeCXXRecordDecl() const;

  /// Get the DeducedType whose type will be deduced for a variable with
  /// an initializer of this type. This looks through declarators like pointer
  /// types, but not through decltype or typedefs.
  DeducedType *getContainedDeducedType() const;

  /// Get the AutoType whose type will be deduced for a variable with
  /// an initializer of this type. This looks through declarators like pointer
  /// types, but not through decltype or typedefs.
  AutoType *getContainedAutoType() const {
    return dyn_cast_or_null<AutoType>(getContainedDeducedType());
  }

  /// Determine whether this type was written with a leading 'auto'
  /// corresponding to a trailing return type (possibly for a nested
  /// function type within a pointer to function type or similar).
  bool hasAutoForTrailingReturnType() const;

  /// Member-template getAs<specific type>'.  Look through sugar for
  /// an instance of \<specific type>.   This scheme will eventually
  /// replace the specific getAsXXXX methods above.
  ///
  /// There are some specializations of this member template listed
  /// immediately following this class.
  template <typename T> const T *getAs() const;

  /// Member-template getAsAdjusted<specific type>. Look through specific kinds
  /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
  /// This is used when you need to walk over sugar nodes that represent some
  /// kind of type adjustment from a type that was written as a \<specific type>
  /// to another type that is still canonically a \<specific type>.
  template <typename T> const T *getAsAdjusted() const;

  /// A variant of getAs<> for array types which silently discards
  /// qualifiers from the outermost type.
  const ArrayType *getAsArrayTypeUnsafe() const;

  /// Member-template castAs<specific type>.  Look through sugar for
  /// the underlying instance of \<specific type>.
  ///
  /// This method has the same relationship to getAs<T> as cast<T> has
  /// to dyn_cast<T>; which is to say, the underlying type *must*
  /// have the intended type, and this method will never return null.
  template <typename T> const T *castAs() const;

  /// A variant of castAs<> for array type which silently discards
  /// qualifiers from the outermost type.
  const ArrayType *castAsArrayTypeUnsafe() const;

  /// Determine whether this type had the specified attribute applied to it
  /// (looking through top-level type sugar).
  bool hasAttr(attr::Kind AK) const;

  /// Get the base element type of this type, potentially discarding type
  /// qualifiers.  This should never be used when type qualifiers
  /// are meaningful.
  const Type *getBaseElementTypeUnsafe() const;

  /// If this is an array type, return the element type of the array,
  /// potentially with type qualifiers missing.
  /// This should never be used when type qualifiers are meaningful.
  const Type *getArrayElementTypeNoTypeQual() const;

  /// If this is a pointer type, return the pointee type.
  /// If this is an array type, return the array element type.
  /// This should never be used when type qualifiers are meaningful.
  const Type *getPointeeOrArrayElementType() const;

  /// If this is a pointer, ObjC object pointer, or block
  /// pointer, this returns the respective pointee.
  QualType getPointeeType() const;

  /// Return the specified type with any "sugar" removed from the type,
  /// removing any typedefs, typeofs, etc., as well as any qualifiers.
  const Type *getUnqualifiedDesugaredType() const;

  /// More type predicates useful for type checking/promotion
  bool isPromotableIntegerType() const; // C99 6.3.1.1p2

  /// Return true if this is an integer type that is
  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
  /// or an enum decl which has a signed representation.
  bool isSignedIntegerType() const;

  /// Return true if this is an integer type that is
  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
  /// or an enum decl which has an unsigned representation.
  bool isUnsignedIntegerType() const;

  /// Determines whether this is an integer type that is signed or an
  /// enumeration types whose underlying type is a signed integer type.
  bool isSignedIntegerOrEnumerationType() const;

  /// Determines whether this is an integer type that is unsigned or an
  /// enumeration types whose underlying type is a unsigned integer type.
  bool isUnsignedIntegerOrEnumerationType() const;

  /// Return true if this is a fixed point type according to
  /// ISO/IEC JTC1 SC22 WG14 N1169.
  bool isFixedPointType() const;

  /// Return true if this is a fixed point or integer type.
  bool isFixedPointOrIntegerType() const;

  /// Return true if this is a saturated fixed point type according to
  /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
  bool isSaturatedFixedPointType() const;

  /// Return true if this is a saturated fixed point type according to
  /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
  bool isUnsaturatedFixedPointType() const;

  /// Return true if this is a fixed point type that is signed according
  /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
  bool isSignedFixedPointType() const;

  /// Return true if this is a fixed point type that is unsigned according
  /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
  bool isUnsignedFixedPointType() const;

  /// Return true if this is not a variable sized type,
  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
  /// incomplete types.
  bool isConstantSizeType() const;

  /// Returns true if this type can be represented by some
  /// set of type specifiers.
  bool isSpecifierType() const;

  /// Determine the linkage of this type.
  Linkage getLinkage() const;

  /// Determine the visibility of this type.
  Visibility getVisibility() const {
    return getLinkageAndVisibility().getVisibility();
  }

  /// Return true if the visibility was explicitly set is the code.
  bool isVisibilityExplicit() const {
    return getLinkageAndVisibility().isVisibilityExplicit();
  }

  /// Determine the linkage and visibility of this type.
  LinkageInfo getLinkageAndVisibility() const;

  /// True if the computed linkage is valid. Used for consistency
  /// checking. Should always return true.
  bool isLinkageValid() const;

  /// Determine the nullability of the given type.
  ///
  /// Note that nullability is only captured as sugar within the type
  /// system, not as part of the canonical type, so nullability will
  /// be lost by canonicalization and desugaring.
  Optional<NullabilityKind> getNullability(const ASTContext &context) const;

  /// Determine whether the given type can have a nullability
  /// specifier applied to it, i.e., if it is any kind of pointer type.
  ///
  /// \param ResultIfUnknown The value to return if we don't yet know whether
  ///        this type can have nullability because it is dependent.
  bool canHaveNullability(bool ResultIfUnknown = true) const;

  /// Retrieve the set of substitutions required when accessing a member
  /// of the Objective-C receiver type that is declared in the given context.
  ///
  /// \c *this is the type of the object we're operating on, e.g., the
  /// receiver for a message send or the base of a property access, and is
  /// expected to be of some object or object pointer type.
  ///
  /// \param dc The declaration context for which we are building up a
  /// substitution mapping, which should be an Objective-C class, extension,
  /// category, or method within.
  ///
  /// \returns an array of type arguments that can be substituted for
  /// the type parameters of the given declaration context in any type described
  /// within that context, or an empty optional to indicate that no
  /// substitution is required.
  Optional<ArrayRef<QualType>>
  getObjCSubstitutions(const DeclContext *dc) const;

  /// Determines if this is an ObjC interface type that may accept type
  /// parameters.
  bool acceptsObjCTypeParams() const;

  const char *getTypeClassName() const;

  QualType getCanonicalTypeInternal() const {
    return CanonicalType;
  }

  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
  void dump() const;
  void dump(llvm::raw_ostream &OS) const;
};

/// This will check for a TypedefType by removing any existing sugar
/// until it reaches a TypedefType or a non-sugared type.
template <> const TypedefType *Type::getAs() const;

/// This will check for a TemplateSpecializationType by removing any
/// existing sugar until it reaches a TemplateSpecializationType or a
/// non-sugared type.
template <> const TemplateSpecializationType *Type::getAs() const;

/// This will check for an AttributedType by removing any existing sugar
/// until it reaches an AttributedType or a non-sugared type.
template <> const AttributedType *Type::getAs() const;

// We can do canonical leaf types faster, because we don't have to
// worry about preserving child type decoration.
#define TYPE(Class, Base)
#define LEAF_TYPE(Class) \
template <> inline const Class##Type *Type::getAs() const { \
  return dyn_cast<Class##Type>(CanonicalType); \
} \
template <> inline const Class##Type *Type::castAs() const { \
  return cast<Class##Type>(CanonicalType); \
}
#include "clang/AST/TypeNodes.inc"

/// This class is used for builtin types like 'int'.  Builtin
/// types are always canonical and have a literal name field.
class BuiltinType : public Type {
public:
  enum Kind {
// OpenCL image types
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
#include "clang/Basic/OpenCLImageTypes.def"
// OpenCL extension types
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
#include "clang/Basic/OpenCLExtensionTypes.def"
// SVE Types
#define SVE_TYPE(Name, Id, SingletonId) Id,
#include "clang/Basic/AArch64SVEACLETypes.def"
// All other builtin types
#define BUILTIN_TYPE(Id, SingletonId) Id,
#define LAST_BUILTIN_TYPE(Id) LastKind = Id
#include "clang/AST/BuiltinTypes.def"
  };

private:
  friend class ASTContext; // ASTContext creates these.

  BuiltinType(Kind K)
      : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
             /*InstantiationDependent=*/(K == Dependent),
             /*VariablyModified=*/false,
             /*Unexpanded parameter pack=*/false) {
    BuiltinTypeBits.Kind = K;
  }

public:
  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
  StringRef getName(const PrintingPolicy &Policy) const;

  const char *getNameAsCString(const PrintingPolicy &Policy) const {
    // The StringRef is null-terminated.
    StringRef str = getName(Policy);
    assert(!str.empty() && str.data()[str.size()] == '\0');
    return str.data();
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  bool isInteger() const {
    return getKind() >= Bool && getKind() <= Int128;
  }

  bool isSignedInteger() const {
    return getKind() >= Char_S && getKind() <= Int128;
  }

  bool isUnsignedInteger() const {
    return getKind() >= Bool && getKind() <= UInt128;
  }

  bool isFloatingPoint() const {
    return getKind() >= Half && getKind() <= Float128;
  }

  /// Determines whether the given kind corresponds to a placeholder type.
  static bool isPlaceholderTypeKind(Kind K) {
    return K >= Overload;
  }

  /// Determines whether this type is a placeholder type, i.e. a type
  /// which cannot appear in arbitrary positions in a fully-formed
  /// expression.
  bool isPlaceholderType() const {
    return isPlaceholderTypeKind(getKind());
  }

  /// Determines whether this type is a placeholder type other than
  /// Overload.  Most placeholder types require only syntactic
  /// information about their context in order to be resolved (e.g.
  /// whether it is a call expression), which means they can (and
  /// should) be resolved in an earlier "phase" of analysis.
  /// Overload expressions sometimes pick up further information
  /// from their context, like whether the context expects a
  /// specific function-pointer type, and so frequently need
  /// special treatment.
  bool isNonOverloadPlaceholderType() const {
    return getKind() > Overload;
  }

  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
};

/// Complex values, per C99 6.2.5p11.  This supports the C99 complex
/// types (_Complex float etc) as well as the GCC integer complex extensions.
class ComplexType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these.

  QualType ElementType;

  ComplexType(QualType Element, QualType CanonicalPtr)
      : Type(Complex, CanonicalPtr, Element->isDependentType(),
             Element->isInstantiationDependentType(),
             Element->isVariablyModifiedType(),
             Element->containsUnexpandedParameterPack()),
        ElementType(Element) {}

public:
  QualType getElementType() const { return ElementType; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
    ID.AddPointer(Element.getAsOpaquePtr());
  }

  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
};

/// Sugar for parentheses used when specifying types.
class ParenType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these.

  QualType Inner;

  ParenType(QualType InnerType, QualType CanonType)
      : Type(Paren, CanonType, InnerType->isDependentType(),
             InnerType->isInstantiationDependentType(),
             InnerType->isVariablyModifiedType(),
             InnerType->containsUnexpandedParameterPack()),
        Inner(InnerType) {}

public:
  QualType getInnerType() const { return Inner; }

  bool isSugared() const { return true; }
  QualType desugar() const { return getInnerType(); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getInnerType());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
    Inner.Profile(ID);
  }

  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
};

/// PointerType - C99 6.7.5.1 - Pointer Declarators.
class PointerType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these.

  QualType PointeeType;

  PointerType(QualType Pointee, QualType CanonicalPtr)
      : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
             Pointee->isInstantiationDependentType(),
             Pointee->isVariablyModifiedType(),
             Pointee->containsUnexpandedParameterPack()),
        PointeeType(Pointee) {}

public:
  QualType getPointeeType() const { return PointeeType; }

  /// Returns true if address spaces of pointers overlap.
  /// OpenCL v2.0 defines conversion rules for pointers to different
  /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
  /// address spaces.
  /// CL1.1 or CL1.2:
  ///   address spaces overlap iff they are they same.
  /// CL2.0 adds:
  ///   __generic overlaps with any address space except for __constant.
  bool isAddressSpaceOverlapping(const PointerType &other) const {
    Qualifiers thisQuals = PointeeType.getQualifiers();
    Qualifiers otherQuals = other.getPointeeType().getQualifiers();
    // Address spaces overlap if at least one of them is a superset of another
    return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
           otherQuals.isAddressSpaceSupersetOf(thisQuals);
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getPointeeType());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
    ID.AddPointer(Pointee.getAsOpaquePtr());
  }

  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
};

/// Represents a type which was implicitly adjusted by the semantic
/// engine for arbitrary reasons.  For example, array and function types can
/// decay, and function types can have their calling conventions adjusted.
class AdjustedType : public Type, public llvm::FoldingSetNode {
  QualType OriginalTy;
  QualType AdjustedTy;

protected:
  friend class ASTContext; // ASTContext creates these.

  AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
               QualType CanonicalPtr)
      : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
             OriginalTy->isInstantiationDependentType(),
             OriginalTy->isVariablyModifiedType(),
             OriginalTy->containsUnexpandedParameterPack()),
        OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}

public:
  QualType getOriginalType() const { return OriginalTy; }
  QualType getAdjustedType() const { return AdjustedTy; }

  bool isSugared() const { return true; }
  QualType desugar() const { return AdjustedTy; }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, OriginalTy, AdjustedTy);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
    ID.AddPointer(Orig.getAsOpaquePtr());
    ID.AddPointer(New.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
  }
};

/// Represents a pointer type decayed from an array or function type.
class DecayedType : public AdjustedType {
  friend class ASTContext; // ASTContext creates these.

  inline
  DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);

public:
  QualType getDecayedType() const { return getAdjustedType(); }

  inline QualType getPointeeType() const;

  static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
};

/// Pointer to a block type.
/// This type is to represent types syntactically represented as
/// "void (^)(int)", etc. Pointee is required to always be a function type.
class BlockPointerType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these.

  // Block is some kind of pointer type
  QualType PointeeType;

  BlockPointerType(QualType Pointee, QualType CanonicalCls)
      : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
             Pointee->isInstantiationDependentType(),
             Pointee->isVariablyModifiedType(),
             Pointee->containsUnexpandedParameterPack()),
        PointeeType(Pointee) {}

public:
  // Get the pointee type. Pointee is required to always be a function type.
  QualType getPointeeType() const { return PointeeType; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
      Profile(ID, getPointeeType());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
      ID.AddPointer(Pointee.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == BlockPointer;
  }
};

/// Base for LValueReferenceType and RValueReferenceType
class ReferenceType : public Type, public llvm::FoldingSetNode {
  QualType PointeeType;

protected:
  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
                bool SpelledAsLValue)
      : Type(tc, CanonicalRef, Referencee->isDependentType(),
             Referencee->isInstantiationDependentType(),
             Referencee->isVariablyModifiedType(),
             Referencee->containsUnexpandedParameterPack()),
        PointeeType(Referencee) {
    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
  }

public:
  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }

  QualType getPointeeTypeAsWritten() const { return PointeeType; }

  QualType getPointeeType() const {
    // FIXME: this might strip inner qualifiers; okay?
    const ReferenceType *T = this;
    while (T->isInnerRef())
      T = T->PointeeType->castAs<ReferenceType>();
    return T->PointeeType;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, PointeeType, isSpelledAsLValue());
  }

  static void Profile(llvm::FoldingSetNodeID &ID,
                      QualType Referencee,
                      bool SpelledAsLValue) {
    ID.AddPointer(Referencee.getAsOpaquePtr());
    ID.AddBoolean(SpelledAsLValue);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == LValueReference ||
           T->getTypeClass() == RValueReference;
  }
};

/// An lvalue reference type, per C++11 [dcl.ref].
class LValueReferenceType : public ReferenceType {
  friend class ASTContext; // ASTContext creates these

  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
                      bool SpelledAsLValue)
      : ReferenceType(LValueReference, Referencee, CanonicalRef,
                      SpelledAsLValue) {}

public:
  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == LValueReference;
  }
};

/// An rvalue reference type, per C++11 [dcl.ref].
class RValueReferenceType : public ReferenceType {
  friend class ASTContext; // ASTContext creates these

  RValueReferenceType(QualType Referencee, QualType CanonicalRef)
       : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}

public:
  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == RValueReference;
  }
};

/// A pointer to member type per C++ 8.3.3 - Pointers to members.
///
/// This includes both pointers to data members and pointer to member functions.
class MemberPointerType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these.

