reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines the Expr interface and subclasses.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_EXPR_H
#define LLVM_CLANG_AST_EXPR_H

#include "clang/AST/APValue.h"
#include "clang/AST/ASTVector.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclAccessPair.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/FixedPoint.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SyncScope.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TrailingObjects.h"

namespace clang {
  class APValue;
  class ASTContext;
  class BlockDecl;
  class CXXBaseSpecifier;
  class CXXMemberCallExpr;
  class CXXOperatorCallExpr;
  class CastExpr;
  class Decl;
  class IdentifierInfo;
  class MaterializeTemporaryExpr;
  class NamedDecl;
  class ObjCPropertyRefExpr;
  class OpaqueValueExpr;
  class ParmVarDecl;
  class StringLiteral;
  class TargetInfo;
  class ValueDecl;

/// A simple array of base specifiers.
typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;

/// An adjustment to be made to the temporary created when emitting a
/// reference binding, which accesses a particular subobject of that temporary.
struct SubobjectAdjustment {
  enum {
    DerivedToBaseAdjustment,
    FieldAdjustment,
    MemberPointerAdjustment
  } Kind;

  struct DTB {
    const CastExpr *BasePath;
    const CXXRecordDecl *DerivedClass;
  };

  struct P {
    const MemberPointerType *MPT;
    Expr *RHS;
  };

  union {
    struct DTB DerivedToBase;
    FieldDecl *Field;
    struct P Ptr;
  };

  SubobjectAdjustment(const CastExpr *BasePath,
                      const CXXRecordDecl *DerivedClass)
    : Kind(DerivedToBaseAdjustment) {
    DerivedToBase.BasePath = BasePath;
    DerivedToBase.DerivedClass = DerivedClass;
  }

  SubobjectAdjustment(FieldDecl *Field)
    : Kind(FieldAdjustment) {
    this->Field = Field;
  }

  SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
    : Kind(MemberPointerAdjustment) {
    this->Ptr.MPT = MPT;
    this->Ptr.RHS = RHS;
  }
};

/// This represents one expression.  Note that Expr's are subclasses of Stmt.
/// This allows an expression to be transparently used any place a Stmt is
/// required.
class Expr : public ValueStmt {
  QualType TR;

public:
  Expr() = delete;
  Expr(const Expr&) = delete;
  Expr(Expr &&) = delete;
  Expr &operator=(const Expr&) = delete;
  Expr &operator=(Expr&&) = delete;

protected:
  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
    : ValueStmt(SC)
  {
    ExprBits.TypeDependent = TD;
    ExprBits.ValueDependent = VD;
    ExprBits.InstantiationDependent = ID;
    ExprBits.ValueKind = VK;
    ExprBits.ObjectKind = OK;
    assert(ExprBits.ObjectKind == OK && "truncated kind");
    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
    setType(T);
  }

  /// Construct an empty expression.
  explicit Expr(StmtClass SC, EmptyShell) : ValueStmt(SC) { }

public:
  QualType getType() const { return TR; }
  void setType(QualType t) {
    // In C++, the type of an expression is always adjusted so that it
    // will not have reference type (C++ [expr]p6). Use
    // QualType::getNonReferenceType() to retrieve the non-reference
    // type. Additionally, inspect Expr::isLvalue to determine whether
    // an expression that is adjusted in this manner should be
    // considered an lvalue.
    assert((t.isNull() || !t->isReferenceType()) &&
           "Expressions can't have reference type");

    TR = t;
  }

  /// isValueDependent - Determines whether this expression is
  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
  /// array bound of "Chars" in the following example is
  /// value-dependent.
  /// @code
  /// template<int Size, char (&Chars)[Size]> struct meta_string;
  /// @endcode
  bool isValueDependent() const { return ExprBits.ValueDependent; }

  /// Set whether this expression is value-dependent or not.
  void setValueDependent(bool VD) {
    ExprBits.ValueDependent = VD;
  }

  /// isTypeDependent - Determines whether this expression is
  /// type-dependent (C++ [temp.dep.expr]), which means that its type
  /// could change from one template instantiation to the next. For
  /// example, the expressions "x" and "x + y" are type-dependent in
  /// the following code, but "y" is not type-dependent:
  /// @code
  /// template<typename T>
  /// void add(T x, int y) {
  ///   x + y;
  /// }
  /// @endcode
  bool isTypeDependent() const { return ExprBits.TypeDependent; }

  /// Set whether this expression is type-dependent or not.
  void setTypeDependent(bool TD) {
    ExprBits.TypeDependent = TD;
  }

  /// Whether this expression is instantiation-dependent, meaning that
  /// it depends in some way on a template parameter, even if neither its type
  /// nor (constant) value can change due to the template instantiation.
  ///
  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
  /// instantiation-dependent (since it involves a template parameter \c T), but
  /// is neither type- nor value-dependent, since the type of the inner
  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
  /// \c sizeof is known.
  ///
  /// \code
  /// template<typename T>
  /// void f(T x, T y) {
  ///   sizeof(sizeof(T() + T());
  /// }
  /// \endcode
  ///
  bool isInstantiationDependent() const {
    return ExprBits.InstantiationDependent;
  }

  /// Set whether this expression is instantiation-dependent or not.
  void setInstantiationDependent(bool ID) {
    ExprBits.InstantiationDependent = ID;
  }

  /// Whether this expression contains an unexpanded parameter
  /// pack (for C++11 variadic templates).
  ///
  /// Given the following function template:
  ///
  /// \code
  /// template<typename F, typename ...Types>
  /// void forward(const F &f, Types &&...args) {
  ///   f(static_cast<Types&&>(args)...);
  /// }
  /// \endcode
  ///
  /// The expressions \c args and \c static_cast<Types&&>(args) both
  /// contain parameter packs.
  bool containsUnexpandedParameterPack() const {
    return ExprBits.ContainsUnexpandedParameterPack;
  }

  /// Set the bit that describes whether this expression
  /// contains an unexpanded parameter pack.
  void setContainsUnexpandedParameterPack(bool PP = true) {
    ExprBits.ContainsUnexpandedParameterPack = PP;
  }

  /// getExprLoc - Return the preferred location for the arrow when diagnosing
  /// a problem with a generic expression.
  SourceLocation getExprLoc() const LLVM_READONLY;

  /// isUnusedResultAWarning - Return true if this immediate expression should
  /// be warned about if the result is unused.  If so, fill in expr, location,
  /// and ranges with expr to warn on and source locations/ranges appropriate
  /// for a warning.
  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
                              SourceRange &R1, SourceRange &R2,
                              ASTContext &Ctx) const;

  /// isLValue - True if this expression is an "l-value" according to
  /// the rules of the current language.  C and C++ give somewhat
  /// different rules for this concept, but in general, the result of
  /// an l-value expression identifies a specific object whereas the
  /// result of an r-value expression is a value detached from any
  /// specific storage.
  ///
  /// C++11 divides the concept of "r-value" into pure r-values
  /// ("pr-values") and so-called expiring values ("x-values"), which
  /// identify specific objects that can be safely cannibalized for
  /// their resources.  This is an unfortunate abuse of terminology on
  /// the part of the C++ committee.  In Clang, when we say "r-value",
  /// we generally mean a pr-value.
  bool isLValue() const { return getValueKind() == VK_LValue; }
  bool isRValue() const { return getValueKind() == VK_RValue; }
  bool isXValue() const { return getValueKind() == VK_XValue; }
  bool isGLValue() const { return getValueKind() != VK_RValue; }

  enum LValueClassification {
    LV_Valid,
    LV_NotObjectType,
    LV_IncompleteVoidType,
    LV_DuplicateVectorComponents,
    LV_InvalidExpression,
    LV_InvalidMessageExpression,
    LV_MemberFunction,
    LV_SubObjCPropertySetting,
    LV_ClassTemporary,
    LV_ArrayTemporary
  };
  /// Reasons why an expression might not be an l-value.
  LValueClassification ClassifyLValue(ASTContext &Ctx) const;

  enum isModifiableLvalueResult {
    MLV_Valid,
    MLV_NotObjectType,
    MLV_IncompleteVoidType,
    MLV_DuplicateVectorComponents,
    MLV_InvalidExpression,
    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
    MLV_IncompleteType,
    MLV_ConstQualified,
    MLV_ConstQualifiedField,
    MLV_ConstAddrSpace,
    MLV_ArrayType,
    MLV_NoSetterProperty,
    MLV_MemberFunction,
    MLV_SubObjCPropertySetting,
    MLV_InvalidMessageExpression,
    MLV_ClassTemporary,
    MLV_ArrayTemporary
  };
  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
  /// does not have an incomplete type, does not have a const-qualified type,
  /// and if it is a structure or union, does not have any member (including,
  /// recursively, any member or element of all contained aggregates or unions)
  /// with a const-qualified type.
  ///
  /// \param Loc [in,out] - A source location which *may* be filled
  /// in with the location of the expression making this a
  /// non-modifiable lvalue, if specified.
  isModifiableLvalueResult
  isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;

  /// The return type of classify(). Represents the C++11 expression
  ///        taxonomy.
  class Classification {
  public:
    /// The various classification results. Most of these mean prvalue.
    enum Kinds {
      CL_LValue,
      CL_XValue,
      CL_Function, // Functions cannot be lvalues in C.
      CL_Void, // Void cannot be an lvalue in C.
      CL_AddressableVoid, // Void expression whose address can be taken in C.
      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
      CL_MemberFunction, // An expression referring to a member function
      CL_SubObjCPropertySetting,
      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
      CL_ArrayTemporary, // A temporary of array type.
      CL_ObjCMessageRValue, // ObjC message is an rvalue
      CL_PRValue // A prvalue for any other reason, of any other type
    };
    /// The results of modification testing.
    enum ModifiableType {
      CM_Untested, // testModifiable was false.
      CM_Modifiable,
      CM_RValue, // Not modifiable because it's an rvalue
      CM_Function, // Not modifiable because it's a function; C++ only
      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
      CM_ConstQualified,
      CM_ConstQualifiedField,
      CM_ConstAddrSpace,
      CM_ArrayType,
      CM_IncompleteType
    };

  private:
    friend class Expr;

    unsigned short Kind;
    unsigned short Modifiable;

    explicit Classification(Kinds k, ModifiableType m)
      : Kind(k), Modifiable(m)
    {}

  public:
    Classification() {}

    Kinds getKind() const { return static_cast<Kinds>(Kind); }
    ModifiableType getModifiable() const {
      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
      return static_cast<ModifiableType>(Modifiable);
    }
    bool isLValue() const { return Kind == CL_LValue; }
    bool isXValue() const { return Kind == CL_XValue; }
    bool isGLValue() const { return Kind <= CL_XValue; }
    bool isPRValue() const { return Kind >= CL_Function; }
    bool isRValue() const { return Kind >= CL_XValue; }
    bool isModifiable() const { return getModifiable() == CM_Modifiable; }

    /// Create a simple, modifiably lvalue
    static Classification makeSimpleLValue() {
      return Classification(CL_LValue, CM_Modifiable);
    }

  };
  /// Classify - Classify this expression according to the C++11
  ///        expression taxonomy.
  ///
  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
  /// old lvalue vs rvalue. This function determines the type of expression this
  /// is. There are three expression types:
  /// - lvalues are classical lvalues as in C++03.
  /// - prvalues are equivalent to rvalues in C++03.
  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
  ///   function returning an rvalue reference.
  /// lvalues and xvalues are collectively referred to as glvalues, while
  /// prvalues and xvalues together form rvalues.
  Classification Classify(ASTContext &Ctx) const {
    return ClassifyImpl(Ctx, nullptr);
  }

  /// ClassifyModifiable - Classify this expression according to the
  ///        C++11 expression taxonomy, and see if it is valid on the left side
  ///        of an assignment.
  ///
  /// This function extends classify in that it also tests whether the
  /// expression is modifiable (C99 6.3.2.1p1).
  /// \param Loc A source location that might be filled with a relevant location
  ///            if the expression is not modifiable.
  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
    return ClassifyImpl(Ctx, &Loc);
  }

  /// getValueKindForType - Given a formal return or parameter type,
  /// give its value kind.
  static ExprValueKind getValueKindForType(QualType T) {
    if (const ReferenceType *RT = T->getAs<ReferenceType>())
      return (isa<LValueReferenceType>(RT)
                ? VK_LValue
                : (RT->getPointeeType()->isFunctionType()
                     ? VK_LValue : VK_XValue));
    return VK_RValue;
  }

  /// getValueKind - The value kind that this expression produces.
  ExprValueKind getValueKind() const {
    return static_cast<ExprValueKind>(ExprBits.ValueKind);
  }

  /// getObjectKind - The object kind that this expression produces.
  /// Object kinds are meaningful only for expressions that yield an
  /// l-value or x-value.
  ExprObjectKind getObjectKind() const {
    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
  }

  bool isOrdinaryOrBitFieldObject() const {
    ExprObjectKind OK = getObjectKind();
    return (OK == OK_Ordinary || OK == OK_BitField);
  }

  /// setValueKind - Set the value kind produced by this expression.
  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }

  /// setObjectKind - Set the object kind produced by this expression.
  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }

private:
  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;

public:

  /// Returns true if this expression is a gl-value that
  /// potentially refers to a bit-field.
  ///
  /// In C++, whether a gl-value refers to a bitfield is essentially
  /// an aspect of the value-kind type system.
  bool refersToBitField() const { return getObjectKind() == OK_BitField; }

  /// If this expression refers to a bit-field, retrieve the
  /// declaration of that bit-field.
  ///
  /// Note that this returns a non-null pointer in subtly different
  /// places than refersToBitField returns true.  In particular, this can
  /// return a non-null pointer even for r-values loaded from
  /// bit-fields, but it will return null for a conditional bit-field.
  FieldDecl *getSourceBitField();

  const FieldDecl *getSourceBitField() const {
    return const_cast<Expr*>(this)->getSourceBitField();
  }

  Decl *getReferencedDeclOfCallee();
  const Decl *getReferencedDeclOfCallee() const {
    return const_cast<Expr*>(this)->getReferencedDeclOfCallee();
  }

  /// If this expression is an l-value for an Objective C
  /// property, find the underlying property reference expression.
  const ObjCPropertyRefExpr *getObjCProperty() const;

  /// Check if this expression is the ObjC 'self' implicit parameter.
  bool isObjCSelfExpr() const;

  /// Returns whether this expression refers to a vector element.
  bool refersToVectorElement() const;

  /// Returns whether this expression refers to a global register
  /// variable.
  bool refersToGlobalRegisterVar() const;

  /// Returns whether this expression has a placeholder type.
  bool hasPlaceholderType() const {
    return getType()->isPlaceholderType();
  }