  QualType PointeeType;

  /// The class of which the pointee is a member. Must ultimately be a
  /// RecordType, but could be a typedef or a template parameter too.
  const Type *Class;

  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
      : Type(MemberPointer, CanonicalPtr,
             Cls->isDependentType() || Pointee->isDependentType(),
             (Cls->isInstantiationDependentType() ||
              Pointee->isInstantiationDependentType()),
             Pointee->isVariablyModifiedType(),
             (Cls->containsUnexpandedParameterPack() ||
              Pointee->containsUnexpandedParameterPack())),
             PointeeType(Pointee), Class(Cls) {}

public:
  QualType getPointeeType() const { return PointeeType; }

  /// Returns true if the member type (i.e. the pointee type) is a
  /// function type rather than a data-member type.
  bool isMemberFunctionPointer() const {
    return PointeeType->isFunctionProtoType();
  }

  /// Returns true if the member type (i.e. the pointee type) is a
  /// data type rather than a function type.
  bool isMemberDataPointer() const {
    return !PointeeType->isFunctionProtoType();
  }

  const Type *getClass() const { return Class; }
  CXXRecordDecl *getMostRecentCXXRecordDecl() const;

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getPointeeType(), getClass());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
                      const Type *Class) {
    ID.AddPointer(Pointee.getAsOpaquePtr());
    ID.AddPointer(Class);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == MemberPointer;
  }
};

/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
class ArrayType : public Type, public llvm::FoldingSetNode {
public:
  /// Capture whether this is a normal array (e.g. int X[4])
  /// an array with a static size (e.g. int X[static 4]), or an array
  /// with a star size (e.g. int X[*]).
  /// 'static' is only allowed on function parameters.
  enum ArraySizeModifier {
    Normal, Static, Star
  };

private:
  /// The element type of the array.
  QualType ElementType;

protected:
  friend class ASTContext; // ASTContext creates these.

  // C++ [temp.dep.type]p1:
  //   A type is dependent if it is...
  //     - an array type constructed from any dependent type or whose
  //       size is specified by a constant expression that is
  //       value-dependent,
  ArrayType(TypeClass tc, QualType et, QualType can,
            ArraySizeModifier sm, unsigned tq,
            bool ContainsUnexpandedParameterPack)
      : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
             et->isInstantiationDependentType() || tc == DependentSizedArray,
             (tc == VariableArray || et->isVariablyModifiedType()),
             ContainsUnexpandedParameterPack),
        ElementType(et) {
    ArrayTypeBits.IndexTypeQuals = tq;
    ArrayTypeBits.SizeModifier = sm;
  }

public:
  QualType getElementType() const { return ElementType; }

  ArraySizeModifier getSizeModifier() const {
    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
  }

  Qualifiers getIndexTypeQualifiers() const {
    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
  }

  unsigned getIndexTypeCVRQualifiers() const {
    return ArrayTypeBits.IndexTypeQuals;
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == ConstantArray ||
           T->getTypeClass() == VariableArray ||
           T->getTypeClass() == IncompleteArray ||
           T->getTypeClass() == DependentSizedArray;
  }
};

/// Represents the canonical version of C arrays with a specified constant size.
/// For example, the canonical type for 'int A[4 + 4*100]' is a
/// ConstantArrayType where the element type is 'int' and the size is 404.
class ConstantArrayType : public ArrayType {
  llvm::APInt Size; // Allows us to unique the type.

  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
                    ArraySizeModifier sm, unsigned tq)
      : ArrayType(ConstantArray, et, can, sm, tq,
                  et->containsUnexpandedParameterPack()),
        Size(size) {}

protected:
  friend class ASTContext; // ASTContext creates these.

  ConstantArrayType(TypeClass tc, QualType et, QualType can,
                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
      : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
        Size(size) {}

public:
  const llvm::APInt &getSize() const { return Size; }
  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  /// Determine the number of bits required to address a member of
  // an array with the given element type and number of elements.
  static unsigned getNumAddressingBits(const ASTContext &Context,
                                       QualType ElementType,
                                       const llvm::APInt &NumElements);

  /// Determine the maximum number of active bits that an array's size
  /// can require, which limits the maximum size of the array.
  static unsigned getMaxSizeBits(const ASTContext &Context);

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType(), getSize(),
            getSizeModifier(), getIndexTypeCVRQualifiers());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
                      unsigned TypeQuals) {
    ID.AddPointer(ET.getAsOpaquePtr());
    ID.AddInteger(ArraySize.getZExtValue());
    ID.AddInteger(SizeMod);
    ID.AddInteger(TypeQuals);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == ConstantArray;
  }
};

/// Represents a C array with an unspecified size.  For example 'int A[]' has
/// an IncompleteArrayType where the element type is 'int' and the size is
/// unspecified.
class IncompleteArrayType : public ArrayType {
  friend class ASTContext; // ASTContext creates these.

  IncompleteArrayType(QualType et, QualType can,
                      ArraySizeModifier sm, unsigned tq)
      : ArrayType(IncompleteArray, et, can, sm, tq,
                  et->containsUnexpandedParameterPack()) {}

public:
  friend class StmtIteratorBase;

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == IncompleteArray;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType(), getSizeModifier(),
            getIndexTypeCVRQualifiers());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
    ID.AddPointer(ET.getAsOpaquePtr());
    ID.AddInteger(SizeMod);
    ID.AddInteger(TypeQuals);
  }
};

/// Represents a C array with a specified size that is not an
/// integer-constant-expression.  For example, 'int s[x+foo()]'.
/// Since the size expression is an arbitrary expression, we store it as such.
///
/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
/// should not be: two lexically equivalent variable array types could mean
/// different things, for example, these variables do not have the same type
/// dynamically:
///
/// void foo(int x) {
///   int Y[x];
///   ++x;
///   int Z[x];
/// }
class VariableArrayType : public ArrayType {
  friend class ASTContext; // ASTContext creates these.

  /// An assignment-expression. VLA's are only permitted within
  /// a function block.
  Stmt *SizeExpr;

  /// The range spanned by the left and right array brackets.
  SourceRange Brackets;

  VariableArrayType(QualType et, QualType can, Expr *e,
                    ArraySizeModifier sm, unsigned tq,
                    SourceRange brackets)
      : ArrayType(VariableArray, et, can, sm, tq,
                  et->containsUnexpandedParameterPack()),
        SizeExpr((Stmt*) e), Brackets(brackets) {}

public:
  friend class StmtIteratorBase;

  Expr *getSizeExpr() const {
    // We use C-style casts instead of cast<> here because we do not wish
    // to have a dependency of Type.h on Stmt.h/Expr.h.
    return (Expr*) SizeExpr;
  }

  SourceRange getBracketsRange() const { return Brackets; }
  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == VariableArray;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    llvm_unreachable("Cannot unique VariableArrayTypes.");
  }
};

/// Represents an array type in C++ whose size is a value-dependent expression.
///
/// For example:
/// \code
/// template<typename T, int Size>
/// class array {
///   T data[Size];
/// };
/// \endcode
///
/// For these types, we won't actually know what the array bound is
/// until template instantiation occurs, at which point this will
/// become either a ConstantArrayType or a VariableArrayType.
class DependentSizedArrayType : public ArrayType {
  friend class ASTContext; // ASTContext creates these.

  const ASTContext &Context;

  /// An assignment expression that will instantiate to the
  /// size of the array.
  ///
  /// The expression itself might be null, in which case the array
  /// type will have its size deduced from an initializer.
  Stmt *SizeExpr;

  /// The range spanned by the left and right array brackets.
  SourceRange Brackets;

  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
                          Expr *e, ArraySizeModifier sm, unsigned tq,
                          SourceRange brackets);

public:
  friend class StmtIteratorBase;

  Expr *getSizeExpr() const {
    // We use C-style casts instead of cast<> here because we do not wish
    // to have a dependency of Type.h on Stmt.h/Expr.h.
    return (Expr*) SizeExpr;
  }

  SourceRange getBracketsRange() const { return Brackets; }
  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == DependentSizedArray;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Context, getElementType(),
            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
                      QualType ET, ArraySizeModifier SizeMod,
                      unsigned TypeQuals, Expr *E);
};

/// Represents an extended address space qualifier where the input address space
/// value is dependent. Non-dependent address spaces are not represented with a
/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
///
/// For example:
/// \code
/// template<typename T, int AddrSpace>
/// class AddressSpace {
///   typedef T __attribute__((address_space(AddrSpace))) type;
/// }
/// \endcode
class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext;

  const ASTContext &Context;
  Expr *AddrSpaceExpr;
  QualType PointeeType;
  SourceLocation loc;

  DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
                            QualType can, Expr *AddrSpaceExpr,
                            SourceLocation loc);

public:
  Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
  QualType getPointeeType() const { return PointeeType; }
  SourceLocation getAttributeLoc() const { return loc; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == DependentAddressSpace;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
                      QualType PointeeType, Expr *AddrSpaceExpr);
};

/// Represents an extended vector type where either the type or size is
/// dependent.
///
/// For example:
/// \code
/// template<typename T, int Size>
/// class vector {
///   typedef T __attribute__((ext_vector_type(Size))) type;
/// }
/// \endcode
class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext;

  const ASTContext &Context;
  Expr *SizeExpr;

  /// The element type of the array.
  QualType ElementType;

  SourceLocation loc;

  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
                              QualType can, Expr *SizeExpr, SourceLocation loc);

public:
  Expr *getSizeExpr() const { return SizeExpr; }
  QualType getElementType() const { return ElementType; }
  SourceLocation getAttributeLoc() const { return loc; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == DependentSizedExtVector;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Context, getElementType(), getSizeExpr());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
                      QualType ElementType, Expr *SizeExpr);
};


/// Represents a GCC generic vector type. This type is created using
/// __attribute__((vector_size(n)), where "n" specifies the vector size in
/// bytes; or from an Altivec __vector or vector declaration.
/// Since the constructor takes the number of vector elements, the
/// client is responsible for converting the size into the number of elements.
class VectorType : public Type, public llvm::FoldingSetNode {
public:
  enum VectorKind {
    /// not a target-specific vector type
    GenericVector,

    /// is AltiVec vector
    AltiVecVector,

    /// is AltiVec 'vector Pixel'
    AltiVecPixel,

    /// is AltiVec 'vector bool ...'
    AltiVecBool,

    /// is ARM Neon vector
    NeonVector,

    /// is ARM Neon polynomial vector
    NeonPolyVector
  };

protected:
  friend class ASTContext; // ASTContext creates these.

  /// The element type of the vector.
  QualType ElementType;

  VectorType(QualType vecType, unsigned nElements, QualType canonType,
             VectorKind vecKind);

  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
             QualType canonType, VectorKind vecKind);

public:
  QualType getElementType() const { return ElementType; }
  unsigned getNumElements() const { return VectorTypeBits.NumElements; }

  static bool isVectorSizeTooLarge(unsigned NumElements) {
    return NumElements > VectorTypeBitfields::MaxNumElements;
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  VectorKind getVectorKind() const {
    return VectorKind(VectorTypeBits.VecKind);
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType(), getNumElements(),
            getTypeClass(), getVectorKind());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
                      unsigned NumElements, TypeClass TypeClass,
                      VectorKind VecKind) {
    ID.AddPointer(ElementType.getAsOpaquePtr());
    ID.AddInteger(NumElements);
    ID.AddInteger(TypeClass);
    ID.AddInteger(VecKind);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
  }
};

/// Represents a vector type where either the type or size is dependent.
////
/// For example:
/// \code
/// template<typename T, int Size>
/// class vector {
///   typedef T __attribute__((vector_size(Size))) type;
/// }
/// \endcode
class DependentVectorType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext;

  const ASTContext &Context;
  QualType ElementType;
  Expr *SizeExpr;
  SourceLocation Loc;

  DependentVectorType(const ASTContext &Context, QualType ElementType,
                           QualType CanonType, Expr *SizeExpr,
                           SourceLocation Loc, VectorType::VectorKind vecKind);

public:
  Expr *getSizeExpr() const { return SizeExpr; }
  QualType getElementType() const { return ElementType; }
  SourceLocation getAttributeLoc() const { return Loc; }
  VectorType::VectorKind getVectorKind() const {
    return VectorType::VectorKind(VectorTypeBits.VecKind);
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == DependentVector;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
                      QualType ElementType, const Expr *SizeExpr,
                      VectorType::VectorKind VecKind);
};

/// ExtVectorType - Extended vector type. This type is created using
/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
/// class enables syntactic extensions, like Vector Components for accessing
/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
/// Shading Language).
class ExtVectorType : public VectorType {
  friend class ASTContext; // ASTContext creates these.

  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
      : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}

public:
  static int getPointAccessorIdx(char c) {
    switch (c) {
    default: return -1;
    case 'x': case 'r': return 0;
    case 'y': case 'g': return 1;
    case 'z': case 'b': return 2;
    case 'w': case 'a': return 3;
    }
  }

  static int getNumericAccessorIdx(char c) {
    switch (c) {
      default: return -1;
      case '0': return 0;
      case '1': return 1;
      case '2': return 2;
      case '3': return 3;
      case '4': return 4;
      case '5': return 5;
      case '6': return 6;
      case '7': return 7;
      case '8': return 8;
      case '9': return 9;
      case 'A':
      case 'a': return 10;
      case 'B':
      case 'b': return 11;
      case 'C':
      case 'c': return 12;
      case 'D':
      case 'd': return 13;
      case 'E':
      case 'e': return 14;
      case 'F':
      case 'f': return 15;
    }
  }

  static int getAccessorIdx(char c, bool isNumericAccessor) {
    if (isNumericAccessor)
      return getNumericAccessorIdx(c);
    else
      return getPointAccessorIdx(c);
  }

  bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
    if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
      return unsigned(idx-1) < getNumElements();
    return false;
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == ExtVector;
  }
};

/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
/// class of FunctionNoProtoType and FunctionProtoType.
class FunctionType : public Type {
  // The type returned by the function.
  QualType ResultType;

public:
  /// Interesting information about a specific parameter that can't simply
  /// be reflected in parameter's type. This is only used by FunctionProtoType
  /// but is in FunctionType to make this class available during the
  /// specification of the bases of FunctionProtoType.
  ///
  /// It makes sense to model language features this way when there's some
  /// sort of parameter-specific override (such as an attribute) that
  /// affects how the function is called.  For example, the ARC ns_consumed
  /// attribute changes whether a parameter is passed at +0 (the default)
  /// or +1 (ns_consumed).  This must be reflected in the function type,
  /// but isn't really a change to the parameter type.
  ///
  /// One serious disadvantage of modelling language features this way is
  /// that they generally do not work with language features that attempt
  /// to destructure types.  For example, template argument deduction will
  /// not be able to match a parameter declared as
  ///   T (*)(U)
  /// against an argument of type
  ///   void (*)(__attribute__((ns_consumed)) id)
  /// because the substitution of T=void, U=id into the former will
  /// not produce the latter.
  class ExtParameterInfo {
    enum {
      ABIMask = 0x0F,
      IsConsumed = 0x10,
      HasPassObjSize = 0x20,
      IsNoEscape = 0x40,
    };
    unsigned char Data = 0;

  public:
    ExtParameterInfo() = default;

    /// Return the ABI treatment of this parameter.
    ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
    ExtParameterInfo withABI(ParameterABI kind) const {
      ExtParameterInfo copy = *this;
      copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
      return copy;
    }

    /// Is this parameter considered "consumed" by Objective-C ARC?
    /// Consumed parameters must have retainable object type.
    bool isConsumed() const { return (Data & IsConsumed); }
    ExtParameterInfo withIsConsumed(bool consumed) const {
      ExtParameterInfo copy = *this;
      if (consumed)
        copy.Data |= IsConsumed;
      else
        copy.Data &= ~IsConsumed;
      return copy;
    }

    bool hasPassObjectSize() const { return Data & HasPassObjSize; }
    ExtParameterInfo withHasPassObjectSize() const {
      ExtParameterInfo Copy = *this;
      Copy.Data |= HasPassObjSize;
      return Copy;
    }

    bool isNoEscape() const { return Data & IsNoEscape; }
    ExtParameterInfo withIsNoEscape(bool NoEscape) const {
      ExtParameterInfo Copy = *this;
      if (NoEscape)
        Copy.Data |= IsNoEscape;
      else
        Copy.Data &= ~IsNoEscape;
      return Copy;
    }

    unsigned char getOpaqueValue() const { return Data; }
    static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
      ExtParameterInfo result;
      result.Data = data;
      return result;
    }

    friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
      return lhs.Data == rhs.Data;
    }

    friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
      return lhs.Data != rhs.Data;
    }
  };

  /// A class which abstracts out some details necessary for
  /// making a call.
  ///
  /// It is not actually used directly for storing this information in
  /// a FunctionType, although FunctionType does currently use the
  /// same bit-pattern.
  ///
  // If you add a field (say Foo), other than the obvious places (both,
  // constructors, compile failures), what you need to update is
  // * Operator==
  // * getFoo
  // * withFoo
  // * functionType. Add Foo, getFoo.
  // * ASTContext::getFooType
  // * ASTContext::mergeFunctionTypes
  // * FunctionNoProtoType::Profile
  // * FunctionProtoType::Profile
  // * TypePrinter::PrintFunctionProto
  // * AST read and write
  // * Codegen
  class ExtInfo {
    friend class FunctionType;

    // Feel free to rearrange or add bits, but if you go over 12,
    // you'll need to adjust both the Bits field below and
    // Type::FunctionTypeBitfields.