  /// Returns whether this expression has a specific placeholder type.
  bool hasPlaceholderType(BuiltinType::Kind K) const {
    assert(BuiltinType::isPlaceholderTypeKind(K));
    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
      return BT->getKind() == K;
    return false;
  }

  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
  /// but also int expressions which are produced by things like comparisons in
  /// C.
  bool isKnownToHaveBooleanValue() const;

  /// isIntegerConstantExpr - Return true if this expression is a valid integer
  /// constant expression, and, if so, return its value in Result.  If not a
  /// valid i-c-e, return false and fill in Loc (if specified) with the location
  /// of the invalid expression.
  ///
  /// Note: This does not perform the implicit conversions required by C++11
  /// [expr.const]p5.
  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
                             SourceLocation *Loc = nullptr,
                             bool isEvaluated = true) const;
  bool isIntegerConstantExpr(const ASTContext &Ctx,
                             SourceLocation *Loc = nullptr) const;

  /// isCXX98IntegralConstantExpr - Return true if this expression is an
  /// integral constant expression in C++98. Can only be used in C++.
  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;

  /// isCXX11ConstantExpr - Return true if this expression is a constant
  /// expression in C++11. Can only be used in C++.
  ///
  /// Note: This does not perform the implicit conversions required by C++11
  /// [expr.const]p5.
  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
                           SourceLocation *Loc = nullptr) const;

  /// isPotentialConstantExpr - Return true if this function's definition
  /// might be usable in a constant expression in C++11, if it were marked
  /// constexpr. Return false if the function can never produce a constant
  /// expression, along with diagnostics describing why not.
  static bool isPotentialConstantExpr(const FunctionDecl *FD,
                                      SmallVectorImpl<
                                        PartialDiagnosticAt> &Diags);

  /// isPotentialConstantExprUnevaluted - Return true if this expression might
  /// be usable in a constant expression in C++11 in an unevaluated context, if
  /// it were in function FD marked constexpr. Return false if the function can
  /// never produce a constant expression, along with diagnostics describing
  /// why not.
  static bool isPotentialConstantExprUnevaluated(Expr *E,
                                                 const FunctionDecl *FD,
                                                 SmallVectorImpl<
                                                   PartialDiagnosticAt> &Diags);

  /// isConstantInitializer - Returns true if this expression can be emitted to
  /// IR as a constant, and thus can be used as a constant initializer in C.
  /// If this expression is not constant and Culprit is non-null,
  /// it is used to store the address of first non constant expr.
  bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
                             const Expr **Culprit = nullptr) const;

  /// EvalStatus is a struct with detailed info about an evaluation in progress.
  struct EvalStatus {
    /// Whether the evaluated expression has side effects.
    /// For example, (f() && 0) can be folded, but it still has side effects.
    bool HasSideEffects;

    /// Whether the evaluation hit undefined behavior.
    /// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
    /// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
    bool HasUndefinedBehavior;

    /// Diag - If this is non-null, it will be filled in with a stack of notes
    /// indicating why evaluation failed (or why it failed to produce a constant
    /// expression).
    /// If the expression is unfoldable, the notes will indicate why it's not
    /// foldable. If the expression is foldable, but not a constant expression,
    /// the notes will describes why it isn't a constant expression. If the
    /// expression *is* a constant expression, no notes will be produced.
    SmallVectorImpl<PartialDiagnosticAt> *Diag;

    EvalStatus()
        : HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}

    // hasSideEffects - Return true if the evaluated expression has
    // side effects.
    bool hasSideEffects() const {
      return HasSideEffects;
    }
  };

  /// EvalResult is a struct with detailed info about an evaluated expression.
  struct EvalResult : EvalStatus {
    /// Val - This is the value the expression can be folded to.
    APValue Val;

    // isGlobalLValue - Return true if the evaluated lvalue expression
    // is global.
    bool isGlobalLValue() const;
  };

  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
  /// an rvalue using any crazy technique (that has nothing to do with language
  /// standards) that we want to, even if the expression has side-effects. If
  /// this function returns true, it returns the folded constant in Result. If
  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
  /// applied.
  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
                        bool InConstantContext = false) const;

  /// EvaluateAsBooleanCondition - Return true if this is a constant
  /// which we can fold and convert to a boolean condition using
  /// any crazy technique that we want to, even if the expression has
  /// side-effects.
  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
                                  bool InConstantContext = false) const;

  enum SideEffectsKind {
    SE_NoSideEffects,          ///< Strictly evaluate the expression.
    SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
                               ///< arbitrary unmodeled side effects.
    SE_AllowSideEffects        ///< Allow any unmodeled side effect.
  };

  /// EvaluateAsInt - Return true if this is a constant which we can fold and
  /// convert to an integer, using any crazy technique that we want to.
  bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
                     SideEffectsKind AllowSideEffects = SE_NoSideEffects,
                     bool InConstantContext = false) const;

  /// EvaluateAsFloat - Return true if this is a constant which we can fold and
  /// convert to a floating point value, using any crazy technique that we
  /// want to.
  bool EvaluateAsFloat(llvm::APFloat &Result, const ASTContext &Ctx,
                       SideEffectsKind AllowSideEffects = SE_NoSideEffects,
                       bool InConstantContext = false) const;

  /// EvaluateAsFloat - Return true if this is a constant which we can fold and
  /// convert to a fixed point value.
  bool EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
                            SideEffectsKind AllowSideEffects = SE_NoSideEffects,
                            bool InConstantContext = false) const;

  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
  /// constant folded without side-effects, but discard the result.
  bool isEvaluatable(const ASTContext &Ctx,
                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;

  /// HasSideEffects - This routine returns true for all those expressions
  /// which have any effect other than producing a value. Example is a function
  /// call, volatile variable read, or throwing an exception. If
  /// IncludePossibleEffects is false, this call treats certain expressions with
  /// potential side effects (such as function call-like expressions,
  /// instantiation-dependent expressions, or invocations from a macro) as not
  /// having side effects.
  bool HasSideEffects(const ASTContext &Ctx,
                      bool IncludePossibleEffects = true) const;

  /// Determine whether this expression involves a call to any function
  /// that is not trivial.
  bool hasNonTrivialCall(const ASTContext &Ctx) const;

  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
  /// integer. This must be called on an expression that constant folds to an
  /// integer.
  llvm::APSInt EvaluateKnownConstInt(
      const ASTContext &Ctx,
      SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;

  llvm::APSInt EvaluateKnownConstIntCheckOverflow(
      const ASTContext &Ctx,
      SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;

  void EvaluateForOverflow(const ASTContext &Ctx) const;

  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
  /// lvalue with link time known address, with no side-effects.
  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
                        bool InConstantContext = false) const;

  /// EvaluateAsInitializer - Evaluate an expression as if it were the
  /// initializer of the given declaration. Returns true if the initializer
  /// can be folded to a constant, and produces any relevant notes. In C++11,
  /// notes will be produced if the expression is not a constant expression.
  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
                             const VarDecl *VD,
                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const;

  /// EvaluateWithSubstitution - Evaluate an expression as if from the context
  /// of a call to the given function with the given arguments, inside an
  /// unevaluated context. Returns true if the expression could be folded to a
  /// constant.
  bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
                                const FunctionDecl *Callee,
                                ArrayRef<const Expr*> Args,
                                const Expr *This = nullptr) const;

  /// Indicates how the constant expression will be used.
  enum ConstExprUsage { EvaluateForCodeGen, EvaluateForMangling };

  /// Evaluate an expression that is required to be a constant expression.
  bool EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
                              const ASTContext &Ctx) const;

  /// If the current Expr is a pointer, this will try to statically
  /// determine the number of bytes available where the pointer is pointing.
  /// Returns true if all of the above holds and we were able to figure out the
  /// size, false otherwise.
  ///
  /// \param Type - How to evaluate the size of the Expr, as defined by the
  /// "type" parameter of __builtin_object_size
  bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
                             unsigned Type) const;

  /// Enumeration used to describe the kind of Null pointer constant
  /// returned from \c isNullPointerConstant().
  enum NullPointerConstantKind {
    /// Expression is not a Null pointer constant.
    NPCK_NotNull = 0,

    /// Expression is a Null pointer constant built from a zero integer
    /// expression that is not a simple, possibly parenthesized, zero literal.
    /// C++ Core Issue 903 will classify these expressions as "not pointers"
    /// once it is adopted.
    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
    NPCK_ZeroExpression,

    /// Expression is a Null pointer constant built from a literal zero.
    NPCK_ZeroLiteral,

    /// Expression is a C++11 nullptr.
    NPCK_CXX11_nullptr,

    /// Expression is a GNU-style __null constant.
    NPCK_GNUNull
  };

  /// Enumeration used to describe how \c isNullPointerConstant()
  /// should cope with value-dependent expressions.
  enum NullPointerConstantValueDependence {
    /// Specifies that the expression should never be value-dependent.
    NPC_NeverValueDependent = 0,

    /// Specifies that a value-dependent expression of integral or
    /// dependent type should be considered a null pointer constant.
    NPC_ValueDependentIsNull,

    /// Specifies that a value-dependent expression should be considered
    /// to never be a null pointer constant.
    NPC_ValueDependentIsNotNull
  };

  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
  /// a Null pointer constant. The return value can further distinguish the
  /// kind of NULL pointer constant that was detected.
  NullPointerConstantKind isNullPointerConstant(
      ASTContext &Ctx,
      NullPointerConstantValueDependence NPC) const;

  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
  /// write barrier.
  bool isOBJCGCCandidate(ASTContext &Ctx) const;

  /// Returns true if this expression is a bound member function.
  bool isBoundMemberFunction(ASTContext &Ctx) const;

  /// Given an expression of bound-member type, find the type
  /// of the member.  Returns null if this is an *overloaded* bound
  /// member expression.
  static QualType findBoundMemberType(const Expr *expr);

  /// Skip past any implicit casts which might surround this expression until
  /// reaching a fixed point. Skips:
  /// * ImplicitCastExpr
  /// * FullExpr
  Expr *IgnoreImpCasts() LLVM_READONLY;
  const Expr *IgnoreImpCasts() const {
    return const_cast<Expr *>(this)->IgnoreImpCasts();
  }

  /// Skip past any casts which might surround this expression until reaching
  /// a fixed point. Skips:
  /// * CastExpr
  /// * FullExpr
  /// * MaterializeTemporaryExpr
  /// * SubstNonTypeTemplateParmExpr
  Expr *IgnoreCasts() LLVM_READONLY;
  const Expr *IgnoreCasts() const {
    return const_cast<Expr *>(this)->IgnoreCasts();
  }

  /// Skip past any implicit AST nodes which might surround this expression
  /// until reaching a fixed point. Skips:
  /// * What IgnoreImpCasts() skips
  /// * MaterializeTemporaryExpr
  /// * CXXBindTemporaryExpr
  Expr *IgnoreImplicit() LLVM_READONLY;
  const Expr *IgnoreImplicit() const {
    return const_cast<Expr *>(this)->IgnoreImplicit();
  }

  /// Skip past any parentheses which might surround this expression until
  /// reaching a fixed point. Skips:
  /// * ParenExpr
  /// * UnaryOperator if `UO_Extension`
  /// * GenericSelectionExpr if `!isResultDependent()`
  /// * ChooseExpr if `!isConditionDependent()`
  /// * ConstantExpr
  Expr *IgnoreParens() LLVM_READONLY;
  const Expr *IgnoreParens() const {
    return const_cast<Expr *>(this)->IgnoreParens();
  }

  /// Skip past any parentheses and implicit casts which might surround this
  /// expression until reaching a fixed point.
  /// FIXME: IgnoreParenImpCasts really ought to be equivalent to
  /// IgnoreParens() + IgnoreImpCasts() until reaching a fixed point. However
  /// this is currently not the case. Instead IgnoreParenImpCasts() skips:
  /// * What IgnoreParens() skips
  /// * What IgnoreImpCasts() skips
  /// * MaterializeTemporaryExpr
  /// * SubstNonTypeTemplateParmExpr
  Expr *IgnoreParenImpCasts() LLVM_READONLY;
  const Expr *IgnoreParenImpCasts() const {
    return const_cast<Expr *>(this)->IgnoreParenImpCasts();
  }

  /// Skip past any parentheses and casts which might surround this expression
  /// until reaching a fixed point. Skips:
  /// * What IgnoreParens() skips
  /// * What IgnoreCasts() skips
  Expr *IgnoreParenCasts() LLVM_READONLY;
  const Expr *IgnoreParenCasts() const {
    return const_cast<Expr *>(this)->IgnoreParenCasts();
  }

  /// Skip conversion operators. If this Expr is a call to a conversion
  /// operator, return the argument.
  Expr *IgnoreConversionOperator() LLVM_READONLY;
  const Expr *IgnoreConversionOperator() const {
    return const_cast<Expr *>(this)->IgnoreConversionOperator();
  }

  /// Skip past any parentheses and lvalue casts which might surround this
  /// expression until reaching a fixed point. Skips:
  /// * What IgnoreParens() skips
  /// * What IgnoreCasts() skips, except that only lvalue-to-rvalue
  ///   casts are skipped
  /// FIXME: This is intended purely as a temporary workaround for code
  /// that hasn't yet been rewritten to do the right thing about those
  /// casts, and may disappear along with the last internal use.
  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
  const Expr *IgnoreParenLValueCasts() const {
    return const_cast<Expr *>(this)->IgnoreParenLValueCasts();
  }

  /// Skip past any parenthese and casts which do not change the value
  /// (including ptr->int casts of the same size) until reaching a fixed point.
  /// Skips:
  /// * What IgnoreParens() skips
  /// * CastExpr which do not change the value
  /// * SubstNonTypeTemplateParmExpr
  Expr *IgnoreParenNoopCasts(const ASTContext &Ctx) LLVM_READONLY;
  const Expr *IgnoreParenNoopCasts(const ASTContext &Ctx) const {
    return const_cast<Expr *>(this)->IgnoreParenNoopCasts(Ctx);
  }

  /// Skip past any parentheses and derived-to-base casts until reaching a
  /// fixed point. Skips:
  /// * What IgnoreParens() skips
  /// * CastExpr which represent a derived-to-base cast (CK_DerivedToBase,
  ///   CK_UncheckedDerivedToBase and CK_NoOp)
  Expr *ignoreParenBaseCasts() LLVM_READONLY;
  const Expr *ignoreParenBaseCasts() const {
    return const_cast<Expr *>(this)->ignoreParenBaseCasts();
  }

  /// Determine whether this expression is a default function argument.
  ///
  /// Default arguments are implicitly generated in the abstract syntax tree
  /// by semantic analysis for function calls, object constructions, etc. in
  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
  /// this routine also looks through any implicit casts to determine whether
  /// the expression is a default argument.
  bool isDefaultArgument() const;

  /// Determine whether the result of this expression is a
  /// temporary object of the given class type.
  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;

  /// Whether this expression is an implicit reference to 'this' in C++.
  bool isImplicitCXXThis() const;

  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);

  /// For an expression of class type or pointer to class type,
  /// return the most derived class decl the expression is known to refer to.
  ///
  /// If this expression is a cast, this method looks through it to find the
  /// most derived decl that can be inferred from the expression.
  /// This is valid because derived-to-base conversions have undefined
  /// behavior if the object isn't dynamically of the derived type.
  const CXXRecordDecl *getBestDynamicClassType() const;

  /// Get the inner expression that determines the best dynamic class.
  /// If this is a prvalue, we guarantee that it is of the most-derived type
  /// for the object itself.
  const Expr *getBestDynamicClassTypeExpr() const;

  /// Walk outwards from an expression we want to bind a reference to and
  /// find the expression whose lifetime needs to be extended. Record
  /// the LHSs of comma expressions and adjustments needed along the path.
  const Expr *skipRValueSubobjectAdjustments(
      SmallVectorImpl<const Expr *> &CommaLHS,
      SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
  const Expr *skipRValueSubobjectAdjustments() const {
    SmallVector<const Expr *, 8> CommaLHSs;
    SmallVector<SubobjectAdjustment, 8> Adjustments;
    return skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
  }

  /// Checks that the two Expr's will refer to the same value as a comparison
  /// operand.  The caller must ensure that the values referenced by the Expr's
  /// are not modified between E1 and E2 or the result my be invalid.
  static bool isSameComparisonOperand(const Expr* E1, const Expr* E2);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() >= firstExprConstant &&
           T->getStmtClass() <= lastExprConstant;
  }
};

//===----------------------------------------------------------------------===//
// Wrapper Expressions.
//===----------------------------------------------------------------------===//

/// FullExpr - Represents a "full-expression" node.
class FullExpr : public Expr {
protected:
 Stmt *SubExpr;

 FullExpr(StmtClass SC, Expr *subexpr)
    : Expr(SC, subexpr->getType(),
           subexpr->getValueKind(), subexpr->getObjectKind(),
           subexpr->isTypeDependent(), subexpr->isValueDependent(),
           subexpr->isInstantiationDependent(),
           subexpr->containsUnexpandedParameterPack()), SubExpr(subexpr) {}
  FullExpr(StmtClass SC, EmptyShell Empty)
    : Expr(SC, Empty) {}
public:
  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
  Expr *getSubExpr() { return cast<Expr>(SubExpr); }

  /// As with any mutator of the AST, be very careful when modifying an
  /// existing AST to preserve its invariants.
  void setSubExpr(Expr *E) { SubExpr = E; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() >= firstFullExprConstant &&
           T->getStmtClass() <= lastFullExprConstant;
  }
};

/// ConstantExpr - An expression that occurs in a constant context and
/// optionally the result of evaluating the expression.
class ConstantExpr final
    : public FullExpr,
      private llvm::TrailingObjects<ConstantExpr, APValue, uint64_t> {
  static_assert(std::is_same<uint64_t, llvm::APInt::WordType>::value,
                "this class assumes llvm::APInt::WordType is uint64_t for "
                "trail-allocated storage");

public:
  /// Describes the kind of result that can be trail-allocated.
  enum ResultStorageKind { RSK_None, RSK_Int64, RSK_APValue };

private:
  size_t numTrailingObjects(OverloadToken<APValue>) const {
    return ConstantExprBits.ResultKind == ConstantExpr::RSK_APValue;
  }
  size_t numTrailingObjects(OverloadToken<uint64_t>) const {
    return ConstantExprBits.ResultKind == ConstantExpr::RSK_Int64;
  }

  void DefaultInit(ResultStorageKind StorageKind);
  uint64_t &Int64Result() {
    assert(ConstantExprBits.ResultKind == ConstantExpr::RSK_Int64 &&
           "invalid accessor");
    return *getTrailingObjects<uint64_t>();
  }
  const uint64_t &Int64Result() const {
    return const_cast<ConstantExpr *>(this)->Int64Result();
  }
  APValue &APValueResult() {
    assert(ConstantExprBits.ResultKind == ConstantExpr::RSK_APValue &&
           "invalid accessor");
    return *getTrailingObjects<APValue>();
  }
  const APValue &APValueResult() const {
    return const_cast<ConstantExpr *>(this)->APValueResult();
  }

  ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind);
  ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty);

public:
  friend TrailingObjects;
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  static ConstantExpr *Create(const ASTContext &Context, Expr *E,
                              const APValue &Result);
  static ConstantExpr *Create(const ASTContext &Context, Expr *E,
                              ResultStorageKind Storage = RSK_None);
  static ConstantExpr *CreateEmpty(const ASTContext &Context,
                                   ResultStorageKind StorageKind,
                                   EmptyShell Empty);

  static ResultStorageKind getStorageKind(const APValue &Value);
  static ResultStorageKind getStorageKind(const Type *T,
                                          const ASTContext &Context);

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return SubExpr->getBeginLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return SubExpr->getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ConstantExprClass;
  }

  void SetResult(APValue Value, const ASTContext &Context) {
    MoveIntoResult(Value, Context);
  }
  void MoveIntoResult(APValue &Value, const ASTContext &Context);

  APValue::ValueKind getResultAPValueKind() const {
    return static_cast<APValue::ValueKind>(ConstantExprBits.APValueKind);
  }
  ResultStorageKind getResultStorageKind() const {
    return static_cast<ResultStorageKind>(ConstantExprBits.ResultKind);
  }
  APValue getAPValueResult() const;
  const APValue &getResultAsAPValue() const { return APValueResult(); }
  llvm::APSInt getResultAsAPSInt() const;
  // Iterators
  child_range children() { return child_range(&SubExpr, &SubExpr+1); }
  const_child_range children() const {
    return const_child_range(&SubExpr, &SubExpr + 1);
  }
};

//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//

/// OpaqueValueExpr - An expression referring to an opaque object of a
/// fixed type and value class.  These don't correspond to concrete
/// syntax; instead they're used to express operations (usually copy
/// operations) on values whose source is generally obvious from
/// context.
class OpaqueValueExpr : public Expr {
  friend class ASTStmtReader;
  Expr *SourceExpr;

public:
  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
                  ExprObjectKind OK = OK_Ordinary,
                  Expr *SourceExpr = nullptr)
    : Expr(OpaqueValueExprClass, T, VK, OK,
           T->isDependentType() ||
           (SourceExpr && SourceExpr->isTypeDependent()),
           T->isDependentType() ||
           (SourceExpr && SourceExpr->isValueDependent()),
           T->isInstantiationDependentType() ||
           (SourceExpr && SourceExpr->isInstantiationDependent()),
           false),
      SourceExpr(SourceExpr) {
    setIsUnique(false);
    OpaqueValueExprBits.Loc = Loc;
  }

  /// Given an expression which invokes a copy constructor --- i.e.  a
  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
  /// find the OpaqueValueExpr that's the source of the construction.
  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);

  explicit OpaqueValueExpr(EmptyShell Empty)
    : Expr(OpaqueValueExprClass, Empty) {}

  /// Retrieve the location of this expression.
  SourceLocation getLocation() const { return OpaqueValueExprBits.Loc; }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return SourceExpr ? SourceExpr->getBeginLoc() : getLocation();
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return SourceExpr ? SourceExpr->getEndLoc() : getLocation();
  }
  SourceLocation getExprLoc() const LLVM_READONLY {
    return SourceExpr ? SourceExpr->getExprLoc() : getLocation();
  }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }

  /// The source expression of an opaque value expression is the
  /// expression which originally generated the value.  This is
  /// provided as a convenience for analyses that don't wish to
  /// precisely model the execution behavior of the program.
  ///
  /// The source expression is typically set when building the
  /// expression which binds the opaque value expression in the first
  /// place.
  Expr *getSourceExpr() const { return SourceExpr; }

  void setIsUnique(bool V) {
    assert((!V || SourceExpr) &&
           "unique OVEs are expected to have source expressions");
    OpaqueValueExprBits.IsUnique = V;
  }

  bool isUnique() const { return OpaqueValueExprBits.IsUnique; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == OpaqueValueExprClass;
  }
};

/// A reference to a declared variable, function, enum, etc.
/// [C99 6.5.1p2]
///
/// This encodes all the information about how a declaration is referenced
/// within an expression.
///
/// There are several optional constructs attached to DeclRefExprs only when
/// they apply in order to conserve memory. These are laid out past the end of
/// the object, and flags in the DeclRefExprBitfield track whether they exist:
///
///   DeclRefExprBits.HasQualifier:
///       Specifies when this declaration reference expression has a C++
///       nested-name-specifier.
///   DeclRefExprBits.HasFoundDecl:
///       Specifies when this declaration reference expression has a record of
///       a NamedDecl (different from the referenced ValueDecl) which was found
///       during name lookup and/or overload resolution.
///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
///       Specifies when this declaration reference expression has an explicit
///       C++ template keyword and/or template argument list.
///   DeclRefExprBits.RefersToEnclosingVariableOrCapture
///       Specifies when this declaration reference expression (validly)
///       refers to an enclosed local or a captured variable.
class DeclRefExpr final
    : public Expr,
      private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
                                    NamedDecl *, ASTTemplateKWAndArgsInfo,
                                    TemplateArgumentLoc> {
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  friend TrailingObjects;

  /// The declaration that we are referencing.
  ValueDecl *D;

  /// Provides source/type location info for the declaration name
  /// embedded in D.
  DeclarationNameLoc DNLoc;

  size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
    return hasQualifier();
  }

  size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
    return hasFoundDecl();
  }

  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
    return hasTemplateKWAndArgsInfo();
  }

  /// Test whether there is a distinct FoundDecl attached to the end of
  /// this DRE.
  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }

  DeclRefExpr(const ASTContext &Ctx, NestedNameSpecifierLoc QualifierLoc,
              SourceLocation TemplateKWLoc, ValueDecl *D,
              bool RefersToEnlosingVariableOrCapture,
              const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
              const TemplateArgumentListInfo *TemplateArgs, QualType T,
              ExprValueKind VK, NonOdrUseReason NOUR);

  /// Construct an empty declaration reference expression.
  explicit DeclRefExpr(EmptyShell Empty) : Expr(DeclRefExprClass, Empty) {}

  /// Computes the type- and value-dependence flags for this
  /// declaration reference expression.
  void computeDependence(const ASTContext &Ctx);

public:
  DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
              bool RefersToEnclosingVariableOrCapture, QualType T,
              ExprValueKind VK, SourceLocation L,
              const DeclarationNameLoc &LocInfo = DeclarationNameLoc(),
              NonOdrUseReason NOUR = NOUR_None);

  static DeclRefExpr *
  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
         SourceLocation TemplateKWLoc, ValueDecl *D,
         bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
         QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
         const TemplateArgumentListInfo *TemplateArgs = nullptr,
         NonOdrUseReason NOUR = NOUR_None);

  static DeclRefExpr *
  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
         SourceLocation TemplateKWLoc, ValueDecl *D,
         bool RefersToEnclosingVariableOrCapture,
         const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
         NamedDecl *FoundD = nullptr,
         const TemplateArgumentListInfo *TemplateArgs = nullptr,
         NonOdrUseReason NOUR = NOUR_None);

  /// Construct an empty declaration reference expression.
  static DeclRefExpr *CreateEmpty(const ASTContext &Context, bool HasQualifier,
                                  bool HasFoundDecl,
                                  bool HasTemplateKWAndArgsInfo,
                                  unsigned NumTemplateArgs);

  ValueDecl *getDecl() { return D; }
  const ValueDecl *getDecl() const { return D; }
  void setDecl(ValueDecl *NewD) { D = NewD; }

  DeclarationNameInfo getNameInfo() const {
    return DeclarationNameInfo(getDecl()->getDeclName(), getLocation(), DNLoc);
  }

  SourceLocation getLocation() const { return DeclRefExprBits.Loc; }
  void setLocation(SourceLocation L) { DeclRefExprBits.Loc = L; }
  SourceLocation getBeginLoc() const LLVM_READONLY;
  SourceLocation getEndLoc() const LLVM_READONLY;

  /// Determine whether this declaration reference was preceded by a
  /// C++ nested-name-specifier, e.g., \c N::foo.
  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }

  /// If the name was qualified, retrieves the nested-name-specifier
  /// that precedes the name, with source-location information.
  NestedNameSpecifierLoc getQualifierLoc() const {
    if (!hasQualifier())
      return NestedNameSpecifierLoc();
    return *getTrailingObjects<NestedNameSpecifierLoc>();
  }

  /// If the name was qualified, retrieves the nested-name-specifier
  /// that precedes the name. Otherwise, returns NULL.
  NestedNameSpecifier *getQualifier() const {
    return getQualifierLoc().getNestedNameSpecifier();
  }

  /// Get the NamedDecl through which this reference occurred.
  ///
  /// This Decl may be different from the ValueDecl actually referred to in the
  /// presence of using declarations, etc. It always returns non-NULL, and may
  /// simple return the ValueDecl when appropriate.