    //   |  CC  |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
    //   |0 .. 4|   5    |    6   |       7         |8 .. 10|    11   |
    //
    // regparm is either 0 (no regparm attribute) or the regparm value+1.
    enum { CallConvMask = 0x1F };
    enum { NoReturnMask = 0x20 };
    enum { ProducesResultMask = 0x40 };
    enum { NoCallerSavedRegsMask = 0x80 };
    enum { NoCfCheckMask = 0x800 };
    enum {
      RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
                      NoCallerSavedRegsMask | NoCfCheckMask),
      RegParmOffset = 8
    }; // Assumed to be the last field
    uint16_t Bits = CC_C;

    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}

   public:
     // Constructor with no defaults. Use this when you know that you
     // have all the elements (when reading an AST file for example).
     ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
             bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
       assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
       Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
              (producesResult ? ProducesResultMask : 0) |
              (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
              (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
              (NoCfCheck ? NoCfCheckMask : 0);
    }

    // Constructor with all defaults. Use when for example creating a
    // function known to use defaults.
    ExtInfo() = default;

    // Constructor with just the calling convention, which is an important part
    // of the canonical type.
    ExtInfo(CallingConv CC) : Bits(CC) {}

    bool getNoReturn() const { return Bits & NoReturnMask; }
    bool getProducesResult() const { return Bits & ProducesResultMask; }
    bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
    bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }

    unsigned getRegParm() const {
      unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
      if (RegParm > 0)
        --RegParm;
      return RegParm;
    }

    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }

    bool operator==(ExtInfo Other) const {
      return Bits == Other.Bits;
    }
    bool operator!=(ExtInfo Other) const {
      return Bits != Other.Bits;
    }

    // Note that we don't have setters. That is by design, use
    // the following with methods instead of mutating these objects.

    ExtInfo withNoReturn(bool noReturn) const {
      if (noReturn)
        return ExtInfo(Bits | NoReturnMask);
      else
        return ExtInfo(Bits & ~NoReturnMask);
    }

    ExtInfo withProducesResult(bool producesResult) const {
      if (producesResult)
        return ExtInfo(Bits | ProducesResultMask);
      else
        return ExtInfo(Bits & ~ProducesResultMask);
    }

    ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
      if (noCallerSavedRegs)
        return ExtInfo(Bits | NoCallerSavedRegsMask);
      else
        return ExtInfo(Bits & ~NoCallerSavedRegsMask);
    }

    ExtInfo withNoCfCheck(bool noCfCheck) const {
      if (noCfCheck)
        return ExtInfo(Bits | NoCfCheckMask);
      else
        return ExtInfo(Bits & ~NoCfCheckMask);
    }

    ExtInfo withRegParm(unsigned RegParm) const {
      assert(RegParm < 7 && "Invalid regparm value");
      return ExtInfo((Bits & ~RegParmMask) |
                     ((RegParm + 1) << RegParmOffset));
    }

    ExtInfo withCallingConv(CallingConv cc) const {
      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
    }

    void Profile(llvm::FoldingSetNodeID &ID) const {
      ID.AddInteger(Bits);
    }
  };

  /// A simple holder for a QualType representing a type in an
  /// exception specification. Unfortunately needed by FunctionProtoType
  /// because TrailingObjects cannot handle repeated types.
  struct ExceptionType { QualType Type; };

  /// A simple holder for various uncommon bits which do not fit in
  /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
  /// alignment of subsequent objects in TrailingObjects. You must update
  /// hasExtraBitfields in FunctionProtoType after adding extra data here.
  struct alignas(void *) FunctionTypeExtraBitfields {
    /// The number of types in the exception specification.
    /// A whole unsigned is not needed here and according to
    /// [implimits] 8 bits would be enough here.
    unsigned NumExceptionType;
  };

protected:
  FunctionType(TypeClass tc, QualType res,
               QualType Canonical, bool Dependent,
               bool InstantiationDependent,
               bool VariablyModified, bool ContainsUnexpandedParameterPack,
               ExtInfo Info)
      : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
             ContainsUnexpandedParameterPack),
        ResultType(res) {
    FunctionTypeBits.ExtInfo = Info.Bits;
  }

  Qualifiers getFastTypeQuals() const {
    return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
  }

public:
  QualType getReturnType() const { return ResultType; }

  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }

  /// Determine whether this function type includes the GNU noreturn
  /// attribute. The C++11 [[noreturn]] attribute does not affect the function
  /// type.
  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }

  CallingConv getCallConv() const { return getExtInfo().getCC(); }
  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }

  static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
                "Const, volatile and restrict are assumed to be a subset of "
                "the fast qualifiers.");

  bool isConst() const { return getFastTypeQuals().hasConst(); }
  bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
  bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }

  /// Determine the type of an expression that calls a function of
  /// this type.
  QualType getCallResultType(const ASTContext &Context) const {
    return getReturnType().getNonLValueExprType(Context);
  }

  static StringRef getNameForCallConv(CallingConv CC);

  static bool classof(const Type *T) {
    return T->getTypeClass() == FunctionNoProto ||
           T->getTypeClass() == FunctionProto;
  }
};

/// Represents a K&R-style 'int foo()' function, which has
/// no information available about its arguments.
class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these.

  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
      : FunctionType(FunctionNoProto, Result, Canonical,
                     /*Dependent=*/false, /*InstantiationDependent=*/false,
                     Result->isVariablyModifiedType(),
                     /*ContainsUnexpandedParameterPack=*/false, Info) {}

public:
  // No additional state past what FunctionType provides.

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getReturnType(), getExtInfo());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
                      ExtInfo Info) {
    Info.Profile(ID);
    ID.AddPointer(ResultType.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == FunctionNoProto;
  }
};

/// Represents a prototype with parameter type info, e.g.
/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
/// parameters, not as having a single void parameter. Such a type can have
/// an exception specification, but this specification is not part of the
/// canonical type. FunctionProtoType has several trailing objects, some of
/// which optional. For more information about the trailing objects see
/// the first comment inside FunctionProtoType.
class FunctionProtoType final
    : public FunctionType,
      public llvm::FoldingSetNode,
      private llvm::TrailingObjects<
          FunctionProtoType, QualType, FunctionType::FunctionTypeExtraBitfields,
          FunctionType::ExceptionType, Expr *, FunctionDecl *,
          FunctionType::ExtParameterInfo, Qualifiers> {
  friend class ASTContext; // ASTContext creates these.
  friend TrailingObjects;

  // FunctionProtoType is followed by several trailing objects, some of
  // which optional. They are in order:
  //
  // * An array of getNumParams() QualType holding the parameter types.
  //   Always present. Note that for the vast majority of FunctionProtoType,
  //   these will be the only trailing objects.
  //
  // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
  //   (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
  //   a single FunctionTypeExtraBitfields. Present if and only if
  //   hasExtraBitfields() is true.
  //
  // * Optionally exactly one of:
  //   * an array of getNumExceptions() ExceptionType,
  //   * a single Expr *,
  //   * a pair of FunctionDecl *,
  //   * a single FunctionDecl *
  //   used to store information about the various types of exception
  //   specification. See getExceptionSpecSize for the details.
  //
  // * Optionally an array of getNumParams() ExtParameterInfo holding
  //   an ExtParameterInfo for each of the parameters. Present if and
  //   only if hasExtParameterInfos() is true.
  //
  // * Optionally a Qualifiers object to represent extra qualifiers that can't
  //   be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
  //   if hasExtQualifiers() is true.
  //
  // The optional FunctionTypeExtraBitfields has to be before the data
  // related to the exception specification since it contains the number
  // of exception types.
  //
  // We put the ExtParameterInfos last.  If all were equal, it would make
  // more sense to put these before the exception specification, because
  // it's much easier to skip past them compared to the elaborate switch
  // required to skip the exception specification.  However, all is not
  // equal; ExtParameterInfos are used to model very uncommon features,
  // and it's better not to burden the more common paths.

public:
  /// Holds information about the various types of exception specification.
  /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
  /// used to group together the various bits of information about the
  /// exception specification.
  struct ExceptionSpecInfo {
    /// The kind of exception specification this is.
    ExceptionSpecificationType Type = EST_None;

    /// Explicitly-specified list of exception types.
    ArrayRef<QualType> Exceptions;

    /// Noexcept expression, if this is a computed noexcept specification.
    Expr *NoexceptExpr = nullptr;

    /// The function whose exception specification this is, for
    /// EST_Unevaluated and EST_Uninstantiated.
    FunctionDecl *SourceDecl = nullptr;

    /// The function template whose exception specification this is instantiated
    /// from, for EST_Uninstantiated.
    FunctionDecl *SourceTemplate = nullptr;

    ExceptionSpecInfo() = default;

    ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
  };

  /// Extra information about a function prototype. ExtProtoInfo is not
  /// stored as such in FunctionProtoType but is used to group together
  /// the various bits of extra information about a function prototype.
  struct ExtProtoInfo {
    FunctionType::ExtInfo ExtInfo;
    bool Variadic : 1;
    bool HasTrailingReturn : 1;
    Qualifiers TypeQuals;
    RefQualifierKind RefQualifier = RQ_None;
    ExceptionSpecInfo ExceptionSpec;
    const ExtParameterInfo *ExtParameterInfos = nullptr;

    ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}

    ExtProtoInfo(CallingConv CC)
        : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}

    ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
      ExtProtoInfo Result(*this);
      Result.ExceptionSpec = ESI;
      return Result;
    }
  };

private:
  unsigned numTrailingObjects(OverloadToken<QualType>) const {
    return getNumParams();
  }

  unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
    return hasExtraBitfields();
  }

  unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
    return getExceptionSpecSize().NumExceptionType;
  }

  unsigned numTrailingObjects(OverloadToken<Expr *>) const {
    return getExceptionSpecSize().NumExprPtr;
  }

  unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
    return getExceptionSpecSize().NumFunctionDeclPtr;
  }

  unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
    return hasExtParameterInfos() ? getNumParams() : 0;
  }

  /// Determine whether there are any argument types that
  /// contain an unexpanded parameter pack.
  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
                                                 unsigned numArgs) {
    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
      if (ArgArray[Idx]->containsUnexpandedParameterPack())
        return true;

    return false;
  }

  FunctionProtoType(QualType result, ArrayRef<QualType> params,
                    QualType canonical, const ExtProtoInfo &epi);

  /// This struct is returned by getExceptionSpecSize and is used to
  /// translate an ExceptionSpecificationType to the number and kind
  /// of trailing objects related to the exception specification.
  struct ExceptionSpecSizeHolder {
    unsigned NumExceptionType;
    unsigned NumExprPtr;
    unsigned NumFunctionDeclPtr;
  };

  /// Return the number and kind of trailing objects
  /// related to the exception specification.
  static ExceptionSpecSizeHolder
  getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
    switch (EST) {
    case EST_None:
    case EST_DynamicNone:
    case EST_MSAny:
    case EST_BasicNoexcept:
    case EST_Unparsed:
    case EST_NoThrow:
      return {0, 0, 0};

    case EST_Dynamic:
      return {NumExceptions, 0, 0};

    case EST_DependentNoexcept:
    case EST_NoexceptFalse:
    case EST_NoexceptTrue:
      return {0, 1, 0};

    case EST_Uninstantiated:
      return {0, 0, 2};

    case EST_Unevaluated:
      return {0, 0, 1};
    }
    llvm_unreachable("bad exception specification kind");
  }

  /// Return the number and kind of trailing objects
  /// related to the exception specification.
  ExceptionSpecSizeHolder getExceptionSpecSize() const {
    return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
  }

  /// Whether the trailing FunctionTypeExtraBitfields is present.
  static bool hasExtraBitfields(ExceptionSpecificationType EST) {
    // If the exception spec type is EST_Dynamic then we have > 0 exception
    // types and the exact number is stored in FunctionTypeExtraBitfields.
    return EST == EST_Dynamic;
  }

  /// Whether the trailing FunctionTypeExtraBitfields is present.
  bool hasExtraBitfields() const {
    return hasExtraBitfields(getExceptionSpecType());
  }

  bool hasExtQualifiers() const {
    return FunctionTypeBits.HasExtQuals;
  }

public:
  unsigned getNumParams() const { return FunctionTypeBits.NumParams; }

  QualType getParamType(unsigned i) const {
    assert(i < getNumParams() && "invalid parameter index");
    return param_type_begin()[i];
  }

  ArrayRef<QualType> getParamTypes() const {
    return llvm::makeArrayRef(param_type_begin(), param_type_end());
  }

  ExtProtoInfo getExtProtoInfo() const {
    ExtProtoInfo EPI;
    EPI.ExtInfo = getExtInfo();
    EPI.Variadic = isVariadic();
    EPI.HasTrailingReturn = hasTrailingReturn();
    EPI.ExceptionSpec.Type = getExceptionSpecType();
    EPI.TypeQuals = getMethodQuals();
    EPI.RefQualifier = getRefQualifier();
    if (EPI.ExceptionSpec.Type == EST_Dynamic) {
      EPI.ExceptionSpec.Exceptions = exceptions();
    } else if (isComputedNoexcept(EPI.ExceptionSpec.Type)) {
      EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
    } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
      EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
      EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
    } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
      EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
    }
    EPI.ExtParameterInfos = getExtParameterInfosOrNull();
    return EPI;
  }

  /// Get the kind of exception specification on this function.
  ExceptionSpecificationType getExceptionSpecType() const {
    return static_cast<ExceptionSpecificationType>(
        FunctionTypeBits.ExceptionSpecType);
  }

  /// Return whether this function has any kind of exception spec.
  bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }

  /// Return whether this function has a dynamic (throw) exception spec.
  bool hasDynamicExceptionSpec() const {
    return isDynamicExceptionSpec(getExceptionSpecType());
  }

  /// Return whether this function has a noexcept exception spec.
  bool hasNoexceptExceptionSpec() const {
    return isNoexceptExceptionSpec(getExceptionSpecType());
  }

  /// Return whether this function has a dependent exception spec.
  bool hasDependentExceptionSpec() const;

  /// Return whether this function has an instantiation-dependent exception
  /// spec.
  bool hasInstantiationDependentExceptionSpec() const;

  /// Return the number of types in the exception specification.
  unsigned getNumExceptions() const {
    return getExceptionSpecType() == EST_Dynamic
               ? getTrailingObjects<FunctionTypeExtraBitfields>()
                     ->NumExceptionType
               : 0;
  }