  NamedDecl *getFoundDecl() {
    return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
  }

  /// Get the NamedDecl through which this reference occurred.
  /// See non-const variant.
  const NamedDecl *getFoundDecl() const {
    return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
  }

  bool hasTemplateKWAndArgsInfo() const {
    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
  }

  /// Retrieve the location of the template keyword preceding
  /// this name, if any.
  SourceLocation getTemplateKeywordLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
  }

  /// Retrieve the location of the left angle bracket starting the
  /// explicit template argument list following the name, if any.
  SourceLocation getLAngleLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
  }

  /// Retrieve the location of the right angle bracket ending the
  /// explicit template argument list following the name, if any.
  SourceLocation getRAngleLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
  }

  /// Determines whether the name in this declaration reference
  /// was preceded by the template keyword.
  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }

  /// Determines whether this declaration reference was followed by an
  /// explicit template argument list.
  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }

  /// Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    if (hasExplicitTemplateArgs())
      getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
          getTrailingObjects<TemplateArgumentLoc>(), List);
  }

  /// Retrieve the template arguments provided as part of this
  /// template-id.
  const TemplateArgumentLoc *getTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return nullptr;
    return getTrailingObjects<TemplateArgumentLoc>();
  }

  /// Retrieve the number of template arguments provided as part of this
  /// template-id.
  unsigned getNumTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return 0;
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
  }

  ArrayRef<TemplateArgumentLoc> template_arguments() const {
    return {getTemplateArgs(), getNumTemplateArgs()};
  }

  /// Returns true if this expression refers to a function that
  /// was resolved from an overloaded set having size greater than 1.
  bool hadMultipleCandidates() const {
    return DeclRefExprBits.HadMultipleCandidates;
  }
  /// Sets the flag telling whether this expression refers to
  /// a function that was resolved from an overloaded set having size
  /// greater than 1.
  void setHadMultipleCandidates(bool V = true) {
    DeclRefExprBits.HadMultipleCandidates = V;
  }

  /// Is this expression a non-odr-use reference, and if so, why?
  NonOdrUseReason isNonOdrUse() const {
    return static_cast<NonOdrUseReason>(DeclRefExprBits.NonOdrUseReason);
  }

  /// Does this DeclRefExpr refer to an enclosing local or a captured
  /// variable?
  bool refersToEnclosingVariableOrCapture() const {
    return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DeclRefExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// Used by IntegerLiteral/FloatingLiteral to store the numeric without
/// leaking memory.
///
/// For large floats/integers, APFloat/APInt will allocate memory from the heap
/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
/// the APFloat/APInt values will never get freed. APNumericStorage uses
/// ASTContext's allocator for memory allocation.
class APNumericStorage {
  union {
    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
  };
  unsigned BitWidth;

  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }

  APNumericStorage(const APNumericStorage &) = delete;
  void operator=(const APNumericStorage &) = delete;

protected:
  APNumericStorage() : VAL(0), BitWidth(0) { }

  llvm::APInt getIntValue() const {
    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
    if (NumWords > 1)
      return llvm::APInt(BitWidth, NumWords, pVal);
    else
      return llvm::APInt(BitWidth, VAL);
  }
  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
};

class APIntStorage : private APNumericStorage {
public:
  llvm::APInt getValue() const { return getIntValue(); }
  void setValue(const ASTContext &C, const llvm::APInt &Val) {
    setIntValue(C, Val);
  }
};

class APFloatStorage : private APNumericStorage {
public:
  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
    return llvm::APFloat(Semantics, getIntValue());
  }
  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
    setIntValue(C, Val.bitcastToAPInt());
  }
};

class IntegerLiteral : public Expr, public APIntStorage {
  SourceLocation Loc;

  /// Construct an empty integer literal.
  explicit IntegerLiteral(EmptyShell Empty)
    : Expr(IntegerLiteralClass, Empty) { }

public:
  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
  // or UnsignedLongLongTy
  IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
                 SourceLocation l);

  /// Returns a new integer literal with value 'V' and type 'type'.
  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
  /// \param V - the value that the returned integer literal contains.
  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
                                QualType type, SourceLocation l);
  /// Returns a new empty integer literal.
  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);

  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }

  /// Retrieve the location of the literal.
  SourceLocation getLocation() const { return Loc; }

  void setLocation(SourceLocation Location) { Loc = Location; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == IntegerLiteralClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

class FixedPointLiteral : public Expr, public APIntStorage {
  SourceLocation Loc;
  unsigned Scale;

  /// \brief Construct an empty integer literal.
  explicit FixedPointLiteral(EmptyShell Empty)
      : Expr(FixedPointLiteralClass, Empty) {}

 public:
  FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
                    SourceLocation l, unsigned Scale);

  // Store the int as is without any bit shifting.
  static FixedPointLiteral *CreateFromRawInt(const ASTContext &C,
                                             const llvm::APInt &V,
                                             QualType type, SourceLocation l,
                                             unsigned Scale);

  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }

  /// \brief Retrieve the location of the literal.
  SourceLocation getLocation() const { return Loc; }

  void setLocation(SourceLocation Location) { Loc = Location; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == FixedPointLiteralClass;
  }

  std::string getValueAsString(unsigned Radix) const;

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

class CharacterLiteral : public Expr {
public:
  enum CharacterKind {
    Ascii,
    Wide,
    UTF8,
    UTF16,
    UTF32
  };

private:
  unsigned Value;
  SourceLocation Loc;
public:
  // type should be IntTy
  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
                   SourceLocation l)
    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
           false, false),
      Value(value), Loc(l) {
    CharacterLiteralBits.Kind = kind;
  }

  /// Construct an empty character literal.
  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }

  SourceLocation getLocation() const { return Loc; }
  CharacterKind getKind() const {
    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }

  unsigned getValue() const { return Value; }

  void setLocation(SourceLocation Location) { Loc = Location; }
  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
  void setValue(unsigned Val) { Value = Val; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CharacterLiteralClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

class FloatingLiteral : public Expr, private APFloatStorage {
  SourceLocation Loc;

  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
                  QualType Type, SourceLocation L);

  /// Construct an empty floating-point literal.
  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);

public:
  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
                                 bool isexact, QualType Type, SourceLocation L);
  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);

  llvm::APFloat getValue() const {
    return APFloatStorage::getValue(getSemantics());
  }
  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
    assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
    APFloatStorage::setValue(C, Val);
  }

  /// Get a raw enumeration value representing the floating-point semantics of
  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
  llvm::APFloatBase::Semantics getRawSemantics() const {
    return static_cast<llvm::APFloatBase::Semantics>(
        FloatingLiteralBits.Semantics);
  }

  /// Set the raw enumeration value representing the floating-point semantics of
  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
  void setRawSemantics(llvm::APFloatBase::Semantics Sem) {
    FloatingLiteralBits.Semantics = Sem;
  }

  /// Return the APFloat semantics this literal uses.
  const llvm::fltSemantics &getSemantics() const {
    return llvm::APFloatBase::EnumToSemantics(
        static_cast<llvm::APFloatBase::Semantics>(
            FloatingLiteralBits.Semantics));
  }

  /// Set the APFloat semantics this literal uses.
  void setSemantics(const llvm::fltSemantics &Sem) {
    FloatingLiteralBits.Semantics = llvm::APFloatBase::SemanticsToEnum(Sem);
  }

  bool isExact() const { return FloatingLiteralBits.IsExact; }
  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }

  /// getValueAsApproximateDouble - This returns the value as an inaccurate
  /// double.  Note that this may cause loss of precision, but is useful for
  /// debugging dumps, etc.
  double getValueAsApproximateDouble() const;

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == FloatingLiteralClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// ImaginaryLiteral - We support imaginary integer and floating point literals,
/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
/// IntegerLiteral classes.  Instances of this class always have a Complex type
/// whose element type matches the subexpression.
///
class ImaginaryLiteral : public Expr {
  Stmt *Val;
public:
  ImaginaryLiteral(Expr *val, QualType Ty)
    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
           false, false),
      Val(val) {}

  /// Build an empty imaginary literal.
  explicit ImaginaryLiteral(EmptyShell Empty)
    : Expr(ImaginaryLiteralClass, Empty) { }

  const Expr *getSubExpr() const { return cast<Expr>(Val); }
  Expr *getSubExpr() { return cast<Expr>(Val); }
  void setSubExpr(Expr *E) { Val = E; }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return Val->getBeginLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY { return Val->getEndLoc(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ImaginaryLiteralClass;
  }

  // Iterators
  child_range children() { return child_range(&Val, &Val+1); }
  const_child_range children() const {
    return const_child_range(&Val, &Val + 1);
  }
};

/// StringLiteral - This represents a string literal expression, e.g. "foo"
/// or L"bar" (wide strings). The actual string data can be obtained with
/// getBytes() and is NOT null-terminated. The length of the string data is
/// determined by calling getByteLength().
///
/// The C type for a string is always a ConstantArrayType. In C++, the char
/// type is const qualified, in C it is not.
///
/// Note that strings in C can be formed by concatenation of multiple string
/// literal pptokens in translation phase #6. This keeps track of the locations
/// of each of these pieces.
///
/// Strings in C can also be truncated and extended by assigning into arrays,
/// e.g. with constructs like:
///   char X[2] = "foobar";
/// In this case, getByteLength() will return 6, but the string literal will
/// have type "char[2]".
class StringLiteral final
    : public Expr,
      private llvm::TrailingObjects<StringLiteral, unsigned, SourceLocation,
                                    char> {
  friend class ASTStmtReader;
  friend TrailingObjects;

  /// StringLiteral is followed by several trailing objects. They are in order:
  ///
  /// * A single unsigned storing the length in characters of this string. The
  ///   length in bytes is this length times the width of a single character.
  ///   Always present and stored as a trailing objects because storing it in
  ///   StringLiteral would increase the size of StringLiteral by sizeof(void *)
  ///   due to alignment requirements. If you add some data to StringLiteral,
  ///   consider moving it inside StringLiteral.
  ///
  /// * An array of getNumConcatenated() SourceLocation, one for each of the
  ///   token this string is made of.
  ///
  /// * An array of getByteLength() char used to store the string data.

public:
  enum StringKind { Ascii, Wide, UTF8, UTF16, UTF32 };

private:
  unsigned numTrailingObjects(OverloadToken<unsigned>) const { return 1; }
  unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
    return getNumConcatenated();
  }

  unsigned numTrailingObjects(OverloadToken<char>) const {
    return getByteLength();
  }

  char *getStrDataAsChar() { return getTrailingObjects<char>(); }
  const char *getStrDataAsChar() const { return getTrailingObjects<char>(); }

  const uint16_t *getStrDataAsUInt16() const {
    return reinterpret_cast<const uint16_t *>(getTrailingObjects<char>());
  }

  const uint32_t *getStrDataAsUInt32() const {
    return reinterpret_cast<const uint32_t *>(getTrailingObjects<char>());
  }

  /// Build a string literal.
  StringLiteral(const ASTContext &Ctx, StringRef Str, StringKind Kind,
                bool Pascal, QualType Ty, const SourceLocation *Loc,
                unsigned NumConcatenated);

  /// Build an empty string literal.
  StringLiteral(EmptyShell Empty, unsigned NumConcatenated, unsigned Length,
                unsigned CharByteWidth);

  /// Map a target and string kind to the appropriate character width.
  static unsigned mapCharByteWidth(TargetInfo const &Target, StringKind SK);

  /// Set one of the string literal token.
  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
    assert(TokNum < getNumConcatenated() && "Invalid tok number");
    getTrailingObjects<SourceLocation>()[TokNum] = L;
  }

public:
  /// This is the "fully general" constructor that allows representation of
  /// strings formed from multiple concatenated tokens.
  static StringLiteral *Create(const ASTContext &Ctx, StringRef Str,
                               StringKind Kind, bool Pascal, QualType Ty,
                               const SourceLocation *Loc,
                               unsigned NumConcatenated);

  /// Simple constructor for string literals made from one token.
  static StringLiteral *Create(const ASTContext &Ctx, StringRef Str,
                               StringKind Kind, bool Pascal, QualType Ty,
                               SourceLocation Loc) {
    return Create(Ctx, Str, Kind, Pascal, Ty, &Loc, 1);
  }

  /// Construct an empty string literal.
  static StringLiteral *CreateEmpty(const ASTContext &Ctx,
                                    unsigned NumConcatenated, unsigned Length,
                                    unsigned CharByteWidth);

  StringRef getString() const {
    assert(getCharByteWidth() == 1 &&
           "This function is used in places that assume strings use char");
    return StringRef(getStrDataAsChar(), getByteLength());
  }

  /// Allow access to clients that need the byte representation, such as
  /// ASTWriterStmt::VisitStringLiteral().
  StringRef getBytes() const {
    // FIXME: StringRef may not be the right type to use as a result for this.
    return StringRef(getStrDataAsChar(), getByteLength());
  }

  void outputString(raw_ostream &OS) const;

  uint32_t getCodeUnit(size_t i) const {
    assert(i < getLength() && "out of bounds access");
    switch (getCharByteWidth()) {
    case 1:
      return static_cast<unsigned char>(getStrDataAsChar()[i]);
    case 2:
      return getStrDataAsUInt16()[i];
    case 4:
      return getStrDataAsUInt32()[i];
    }
    llvm_unreachable("Unsupported character width!");
  }

  unsigned getByteLength() const { return getCharByteWidth() * getLength(); }
  unsigned getLength() const { return *getTrailingObjects<unsigned>(); }
  unsigned getCharByteWidth() const { return StringLiteralBits.CharByteWidth; }

  StringKind getKind() const {
    return static_cast<StringKind>(StringLiteralBits.Kind);
  }

  bool isAscii() const { return getKind() == Ascii; }
  bool isWide() const { return getKind() == Wide; }
  bool isUTF8() const { return getKind() == UTF8; }
  bool isUTF16() const { return getKind() == UTF16; }
  bool isUTF32() const { return getKind() == UTF32; }
  bool isPascal() const { return StringLiteralBits.IsPascal; }

  bool containsNonAscii() const {
    for (auto c : getString())
      if (!isASCII(c))
        return true;
    return false;
  }

  bool containsNonAsciiOrNull() const {
    for (auto c : getString())
      if (!isASCII(c) || !c)
        return true;
    return false;
  }

  /// getNumConcatenated - Get the number of string literal tokens that were
  /// concatenated in translation phase #6 to form this string literal.
  unsigned getNumConcatenated() const {
    return StringLiteralBits.NumConcatenated;
  }

  /// Get one of the string literal token.
  SourceLocation getStrTokenLoc(unsigned TokNum) const {
    assert(TokNum < getNumConcatenated() && "Invalid tok number");
    return getTrailingObjects<SourceLocation>()[TokNum];
  }

  /// getLocationOfByte - Return a source location that points to the specified
  /// byte of this string literal.
  ///
  /// Strings are amazingly complex.  They can be formed from multiple tokens
  /// and can have escape sequences in them in addition to the usual trigraph
  /// and escaped newline business.  This routine handles this complexity.
  ///
  SourceLocation
  getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
                    const LangOptions &Features, const TargetInfo &Target,
                    unsigned *StartToken = nullptr,
                    unsigned *StartTokenByteOffset = nullptr) const;

  typedef const SourceLocation *tokloc_iterator;

  tokloc_iterator tokloc_begin() const {
    return getTrailingObjects<SourceLocation>();
  }

  tokloc_iterator tokloc_end() const {
    return getTrailingObjects<SourceLocation>() + getNumConcatenated();
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return *tokloc_begin(); }
  SourceLocation getEndLoc() const LLVM_READONLY { return *(tokloc_end() - 1); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == StringLiteralClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// [C99 6.4.2.2] - A predefined identifier such as __func__.
class PredefinedExpr final
    : public Expr,
      private llvm::TrailingObjects<PredefinedExpr, Stmt *> {
  friend class ASTStmtReader;
  friend TrailingObjects;

  // PredefinedExpr is optionally followed by a single trailing
  // "Stmt *" for the predefined identifier. It is present if and only if
  // hasFunctionName() is true and is always a "StringLiteral *".

public:
  enum IdentKind {
    Func,
    Function,
    LFunction, // Same as Function, but as wide string.
    FuncDName,
    FuncSig,
    LFuncSig, // Same as FuncSig, but as as wide string
    PrettyFunction,
    /// The same as PrettyFunction, except that the
    /// 'virtual' keyword is omitted for virtual member functions.
    PrettyFunctionNoVirtual
  };

private:
  PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
                 StringLiteral *SL);

  explicit PredefinedExpr(EmptyShell Empty, bool HasFunctionName);

  /// True if this PredefinedExpr has storage for a function name.
  bool hasFunctionName() const { return PredefinedExprBits.HasFunctionName; }

  void setFunctionName(StringLiteral *SL) {
    assert(hasFunctionName() &&
           "This PredefinedExpr has no storage for a function name!");
    *getTrailingObjects<Stmt *>() = SL;
  }

public:
  /// Create a PredefinedExpr.
  static PredefinedExpr *Create(const ASTContext &Ctx, SourceLocation L,
                                QualType FNTy, IdentKind IK, StringLiteral *SL);

  /// Create an empty PredefinedExpr.
  static PredefinedExpr *CreateEmpty(const ASTContext &Ctx,
                                     bool HasFunctionName);

  IdentKind getIdentKind() const {
    return static_cast<IdentKind>(PredefinedExprBits.Kind);
  }

  SourceLocation getLocation() const { return PredefinedExprBits.Loc; }
  void setLocation(SourceLocation L) { PredefinedExprBits.Loc = L; }

  StringLiteral *getFunctionName() {
    return hasFunctionName()
               ? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
               : nullptr;
  }

  const StringLiteral *getFunctionName() const {
    return hasFunctionName()
               ? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
               : nullptr;
  }

  static StringRef getIdentKindName(IdentKind IK);
  static std::string ComputeName(IdentKind IK, const Decl *CurrentDecl);

  SourceLocation getBeginLoc() const { return getLocation(); }
  SourceLocation getEndLoc() const { return getLocation(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == PredefinedExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(getTrailingObjects<Stmt *>(),
                       getTrailingObjects<Stmt *>() + hasFunctionName());
  }

  const_child_range children() const {
    return const_child_range(getTrailingObjects<Stmt *>(),
                             getTrailingObjects<Stmt *>() + hasFunctionName());
  }
};

/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
/// AST node is only formed if full location information is requested.
class ParenExpr : public Expr {
  SourceLocation L, R;
  Stmt *Val;
public:
  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
    : Expr(ParenExprClass, val->getType(),
           val->getValueKind(), val->getObjectKind(),
           val->isTypeDependent(), val->isValueDependent(),
           val->isInstantiationDependent(),
           val->containsUnexpandedParameterPack()),
      L(l), R(r), Val(val) {}

  /// Construct an empty parenthesized expression.
  explicit ParenExpr(EmptyShell Empty)
    : Expr(ParenExprClass, Empty) { }

  const Expr *getSubExpr() const { return cast<Expr>(Val); }
  Expr *getSubExpr() { return cast<Expr>(Val); }
  void setSubExpr(Expr *E) { Val = E; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return L; }
  SourceLocation getEndLoc() const LLVM_READONLY { return R; }

  /// Get the location of the left parentheses '('.
  SourceLocation getLParen() const { return L; }
  void setLParen(SourceLocation Loc) { L = Loc; }

  /// Get the location of the right parentheses ')'.
  SourceLocation getRParen() const { return R; }
  void setRParen(SourceLocation Loc) { R = Loc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ParenExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Val, &Val+1); }
  const_child_range children() const {
    return const_child_range(&Val, &Val + 1);
  }
};

/// UnaryOperator - This represents the unary-expression's (except sizeof and
/// alignof), the postinc/postdec operators from postfix-expression, and various
/// extensions.
///
/// Notes on various nodes:
///
/// Real/Imag - These return the real/imag part of a complex operand.  If
///   applied to a non-complex value, the former returns its operand and the
///   later returns zero in the type of the operand.
///
class UnaryOperator : public Expr {
  Stmt *Val;

public:
  typedef UnaryOperatorKind Opcode;

  UnaryOperator(Expr *input, Opcode opc, QualType type, ExprValueKind VK,
                ExprObjectKind OK, SourceLocation l, bool CanOverflow)
      : Expr(UnaryOperatorClass, type, VK, OK,
             input->isTypeDependent() || type->isDependentType(),
             input->isValueDependent(),
             (input->isInstantiationDependent() ||
              type->isInstantiationDependentType()),
             input->containsUnexpandedParameterPack()),
        Val(input) {
    UnaryOperatorBits.Opc = opc;
    UnaryOperatorBits.CanOverflow = CanOverflow;
    UnaryOperatorBits.Loc = l;
  }

  /// Build an empty unary operator.
  explicit UnaryOperator(EmptyShell Empty) : Expr(UnaryOperatorClass, Empty) {
    UnaryOperatorBits.Opc = UO_AddrOf;
  }

  Opcode getOpcode() const {
    return static_cast<Opcode>(UnaryOperatorBits.Opc);
  }
  void setOpcode(Opcode Opc) { UnaryOperatorBits.Opc = Opc; }

  Expr *getSubExpr() const { return cast<Expr>(Val); }
  void setSubExpr(Expr *E) { Val = E; }

  /// getOperatorLoc - Return the location of the operator.
  SourceLocation getOperatorLoc() const { return UnaryOperatorBits.Loc; }
  void setOperatorLoc(SourceLocation L) { UnaryOperatorBits.Loc = L; }

  /// Returns true if the unary operator can cause an overflow. For instance,
  ///   signed int i = INT_MAX; i++;
  ///   signed char c = CHAR_MAX; c++;
  /// Due to integer promotions, c++ is promoted to an int before the postfix
  /// increment, and the result is an int that cannot overflow. However, i++
  /// can overflow.
  bool canOverflow() const { return UnaryOperatorBits.CanOverflow; }
  void setCanOverflow(bool C) { UnaryOperatorBits.CanOverflow = C; }

  /// isPostfix - Return true if this is a postfix operation, like x++.
  static bool isPostfix(Opcode Op) {
    return Op == UO_PostInc || Op == UO_PostDec;
  }

  /// isPrefix - Return true if this is a prefix operation, like --x.
  static bool isPrefix(Opcode Op) {
    return Op == UO_PreInc || Op == UO_PreDec;
  }

  bool isPrefix() const { return isPrefix(getOpcode()); }
  bool isPostfix() const { return isPostfix(getOpcode()); }

  static bool isIncrementOp(Opcode Op) {
    return Op == UO_PreInc || Op == UO_PostInc;
  }
  bool isIncrementOp() const {
    return isIncrementOp(getOpcode());
  }

  static bool isDecrementOp(Opcode Op) {
    return Op == UO_PreDec || Op == UO_PostDec;
  }
  bool isDecrementOp() const {
    return isDecrementOp(getOpcode());
  }

  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
  bool isIncrementDecrementOp() const {
    return isIncrementDecrementOp(getOpcode());
  }

  static bool isArithmeticOp(Opcode Op) {
    return Op >= UO_Plus && Op <= UO_LNot;
  }
  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }

  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  /// corresponds to, e.g. "sizeof" or "[pre]++"
  static StringRef getOpcodeStr(Opcode Op);

  /// Retrieve the unary opcode that corresponds to the given
  /// overloaded operator.
  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);

  /// Retrieve the overloaded operator kind that corresponds to
  /// the given unary opcode.
  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return isPostfix() ? Val->getBeginLoc() : getOperatorLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return isPostfix() ? getOperatorLoc() : Val->getEndLoc();
  }
  SourceLocation getExprLoc() const { return getOperatorLoc(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnaryOperatorClass;
  }

  // Iterators
  child_range children() { return child_range(&Val, &Val+1); }
  const_child_range children() const {
    return const_child_range(&Val, &Val + 1);
  }
};

/// Helper class for OffsetOfExpr.

// __builtin_offsetof(type, identifier(.identifier|[expr])*)
class OffsetOfNode {
public:
  /// The kind of offsetof node we have.
  enum Kind {
    /// An index into an array.
    Array = 0x00,
    /// A field.
    Field = 0x01,
    /// A field in a dependent type, known only by its name.
    Identifier = 0x02,
    /// An implicit indirection through a C++ base class, when the
    /// field found is in a base class.
    Base = 0x03
  };

private:
  enum { MaskBits = 2, Mask = 0x03 };

  /// The source range that covers this part of the designator.
  SourceRange Range;

  /// The data describing the designator, which comes in three
  /// different forms, depending on the lower two bits.
  ///   - An unsigned index into the array of Expr*'s stored after this node
  ///     in memory, for [constant-expression] designators.
  ///   - A FieldDecl*, for references to a known field.
  ///   - An IdentifierInfo*, for references to a field with a given name
  ///     when the class type is dependent.
  ///   - A CXXBaseSpecifier*, for references that look at a field in a
  ///     base class.
  uintptr_t Data;

public:
  /// Create an offsetof node that refers to an array element.
  OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
               SourceLocation RBracketLoc)
      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}

  /// Create an offsetof node that refers to a field.
  OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field, SourceLocation NameLoc)
      : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}

  /// Create an offsetof node that refers to an identifier.
  OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
               SourceLocation NameLoc)
      : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}

  /// Create an offsetof node that refers into a C++ base class.
  explicit OffsetOfNode(const CXXBaseSpecifier *Base)
      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}

  /// Determine what kind of offsetof node this is.
  Kind getKind() const { return static_cast<Kind>(Data & Mask); }

  /// For an array element node, returns the index into the array
  /// of expressions.
  unsigned getArrayExprIndex() const {
    assert(getKind() == Array);
    return Data >> 2;
  }

  /// For a field offsetof node, returns the field.
  FieldDecl *getField() const {
    assert(getKind() == Field);
    return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
  }

  /// For a field or identifier offsetof node, returns the name of
  /// the field.
  IdentifierInfo *getFieldName() const;

  /// For a base class node, returns the base specifier.
  CXXBaseSpecifier *getBase() const {
    assert(getKind() == Base);
    return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
  }

  /// Retrieve the source range that covers this offsetof node.
  ///
  /// For an array element node, the source range contains the locations of
  /// the square brackets. For a field or identifier node, the source range
  /// contains the location of the period (if there is one) and the
  /// identifier.
  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
  SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
  SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
};

/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
/// offsetof(record-type, member-designator). For example, given:
/// @code
/// struct S {
///   float f;
///   double d;
/// };
/// struct T {
///   int i;
///   struct S s[10];
/// };
/// @endcode
/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).

class OffsetOfExpr final
    : public Expr,
      private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
  SourceLocation OperatorLoc, RParenLoc;
  // Base type;
  TypeSourceInfo *TSInfo;
  // Number of sub-components (i.e. instances of OffsetOfNode).
  unsigned NumComps;
  // Number of sub-expressions (i.e. array subscript expressions).
  unsigned NumExprs;

  size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
    return NumComps;
  }

  OffsetOfExpr(const ASTContext &C, QualType type,
               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
               ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
               SourceLocation RParenLoc);

  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
    : Expr(OffsetOfExprClass, EmptyShell()),
      TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}

public:

  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
                              ArrayRef<OffsetOfNode> comps,
                              ArrayRef<Expr*> exprs, SourceLocation RParenLoc);

  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
                                   unsigned NumComps, unsigned NumExprs);

  /// getOperatorLoc - Return the location of the operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }
  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }

  /// Return the location of the right parentheses.
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation R) { RParenLoc = R; }

  TypeSourceInfo *getTypeSourceInfo() const {
    return TSInfo;
  }
  void setTypeSourceInfo(TypeSourceInfo *tsi) {
    TSInfo = tsi;
  }

  const OffsetOfNode &getComponent(unsigned Idx) const {
    assert(Idx < NumComps && "Subscript out of range");
    return getTrailingObjects<OffsetOfNode>()[Idx];
  }

  void setComponent(unsigned Idx, OffsetOfNode ON) {
    assert(Idx < NumComps && "Subscript out of range");
    getTrailingObjects<OffsetOfNode>()[Idx] = ON;
  }

  unsigned getNumComponents() const {
    return NumComps;
  }

  Expr* getIndexExpr(unsigned Idx) {
    assert(Idx < NumExprs && "Subscript out of range");
    return getTrailingObjects<Expr *>()[Idx];
  }

  const Expr *getIndexExpr(unsigned Idx) const {
    assert(Idx < NumExprs && "Subscript out of range");
    return getTrailingObjects<Expr *>()[Idx];
  }

  void setIndexExpr(unsigned Idx, Expr* E) {
    assert(Idx < NumComps && "Subscript out of range");
    getTrailingObjects<Expr *>()[Idx] = E;
  }

  unsigned getNumExpressions() const {
    return NumExprs;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return OperatorLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == OffsetOfExprClass;
  }

  // Iterators
  child_range children() {
    Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
    return child_range(begin, begin + NumExprs);
  }
  const_child_range children() const {
    Stmt *const *begin =
        reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>());
    return const_child_range(begin, begin + NumExprs);
  }
  friend TrailingObjects;
};

/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
/// vec_step (OpenCL 1.1 6.11.12).
class UnaryExprOrTypeTraitExpr : public Expr {
  union {
    TypeSourceInfo *Ty;
    Stmt *Ex;
  } Argument;
  SourceLocation OpLoc, RParenLoc;

public:
  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
                           QualType resultType, SourceLocation op,
                           SourceLocation rp) :
      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
           false, // Never type-dependent (C++ [temp.dep.expr]p3).
           // Value-dependent if the argument is type-dependent.
           TInfo->getType()->isDependentType(),
           TInfo->getType()->isInstantiationDependentType(),
           TInfo->getType()->containsUnexpandedParameterPack()),
      OpLoc(op), RParenLoc(rp) {
    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
    UnaryExprOrTypeTraitExprBits.IsType = true;
    Argument.Ty = TInfo;
  }

  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
                           QualType resultType, SourceLocation op,
                           SourceLocation rp);

  /// Construct an empty sizeof/alignof expression.
  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }

  UnaryExprOrTypeTrait getKind() const {
    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
  }
  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}

  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
  QualType getArgumentType() const {
    return getArgumentTypeInfo()->getType();
  }
  TypeSourceInfo *getArgumentTypeInfo() const {
    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
    return Argument.Ty;
  }
  Expr *getArgumentExpr() {
    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
    return static_cast<Expr*>(Argument.Ex);
  }
  const Expr *getArgumentExpr() const {
    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
  }

  void setArgument(Expr *E) {
    Argument.Ex = E;
    UnaryExprOrTypeTraitExprBits.IsType = false;
  }
  void setArgument(TypeSourceInfo *TInfo) {
    Argument.Ty = TInfo;
    UnaryExprOrTypeTraitExprBits.IsType = true;
  }

  /// Gets the argument type, or the type of the argument expression, whichever
  /// is appropriate.
  QualType getTypeOfArgument() const {
    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
  }