  /// Return the ith exception type, where 0 <= i < getNumExceptions().
  QualType getExceptionType(unsigned i) const {
    assert(i < getNumExceptions() && "Invalid exception number!");
    return exception_begin()[i];
  }

  /// Return the expression inside noexcept(expression), or a null pointer
  /// if there is none (because the exception spec is not of this form).
  Expr *getNoexceptExpr() const {
    if (!isComputedNoexcept(getExceptionSpecType()))
      return nullptr;
    return *getTrailingObjects<Expr *>();
  }

  /// If this function type has an exception specification which hasn't
  /// been determined yet (either because it has not been evaluated or because
  /// it has not been instantiated), this is the function whose exception
  /// specification is represented by this type.
  FunctionDecl *getExceptionSpecDecl() const {
    if (getExceptionSpecType() != EST_Uninstantiated &&
        getExceptionSpecType() != EST_Unevaluated)
      return nullptr;
    return getTrailingObjects<FunctionDecl *>()[0];
  }

  /// If this function type has an uninstantiated exception
  /// specification, this is the function whose exception specification
  /// should be instantiated to find the exception specification for
  /// this type.
  FunctionDecl *getExceptionSpecTemplate() const {
    if (getExceptionSpecType() != EST_Uninstantiated)
      return nullptr;
    return getTrailingObjects<FunctionDecl *>()[1];
  }

  /// Determine whether this function type has a non-throwing exception
  /// specification.
  CanThrowResult canThrow() const;

  /// Determine whether this function type has a non-throwing exception
  /// specification. If this depends on template arguments, returns
  /// \c ResultIfDependent.
  bool isNothrow(bool ResultIfDependent = false) const {
    return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
  }

  /// Whether this function prototype is variadic.
  bool isVariadic() const { return FunctionTypeBits.Variadic; }

  /// Determines whether this function prototype contains a
  /// parameter pack at the end.
  ///
  /// A function template whose last parameter is a parameter pack can be
  /// called with an arbitrary number of arguments, much like a variadic
  /// function.
  bool isTemplateVariadic() const;

  /// Whether this function prototype has a trailing return type.
  bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }

  Qualifiers getMethodQuals() const {
    if (hasExtQualifiers())
      return *getTrailingObjects<Qualifiers>();
    else
      return getFastTypeQuals();
  }

  /// Retrieve the ref-qualifier associated with this function type.
  RefQualifierKind getRefQualifier() const {
    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
  }

  using param_type_iterator = const QualType *;
  using param_type_range = llvm::iterator_range<param_type_iterator>;

  param_type_range param_types() const {
    return param_type_range(param_type_begin(), param_type_end());
  }

  param_type_iterator param_type_begin() const {
    return getTrailingObjects<QualType>();
  }

  param_type_iterator param_type_end() const {
    return param_type_begin() + getNumParams();
  }

  using exception_iterator = const QualType *;

  ArrayRef<QualType> exceptions() const {
    return llvm::makeArrayRef(exception_begin(), exception_end());
  }

  exception_iterator exception_begin() const {
    return reinterpret_cast<exception_iterator>(
        getTrailingObjects<ExceptionType>());
  }

  exception_iterator exception_end() const {
    return exception_begin() + getNumExceptions();
  }

  /// Is there any interesting extra information for any of the parameters
  /// of this function type?
  bool hasExtParameterInfos() const {
    return FunctionTypeBits.HasExtParameterInfos;
  }

  ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
    assert(hasExtParameterInfos());
    return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
                                      getNumParams());
  }

  /// Return a pointer to the beginning of the array of extra parameter
  /// information, if present, or else null if none of the parameters
  /// carry it.  This is equivalent to getExtProtoInfo().ExtParameterInfos.
  const ExtParameterInfo *getExtParameterInfosOrNull() const {
    if (!hasExtParameterInfos())
      return nullptr;
    return getTrailingObjects<ExtParameterInfo>();
  }

  ExtParameterInfo getExtParameterInfo(unsigned I) const {
    assert(I < getNumParams() && "parameter index out of range");
    if (hasExtParameterInfos())
      return getTrailingObjects<ExtParameterInfo>()[I];
    return ExtParameterInfo();
  }

  ParameterABI getParameterABI(unsigned I) const {
    assert(I < getNumParams() && "parameter index out of range");
    if (hasExtParameterInfos())
      return getTrailingObjects<ExtParameterInfo>()[I].getABI();
    return ParameterABI::Ordinary;
  }

  bool isParamConsumed(unsigned I) const {
    assert(I < getNumParams() && "parameter index out of range");
    if (hasExtParameterInfos())
      return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
    return false;
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void printExceptionSpecification(raw_ostream &OS,
                                   const PrintingPolicy &Policy) const;

  static bool classof(const Type *T) {
    return T->getTypeClass() == FunctionProto;
  }

  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
                      param_type_iterator ArgTys, unsigned NumArgs,
                      const ExtProtoInfo &EPI, const ASTContext &Context,
                      bool Canonical);
};

/// Represents the dependent type named by a dependently-scoped
/// typename using declaration, e.g.
///   using typename Base<T>::foo;
///
/// Template instantiation turns these into the underlying type.
class UnresolvedUsingType : public Type {
  friend class ASTContext; // ASTContext creates these.

  UnresolvedUsingTypenameDecl *Decl;

  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
      : Type(UnresolvedUsing, QualType(), true, true, false,
             /*ContainsUnexpandedParameterPack=*/false),
        Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}

public:
  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == UnresolvedUsing;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    return Profile(ID, Decl);
  }

  static void Profile(llvm::FoldingSetNodeID &ID,
                      UnresolvedUsingTypenameDecl *D) {
    ID.AddPointer(D);
  }
};

class TypedefType : public Type {
  TypedefNameDecl *Decl;

protected:
  friend class ASTContext; // ASTContext creates these.

  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
      : Type(tc, can, can->isDependentType(),
             can->isInstantiationDependentType(),
             can->isVariablyModifiedType(),
             /*ContainsUnexpandedParameterPack=*/false),
        Decl(const_cast<TypedefNameDecl*>(D)) {
    assert(!isa<TypedefType>(can) && "Invalid canonical type");
  }

public:
  TypedefNameDecl *getDecl() const { return Decl; }

  bool isSugared() const { return true; }
  QualType desugar() const;

  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
};

/// Sugar type that represents a type that was qualified by a qualifier written
/// as a macro invocation.
class MacroQualifiedType : public Type {
  friend class ASTContext; // ASTContext creates these.

  QualType UnderlyingTy;
  const IdentifierInfo *MacroII;

  MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
                     const IdentifierInfo *MacroII)
      : Type(MacroQualified, CanonTy, UnderlyingTy->isDependentType(),
             UnderlyingTy->isInstantiationDependentType(),
             UnderlyingTy->isVariablyModifiedType(),
             UnderlyingTy->containsUnexpandedParameterPack()),
        UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
    assert(isa<AttributedType>(UnderlyingTy) &&
           "Expected a macro qualified type to only wrap attributed types.");
  }

public:
  const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
  QualType getUnderlyingType() const { return UnderlyingTy; }

  /// Return this attributed type's modified type with no qualifiers attached to
  /// it.
  QualType getModifiedType() const;

  bool isSugared() const { return true; }
  QualType desugar() const;

  static bool classof(const Type *T) {
    return T->getTypeClass() == MacroQualified;
  }
};

/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
class TypeOfExprType : public Type {
  Expr *TOExpr;

protected:
  friend class ASTContext; // ASTContext creates these.

  TypeOfExprType(Expr *E, QualType can = QualType());

public:
  Expr *getUnderlyingExpr() const { return TOExpr; }

  /// Remove a single level of sugar.
  QualType desugar() const;

  /// Returns whether this type directly provides sugar.
  bool isSugared() const;

  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
};

/// Internal representation of canonical, dependent
/// `typeof(expr)` types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via TypeOfExprType nodes.
class DependentTypeOfExprType
  : public TypeOfExprType, public llvm::FoldingSetNode {
  const ASTContext &Context;

public:
  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
      : TypeOfExprType(E), Context(Context) {}

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Context, getUnderlyingExpr());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
                      Expr *E);
};

/// Represents `typeof(type)`, a GCC extension.
class TypeOfType : public Type {
  friend class ASTContext; // ASTContext creates these.

  QualType TOType;

  TypeOfType(QualType T, QualType can)
      : Type(TypeOf, can, T->isDependentType(),
             T->isInstantiationDependentType(),
             T->isVariablyModifiedType(),
             T->containsUnexpandedParameterPack()),
        TOType(T) {
    assert(!isa<TypedefType>(can) && "Invalid canonical type");
  }

public:
  QualType getUnderlyingType() const { return TOType; }

  /// Remove a single level of sugar.
  QualType desugar() const { return getUnderlyingType(); }

  /// Returns whether this type directly provides sugar.
  bool isSugared() const { return true; }

  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
};

/// Represents the type `decltype(expr)` (C++11).
class DecltypeType : public Type {
  Expr *E;
  QualType UnderlyingType;

protected:
  friend class ASTContext; // ASTContext creates these.

  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());

public:
  Expr *getUnderlyingExpr() const { return E; }
  QualType getUnderlyingType() const { return UnderlyingType; }

  /// Remove a single level of sugar.
  QualType desugar() const;

  /// Returns whether this type directly provides sugar.
  bool isSugared() const;

  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
};

/// Internal representation of canonical, dependent
/// decltype(expr) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via DecltypeType nodes.
class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
  const ASTContext &Context;

public:
  DependentDecltypeType(const ASTContext &Context, Expr *E);

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Context, getUnderlyingExpr());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
                      Expr *E);
};

/// A unary type transform, which is a type constructed from another.
class UnaryTransformType : public Type {
public:
  enum UTTKind {
    EnumUnderlyingType
  };

private:
  /// The untransformed type.
  QualType BaseType;

  /// The transformed type if not dependent, otherwise the same as BaseType.
  QualType UnderlyingType;

  UTTKind UKind;

protected:
  friend class ASTContext;

  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
                     QualType CanonicalTy);

public:
  bool isSugared() const { return !isDependentType(); }
  QualType desugar() const { return UnderlyingType; }

  QualType getUnderlyingType() const { return UnderlyingType; }
  QualType getBaseType() const { return BaseType; }

  UTTKind getUTTKind() const { return UKind; }

  static bool classof(const Type *T) {
    return T->getTypeClass() == UnaryTransform;
  }
};

/// Internal representation of canonical, dependent
/// __underlying_type(type) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via UnaryTransformType nodes.
class DependentUnaryTransformType : public UnaryTransformType,
                                    public llvm::FoldingSetNode {
public:
  DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
                              UTTKind UKind);

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getBaseType(), getUTTKind());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
                      UTTKind UKind) {
    ID.AddPointer(BaseType.getAsOpaquePtr());
    ID.AddInteger((unsigned)UKind);
  }
};

class TagType : public Type {
  friend class ASTReader;

  /// Stores the TagDecl associated with this type. The decl may point to any
  /// TagDecl that declares the entity.
  TagDecl *decl;

protected:
  TagType(TypeClass TC, const TagDecl *D, QualType can);

public:
  TagDecl *getDecl() const;

  /// Determines whether this type is in the process of being defined.
  bool isBeingDefined() const;

  static bool classof(const Type *T) {
    return T->getTypeClass() == Enum || T->getTypeClass() == Record;
  }
};

/// A helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of structs/unions/classes.
class RecordType : public TagType {
protected:
  friend class ASTContext; // ASTContext creates these.

  explicit RecordType(const RecordDecl *D)
      : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
  explicit RecordType(TypeClass TC, RecordDecl *D)
      : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}

public:
  RecordDecl *getDecl() const {
    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
  }

  /// Recursively check all fields in the record for const-ness. If any field
  /// is declared const, return true. Otherwise, return false.
  bool hasConstFields() const;

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
};

/// A helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of enums.
class EnumType : public TagType {
  friend class ASTContext; // ASTContext creates these.

  explicit EnumType(const EnumDecl *D)
      : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}

public:
  EnumDecl *getDecl() const {
    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
};

/// An attributed type is a type to which a type attribute has been applied.
///
/// The "modified type" is the fully-sugared type to which the attributed
/// type was applied; generally it is not canonically equivalent to the
/// attributed type. The "equivalent type" is the minimally-desugared type
/// which the type is canonically equivalent to.
///
/// For example, in the following attributed type:
///     int32_t __attribute__((vector_size(16)))
///   - the modified type is the TypedefType for int32_t
///   - the equivalent type is VectorType(16, int32_t)
///   - the canonical type is VectorType(16, int)
class AttributedType : public Type, public llvm::FoldingSetNode {
public:
  using Kind = attr::Kind;

private:
  friend class ASTContext; // ASTContext creates these

  QualType ModifiedType;
  QualType EquivalentType;

  AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
                 QualType equivalent)
      : Type(Attributed, canon, equivalent->isDependentType(),
             equivalent->isInstantiationDependentType(),
             equivalent->isVariablyModifiedType(),
             equivalent->containsUnexpandedParameterPack()),
        ModifiedType(modified), EquivalentType(equivalent) {
    AttributedTypeBits.AttrKind = attrKind;
  }

public:
  Kind getAttrKind() const {
    return static_cast<Kind>(AttributedTypeBits.AttrKind);
  }

  QualType getModifiedType() const { return ModifiedType; }
  QualType getEquivalentType() const { return EquivalentType; }

  bool isSugared() const { return true; }
  QualType desugar() const { return getEquivalentType(); }

  /// Does this attribute behave like a type qualifier?
  ///
  /// A type qualifier adjusts a type to provide specialized rules for
  /// a specific object, like the standard const and volatile qualifiers.
  /// This includes attributes controlling things like nullability,
  /// address spaces, and ARC ownership.  The value of the object is still
  /// largely described by the modified type.
  ///
  /// In contrast, many type attributes "rewrite" their modified type to
  /// produce a fundamentally different type, not necessarily related in any
  /// formalizable way to the original type.  For example, calling convention
  /// and vector attributes are not simple type qualifiers.
  ///
  /// Type qualifiers are often, but not always, reflected in the canonical
  /// type.
  bool isQualifier() const;

  bool isMSTypeSpec() const;

  bool isCallingConv() const;

  llvm::Optional<NullabilityKind> getImmediateNullability() const;

  /// Retrieve the attribute kind corresponding to the given
  /// nullability kind.
  static Kind getNullabilityAttrKind(NullabilityKind kind) {
    switch (kind) {
    case NullabilityKind::NonNull:
      return attr::TypeNonNull;

    case NullabilityKind::Nullable:
      return attr::TypeNullable;

    case NullabilityKind::Unspecified:
      return attr::TypeNullUnspecified;
    }
    llvm_unreachable("Unknown nullability kind.");
  }

  /// Strip off the top-level nullability annotation on the given
  /// type, if it's there.
  ///
  /// \param T The type to strip. If the type is exactly an
  /// AttributedType specifying nullability (without looking through
  /// type sugar), the nullability is returned and this type changed
  /// to the underlying modified type.
  ///
  /// \returns the top-level nullability, if present.
  static Optional<NullabilityKind> stripOuterNullability(QualType &T);

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
                      QualType modified, QualType equivalent) {
    ID.AddInteger(attrKind);
    ID.AddPointer(modified.getAsOpaquePtr());
    ID.AddPointer(equivalent.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == Attributed;
  }
};

class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these

  // Helper data collector for canonical types.
  struct CanonicalTTPTInfo {
    unsigned Depth : 15;
    unsigned ParameterPack : 1;
    unsigned Index : 16;
  };

  union {
    // Info for the canonical type.
    CanonicalTTPTInfo CanTTPTInfo;

    // Info for the non-canonical type.
    TemplateTypeParmDecl *TTPDecl;
  };

  /// Build a non-canonical type.
  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
      : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
             /*InstantiationDependent=*/true,
             /*VariablyModified=*/false,
             Canon->containsUnexpandedParameterPack()),
        TTPDecl(TTPDecl) {}

  /// Build the canonical type.
  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
      : Type(TemplateTypeParm, QualType(this, 0),
             /*Dependent=*/true,
             /*InstantiationDependent=*/true,
             /*VariablyModified=*/false, PP) {
    CanTTPTInfo.Depth = D;
    CanTTPTInfo.Index = I;
    CanTTPTInfo.ParameterPack = PP;
  }

  const CanonicalTTPTInfo& getCanTTPTInfo() const {
    QualType Can = getCanonicalTypeInternal();
    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
  }

public:
  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
  unsigned getIndex() const { return getCanTTPTInfo().Index; }
  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }

  TemplateTypeParmDecl *getDecl() const {
    return isCanonicalUnqualified() ? nullptr : TTPDecl;
  }

  IdentifierInfo *getIdentifier() const;

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
                      unsigned Index, bool ParameterPack,
                      TemplateTypeParmDecl *TTPDecl) {
    ID.AddInteger(Depth);
    ID.AddInteger(Index);
    ID.AddBoolean(ParameterPack);
    ID.AddPointer(TTPDecl);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == TemplateTypeParm;
  }
};

/// Represents the result of substituting a type for a template
/// type parameter.
///
/// Within an instantiated template, all template type parameters have
/// been replaced with these.  They are used solely to record that a
/// type was originally written as a template type parameter;
/// therefore they are never canonical.
class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext;

  // The original type parameter.
  const TemplateTypeParmType *Replaced;

  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
      : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
             Canon->isInstantiationDependentType(),
             Canon->isVariablyModifiedType(),
             Canon->containsUnexpandedParameterPack()),
        Replaced(Param) {}

public:
  /// Gets the template parameter that was substituted for.
  const TemplateTypeParmType *getReplacedParameter() const {
    return Replaced;
  }

  /// Gets the type that was substituted for the template
  /// parameter.
  QualType getReplacementType() const {
    return getCanonicalTypeInternal();
  }

  bool isSugared() const { return true; }
  QualType desugar() const { return getReplacementType(); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getReplacedParameter(), getReplacementType());
  }

  static void Profile(llvm::FoldingSetNodeID &ID,
                      const TemplateTypeParmType *Replaced,
                      QualType Replacement) {
    ID.AddPointer(Replaced);
    ID.AddPointer(Replacement.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == SubstTemplateTypeParm;
  }
};

/// Represents the result of substituting a set of types for a template
/// type parameter pack.
///
/// When a pack expansion in the source code contains multiple parameter packs
/// and those parameter packs correspond to different levels of template
/// parameter lists, this type node is used to represent a template type
/// parameter pack from an outer level, which has already had its argument pack
/// substituted but that still lives within a pack expansion that itself
/// could not be instantiated. When actually performing a substitution into
/// that pack expansion (e.g., when all template parameters have corresponding
/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
/// at the current pack substitution index.
class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext;

  /// The original type parameter.
  const TemplateTypeParmType *Replaced;

  /// A pointer to the set of template arguments that this
  /// parameter pack is instantiated with.
  const TemplateArgument *Arguments;

  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
                                QualType Canon,
                                const TemplateArgument &ArgPack);

public:
  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }

  /// Gets the template parameter that was substituted for.
  const TemplateTypeParmType *getReplacedParameter() const {
    return Replaced;
  }

  unsigned getNumArgs() const {
    return SubstTemplateTypeParmPackTypeBits.NumArgs;
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  TemplateArgument getArgumentPack() const;

  void Profile(llvm::FoldingSetNodeID &ID);
  static void Profile(llvm::FoldingSetNodeID &ID,
                      const TemplateTypeParmType *Replaced,
                      const TemplateArgument &ArgPack);

  static bool classof(const Type *T) {
    return T->getTypeClass() == SubstTemplateTypeParmPack;
  }
};

/// Common base class for placeholders for types that get replaced by
/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
/// class template types, and (eventually) constrained type names from the C++
/// Concepts TS.
///
/// These types are usually a placeholder for a deduced type. However, before
/// the initializer is attached, or (usually) if the initializer is
/// type-dependent, there is no deduced type and the type is canonical. In
/// the latter case, it is also a dependent type.
class DeducedType : public Type {
protected:
  DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
              bool IsInstantiationDependent, bool ContainsParameterPack)
      : Type(TC,
             // FIXME: Retain the sugared deduced type?
             DeducedAsType.isNull() ? QualType(this, 0)
                                    : DeducedAsType.getCanonicalType(),
             IsDependent, IsInstantiationDependent,
             /*VariablyModified=*/false, ContainsParameterPack) {
    if (!DeducedAsType.isNull()) {
      if (DeducedAsType->isDependentType())
        setDependent();
      if (DeducedAsType->isInstantiationDependentType())
        setInstantiationDependent();
      if (DeducedAsType->containsUnexpandedParameterPack())
        setContainsUnexpandedParameterPack();
    }
  }

public:
  bool isSugared() const { return !isCanonicalUnqualified(); }
  QualType desugar() const { return getCanonicalTypeInternal(); }

  /// Get the type deduced for this placeholder type, or null if it's
  /// either not been deduced or was deduced to a dependent type.
  QualType getDeducedType() const {
    return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
  }
  bool isDeduced() const {
    return !isCanonicalUnqualified() || isDependentType();
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == Auto ||
           T->getTypeClass() == DeducedTemplateSpecialization;
  }
};

/// Represents a C++11 auto or C++14 decltype(auto) type.
class AutoType : public DeducedType, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these

  AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
           bool IsDeducedAsDependent, bool IsDeducedAsPack)
      : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
                    IsDeducedAsDependent, IsDeducedAsPack) {
    AutoTypeBits.Keyword = (unsigned)Keyword;
  }

public:
  bool isDecltypeAuto() const {
    return getKeyword() == AutoTypeKeyword::DecltypeAuto;
  }

  AutoTypeKeyword getKeyword() const {
    return (AutoTypeKeyword)AutoTypeBits.Keyword;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getDeducedType(), getKeyword(), isDependentType(),
            containsUnexpandedParameterPack());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
                      AutoTypeKeyword Keyword, bool IsDependent, bool IsPack) {
    ID.AddPointer(Deduced.getAsOpaquePtr());
    ID.AddInteger((unsigned)Keyword);
    ID.AddBoolean(IsDependent);
    ID.AddBoolean(IsPack);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == Auto;
  }
};

/// Represents a C++17 deduced template specialization type.
class DeducedTemplateSpecializationType : public DeducedType,
                                          public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these

  /// The name of the template whose arguments will be deduced.
  TemplateName Template;

  DeducedTemplateSpecializationType(TemplateName Template,
                                    QualType DeducedAsType,
                                    bool IsDeducedAsDependent)
      : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
                    IsDeducedAsDependent || Template.isDependent(),
                    IsDeducedAsDependent || Template.isInstantiationDependent(),
                    Template.containsUnexpandedParameterPack()),
        Template(Template) {}

public:
  /// Retrieve the name of the template that we are deducing.
  TemplateName getTemplateName() const { return Template;}

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
                      QualType Deduced, bool IsDependent) {
    Template.Profile(ID);
    ID.AddPointer(Deduced.getAsOpaquePtr());
    ID.AddBoolean(IsDependent);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == DeducedTemplateSpecialization;
  }
};

/// Represents a type template specialization; the template
/// must be a class template, a type alias template, or a template
/// template parameter.  A template which cannot be resolved to one of
/// these, e.g. because it is written with a dependent scope
/// specifier, is instead represented as a
/// @c DependentTemplateSpecializationType.
///
/// A non-dependent template specialization type is always "sugar",
/// typically for a \c RecordType.  For example, a class template
/// specialization type of \c vector<int> will refer to a tag type for
/// the instantiation \c std::vector<int, std::allocator<int>>
///
/// Template specializations are dependent if either the template or
/// any of the template arguments are dependent, in which case the
/// type may also be canonical.
///
/// Instances of this type are allocated with a trailing array of
/// TemplateArguments, followed by a QualType representing the
/// non-canonical aliased type when the template is a type alias
/// template.
class alignas(8) TemplateSpecializationType
    : public Type,
      public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these

  /// The name of the template being specialized.  This is
  /// either a TemplateName::Template (in which case it is a
  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
  /// TypeAliasTemplateDecl*), a
  /// TemplateName::SubstTemplateTemplateParmPack, or a
  /// TemplateName::SubstTemplateTemplateParm (in which case the
  /// replacement must, recursively, be one of these).
  TemplateName Template;

  TemplateSpecializationType(TemplateName T,
                             ArrayRef<TemplateArgument> Args,
                             QualType Canon,
                             QualType Aliased);

public:
  /// Determine whether any of the given template arguments are dependent.
  static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
                                            bool &InstantiationDependent);

  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
                                            bool &InstantiationDependent);

  /// True if this template specialization type matches a current
  /// instantiation in the context in which it is found.
  bool isCurrentInstantiation() const {
    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
  }

  /// Determine if this template specialization type is for a type alias
  /// template that has been substituted.
  ///
  /// Nearly every template specialization type whose template is an alias
  /// template will be substituted. However, this is not the case when
  /// the specialization contains a pack expansion but the template alias
  /// does not have a corresponding parameter pack, e.g.,
  ///
  /// \code
  /// template<typename T, typename U, typename V> struct S;
  /// template<typename T, typename U> using A = S<T, int, U>;
  /// template<typename... Ts> struct X {
  ///   typedef A<Ts...> type; // not a type alias
  /// };
  /// \endcode
  bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }

  /// Get the aliased type, if this is a specialization of a type alias
  /// template.
  QualType getAliasedType() const {
    assert(isTypeAlias() && "not a type alias template specialization");
    return *reinterpret_cast<const QualType*>(end());
  }

  using iterator = const TemplateArgument *;

  iterator begin() const { return getArgs(); }
  iterator end() const; // defined inline in TemplateBase.h

  /// Retrieve the name of the template that we are specializing.
  TemplateName getTemplateName() const { return Template; }

  /// Retrieve the template arguments.
  const TemplateArgument *getArgs() const {
    return reinterpret_cast<const TemplateArgument *>(this + 1);
  }

  /// Retrieve the number of template arguments.
  unsigned getNumArgs() const {
    return TemplateSpecializationTypeBits.NumArgs;
  }

  /// Retrieve a specific template argument as a type.
  /// \pre \c isArgType(Arg)
  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h

  ArrayRef<TemplateArgument> template_arguments() const {
    return {getArgs(), getNumArgs()};
  }

  bool isSugared() const {
    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
  }

  QualType desugar() const {
    return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
  }

  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
    Profile(ID, Template, template_arguments(), Ctx);
    if (isTypeAlias())
      getAliasedType().Profile(ID);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
                      ArrayRef<TemplateArgument> Args,
                      const ASTContext &Context);

  static bool classof(const Type *T) {
    return T->getTypeClass() == TemplateSpecialization;
  }
};

/// Print a template argument list, including the '<' and '>'
/// enclosing the template arguments.
void printTemplateArgumentList(raw_ostream &OS,
                               ArrayRef<TemplateArgument> Args,
                               const PrintingPolicy &Policy);

void printTemplateArgumentList(raw_ostream &OS,
                               ArrayRef<TemplateArgumentLoc> Args,
                               const PrintingPolicy &Policy);

void printTemplateArgumentList(raw_ostream &OS,
                               const TemplateArgumentListInfo &Args,
                               const PrintingPolicy &Policy);

/// The injected class name of a C++ class template or class
/// template partial specialization.  Used to record that a type was
/// spelled with a bare identifier rather than as a template-id; the
/// equivalent for non-templated classes is just RecordType.
///
/// Injected class name types are always dependent.  Template
/// instantiation turns these into RecordTypes.
///
/// Injected class name types are always canonical.  This works
/// because it is impossible to compare an injected class name type
/// with the corresponding non-injected template type, for the same
/// reason that it is impossible to directly compare template
/// parameters from different dependent contexts: injected class name
/// types can only occur within the scope of a particular templated
/// declaration, and within that scope every template specialization
/// will canonicalize to the injected class name (when appropriate
/// according to the rules of the language).
class InjectedClassNameType : public Type {
  friend class ASTContext; // ASTContext creates these.
  friend class ASTNodeImporter;
  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
                          // currently suitable for AST reading, too much
                          // interdependencies.

  CXXRecordDecl *Decl;

  /// The template specialization which this type represents.
  /// For example, in
  ///   template <class T> class A { ... };
  /// this is A<T>, whereas in
  ///   template <class X, class Y> class A<B<X,Y> > { ... };
  /// this is A<B<X,Y> >.
  ///
  /// It is always unqualified, always a template specialization type,
  /// and always dependent.
  QualType InjectedType;

  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
      : Type(InjectedClassName, QualType(), /*Dependent=*/true,
             /*InstantiationDependent=*/true,
             /*VariablyModified=*/false,
             /*ContainsUnexpandedParameterPack=*/false),
        Decl(D), InjectedType(TST) {
    assert(isa<TemplateSpecializationType>(TST));
    assert(!TST.hasQualifiers());
    assert(TST->isDependentType());
  }

public:
  QualType getInjectedSpecializationType() const { return InjectedType; }

  const TemplateSpecializationType *getInjectedTST() const {
    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
  }

  TemplateName getTemplateName() const {
    return getInjectedTST()->getTemplateName();
  }

  CXXRecordDecl *getDecl() const;

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == InjectedClassName;
  }
};

/// The kind of a tag type.
enum TagTypeKind {
  /// The "struct" keyword.
  TTK_Struct,

  /// The "__interface" keyword.
  TTK_Interface,

  /// The "union" keyword.
  TTK_Union,

  /// The "class" keyword.
  TTK_Class,

  /// The "enum" keyword.
  TTK_Enum
};

/// The elaboration keyword that precedes a qualified type name or
/// introduces an elaborated-type-specifier.
enum ElaboratedTypeKeyword {
  /// The "struct" keyword introduces the elaborated-type-specifier.
  ETK_Struct,

  /// The "__interface" keyword introduces the elaborated-type-specifier.
  ETK_Interface,

  /// The "union" keyword introduces the elaborated-type-specifier.
  ETK_Union,

  /// The "class" keyword introduces the elaborated-type-specifier.
  ETK_Class,

  /// The "enum" keyword introduces the elaborated-type-specifier.
  ETK_Enum,

  /// The "typename" keyword precedes the qualified type name, e.g.,
  /// \c typename T::type.
  ETK_Typename,

  /// No keyword precedes the qualified type name.
  ETK_None
};

/// A helper class for Type nodes having an ElaboratedTypeKeyword.
/// The keyword in stored in the free bits of the base class.
/// Also provides a few static helpers for converting and printing
/// elaborated type keyword and tag type kind enumerations.
class TypeWithKeyword : public Type {
protected:
  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
                  QualType Canonical, bool Dependent,
                  bool InstantiationDependent, bool VariablyModified,
                  bool ContainsUnexpandedParameterPack)
      : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
             ContainsUnexpandedParameterPack) {
    TypeWithKeywordBits.Keyword = Keyword;
  }

public:
  ElaboratedTypeKeyword getKeyword() const {
    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
  }

  /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);

  /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
  /// It is an error to provide a type specifier which *isn't* a tag kind here.
  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);

  /// Converts a TagTypeKind into an elaborated type keyword.
  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);

  /// Converts an elaborated type keyword into a TagTypeKind.
  /// It is an error to provide an elaborated type keyword
  /// which *isn't* a tag kind here.
  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);

  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);

  static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);

  static StringRef getTagTypeKindName(TagTypeKind Kind) {
    return getKeywordName(getKeywordForTagTypeKind(Kind));
  }

  class CannotCastToThisType {};
  static CannotCastToThisType classof(const Type *);
};

/// Represents a type that was referred to using an elaborated type
/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
/// or both.
///
/// This type is used to keep track of a type name as written in the
/// source code, including tag keywords and any nested-name-specifiers.
/// The type itself is always "sugar", used to express what was written
/// in the source code but containing no additional semantic information.
class ElaboratedType final
    : public TypeWithKeyword,
      public llvm::FoldingSetNode,
      private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
  friend class ASTContext; // ASTContext creates these
  friend TrailingObjects;

  /// The nested name specifier containing the qualifier.
  NestedNameSpecifier *NNS;

  /// The type that this qualified name refers to.
  QualType NamedType;

  /// The (re)declaration of this tag type owned by this occurrence is stored
  /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
  /// it, or obtain a null pointer if there is none.