  SourceLocation getOperatorLoc() const { return OpLoc; }
  void setOperatorLoc(SourceLocation L) { OpLoc = L; }

  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return OpLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
  }

  // Iterators
  child_range children();
  const_child_range children() const;
};

//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//

/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
class ArraySubscriptExpr : public Expr {
  enum { LHS, RHS, END_EXPR };
  Stmt *SubExprs[END_EXPR];

  bool lhsIsBase() const { return getRHS()->getType()->isIntegerType(); }

public:
  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
                     ExprValueKind VK, ExprObjectKind OK,
                     SourceLocation rbracketloc)
  : Expr(ArraySubscriptExprClass, t, VK, OK,
         lhs->isTypeDependent() || rhs->isTypeDependent(),
         lhs->isValueDependent() || rhs->isValueDependent(),
         (lhs->isInstantiationDependent() ||
          rhs->isInstantiationDependent()),
         (lhs->containsUnexpandedParameterPack() ||
          rhs->containsUnexpandedParameterPack())) {
    SubExprs[LHS] = lhs;
    SubExprs[RHS] = rhs;
    ArraySubscriptExprBits.RBracketLoc = rbracketloc;
  }

  /// Create an empty array subscript expression.
  explicit ArraySubscriptExpr(EmptyShell Shell)
    : Expr(ArraySubscriptExprClass, Shell) { }

  /// An array access can be written A[4] or 4[A] (both are equivalent).
  /// - getBase() and getIdx() always present the normalized view: A[4].
  ///    In this case getBase() returns "A" and getIdx() returns "4".
  /// - getLHS() and getRHS() present the syntactic view. e.g. for
  ///    4[A] getLHS() returns "4".
  /// Note: Because vector element access is also written A[4] we must
  /// predicate the format conversion in getBase and getIdx only on the
  /// the type of the RHS, as it is possible for the LHS to be a vector of
  /// integer type
  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
  void setLHS(Expr *E) { SubExprs[LHS] = E; }

  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
  void setRHS(Expr *E) { SubExprs[RHS] = E; }

  Expr *getBase() { return lhsIsBase() ? getLHS() : getRHS(); }
  const Expr *getBase() const { return lhsIsBase() ? getLHS() : getRHS(); }

  Expr *getIdx() { return lhsIsBase() ? getRHS() : getLHS(); }
  const Expr *getIdx() const { return lhsIsBase() ? getRHS() : getLHS(); }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getLHS()->getBeginLoc();
  }
  SourceLocation getEndLoc() const { return getRBracketLoc(); }

  SourceLocation getRBracketLoc() const {
    return ArraySubscriptExprBits.RBracketLoc;
  }
  void setRBracketLoc(SourceLocation L) {
    ArraySubscriptExprBits.RBracketLoc = L;
  }

  SourceLocation getExprLoc() const LLVM_READONLY {
    return getBase()->getExprLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ArraySubscriptExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
  }
  const_child_range children() const {
    return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
  }
};

/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
/// while its subclasses may represent alternative syntax that (semantically)
/// results in a function call. For example, CXXOperatorCallExpr is
/// a subclass for overloaded operator calls that use operator syntax, e.g.,
/// "str1 + str2" to resolve to a function call.
class CallExpr : public Expr {
  enum { FN = 0, PREARGS_START = 1 };

  /// The number of arguments in the call expression.
  unsigned NumArgs;

  /// The location of the right parenthese. This has a different meaning for
  /// the derived classes of CallExpr.
  SourceLocation RParenLoc;

  void updateDependenciesFromArg(Expr *Arg);

  // CallExpr store some data in trailing objects. However since CallExpr
  // is used a base of other expression classes we cannot use
  // llvm::TrailingObjects. Instead we manually perform the pointer arithmetic
  // and casts.
  //
  // The trailing objects are in order:
  //
  // * A single "Stmt *" for the callee expression.
  //
  // * An array of getNumPreArgs() "Stmt *" for the pre-argument expressions.
  //
  // * An array of getNumArgs() "Stmt *" for the argument expressions.
  //
  // Note that we store the offset in bytes from the this pointer to the start
  // of the trailing objects. It would be perfectly possible to compute it
  // based on the dynamic kind of the CallExpr. However 1.) we have plenty of
  // space in the bit-fields of Stmt. 2.) It was benchmarked to be faster to
  // compute this once and then load the offset from the bit-fields of Stmt,
  // instead of re-computing the offset each time the trailing objects are
  // accessed.

  /// Return a pointer to the start of the trailing array of "Stmt *".
  Stmt **getTrailingStmts() {
    return reinterpret_cast<Stmt **>(reinterpret_cast<char *>(this) +
                                     CallExprBits.OffsetToTrailingObjects);
  }
  Stmt *const *getTrailingStmts() const {
    return const_cast<CallExpr *>(this)->getTrailingStmts();
  }

  /// Map a statement class to the appropriate offset in bytes from the
  /// this pointer to the trailing objects.
  static unsigned offsetToTrailingObjects(StmtClass SC);

public:
  enum class ADLCallKind : bool { NotADL, UsesADL };
  static constexpr ADLCallKind NotADL = ADLCallKind::NotADL;
  static constexpr ADLCallKind UsesADL = ADLCallKind::UsesADL;

protected:
  /// Build a call expression, assuming that appropriate storage has been
  /// allocated for the trailing objects.
  CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
           ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
           SourceLocation RParenLoc, unsigned MinNumArgs, ADLCallKind UsesADL);

  /// Build an empty call expression, for deserialization.
  CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
           EmptyShell Empty);

  /// Return the size in bytes needed for the trailing objects.
  /// Used by the derived classes to allocate the right amount of storage.
  static unsigned sizeOfTrailingObjects(unsigned NumPreArgs, unsigned NumArgs) {
    return (1 + NumPreArgs + NumArgs) * sizeof(Stmt *);
  }

  Stmt *getPreArg(unsigned I) {
    assert(I < getNumPreArgs() && "Prearg access out of range!");
    return getTrailingStmts()[PREARGS_START + I];
  }
  const Stmt *getPreArg(unsigned I) const {
    assert(I < getNumPreArgs() && "Prearg access out of range!");
    return getTrailingStmts()[PREARGS_START + I];
  }
  void setPreArg(unsigned I, Stmt *PreArg) {
    assert(I < getNumPreArgs() && "Prearg access out of range!");
    getTrailingStmts()[PREARGS_START + I] = PreArg;
  }

  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }

public:
  /// Create a call expression. Fn is the callee expression, Args is the
  /// argument array, Ty is the type of the call expression (which is *not*
  /// the return type in general), VK is the value kind of the call expression
  /// (lvalue, rvalue, ...), and RParenLoc is the location of the right
  /// parenthese in the call expression. MinNumArgs specifies the minimum
  /// number of arguments. The actual number of arguments will be the greater
  /// of Args.size() and MinNumArgs. This is used in a few places to allocate
  /// enough storage for the default arguments. UsesADL specifies whether the
  /// callee was found through argument-dependent lookup.
  ///
  /// Note that you can use CreateTemporary if you need a temporary call
  /// expression on the stack.
  static CallExpr *Create(const ASTContext &Ctx, Expr *Fn,
                          ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
                          SourceLocation RParenLoc, unsigned MinNumArgs = 0,
                          ADLCallKind UsesADL = NotADL);

  /// Create a temporary call expression with no arguments in the memory
  /// pointed to by Mem. Mem must points to at least sizeof(CallExpr)
  /// + sizeof(Stmt *) bytes of storage, aligned to alignof(CallExpr):
  ///
  /// \code{.cpp}
  ///   alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
  ///   CallExpr *TheCall = CallExpr::CreateTemporary(Buffer, etc);
  /// \endcode
  static CallExpr *CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
                                   ExprValueKind VK, SourceLocation RParenLoc,
                                   ADLCallKind UsesADL = NotADL);

  /// Create an empty call expression, for deserialization.
  static CallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
                               EmptyShell Empty);

  Expr *getCallee() { return cast<Expr>(getTrailingStmts()[FN]); }
  const Expr *getCallee() const { return cast<Expr>(getTrailingStmts()[FN]); }
  void setCallee(Expr *F) { getTrailingStmts()[FN] = F; }

  ADLCallKind getADLCallKind() const {
    return static_cast<ADLCallKind>(CallExprBits.UsesADL);
  }
  void setADLCallKind(ADLCallKind V = UsesADL) {
    CallExprBits.UsesADL = static_cast<bool>(V);
  }
  bool usesADL() const { return getADLCallKind() == UsesADL; }

  Decl *getCalleeDecl() { return getCallee()->getReferencedDeclOfCallee(); }
  const Decl *getCalleeDecl() const {
    return getCallee()->getReferencedDeclOfCallee();
  }

  /// If the callee is a FunctionDecl, return it. Otherwise return null.
  FunctionDecl *getDirectCallee() {
    return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
  }
  const FunctionDecl *getDirectCallee() const {
    return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
  }

  /// getNumArgs - Return the number of actual arguments to this call.
  unsigned getNumArgs() const { return NumArgs; }

  /// Retrieve the call arguments.
  Expr **getArgs() {
    return reinterpret_cast<Expr **>(getTrailingStmts() + PREARGS_START +
                                     getNumPreArgs());
  }
  const Expr *const *getArgs() const {
    return reinterpret_cast<const Expr *const *>(
        getTrailingStmts() + PREARGS_START + getNumPreArgs());
  }

  /// getArg - Return the specified argument.
  Expr *getArg(unsigned Arg) {
    assert(Arg < getNumArgs() && "Arg access out of range!");
    return getArgs()[Arg];
  }
  const Expr *getArg(unsigned Arg) const {
    assert(Arg < getNumArgs() && "Arg access out of range!");
    return getArgs()[Arg];
  }

  /// setArg - Set the specified argument.
  void setArg(unsigned Arg, Expr *ArgExpr) {
    assert(Arg < getNumArgs() && "Arg access out of range!");
    getArgs()[Arg] = ArgExpr;
  }

  /// Reduce the number of arguments in this call expression. This is used for
  /// example during error recovery to drop extra arguments. There is no way
  /// to perform the opposite because: 1.) We don't track how much storage
  /// we have for the argument array 2.) This would potentially require growing
  /// the argument array, something we cannot support since the arguments are
  /// stored in a trailing array.
  void shrinkNumArgs(unsigned NewNumArgs) {
    assert((NewNumArgs <= getNumArgs()) &&
           "shrinkNumArgs cannot increase the number of arguments!");
    NumArgs = NewNumArgs;
  }

  /// Bluntly set a new number of arguments without doing any checks whatsoever.
  /// Only used during construction of a CallExpr in a few places in Sema.
  /// FIXME: Find a way to remove it.
  void setNumArgsUnsafe(unsigned NewNumArgs) { NumArgs = NewNumArgs; }

  typedef ExprIterator arg_iterator;
  typedef ConstExprIterator const_arg_iterator;
  typedef llvm::iterator_range<arg_iterator> arg_range;
  typedef llvm::iterator_range<const_arg_iterator> const_arg_range;

  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
  const_arg_range arguments() const {
    return const_arg_range(arg_begin(), arg_end());
  }

  arg_iterator arg_begin() {
    return getTrailingStmts() + PREARGS_START + getNumPreArgs();
  }
  arg_iterator arg_end() { return arg_begin() + getNumArgs(); }

  const_arg_iterator arg_begin() const {
    return getTrailingStmts() + PREARGS_START + getNumPreArgs();
  }
  const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }

  /// This method provides fast access to all the subexpressions of
  /// a CallExpr without going through the slower virtual child_iterator
  /// interface.  This provides efficient reverse iteration of the
  /// subexpressions.  This is currently used for CFG construction.
  ArrayRef<Stmt *> getRawSubExprs() {
    return llvm::makeArrayRef(getTrailingStmts(),
                              PREARGS_START + getNumPreArgs() + getNumArgs());
  }

  /// getNumCommas - Return the number of commas that must have been present in
  /// this function call.
  unsigned getNumCommas() const { return getNumArgs() ? getNumArgs() - 1 : 0; }

  /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
  /// of the callee. If not, return 0.
  unsigned getBuiltinCallee() const;

  /// Returns \c true if this is a call to a builtin which does not
  /// evaluate side-effects within its arguments.
  bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;

  /// getCallReturnType - Get the return type of the call expr. This is not
  /// always the type of the expr itself, if the return type is a reference
  /// type.
  QualType getCallReturnType(const ASTContext &Ctx) const;

  /// Returns the WarnUnusedResultAttr that is either declared on the called
  /// function, or its return type declaration.
  const Attr *getUnusedResultAttr(const ASTContext &Ctx) const;

  /// Returns true if this call expression should warn on unused results.
  bool hasUnusedResultAttr(const ASTContext &Ctx) const {
    return getUnusedResultAttr(Ctx) != nullptr;
  }

  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  SourceLocation getBeginLoc() const LLVM_READONLY;
  SourceLocation getEndLoc() const LLVM_READONLY;

  /// Return true if this is a call to __assume() or __builtin_assume() with
  /// a non-value-dependent constant parameter evaluating as false.
  bool isBuiltinAssumeFalse(const ASTContext &Ctx) const;

  bool isCallToStdMove() const {
    const FunctionDecl *FD = getDirectCallee();
    return getNumArgs() == 1 && FD && FD->isInStdNamespace() &&
           FD->getIdentifier() && FD->getIdentifier()->isStr("move");
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() >= firstCallExprConstant &&
           T->getStmtClass() <= lastCallExprConstant;
  }

  // Iterators
  child_range children() {
    return child_range(getTrailingStmts(), getTrailingStmts() + PREARGS_START +
                                               getNumPreArgs() + getNumArgs());
  }

  const_child_range children() const {
    return const_child_range(getTrailingStmts(),
                             getTrailingStmts() + PREARGS_START +
                                 getNumPreArgs() + getNumArgs());
  }
};

/// Extra data stored in some MemberExpr objects.
struct MemberExprNameQualifier {
  /// The nested-name-specifier that qualifies the name, including
  /// source-location information.
  NestedNameSpecifierLoc QualifierLoc;

  /// The DeclAccessPair through which the MemberDecl was found due to
  /// name qualifiers.
  DeclAccessPair FoundDecl;
};

/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
///
class MemberExpr final
    : public Expr,
      private llvm::TrailingObjects<MemberExpr, MemberExprNameQualifier,
                                    ASTTemplateKWAndArgsInfo,
                                    TemplateArgumentLoc> {
  friend class ASTReader;
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  friend TrailingObjects;

  /// Base - the expression for the base pointer or structure references.  In
  /// X.F, this is "X".
  Stmt *Base;

  /// MemberDecl - This is the decl being referenced by the field/member name.
  /// In X.F, this is the decl referenced by F.
  ValueDecl *MemberDecl;

  /// MemberDNLoc - Provides source/type location info for the
  /// declaration name embedded in MemberDecl.
  DeclarationNameLoc MemberDNLoc;

  /// MemberLoc - This is the location of the member name.
  SourceLocation MemberLoc;

  size_t numTrailingObjects(OverloadToken<MemberExprNameQualifier>) const {
    return hasQualifierOrFoundDecl();
  }

  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
    return hasTemplateKWAndArgsInfo();
  }

  bool hasQualifierOrFoundDecl() const {
    return MemberExprBits.HasQualifierOrFoundDecl;
  }

  bool hasTemplateKWAndArgsInfo() const {
    return MemberExprBits.HasTemplateKWAndArgsInfo;
  }

  MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
             ValueDecl *MemberDecl, const DeclarationNameInfo &NameInfo,
             QualType T, ExprValueKind VK, ExprObjectKind OK,
             NonOdrUseReason NOUR);
  MemberExpr(EmptyShell Empty)
      : Expr(MemberExprClass, Empty), Base(), MemberDecl() {}

public:
  static MemberExpr *Create(const ASTContext &C, Expr *Base, bool IsArrow,
                            SourceLocation OperatorLoc,
                            NestedNameSpecifierLoc QualifierLoc,
                            SourceLocation TemplateKWLoc, ValueDecl *MemberDecl,
                            DeclAccessPair FoundDecl,
                            DeclarationNameInfo MemberNameInfo,
                            const TemplateArgumentListInfo *TemplateArgs,
                            QualType T, ExprValueKind VK, ExprObjectKind OK,
                            NonOdrUseReason NOUR);

  /// Create an implicit MemberExpr, with no location, qualifier, template
  /// arguments, and so on. Suitable only for non-static member access.
  static MemberExpr *CreateImplicit(const ASTContext &C, Expr *Base,
                                    bool IsArrow, ValueDecl *MemberDecl,
                                    QualType T, ExprValueKind VK,
                                    ExprObjectKind OK) {
    return Create(C, Base, IsArrow, SourceLocation(), NestedNameSpecifierLoc(),
                  SourceLocation(), MemberDecl,
                  DeclAccessPair::make(MemberDecl, MemberDecl->getAccess()),
                  DeclarationNameInfo(), nullptr, T, VK, OK, NOUR_None);
  }

  static MemberExpr *CreateEmpty(const ASTContext &Context, bool HasQualifier,
                                 bool HasFoundDecl,
                                 bool HasTemplateKWAndArgsInfo,
                                 unsigned NumTemplateArgs);

  void setBase(Expr *E) { Base = E; }
  Expr *getBase() const { return cast<Expr>(Base); }

  /// Retrieve the member declaration to which this expression refers.
  ///
  /// The returned declaration will be a FieldDecl or (in C++) a VarDecl (for
  /// static data members), a CXXMethodDecl, or an EnumConstantDecl.
  ValueDecl *getMemberDecl() const { return MemberDecl; }
  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }

  /// Retrieves the declaration found by lookup.
  DeclAccessPair getFoundDecl() const {
    if (!hasQualifierOrFoundDecl())
      return DeclAccessPair::make(getMemberDecl(),
                                  getMemberDecl()->getAccess());
    return getTrailingObjects<MemberExprNameQualifier>()->FoundDecl;
  }

  /// Determines whether this member expression actually had
  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
  /// x->Base::foo.
  bool hasQualifier() const { return getQualifier() != nullptr; }

  /// If the member name was qualified, retrieves the
  /// nested-name-specifier that precedes the member name, with source-location
  /// information.
  NestedNameSpecifierLoc getQualifierLoc() const {
    if (!hasQualifierOrFoundDecl())
      return NestedNameSpecifierLoc();
    return getTrailingObjects<MemberExprNameQualifier>()->QualifierLoc;
  }

  /// If the member name was qualified, retrieves the
  /// nested-name-specifier that precedes the member name. Otherwise, returns
  /// NULL.
  NestedNameSpecifier *getQualifier() const {
    return getQualifierLoc().getNestedNameSpecifier();
  }

  /// Retrieve the location of the template keyword preceding
  /// the member name, if any.
  SourceLocation getTemplateKeywordLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
  }

  /// Retrieve the location of the left angle bracket starting the
  /// explicit template argument list following the member name, if any.
  SourceLocation getLAngleLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
  }

  /// Retrieve the location of the right angle bracket ending the
  /// explicit template argument list following the member name, if any.
  SourceLocation getRAngleLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
  }

  /// Determines whether the member name was preceded by the template keyword.
  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }

  /// Determines whether the member name was followed by an
  /// explicit template argument list.
  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }

  /// Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    if (hasExplicitTemplateArgs())
      getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
          getTrailingObjects<TemplateArgumentLoc>(), List);
  }

  /// Retrieve the template arguments provided as part of this
  /// template-id.
  const TemplateArgumentLoc *getTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return nullptr;

    return getTrailingObjects<TemplateArgumentLoc>();
  }

  /// Retrieve the number of template arguments provided as part of this
  /// template-id.
  unsigned getNumTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return 0;

    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
  }

  ArrayRef<TemplateArgumentLoc> template_arguments() const {
    return {getTemplateArgs(), getNumTemplateArgs()};
  }

  /// Retrieve the member declaration name info.
  DeclarationNameInfo getMemberNameInfo() const {
    return DeclarationNameInfo(MemberDecl->getDeclName(),
                               MemberLoc, MemberDNLoc);
  }

  SourceLocation getOperatorLoc() const { return MemberExprBits.OperatorLoc; }

  bool isArrow() const { return MemberExprBits.IsArrow; }
  void setArrow(bool A) { MemberExprBits.IsArrow = A; }

  /// getMemberLoc - Return the location of the "member", in X->F, it is the
  /// location of 'F'.
  SourceLocation getMemberLoc() const { return MemberLoc; }
  void setMemberLoc(SourceLocation L) { MemberLoc = L; }

  SourceLocation getBeginLoc() const LLVM_READONLY;
  SourceLocation getEndLoc() const LLVM_READONLY;

  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }

  /// Determine whether the base of this explicit is implicit.
  bool isImplicitAccess() const {
    return getBase() && getBase()->isImplicitCXXThis();
  }

  /// Returns true if this member expression refers to a method that
  /// was resolved from an overloaded set having size greater than 1.
  bool hadMultipleCandidates() const {
    return MemberExprBits.HadMultipleCandidates;
  }
  /// Sets the flag telling whether this expression refers to
  /// a method that was resolved from an overloaded set having size
  /// greater than 1.
  void setHadMultipleCandidates(bool V = true) {
    MemberExprBits.HadMultipleCandidates = V;
  }

  /// Returns true if virtual dispatch is performed.
  /// If the member access is fully qualified, (i.e. X::f()), virtual
  /// dispatching is not performed. In -fapple-kext mode qualified
  /// calls to virtual method will still go through the vtable.
  bool performsVirtualDispatch(const LangOptions &LO) const {
    return LO.AppleKext || !hasQualifier();
  }

  /// Is this expression a non-odr-use reference, and if so, why?
  /// This is only meaningful if the named member is a static member.
  NonOdrUseReason isNonOdrUse() const {
    return static_cast<NonOdrUseReason>(MemberExprBits.NonOdrUseReason);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == MemberExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Base, &Base+1); }
  const_child_range children() const {
    return const_child_range(&Base, &Base + 1);
  }
};

/// CompoundLiteralExpr - [C99 6.5.2.5]
///
class CompoundLiteralExpr : public Expr {
  /// LParenLoc - If non-null, this is the location of the left paren in a
  /// compound literal like "(int){4}".  This can be null if this is a
  /// synthesized compound expression.
  SourceLocation LParenLoc;

  /// The type as written.  This can be an incomplete array type, in
  /// which case the actual expression type will be different.
  /// The int part of the pair stores whether this expr is file scope.
  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
  Stmt *Init;
public:
  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
           tinfo->getType()->isDependentType(),
           init->isValueDependent(),
           (init->isInstantiationDependent() ||
            tinfo->getType()->isInstantiationDependentType()),
           init->containsUnexpandedParameterPack()),
      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}

  /// Construct an empty compound literal.
  explicit CompoundLiteralExpr(EmptyShell Empty)
    : Expr(CompoundLiteralExprClass, Empty) { }

  const Expr *getInitializer() const { return cast<Expr>(Init); }
  Expr *getInitializer() { return cast<Expr>(Init); }
  void setInitializer(Expr *E) { Init = E; }

  bool isFileScope() const { return TInfoAndScope.getInt(); }
  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }

  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }

  TypeSourceInfo *getTypeSourceInfo() const {
    return TInfoAndScope.getPointer();
  }
  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
    TInfoAndScope.setPointer(tinfo);
  }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    // FIXME: Init should never be null.
    if (!Init)
      return SourceLocation();
    if (LParenLoc.isInvalid())
      return Init->getBeginLoc();
    return LParenLoc;
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    // FIXME: Init should never be null.
    if (!Init)
      return SourceLocation();
    return Init->getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CompoundLiteralExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Init, &Init+1); }
  const_child_range children() const {
    return const_child_range(&Init, &Init + 1);
  }
};

/// CastExpr - Base class for type casts, including both implicit
/// casts (ImplicitCastExpr) and explicit casts that have some
/// representation in the source code (ExplicitCastExpr's derived
/// classes).
class CastExpr : public Expr {
  Stmt *Op;

  bool CastConsistency() const;

  const CXXBaseSpecifier * const *path_buffer() const {
    return const_cast<CastExpr*>(this)->path_buffer();
  }
  CXXBaseSpecifier **path_buffer();

protected:
  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
           Expr *op, unsigned BasePathSize)
      : Expr(SC, ty, VK, OK_Ordinary,
             // Cast expressions are type-dependent if the type is
             // dependent (C++ [temp.dep.expr]p3).
             ty->isDependentType(),
             // Cast expressions are value-dependent if the type is
             // dependent or if the subexpression is value-dependent.
             ty->isDependentType() || (op && op->isValueDependent()),
             (ty->isInstantiationDependentType() ||
              (op && op->isInstantiationDependent())),
             // An implicit cast expression doesn't (lexically) contain an
             // unexpanded pack, even if its target type does.
             ((SC != ImplicitCastExprClass &&
               ty->containsUnexpandedParameterPack()) ||
              (op && op->containsUnexpandedParameterPack()))),
        Op(op) {
    CastExprBits.Kind = kind;
    CastExprBits.PartOfExplicitCast = false;
    CastExprBits.BasePathSize = BasePathSize;
    assert((CastExprBits.BasePathSize == BasePathSize) &&
           "BasePathSize overflow!");
    assert(CastConsistency());
  }

  /// Construct an empty cast.
  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
    : Expr(SC, Empty) {
    CastExprBits.PartOfExplicitCast = false;
    CastExprBits.BasePathSize = BasePathSize;
    assert((CastExprBits.BasePathSize == BasePathSize) &&
           "BasePathSize overflow!");
  }

public:
  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
  void setCastKind(CastKind K) { CastExprBits.Kind = K; }

  static const char *getCastKindName(CastKind CK);
  const char *getCastKindName() const { return getCastKindName(getCastKind()); }

  Expr *getSubExpr() { return cast<Expr>(Op); }
  const Expr *getSubExpr() const { return cast<Expr>(Op); }
  void setSubExpr(Expr *E) { Op = E; }

  /// Retrieve the cast subexpression as it was written in the source
  /// code, looking through any implicit casts or other intermediate nodes
  /// introduced by semantic analysis.
  Expr *getSubExprAsWritten();
  const Expr *getSubExprAsWritten() const {
    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
  }

  /// If this cast applies a user-defined conversion, retrieve the conversion
  /// function that it invokes.
  NamedDecl *getConversionFunction() const;

  typedef CXXBaseSpecifier **path_iterator;
  typedef const CXXBaseSpecifier *const *path_const_iterator;
  bool path_empty() const { return path_size() == 0; }
  unsigned path_size() const { return CastExprBits.BasePathSize; }
  path_iterator path_begin() { return path_buffer(); }
  path_iterator path_end() { return path_buffer() + path_size(); }
  path_const_iterator path_begin() const { return path_buffer(); }
  path_const_iterator path_end() const { return path_buffer() + path_size(); }

  llvm::iterator_range<path_iterator> path() {
    return llvm::make_range(path_begin(), path_end());
  }
  llvm::iterator_range<path_const_iterator> path() const {
    return llvm::make_range(path_begin(), path_end());
  }

  const FieldDecl *getTargetUnionField() const {
    assert(getCastKind() == CK_ToUnion);
    return getTargetFieldForToUnionCast(getType(), getSubExpr()->getType());
  }

  static const FieldDecl *getTargetFieldForToUnionCast(QualType unionType,
                                                       QualType opType);
  static const FieldDecl *getTargetFieldForToUnionCast(const RecordDecl *RD,
                                                       QualType opType);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() >= firstCastExprConstant &&
           T->getStmtClass() <= lastCastExprConstant;
  }

  // Iterators
  child_range children() { return child_range(&Op, &Op+1); }
  const_child_range children() const { return const_child_range(&Op, &Op + 1); }
};

/// ImplicitCastExpr - Allows us to explicitly represent implicit type
/// conversions, which have no direct representation in the original
/// source code. For example: converting T[]->T*, void f()->void
/// (*f)(), float->double, short->int, etc.
///
/// In C, implicit casts always produce rvalues. However, in C++, an
/// implicit cast whose result is being bound to a reference will be
/// an lvalue or xvalue. For example:
///
/// @code
/// class Base { };
/// class Derived : public Base { };
/// Derived &&ref();
/// void f(Derived d) {
///   Base& b = d; // initializer is an ImplicitCastExpr
///                // to an lvalue of type Base
///   Base&& r = ref(); // initializer is an ImplicitCastExpr
///                     // to an xvalue of type Base
/// }
/// @endcode
class ImplicitCastExpr final
    : public CastExpr,
      private llvm::TrailingObjects<ImplicitCastExpr, CXXBaseSpecifier *> {

  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
                   unsigned BasePathLength, ExprValueKind VK)
    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) { }

  /// Construct an empty implicit cast.
  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }

public:
  enum OnStack_t { OnStack };
  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
                   ExprValueKind VK)
    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
  }

  bool isPartOfExplicitCast() const { return CastExprBits.PartOfExplicitCast; }
  void setIsPartOfExplicitCast(bool PartOfExplicitCast) {
    CastExprBits.PartOfExplicitCast = PartOfExplicitCast;
  }

  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
                                  CastKind Kind, Expr *Operand,
                                  const CXXCastPath *BasePath,
                                  ExprValueKind Cat);