  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
                 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
      : TypeWithKeyword(Keyword, Elaborated, CanonType,
                        NamedType->isDependentType(),
                        NamedType->isInstantiationDependentType(),
                        NamedType->isVariablyModifiedType(),
                        NamedType->containsUnexpandedParameterPack()),
        NNS(NNS), NamedType(NamedType) {
    ElaboratedTypeBits.HasOwnedTagDecl = false;
    if (OwnedTagDecl) {
      ElaboratedTypeBits.HasOwnedTagDecl = true;
      *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
    }
    assert(!(Keyword == ETK_None && NNS == nullptr) &&
           "ElaboratedType cannot have elaborated type keyword "
           "and name qualifier both null.");
  }

public:
  /// Retrieve the qualification on this type.
  NestedNameSpecifier *getQualifier() const { return NNS; }

  /// Retrieve the type named by the qualified-id.
  QualType getNamedType() const { return NamedType; }

  /// Remove a single level of sugar.
  QualType desugar() const { return getNamedType(); }

  /// Returns whether this type directly provides sugar.
  bool isSugared() const { return true; }

  /// Return the (re)declaration of this type owned by this occurrence of this
  /// type, or nullptr if there is none.
  TagDecl *getOwnedTagDecl() const {
    return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
                                              : nullptr;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
                      NestedNameSpecifier *NNS, QualType NamedType,
                      TagDecl *OwnedTagDecl) {
    ID.AddInteger(Keyword);
    ID.AddPointer(NNS);
    NamedType.Profile(ID);
    ID.AddPointer(OwnedTagDecl);
  }

  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
};

/// Represents a qualified type name for which the type name is
/// dependent.
///
/// DependentNameType represents a class of dependent types that involve a
/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
/// name of a type. The DependentNameType may start with a "typename" (for a
/// typename-specifier), "class", "struct", "union", or "enum" (for a
/// dependent elaborated-type-specifier), or nothing (in contexts where we
/// know that we must be referring to a type, e.g., in a base class specifier).
/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
/// mode, this type is used with non-dependent names to delay name lookup until
/// instantiation.
class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these

  /// The nested name specifier containing the qualifier.
  NestedNameSpecifier *NNS;

  /// The type that this typename specifier refers to.
  const IdentifierInfo *Name;

  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
                    const IdentifierInfo *Name, QualType CanonType)
      : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
                        /*InstantiationDependent=*/true,
                        /*VariablyModified=*/false,
                        NNS->containsUnexpandedParameterPack()),
        NNS(NNS), Name(Name) {}

public:
  /// Retrieve the qualification on this type.
  NestedNameSpecifier *getQualifier() const { return NNS; }

  /// Retrieve the type named by the typename specifier as an identifier.
  ///
  /// This routine will return a non-NULL identifier pointer when the
  /// form of the original typename was terminated by an identifier,
  /// e.g., "typename T::type".
  const IdentifierInfo *getIdentifier() const {
    return Name;
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getKeyword(), NNS, Name);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
    ID.AddInteger(Keyword);
    ID.AddPointer(NNS);
    ID.AddPointer(Name);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == DependentName;
  }
};

/// Represents a template specialization type whose template cannot be
/// resolved, e.g.
///   A<T>::template B<T>
class alignas(8) DependentTemplateSpecializationType
    : public TypeWithKeyword,
      public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these

  /// The nested name specifier containing the qualifier.
  NestedNameSpecifier *NNS;

  /// The identifier of the template.
  const IdentifierInfo *Name;

  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
                                      NestedNameSpecifier *NNS,
                                      const IdentifierInfo *Name,
                                      ArrayRef<TemplateArgument> Args,
                                      QualType Canon);

  const TemplateArgument *getArgBuffer() const {
    return reinterpret_cast<const TemplateArgument*>(this+1);
  }

  TemplateArgument *getArgBuffer() {
    return reinterpret_cast<TemplateArgument*>(this+1);
  }

public:
  NestedNameSpecifier *getQualifier() const { return NNS; }
  const IdentifierInfo *getIdentifier() const { return Name; }

  /// Retrieve the template arguments.
  const TemplateArgument *getArgs() const {
    return getArgBuffer();
  }

  /// Retrieve the number of template arguments.
  unsigned getNumArgs() const {
    return DependentTemplateSpecializationTypeBits.NumArgs;
  }

  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h

  ArrayRef<TemplateArgument> template_arguments() const {
    return {getArgs(), getNumArgs()};
  }

  using iterator = const TemplateArgument *;

  iterator begin() const { return getArgs(); }
  iterator end() const; // inline in TemplateBase.h

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
    Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
  }

  static void Profile(llvm::FoldingSetNodeID &ID,
                      const ASTContext &Context,
                      ElaboratedTypeKeyword Keyword,
                      NestedNameSpecifier *Qualifier,
                      const IdentifierInfo *Name,
                      ArrayRef<TemplateArgument> Args);

  static bool classof(const Type *T) {
    return T->getTypeClass() == DependentTemplateSpecialization;
  }
};

/// Represents a pack expansion of types.
///
/// Pack expansions are part of C++11 variadic templates. A pack
/// expansion contains a pattern, which itself contains one or more
/// "unexpanded" parameter packs. When instantiated, a pack expansion
/// produces a series of types, each instantiated from the pattern of
/// the expansion, where the Ith instantiation of the pattern uses the
/// Ith arguments bound to each of the unexpanded parameter packs. The
/// pack expansion is considered to "expand" these unexpanded
/// parameter packs.
///
/// \code
/// template<typename ...Types> struct tuple;
///
/// template<typename ...Types>
/// struct tuple_of_references {
///   typedef tuple<Types&...> type;
/// };
/// \endcode
///
/// Here, the pack expansion \c Types&... is represented via a
/// PackExpansionType whose pattern is Types&.
class PackExpansionType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these

  /// The pattern of the pack expansion.
  QualType Pattern;

  PackExpansionType(QualType Pattern, QualType Canon,
                    Optional<unsigned> NumExpansions)
      : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
             /*InstantiationDependent=*/true,
             /*VariablyModified=*/Pattern->isVariablyModifiedType(),
             /*ContainsUnexpandedParameterPack=*/false),
        Pattern(Pattern) {
    PackExpansionTypeBits.NumExpansions =
        NumExpansions ? *NumExpansions + 1 : 0;
  }

public:
  /// Retrieve the pattern of this pack expansion, which is the
  /// type that will be repeatedly instantiated when instantiating the
  /// pack expansion itself.
  QualType getPattern() const { return Pattern; }

  /// Retrieve the number of expansions that this pack expansion will
  /// generate, if known.
  Optional<unsigned> getNumExpansions() const {
    if (PackExpansionTypeBits.NumExpansions)
      return PackExpansionTypeBits.NumExpansions - 1;
    return None;
  }

  bool isSugared() const { return !Pattern->isDependentType(); }
  QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getPattern(), getNumExpansions());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
                      Optional<unsigned> NumExpansions) {
    ID.AddPointer(Pattern.getAsOpaquePtr());
    ID.AddBoolean(NumExpansions.hasValue());
    if (NumExpansions)
      ID.AddInteger(*NumExpansions);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == PackExpansion;
  }
};

/// This class wraps the list of protocol qualifiers. For types that can
/// take ObjC protocol qualifers, they can subclass this class.
template <class T>
class ObjCProtocolQualifiers {
protected:
  ObjCProtocolQualifiers() = default;

  ObjCProtocolDecl * const *getProtocolStorage() const {
    return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
  }

  ObjCProtocolDecl **getProtocolStorage() {
    return static_cast<T*>(this)->getProtocolStorageImpl();
  }

  void setNumProtocols(unsigned N) {
    static_cast<T*>(this)->setNumProtocolsImpl(N);
  }

  void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
    setNumProtocols(protocols.size());
    assert(getNumProtocols() == protocols.size() &&
           "bitfield overflow in protocol count");
    if (!protocols.empty())
      memcpy(getProtocolStorage(), protocols.data(),
             protocols.size() * sizeof(ObjCProtocolDecl*));
  }

public:
  using qual_iterator = ObjCProtocolDecl * const *;
  using qual_range = llvm::iterator_range<qual_iterator>;

  qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
  qual_iterator qual_begin() const { return getProtocolStorage(); }
  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }

  bool qual_empty() const { return getNumProtocols() == 0; }

  /// Return the number of qualifying protocols in this type, or 0 if
  /// there are none.
  unsigned getNumProtocols() const {
    return static_cast<const T*>(this)->getNumProtocolsImpl();
  }

  /// Fetch a protocol by index.
  ObjCProtocolDecl *getProtocol(unsigned I) const {
    assert(I < getNumProtocols() && "Out-of-range protocol access");
    return qual_begin()[I];
  }

  /// Retrieve all of the protocol qualifiers.
  ArrayRef<ObjCProtocolDecl *> getProtocols() const {
    return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
  }
};

/// Represents a type parameter type in Objective C. It can take
/// a list of protocols.
class ObjCTypeParamType : public Type,
                          public ObjCProtocolQualifiers<ObjCTypeParamType>,
                          public llvm::FoldingSetNode {
  friend class ASTContext;
  friend class ObjCProtocolQualifiers<ObjCTypeParamType>;

  /// The number of protocols stored on this type.
  unsigned NumProtocols : 6;

  ObjCTypeParamDecl *OTPDecl;

  /// The protocols are stored after the ObjCTypeParamType node. In the
  /// canonical type, the list of protocols are sorted alphabetically
  /// and uniqued.
  ObjCProtocolDecl **getProtocolStorageImpl();

  /// Return the number of qualifying protocols in this interface type,
  /// or 0 if there are none.
  unsigned getNumProtocolsImpl() const {
    return NumProtocols;
  }

  void setNumProtocolsImpl(unsigned N) {
    NumProtocols = N;
  }

  ObjCTypeParamType(const ObjCTypeParamDecl *D,
                    QualType can,
                    ArrayRef<ObjCProtocolDecl *> protocols);

public:
  bool isSugared() const { return true; }
  QualType desugar() const { return getCanonicalTypeInternal(); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == ObjCTypeParam;
  }

  void Profile(llvm::FoldingSetNodeID &ID);
  static void Profile(llvm::FoldingSetNodeID &ID,
                      const ObjCTypeParamDecl *OTPDecl,
                      ArrayRef<ObjCProtocolDecl *> protocols);

  ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
};

/// Represents a class type in Objective C.
///
/// Every Objective C type is a combination of a base type, a set of
/// type arguments (optional, for parameterized classes) and a list of
/// protocols.
///
/// Given the following declarations:
/// \code
///   \@class C<T>;
///   \@protocol P;
/// \endcode
///
/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
/// with base C and no protocols.
///
/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
/// protocol list.
/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
/// and protocol list [P].
///
/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
/// and no protocols.
///
/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
/// this should get its own sugar class to better represent the source.
class ObjCObjectType : public Type,
                       public ObjCProtocolQualifiers<ObjCObjectType> {
  friend class ObjCProtocolQualifiers<ObjCObjectType>;

  // ObjCObjectType.NumTypeArgs - the number of type arguments stored
  // after the ObjCObjectPointerType node.
  // ObjCObjectType.NumProtocols - the number of protocols stored
  // after the type arguments of ObjCObjectPointerType node.
  //
  // These protocols are those written directly on the type.  If
  // protocol qualifiers ever become additive, the iterators will need
  // to get kindof complicated.
  //
  // In the canonical object type, these are sorted alphabetically
  // and uniqued.

  /// Either a BuiltinType or an InterfaceType or sugar for either.
  QualType BaseType;

  /// Cached superclass type.
  mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
    CachedSuperClassType;

  QualType *getTypeArgStorage();
  const QualType *getTypeArgStorage() const {
    return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
  }

  ObjCProtocolDecl **getProtocolStorageImpl();
  /// Return the number of qualifying protocols in this interface type,
  /// or 0 if there are none.
  unsigned getNumProtocolsImpl() const {
    return ObjCObjectTypeBits.NumProtocols;
  }
  void setNumProtocolsImpl(unsigned N) {
    ObjCObjectTypeBits.NumProtocols = N;
  }

protected:
  enum Nonce_ObjCInterface { Nonce_ObjCInterface };

  ObjCObjectType(QualType Canonical, QualType Base,
                 ArrayRef<QualType> typeArgs,
                 ArrayRef<ObjCProtocolDecl *> protocols,
                 bool isKindOf);

  ObjCObjectType(enum Nonce_ObjCInterface)
        : Type(ObjCInterface, QualType(), false, false, false, false),
          BaseType(QualType(this_(), 0)) {
    ObjCObjectTypeBits.NumProtocols = 0;
    ObjCObjectTypeBits.NumTypeArgs = 0;
    ObjCObjectTypeBits.IsKindOf = 0;
  }

  void computeSuperClassTypeSlow() const;

public:
  /// Gets the base type of this object type.  This is always (possibly
  /// sugar for) one of:
  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
  ///    user, which is a typedef for an ObjCObjectPointerType)
  ///  - the 'Class' builtin type (same caveat)
  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
  QualType getBaseType() const { return BaseType; }

  bool isObjCId() const {
    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
  }

  bool isObjCClass() const {
    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
  }

  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
  bool isObjCUnqualifiedIdOrClass() const {
    if (!qual_empty()) return false;
    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
      return T->getKind() == BuiltinType::ObjCId ||
             T->getKind() == BuiltinType::ObjCClass;
    return false;
  }
  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }

  /// Gets the interface declaration for this object type, if the base type
  /// really is an interface.
  ObjCInterfaceDecl *getInterface() const;

  /// Determine whether this object type is "specialized", meaning
  /// that it has type arguments.
  bool isSpecialized() const;

  /// Determine whether this object type was written with type arguments.
  bool isSpecializedAsWritten() const {
    return ObjCObjectTypeBits.NumTypeArgs > 0;
  }

  /// Determine whether this object type is "unspecialized", meaning
  /// that it has no type arguments.
  bool isUnspecialized() const { return !isSpecialized(); }

  /// Determine whether this object type is "unspecialized" as
  /// written, meaning that it has no type arguments.
  bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }

  /// Retrieve the type arguments of this object type (semantically).
  ArrayRef<QualType> getTypeArgs() const;

  /// Retrieve the type arguments of this object type as they were
  /// written.
  ArrayRef<QualType> getTypeArgsAsWritten() const {
    return llvm::makeArrayRef(getTypeArgStorage(),
                              ObjCObjectTypeBits.NumTypeArgs);
  }

  /// Whether this is a "__kindof" type as written.
  bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }

  /// Whether this ia a "__kindof" type (semantically).
  bool isKindOfType() const;

  /// Retrieve the type of the superclass of this object type.
  ///
  /// This operation substitutes any type arguments into the
  /// superclass of the current class type, potentially producing a
  /// specialization of the superclass type. Produces a null type if
  /// there is no superclass.
  QualType getSuperClassType() const {
    if (!CachedSuperClassType.getInt())
      computeSuperClassTypeSlow();

    assert(CachedSuperClassType.getInt() && "Superclass not set?");
    return QualType(CachedSuperClassType.getPointer(), 0);
  }

  /// Strip off the Objective-C "kindof" type and (with it) any
  /// protocol qualifiers.
  QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == ObjCObject ||
           T->getTypeClass() == ObjCInterface;
  }
};

/// A class providing a concrete implementation
/// of ObjCObjectType, so as to not increase the footprint of
/// ObjCInterfaceType.  Code outside of ASTContext and the core type
/// system should not reference this type.
class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
  friend class ASTContext;

  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
  // will need to be modified.

  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
                     ArrayRef<QualType> typeArgs,
                     ArrayRef<ObjCProtocolDecl *> protocols,
                     bool isKindOf)
      : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}

public:
  void Profile(llvm::FoldingSetNodeID &ID);
  static void Profile(llvm::FoldingSetNodeID &ID,
                      QualType Base,
                      ArrayRef<QualType> typeArgs,
                      ArrayRef<ObjCProtocolDecl *> protocols,
                      bool isKindOf);
};

inline QualType *ObjCObjectType::getTypeArgStorage() {
  return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
}

inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
    return reinterpret_cast<ObjCProtocolDecl**>(
             getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
}

inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
    return reinterpret_cast<ObjCProtocolDecl**>(
             static_cast<ObjCTypeParamType*>(this)+1);
}

/// Interfaces are the core concept in Objective-C for object oriented design.
/// They basically correspond to C++ classes.  There are two kinds of interface
/// types: normal interfaces like `NSString`, and qualified interfaces, which
/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
///
/// ObjCInterfaceType guarantees the following properties when considered
/// as a subtype of its superclass, ObjCObjectType:
///   - There are no protocol qualifiers.  To reinforce this, code which
///     tries to invoke the protocol methods via an ObjCInterfaceType will
///     fail to compile.
///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
///     T->getBaseType() == QualType(T, 0).
class ObjCInterfaceType : public ObjCObjectType {
  friend class ASTContext; // ASTContext creates these.
  friend class ASTReader;
  friend class ObjCInterfaceDecl;

  mutable ObjCInterfaceDecl *Decl;

  ObjCInterfaceType(const ObjCInterfaceDecl *D)
      : ObjCObjectType(Nonce_ObjCInterface),
        Decl(const_cast<ObjCInterfaceDecl*>(D)) {}

public:
  /// Get the declaration of this interface.
  ObjCInterfaceDecl *getDecl() const { return Decl; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == ObjCInterface;
  }

  // Nonsense to "hide" certain members of ObjCObjectType within this
  // class.  People asking for protocols on an ObjCInterfaceType are
  // not going to get what they want: ObjCInterfaceTypes are
  // guaranteed to have no protocols.
  enum {
    qual_iterator,
    qual_begin,
    qual_end,
    getNumProtocols,
    getProtocol
  };
};

inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
  QualType baseType = getBaseType();
  while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
    if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
      return T->getDecl();

    baseType = ObjT->getBaseType();
  }

  return nullptr;
}

/// Represents a pointer to an Objective C object.
///
/// These are constructed from pointer declarators when the pointee type is
/// an ObjCObjectType (or sugar for one).  In addition, the 'id' and 'Class'
/// types are typedefs for these, and the protocol-qualified types 'id<P>'
/// and 'Class<P>' are translated into these.
///
/// Pointers to pointers to Objective C objects are still PointerTypes;
/// only the first level of pointer gets it own type implementation.
class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these.

  QualType PointeeType;

  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
      : Type(ObjCObjectPointer, Canonical,
             Pointee->isDependentType(),
             Pointee->isInstantiationDependentType(),
             Pointee->isVariablyModifiedType(),
             Pointee->containsUnexpandedParameterPack()),
        PointeeType(Pointee) {}

public:
  /// Gets the type pointed to by this ObjC pointer.
  /// The result will always be an ObjCObjectType or sugar thereof.
  QualType getPointeeType() const { return PointeeType; }

  /// Gets the type pointed to by this ObjC pointer.  Always returns non-null.
  ///
  /// This method is equivalent to getPointeeType() except that
  /// it discards any typedefs (or other sugar) between this
  /// type and the "outermost" object type.  So for:
  /// \code
  ///   \@class A; \@protocol P; \@protocol Q;
  ///   typedef A<P> AP;
  ///   typedef A A1;
  ///   typedef A1<P> A1P;
  ///   typedef A1P<Q> A1PQ;
  /// \endcode
  /// For 'A*', getObjectType() will return 'A'.
  /// For 'A<P>*', getObjectType() will return 'A<P>'.
  /// For 'AP*', getObjectType() will return 'A<P>'.
  /// For 'A1*', getObjectType() will return 'A'.
  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
  /// For 'A1P*', getObjectType() will return 'A1<P>'.
  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
  ///   adding protocols to a protocol-qualified base discards the
  ///   old qualifiers (for now).  But if it didn't, getObjectType()
  ///   would return 'A1P<Q>' (and we'd have to make iterating over
  ///   qualifiers more complicated).
  const ObjCObjectType *getObjectType() const {
    return PointeeType->castAs<ObjCObjectType>();
  }

  /// If this pointer points to an Objective C
  /// \@interface type, gets the type for that interface.  Any protocol
  /// qualifiers on the interface are ignored.
  ///
  /// \return null if the base type for this pointer is 'id' or 'Class'
  const ObjCInterfaceType *getInterfaceType() const;

  /// If this pointer points to an Objective \@interface
  /// type, gets the declaration for that interface.
  ///
  /// \return null if the base type for this pointer is 'id' or 'Class'
  ObjCInterfaceDecl *getInterfaceDecl() const {
    return getObjectType()->getInterface();
  }

  /// True if this is equivalent to the 'id' type, i.e. if
  /// its object type is the primitive 'id' type with no protocols.
  bool isObjCIdType() const {
    return getObjectType()->isObjCUnqualifiedId();
  }

  /// True if this is equivalent to the 'Class' type,
  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
  bool isObjCClassType() const {
    return getObjectType()->isObjCUnqualifiedClass();
  }

  /// True if this is equivalent to the 'id' or 'Class' type,
  bool isObjCIdOrClassType() const {
    return getObjectType()->isObjCUnqualifiedIdOrClass();
  }

  /// True if this is equivalent to 'id<P>' for some non-empty set of
  /// protocols.
  bool isObjCQualifiedIdType() const {
    return getObjectType()->isObjCQualifiedId();
  }

  /// True if this is equivalent to 'Class<P>' for some non-empty set of
  /// protocols.
  bool isObjCQualifiedClassType() const {
    return getObjectType()->isObjCQualifiedClass();
  }

  /// Whether this is a "__kindof" type.
  bool isKindOfType() const { return getObjectType()->isKindOfType(); }

  /// Whether this type is specialized, meaning that it has type arguments.
  bool isSpecialized() const { return getObjectType()->isSpecialized(); }

  /// Whether this type is specialized, meaning that it has type arguments.
  bool isSpecializedAsWritten() const {
    return getObjectType()->isSpecializedAsWritten();
  }

  /// Whether this type is unspecialized, meaning that is has no type arguments.
  bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }

  /// Determine whether this object type is "unspecialized" as
  /// written, meaning that it has no type arguments.
  bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }

  /// Retrieve the type arguments for this type.
  ArrayRef<QualType> getTypeArgs() const {
    return getObjectType()->getTypeArgs();
  }

  /// Retrieve the type arguments for this type.
  ArrayRef<QualType> getTypeArgsAsWritten() const {
    return getObjectType()->getTypeArgsAsWritten();
  }

  /// An iterator over the qualifiers on the object type.  Provided
  /// for convenience.  This will always iterate over the full set of
  /// protocols on a type, not just those provided directly.
  using qual_iterator = ObjCObjectType::qual_iterator;
  using qual_range = llvm::iterator_range<qual_iterator>;

  qual_range quals() const { return qual_range(qual_begin(), qual_end()); }

  qual_iterator qual_begin() const {
    return getObjectType()->qual_begin();
  }

  qual_iterator qual_end() const {
    return getObjectType()->qual_end();
  }

  bool qual_empty() const { return getObjectType()->qual_empty(); }

  /// Return the number of qualifying protocols on the object type.
  unsigned getNumProtocols() const {
    return getObjectType()->getNumProtocols();
  }

  /// Retrieve a qualifying protocol by index on the object type.
  ObjCProtocolDecl *getProtocol(unsigned I) const {
    return getObjectType()->getProtocol(I);
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  /// Retrieve the type of the superclass of this object pointer type.
  ///
  /// This operation substitutes any type arguments into the
  /// superclass of the current class type, potentially producing a
  /// pointer to a specialization of the superclass type. Produces a
  /// null type if there is no superclass.
  QualType getSuperClassType() const;

  /// Strip off the Objective-C "kindof" type and (with it) any
  /// protocol qualifiers.
  const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
                                 const ASTContext &ctx) const;

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getPointeeType());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
    ID.AddPointer(T.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == ObjCObjectPointer;
  }
};

class AtomicType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these.

  QualType ValueType;

  AtomicType(QualType ValTy, QualType Canonical)
      : Type(Atomic, Canonical, ValTy->isDependentType(),
             ValTy->isInstantiationDependentType(),
             ValTy->isVariablyModifiedType(),
             ValTy->containsUnexpandedParameterPack()),
        ValueType(ValTy) {}

public:
  /// Gets the type contained by this atomic type, i.e.
  /// the type returned by performing an atomic load of this atomic type.
  QualType getValueType() const { return ValueType; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getValueType());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
    ID.AddPointer(T.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == Atomic;
  }
};

/// PipeType - OpenCL20.
class PipeType : public Type, public llvm::FoldingSetNode {
  friend class ASTContext; // ASTContext creates these.

  QualType ElementType;
  bool isRead;

  PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
      : Type(Pipe, CanonicalPtr, elemType->isDependentType(),
             elemType->isInstantiationDependentType(),
             elemType->isVariablyModifiedType(),
             elemType->containsUnexpandedParameterPack()),
        ElementType(elemType), isRead(isRead) {}

public:
  QualType getElementType() const { return ElementType; }

  bool isSugared() const { return false; }

  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType(), isReadOnly());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
    ID.AddPointer(T.getAsOpaquePtr());
    ID.AddBoolean(isRead);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == Pipe;
  }

  bool isReadOnly() const { return isRead; }
};

/// A qualifier set is used to build a set of qualifiers.
class QualifierCollector : public Qualifiers {
public:
  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}

  /// Collect any qualifiers on the given type and return an
  /// unqualified type.  The qualifiers are assumed to be consistent
  /// with those already in the type.
  const Type *strip(QualType type) {
    addFastQualifiers(type.getLocalFastQualifiers());
    if (!type.hasLocalNonFastQualifiers())
      return type.getTypePtrUnsafe();

    const ExtQuals *extQuals = type.getExtQualsUnsafe();
    addConsistentQualifiers(extQuals->getQualifiers());
    return extQuals->getBaseType();
  }

  /// Apply the collected qualifiers to the given type.
  QualType apply(const ASTContext &Context, QualType QT) const;

  /// Apply the collected qualifiers to the given type.
  QualType apply(const ASTContext &Context, const Type* T) const;
};

// Inline function definitions.

inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
  SplitQualType desugar =
    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
  desugar.Quals.addConsistentQualifiers(Quals);
  return desugar;
}

inline const Type *QualType::getTypePtr() const {
  return getCommonPtr()->BaseType;
}

inline const Type *QualType::getTypePtrOrNull() const {
  return (isNull() ? nullptr : getCommonPtr()->BaseType);
}

inline SplitQualType QualType::split() const {
  if (!hasLocalNonFastQualifiers())
    return SplitQualType(getTypePtrUnsafe(),
                         Qualifiers::fromFastMask(getLocalFastQualifiers()));

  const ExtQuals *eq = getExtQualsUnsafe();
  Qualifiers qs = eq->getQualifiers();
  qs.addFastQualifiers(getLocalFastQualifiers());
  return SplitQualType(eq->getBaseType(), qs);
}

inline Qualifiers QualType::getLocalQualifiers() const {
  Qualifiers Quals;
  if (hasLocalNonFastQualifiers())
    Quals = getExtQualsUnsafe()->getQualifiers();
  Quals.addFastQualifiers(getLocalFastQualifiers());
  return Quals;
}

inline Qualifiers QualType::getQualifiers() const {
  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
  quals.addFastQualifiers(getLocalFastQualifiers());
  return quals;
}

inline unsigned QualType::getCVRQualifiers() const {
  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
  cvr |= getLocalCVRQualifiers();
  return cvr;
}

inline QualType QualType::getCanonicalType() const {
  QualType canon = getCommonPtr()->CanonicalType;
  return canon.withFastQualifiers(getLocalFastQualifiers());
}

inline bool QualType::isCanonical() const {
  return getTypePtr()->isCanonicalUnqualified();
}

inline bool QualType::isCanonicalAsParam() const {
  if (!isCanonical()) return false;
  if (hasLocalQualifiers()) return false;

  const Type *T = getTypePtr();
  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
    return false;

  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
}

inline bool QualType::isConstQualified() const {
  return isLocalConstQualified() ||
         getCommonPtr()->CanonicalType.isLocalConstQualified();
}

inline bool QualType::isRestrictQualified() const {
  return isLocalRestrictQualified() ||
         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
}


inline bool QualType::isVolatileQualified() const {
  return isLocalVolatileQualified() ||
         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
}

inline bool QualType::hasQualifiers() const {
  return hasLocalQualifiers() ||
         getCommonPtr()->CanonicalType.hasLocalQualifiers();
}

inline QualType QualType::getUnqualifiedType() const {
  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
    return QualType(getTypePtr(), 0);

  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
}

inline SplitQualType QualType::getSplitUnqualifiedType() const {
  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
    return split();

  return getSplitUnqualifiedTypeImpl(*this);
}

inline void QualType::removeLocalConst() {
  removeLocalFastQualifiers(Qualifiers::Const);
}

inline void QualType::removeLocalRestrict() {
  removeLocalFastQualifiers(Qualifiers::Restrict);
}

inline void QualType::removeLocalVolatile() {
  removeLocalFastQualifiers(Qualifiers::Volatile);
}

inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
  static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
                "Fast bits differ from CVR bits!");

  // Fast path: we don't need to touch the slow qualifiers.
  removeLocalFastQualifiers(Mask);
}

/// Return the address space of this type.
inline LangAS QualType::getAddressSpace() const {
  return getQualifiers().getAddressSpace();
}

/// Return the gc attribute of this type.
inline Qualifiers::GC QualType::getObjCGCAttr() const {
  return getQualifiers().getObjCGCAttr();
}

inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
  if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
    return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
  return false;
}

inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
  if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
    return hasNonTrivialToPrimitiveDestructCUnion(RD);
  return false;
}

inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
  if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
    return hasNonTrivialToPrimitiveCopyCUnion(RD);
  return false;
}

inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
  if (const auto *PT = t.getAs<PointerType>()) {
    if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
      return FT->getExtInfo();
  } else if (const auto *FT = t.getAs<FunctionType>())
    return FT->getExtInfo();

  return FunctionType::ExtInfo();
}

inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
  return getFunctionExtInfo(*t);
}

/// Determine whether this type is more
/// qualified than the Other type. For example, "const volatile int"
/// is more qualified than "const int", "volatile int", and
/// "int". However, it is not more qualified than "const volatile
/// int".
inline bool QualType::isMoreQualifiedThan(QualType other) const {
  Qualifiers MyQuals = getQualifiers();
  Qualifiers OtherQuals = other.getQualifiers();
  return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
}

/// Determine whether this type is at last
/// as qualified as the Other type. For example, "const volatile
/// int" is at least as qualified as "const int", "volatile int",
/// "int", and "const volatile int".
inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
  Qualifiers OtherQuals = other.getQualifiers();

  // Ignore __unaligned qualifier if this type is a void.
  if (getUnqualifiedType()->isVoidType())
    OtherQuals.removeUnaligned();

  return getQualifiers().compatiblyIncludes(OtherQuals);
}

/// If Type is a reference type (e.g., const
/// int&), returns the type that the reference refers to ("const
/// int"). Otherwise, returns the type itself. This routine is used
/// throughout Sema to implement C++ 5p6:
///
///   If an expression initially has the type "reference to T" (8.3.2,
///   8.5.3), the type is adjusted to "T" prior to any further
///   analysis, the expression designates the object or function
///   denoted by the reference, and the expression is an lvalue.
inline QualType QualType::getNonReferenceType() const {
  if (const auto *RefType = (*this)->getAs<ReferenceType>())
    return RefType->getPointeeType();
  else
    return *this;
}

inline bool QualType::isCForbiddenLValueType() const {
  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
          getTypePtr()->isFunctionType());
}

/// Tests whether the type is categorized as a fundamental type.
///
/// \returns True for types specified in C++0x [basic.fundamental].
inline bool Type::isFundamentalType() const {
  return isVoidType() ||
         isNullPtrType() ||
         // FIXME: It's really annoying that we don't have an
         // 'isArithmeticType()' which agrees with the standard definition.
         (isArithmeticType() && !isEnumeralType());
}

/// Tests whether the type is categorized as a compound type.
///
/// \returns True for types specified in C++0x [basic.compound].
inline bool Type::isCompoundType() const {
  // C++0x [basic.compound]p1:
  //   Compound types can be constructed in the following ways:
  //    -- arrays of objects of a given type [...];
  return isArrayType() ||
  //    -- functions, which have parameters of given types [...];
         isFunctionType() ||
  //    -- pointers to void or objects or functions [...];
         isPointerType() ||
  //    -- references to objects or functions of a given type. [...]
         isReferenceType() ||
  //    -- classes containing a sequence of objects of various types, [...];
         isRecordType() ||
  //    -- unions, which are classes capable of containing objects of different
  //               types at different times;
         isUnionType() ||
  //    -- enumerations, which comprise a set of named constant values. [...];
         isEnumeralType() ||
  //    -- pointers to non-static class members, [...].
         isMemberPointerType();
}

inline bool Type::isFunctionType() const {
  return isa<FunctionType>(CanonicalType);
}

inline bool Type::isPointerType() const {
  return isa<PointerType>(CanonicalType);
}

inline bool Type::isAnyPointerType() const {
  return isPointerType() || isObjCObjectPointerType();
}

inline bool Type::isBlockPointerType() const {
  return isa<BlockPointerType>(CanonicalType);
}

inline bool Type::isReferenceType() const {
  return isa<ReferenceType>(CanonicalType);
}

inline bool Type::isLValueReferenceType() const {
  return isa<LValueReferenceType>(CanonicalType);
}

inline bool Type::isRValueReferenceType() const {
  return isa<RValueReferenceType>(CanonicalType);
}

inline bool Type::isFunctionPointerType() const {
  if (const auto *T = getAs<PointerType>())
    return T->getPointeeType()->isFunctionType();
  else
    return false;
}

inline bool Type::isFunctionReferenceType() const {
  if (const auto *T = getAs<ReferenceType>())
    return T->getPointeeType()->isFunctionType();
  else
    return false;
}

inline bool Type::isMemberPointerType() const {
  return isa<MemberPointerType>(CanonicalType);
}

inline bool Type::isMemberFunctionPointerType() const {
  if (const auto *T = getAs<MemberPointerType>())
    return T->isMemberFunctionPointer();
  else
    return false;
}

inline bool Type::isMemberDataPointerType() const {
  if (const auto *T = getAs<MemberPointerType>())
    return T->isMemberDataPointer();
  else
    return false;
}

inline bool Type::isArrayType() const {
  return isa<ArrayType>(CanonicalType);
}

inline bool Type::isConstantArrayType() const {
  return isa<ConstantArrayType>(CanonicalType);
}

inline bool Type::isIncompleteArrayType() const {
  return isa<IncompleteArrayType>(CanonicalType);
}

inline bool Type::isVariableArrayType() const {
  return isa<VariableArrayType>(CanonicalType);
}

inline bool Type::isDependentSizedArrayType() const {
  return isa<DependentSizedArrayType>(CanonicalType);
}

inline bool Type::isBuiltinType() const {
  return isa<BuiltinType>(CanonicalType);
}

inline bool Type::isRecordType() const {
  return isa<RecordType>(CanonicalType);
}

inline bool Type::isEnumeralType() const {
  return isa<EnumType>(CanonicalType);
}

inline bool Type::isAnyComplexType() const {
  return isa<ComplexType>(CanonicalType);
}

inline bool Type::isVectorType() const {
  return isa<VectorType>(CanonicalType);
}

inline bool Type::isExtVectorType() const {
  return isa<ExtVectorType>(CanonicalType);
}

inline bool Type::isDependentAddressSpaceType() const {
  return isa<DependentAddressSpaceType>(CanonicalType);
}

inline bool Type::isObjCObjectPointerType() const {
  return isa<ObjCObjectPointerType>(CanonicalType);
}

inline bool Type::isObjCObjectType() const {
  return isa<ObjCObjectType>(CanonicalType);
}

inline bool Type::isObjCObjectOrInterfaceType() const {
  return isa<ObjCInterfaceType>(CanonicalType) ||
    isa<ObjCObjectType>(CanonicalType);
}

inline bool Type::isAtomicType() const {
  return isa<AtomicType>(CanonicalType);
}

inline bool Type::isObjCQualifiedIdType() const {
  if (const auto *OPT = getAs<ObjCObjectPointerType>())
    return OPT->isObjCQualifiedIdType();
  return false;
}

inline bool Type::isObjCQualifiedClassType() const {
  if (const auto *OPT = getAs<ObjCObjectPointerType>())
    return OPT->isObjCQualifiedClassType();
  return false;
}

inline bool Type::isObjCIdType() const {
  if (const auto *OPT = getAs<ObjCObjectPointerType>())
    return OPT->isObjCIdType();
  return false;
}

inline bool Type::isObjCClassType() const {
  if (const auto *OPT = getAs<ObjCObjectPointerType>())
    return OPT->isObjCClassType();
  return false;
}

inline bool Type::isObjCSelType() const {
  if (const auto *OPT = getAs<PointerType>())
    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
  return false;
}

inline bool Type::isObjCBuiltinType() const {
  return isObjCIdType() || isObjCClassType() || isObjCSelType();
}

inline bool Type::isDecltypeType() const {
  return isa<DecltypeType>(this);
}

#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
  inline bool Type::is##Id##Type() const { \
    return isSpecificBuiltinType(BuiltinType::Id); \
  }
#include "clang/Basic/OpenCLImageTypes.def"

inline bool Type::isSamplerT() const {
  return isSpecificBuiltinType(BuiltinType::OCLSampler);
}

inline bool Type::isEventT() const {
  return isSpecificBuiltinType(BuiltinType::OCLEvent);
}

inline bool Type::isClkEventT() const {
  return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
}

inline bool Type::isQueueT() const {
  return isSpecificBuiltinType(BuiltinType::OCLQueue);
}

inline bool Type::isReserveIDT() const {
  return isSpecificBuiltinType(BuiltinType::OCLReserveID);
}

inline bool Type::isImageType() const {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
  return
#include "clang/Basic/OpenCLImageTypes.def"
      false; // end boolean or operation
}

inline bool Type::isPipeType() const {
  return isa<PipeType>(CanonicalType);
}

#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
  inline bool Type::is##Id##Type() const { \
    return isSpecificBuiltinType(BuiltinType::Id); \
  }
#include "clang/Basic/OpenCLExtensionTypes.def"

inline bool Type::isOCLIntelSubgroupAVCType() const {
#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
  isOCLIntelSubgroupAVC##Id##Type() ||
  return
#include "clang/Basic/OpenCLExtensionTypes.def"
    false; // end of boolean or operation
}

inline bool Type::isOCLExtOpaqueType() const {
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
  return
#include "clang/Basic/OpenCLExtensionTypes.def"
    false; // end of boolean or operation
}

inline bool Type::isOpenCLSpecificType() const {
  return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
         isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
}

inline bool Type::isTemplateTypeParmType() const {
  return isa<TemplateTypeParmType>(CanonicalType);
}

inline bool Type::isSpecificBuiltinType(unsigned K) const {
  if (const BuiltinType *BT = getAs<BuiltinType>())
    if (BT->getKind() == (BuiltinType::Kind) K)
      return true;
  return false;
}

inline bool Type::isPlaceholderType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(this))
    return BT->isPlaceholderType();
  return false;
}

inline const BuiltinType *Type::getAsPlaceholderType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(this))
    if (BT->isPlaceholderType())
      return BT;
  return nullptr;
}

inline bool Type::isSpecificPlaceholderType(unsigned K) const {
  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
  if (const auto *BT = dyn_cast<BuiltinType>(this))
    return (BT->getKind() == (BuiltinType::Kind) K);
  return false;
}

inline bool Type::isNonOverloadPlaceholderType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(this))
    return BT->isNonOverloadPlaceholderType();
  return false;
}

inline bool Type::isVoidType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Void;
  return false;
}

inline bool Type::isHalfType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Half;
  // FIXME: Should we allow complex __fp16? Probably not.
  return false;
}

inline bool Type::isFloat16Type() const {
  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Float16;
  return false;
}

inline bool Type::isFloat128Type() const {
  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Float128;
  return false;
}

inline bool Type::isNullPtrType() const {
  if (const auto *BT = getAs<BuiltinType>())
    return BT->getKind() == BuiltinType::NullPtr;
  return false;
}

bool IsEnumDeclComplete(EnumDecl *);
bool IsEnumDeclScoped(EnumDecl *);

inline bool Type::isIntegerType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Bool &&
           BT->getKind() <= BuiltinType::Int128;
  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
    // Incomplete enum types are not treated as integer types.
    // FIXME: In C++, enum types are never integer types.
    return IsEnumDeclComplete(ET->getDecl()) &&
      !IsEnumDeclScoped(ET->getDecl());
  }
  return false;
}

inline bool Type::isFixedPointType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    return BT->getKind() >= BuiltinType::ShortAccum &&
           BT->getKind() <= BuiltinType::SatULongFract;
  }
  return false;
}

inline bool Type::isFixedPointOrIntegerType() const {
  return isFixedPointType() || isIntegerType();
}

inline bool Type::isSaturatedFixedPointType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    return BT->getKind() >= BuiltinType::SatShortAccum &&
           BT->getKind() <= BuiltinType::SatULongFract;
  }
  return false;
}

inline bool Type::isUnsaturatedFixedPointType() const {
  return isFixedPointType() && !isSaturatedFixedPointType();
}

inline bool Type::isSignedFixedPointType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    return ((BT->getKind() >= BuiltinType::ShortAccum &&
             BT->getKind() <= BuiltinType::LongAccum) ||
            (BT->getKind() >= BuiltinType::ShortFract &&
             BT->getKind() <= BuiltinType::LongFract) ||
            (BT->getKind() >= BuiltinType::SatShortAccum &&
             BT->getKind() <= BuiltinType::SatLongAccum) ||
            (BT->getKind() >= BuiltinType::SatShortFract &&
             BT->getKind() <= BuiltinType::SatLongFract));
  }
  return false;
}

inline bool Type::isUnsignedFixedPointType() const {
  return isFixedPointType() && !isSignedFixedPointType();
}

inline bool Type::isScalarType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() > BuiltinType::Void &&
           BT->getKind() <= BuiltinType::NullPtr;
  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    // Enums are scalar types, but only if they are defined.  Incomplete enums
    // are not treated as scalar types.
    return IsEnumDeclComplete(ET->getDecl());
  return isa<PointerType>(CanonicalType) ||
         isa<BlockPointerType>(CanonicalType) ||
         isa<MemberPointerType>(CanonicalType) ||
         isa<ComplexType>(CanonicalType) ||
         isa<ObjCObjectPointerType>(CanonicalType);
}

inline bool Type::isIntegralOrEnumerationType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Bool &&
           BT->getKind() <= BuiltinType::Int128;

  // Check for a complete enum type; incomplete enum types are not properly an
  // enumeration type in the sense required here.
  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
    return IsEnumDeclComplete(ET->getDecl());

  return false;
}

inline bool Type::isBooleanType() const {
  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Bool;
  return false;
}

inline bool Type::isUndeducedType() const {
  auto *DT = getContainedDeducedType();
  return DT && !DT->isDeduced();
}

/// Determines whether this is a type for which one can define
/// an overloaded operator.
inline bool Type::isOverloadableType() const {
  return isDependentType() || isRecordType() || isEnumeralType();
}

/// Determines whether this type can decay to a pointer type.
inline bool Type::canDecayToPointerType() const {
  return isFunctionType() || isArrayType();
}

inline bool Type::hasPointerRepresentation() const {
  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
          isObjCObjectPointerType() || isNullPtrType());
}

inline bool Type::hasObjCPointerRepresentation() const {
  return isObjCObjectPointerType();
}

inline const Type *Type::getBaseElementTypeUnsafe() const {
  const Type *type = this;
  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
    type = arrayType->getElementType().getTypePtr();
  return type;
}

inline const Type *Type::getPointeeOrArrayElementType() const {
  const Type *type = this;
  if (type->isAnyPointerType())
    return type->getPointeeType().getTypePtr();
  else if (type->isArrayType())
    return type->getBaseElementTypeUnsafe();
  return type;
}

/// Insertion operator for diagnostics. This allows sending Qualifiers into a
/// diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
                                           Qualifiers Q) {
  DB.AddTaggedVal(Q.getAsOpaqueValue(),
                  DiagnosticsEngine::ArgumentKind::ak_qual);
  return DB;
}

/// Insertion operator for partial diagnostics. This allows sending Qualifiers
/// into a diagnostic with <<.
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
                                           Qualifiers Q) {
  PD.AddTaggedVal(Q.getAsOpaqueValue(),
                  DiagnosticsEngine::ArgumentKind::ak_qual);
  return PD;
}

/// Insertion operator for diagnostics.  This allows sending QualType's into a
/// diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
                                           QualType T) {
  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
                  DiagnosticsEngine::ak_qualtype);
  return DB;
}

/// Insertion operator for partial diagnostics.  This allows sending QualType's
/// into a diagnostic with <<.
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
                                           QualType T) {
  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
                  DiagnosticsEngine::ak_qualtype);
  return PD;
}

// Helper class template that is used by Type::getAs to ensure that one does
// not try to look through a qualified type to get to an array type.
template <typename T>
using TypeIsArrayType =
    std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
                                     std::is_base_of<ArrayType, T>::value>;

// Member-template getAs<specific type>'.
template <typename T> const T *Type::getAs() const {
  static_assert(!TypeIsArrayType<T>::value,
                "ArrayType cannot be used with getAs!");

  // If this is directly a T type, return it.
  if (const auto *Ty = dyn_cast<T>(this))
    return Ty;

  // If the canonical form of this type isn't the right kind, reject it.
  if (!isa<T>(CanonicalType))
    return nullptr;

  // If this is a typedef for the type, strip the typedef off without
  // losing all typedef information.
  return cast<T>(getUnqualifiedDesugaredType());
}

template <typename T> const T *Type::getAsAdjusted() const {
  static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");

  // If this is directly a T type, return it.
  if (const auto *Ty = dyn_cast<T>(this))
    return Ty;

  // If the canonical form of this type isn't the right kind, reject it.
  if (!isa<T>(CanonicalType))
    return nullptr;

  // Strip off type adjustments that do not modify the underlying nature of the
  // type.
  const Type *Ty = this;
  while (Ty) {
    if (const auto *A = dyn_cast<AttributedType>(Ty))
      Ty = A->getModifiedType().getTypePtr();
    else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
      Ty = E->desugar().getTypePtr();
    else if (const auto *P = dyn_cast<ParenType>(Ty))
      Ty = P->desugar().getTypePtr();
    else if (const auto *A = dyn_cast<AdjustedType>(Ty))
      Ty = A->desugar().getTypePtr();
    else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
      Ty = M->desugar().getTypePtr();
    else
      break;
  }

  // Just because the canonical type is correct does not mean we can use cast<>,
  // since we may not have stripped off all the sugar down to the base type.
  return dyn_cast<T>(Ty);
}

inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
  // If this is directly an array type, return it.
  if (const auto *arr = dyn_cast<ArrayType>(this))
    return arr;

  // If the canonical form of this type isn't the right kind, reject it.
  if (!isa<ArrayType>(CanonicalType))
    return nullptr;

  // If this is a typedef for the type, strip the typedef off without
  // losing all typedef information.
  return cast<ArrayType>(getUnqualifiedDesugaredType());
}

template <typename T> const T *Type::castAs() const {
  static_assert(!TypeIsArrayType<T>::value,
                "ArrayType cannot be used with castAs!");

  if (const auto *ty = dyn_cast<T>(this)) return ty;
  assert(isa<T>(CanonicalType));
  return cast<T>(getUnqualifiedDesugaredType());
}

inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
  assert(isa<ArrayType>(CanonicalType));
  if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
  return cast<ArrayType>(getUnqualifiedDesugaredType());
}

DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
                         QualType CanonicalPtr)
    : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
#ifndef NDEBUG
  QualType Adjusted = getAdjustedType();
  (void)AttributedType::stripOuterNullability(Adjusted);
  assert(isa<PointerType>(Adjusted));
#endif
}

QualType DecayedType::getPointeeType() const {
  QualType Decayed = getDecayedType();
  (void)AttributedType::stripOuterNullability(Decayed);
  return cast<PointerType>(Decayed)->getPointeeType();
}

// Get the decimal string representation of a fixed point type, represented
// as a scaled integer.
// TODO: At some point, we should change the arguments to instead just accept an
// APFixedPoint instead of APSInt and scale.
void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
                             unsigned Scale);

} // namespace clang

#endif // LLVM_CLANG_AST_TYPE_H