  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
                                       unsigned PathSize);

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getSubExpr()->getBeginLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return getSubExpr()->getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ImplicitCastExprClass;
  }

  friend TrailingObjects;
  friend class CastExpr;
};

/// ExplicitCastExpr - An explicit cast written in the source
/// code.
///
/// This class is effectively an abstract class, because it provides
/// the basic representation of an explicitly-written cast without
/// specifying which kind of cast (C cast, functional cast, static
/// cast, etc.) was written; specific derived classes represent the
/// particular style of cast and its location information.
///
/// Unlike implicit casts, explicit cast nodes have two different
/// types: the type that was written into the source code, and the
/// actual type of the expression as determined by semantic
/// analysis. These types may differ slightly. For example, in C++ one
/// can cast to a reference type, which indicates that the resulting
/// expression will be an lvalue or xvalue. The reference type, however,
/// will not be used as the type of the expression.
class ExplicitCastExpr : public CastExpr {
  /// TInfo - Source type info for the (written) type
  /// this expression is casting to.
  TypeSourceInfo *TInfo;

protected:
  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
                   CastKind kind, Expr *op, unsigned PathSize,
                   TypeSourceInfo *writtenTy)
    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}

  /// Construct an empty explicit cast.
  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
    : CastExpr(SC, Shell, PathSize) { }

public:
  /// getTypeInfoAsWritten - Returns the type source info for the type
  /// that this expression is casting to.
  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }

  /// getTypeAsWritten - Returns the type that this expression is
  /// casting to, as written in the source code.
  QualType getTypeAsWritten() const { return TInfo->getType(); }

  static bool classof(const Stmt *T) {
     return T->getStmtClass() >= firstExplicitCastExprConstant &&
            T->getStmtClass() <= lastExplicitCastExprConstant;
  }
};

/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
/// cast in C++ (C++ [expr.cast]), which uses the syntax
/// (Type)expr. For example: @c (int)f.
class CStyleCastExpr final
    : public ExplicitCastExpr,
      private llvm::TrailingObjects<CStyleCastExpr, CXXBaseSpecifier *> {
  SourceLocation LPLoc; // the location of the left paren
  SourceLocation RPLoc; // the location of the right paren

  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
                 unsigned PathSize, TypeSourceInfo *writtenTy,
                 SourceLocation l, SourceLocation r)
    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
                       writtenTy), LPLoc(l), RPLoc(r) {}

  /// Construct an empty C-style explicit cast.
  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }

public:
  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
                                ExprValueKind VK, CastKind K,
                                Expr *Op, const CXXCastPath *BasePath,
                                TypeSourceInfo *WrittenTy, SourceLocation L,
                                SourceLocation R);

  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
                                     unsigned PathSize);

  SourceLocation getLParenLoc() const { return LPLoc; }
  void setLParenLoc(SourceLocation L) { LPLoc = L; }

  SourceLocation getRParenLoc() const { return RPLoc; }
  void setRParenLoc(SourceLocation L) { RPLoc = L; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return LPLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return getSubExpr()->getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CStyleCastExprClass;
  }

  friend TrailingObjects;
  friend class CastExpr;
};

/// A builtin binary operation expression such as "x + y" or "x <= y".
///
/// This expression node kind describes a builtin binary operation,
/// such as "x + y" for integer values "x" and "y". The operands will
/// already have been converted to appropriate types (e.g., by
/// performing promotions or conversions).
///
/// In C++, where operators may be overloaded, a different kind of
/// expression node (CXXOperatorCallExpr) is used to express the
/// invocation of an overloaded operator with operator syntax. Within
/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
/// used to store an expression "x + y" depends on the subexpressions
/// for x and y. If neither x or y is type-dependent, and the "+"
/// operator resolves to a built-in operation, BinaryOperator will be
/// used to express the computation (x and y may still be
/// value-dependent). If either x or y is type-dependent, or if the
/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
/// be used to express the computation.
class BinaryOperator : public Expr {
  enum { LHS, RHS, END_EXPR };
  Stmt *SubExprs[END_EXPR];

public:
  typedef BinaryOperatorKind Opcode;

  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
                 ExprValueKind VK, ExprObjectKind OK,
                 SourceLocation opLoc, FPOptions FPFeatures)
    : Expr(BinaryOperatorClass, ResTy, VK, OK,
           lhs->isTypeDependent() || rhs->isTypeDependent(),
           lhs->isValueDependent() || rhs->isValueDependent(),
           (lhs->isInstantiationDependent() ||
            rhs->isInstantiationDependent()),
           (lhs->containsUnexpandedParameterPack() ||
            rhs->containsUnexpandedParameterPack())) {
    BinaryOperatorBits.Opc = opc;
    BinaryOperatorBits.FPFeatures = FPFeatures.getInt();
    BinaryOperatorBits.OpLoc = opLoc;
    SubExprs[LHS] = lhs;
    SubExprs[RHS] = rhs;
    assert(!isCompoundAssignmentOp() &&
           "Use CompoundAssignOperator for compound assignments");
  }

  /// Construct an empty binary operator.
  explicit BinaryOperator(EmptyShell Empty) : Expr(BinaryOperatorClass, Empty) {
    BinaryOperatorBits.Opc = BO_Comma;
  }

  SourceLocation getExprLoc() const { return getOperatorLoc(); }
  SourceLocation getOperatorLoc() const { return BinaryOperatorBits.OpLoc; }
  void setOperatorLoc(SourceLocation L) { BinaryOperatorBits.OpLoc = L; }

  Opcode getOpcode() const {
    return static_cast<Opcode>(BinaryOperatorBits.Opc);
  }
  void setOpcode(Opcode Opc) { BinaryOperatorBits.Opc = Opc; }

  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
  void setLHS(Expr *E) { SubExprs[LHS] = E; }
  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
  void setRHS(Expr *E) { SubExprs[RHS] = E; }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getLHS()->getBeginLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return getRHS()->getEndLoc();
  }

  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  /// corresponds to, e.g. "<<=".
  static StringRef getOpcodeStr(Opcode Op);

  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }

  /// Retrieve the binary opcode that corresponds to the given
  /// overloaded operator.
  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);

  /// Retrieve the overloaded operator kind that corresponds to
  /// the given binary opcode.
  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);

  /// predicates to categorize the respective opcodes.
  static bool isPtrMemOp(Opcode Opc) {
    return Opc == BO_PtrMemD || Opc == BO_PtrMemI;
  }
  bool isPtrMemOp() const { return isPtrMemOp(getOpcode()); }

  static bool isMultiplicativeOp(Opcode Opc) {
    return Opc >= BO_Mul && Opc <= BO_Rem;
  }
  bool isMultiplicativeOp() const { return isMultiplicativeOp(getOpcode()); }
  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
  bool isShiftOp() const { return isShiftOp(getOpcode()); }

  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }

  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }

  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }

  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_Cmp && Opc<=BO_NE; }
  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }

  static bool isCommaOp(Opcode Opc) { return Opc == BO_Comma; }
  bool isCommaOp() const { return isCommaOp(getOpcode()); }

  static Opcode negateComparisonOp(Opcode Opc) {
    switch (Opc) {
    default:
      llvm_unreachable("Not a comparison operator.");
    case BO_LT: return BO_GE;
    case BO_GT: return BO_LE;
    case BO_LE: return BO_GT;
    case BO_GE: return BO_LT;
    case BO_EQ: return BO_NE;
    case BO_NE: return BO_EQ;
    }
  }

  static Opcode reverseComparisonOp(Opcode Opc) {
    switch (Opc) {
    default:
      llvm_unreachable("Not a comparison operator.");
    case BO_LT: return BO_GT;
    case BO_GT: return BO_LT;
    case BO_LE: return BO_GE;
    case BO_GE: return BO_LE;
    case BO_EQ:
    case BO_NE:
      return Opc;
    }
  }

  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }

  static bool isAssignmentOp(Opcode Opc) {
    return Opc >= BO_Assign && Opc <= BO_OrAssign;
  }
  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }

  static bool isCompoundAssignmentOp(Opcode Opc) {
    return Opc > BO_Assign && Opc <= BO_OrAssign;
  }
  bool isCompoundAssignmentOp() const {
    return isCompoundAssignmentOp(getOpcode());
  }
  static Opcode getOpForCompoundAssignment(Opcode Opc) {
    assert(isCompoundAssignmentOp(Opc));
    if (Opc >= BO_AndAssign)
      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
    else
      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
  }

  static bool isShiftAssignOp(Opcode Opc) {
    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
  }
  bool isShiftAssignOp() const {
    return isShiftAssignOp(getOpcode());
  }

  // Return true if a binary operator using the specified opcode and operands
  // would match the 'p = (i8*)nullptr + n' idiom for casting a pointer-sized
  // integer to a pointer.
  static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc,
                                               Expr *LHS, Expr *RHS);

  static bool classof(const Stmt *S) {
    return S->getStmtClass() >= firstBinaryOperatorConstant &&
           S->getStmtClass() <= lastBinaryOperatorConstant;
  }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
  }
  const_child_range children() const {
    return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
  }

  // Set the FP contractability status of this operator. Only meaningful for
  // operations on floating point types.
  void setFPFeatures(FPOptions F) {
    BinaryOperatorBits.FPFeatures = F.getInt();
  }

  FPOptions getFPFeatures() const {
    return FPOptions(BinaryOperatorBits.FPFeatures);
  }

  // Get the FP contractability status of this operator. Only meaningful for
  // operations on floating point types.
  bool isFPContractableWithinStatement() const {
    return getFPFeatures().allowFPContractWithinStatement();
  }

  // Get the FENV_ACCESS status of this operator. Only meaningful for
  // operations on floating point types.
  bool isFEnvAccessOn() const { return getFPFeatures().allowFEnvAccess(); }

protected:
  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
                 ExprValueKind VK, ExprObjectKind OK,
                 SourceLocation opLoc, FPOptions FPFeatures, bool dead2)
    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
           lhs->isTypeDependent() || rhs->isTypeDependent(),
           lhs->isValueDependent() || rhs->isValueDependent(),
           (lhs->isInstantiationDependent() ||
            rhs->isInstantiationDependent()),
           (lhs->containsUnexpandedParameterPack() ||
            rhs->containsUnexpandedParameterPack())) {
    BinaryOperatorBits.Opc = opc;
    BinaryOperatorBits.FPFeatures = FPFeatures.getInt();
    BinaryOperatorBits.OpLoc = opLoc;
    SubExprs[LHS] = lhs;
    SubExprs[RHS] = rhs;
  }

  BinaryOperator(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) {
    BinaryOperatorBits.Opc = BO_MulAssign;
  }
};

/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
/// track of the type the operation is performed in.  Due to the semantics of
/// these operators, the operands are promoted, the arithmetic performed, an
/// implicit conversion back to the result type done, then the assignment takes
/// place.  This captures the intermediate type which the computation is done
/// in.
class CompoundAssignOperator : public BinaryOperator {
  QualType ComputationLHSType;
  QualType ComputationResultType;
public:
  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
                         ExprValueKind VK, ExprObjectKind OK,
                         QualType CompLHSType, QualType CompResultType,
                         SourceLocation OpLoc, FPOptions FPFeatures)
    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, FPFeatures,
                     true),
      ComputationLHSType(CompLHSType),
      ComputationResultType(CompResultType) {
    assert(isCompoundAssignmentOp() &&
           "Only should be used for compound assignments");
  }

  /// Build an empty compound assignment operator expression.
  explicit CompoundAssignOperator(EmptyShell Empty)
    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }

  // The two computation types are the type the LHS is converted
  // to for the computation and the type of the result; the two are
  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
  QualType getComputationLHSType() const { return ComputationLHSType; }
  void setComputationLHSType(QualType T) { ComputationLHSType = T; }

  QualType getComputationResultType() const { return ComputationResultType; }
  void setComputationResultType(QualType T) { ComputationResultType = T; }

  static bool classof(const Stmt *S) {
    return S->getStmtClass() == CompoundAssignOperatorClass;
  }
};

/// AbstractConditionalOperator - An abstract base class for
/// ConditionalOperator and BinaryConditionalOperator.
class AbstractConditionalOperator : public Expr {
  SourceLocation QuestionLoc, ColonLoc;
  friend class ASTStmtReader;

protected:
  AbstractConditionalOperator(StmtClass SC, QualType T,
                              ExprValueKind VK, ExprObjectKind OK,
                              bool TD, bool VD, bool ID,
                              bool ContainsUnexpandedParameterPack,
                              SourceLocation qloc,
                              SourceLocation cloc)
    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
      QuestionLoc(qloc), ColonLoc(cloc) {}

  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
    : Expr(SC, Empty) { }

public:
  // getCond - Return the expression representing the condition for
  //   the ?: operator.
  Expr *getCond() const;

  // getTrueExpr - Return the subexpression representing the value of
  //   the expression if the condition evaluates to true.
  Expr *getTrueExpr() const;

  // getFalseExpr - Return the subexpression representing the value of
  //   the expression if the condition evaluates to false.  This is
  //   the same as getRHS.
  Expr *getFalseExpr() const;

  SourceLocation getQuestionLoc() const { return QuestionLoc; }
  SourceLocation getColonLoc() const { return ColonLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ConditionalOperatorClass ||
           T->getStmtClass() == BinaryConditionalOperatorClass;
  }
};

/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
/// middle" extension is a BinaryConditionalOperator.
class ConditionalOperator : public AbstractConditionalOperator {
  enum { COND, LHS, RHS, END_EXPR };
  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.

  friend class ASTStmtReader;
public:
  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
                      SourceLocation CLoc, Expr *rhs,
                      QualType t, ExprValueKind VK, ExprObjectKind OK)
    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
           // FIXME: the type of the conditional operator doesn't
           // depend on the type of the conditional, but the standard
           // seems to imply that it could. File a bug!
           (lhs->isTypeDependent() || rhs->isTypeDependent()),
           (cond->isValueDependent() || lhs->isValueDependent() ||
            rhs->isValueDependent()),
           (cond->isInstantiationDependent() ||
            lhs->isInstantiationDependent() ||
            rhs->isInstantiationDependent()),
           (cond->containsUnexpandedParameterPack() ||
            lhs->containsUnexpandedParameterPack() ||
            rhs->containsUnexpandedParameterPack()),
                                  QLoc, CLoc) {
    SubExprs[COND] = cond;
    SubExprs[LHS] = lhs;
    SubExprs[RHS] = rhs;
  }

  /// Build an empty conditional operator.
  explicit ConditionalOperator(EmptyShell Empty)
    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }

  // getCond - Return the expression representing the condition for
  //   the ?: operator.
  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }

  // getTrueExpr - Return the subexpression representing the value of
  //   the expression if the condition evaluates to true.
  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }

  // getFalseExpr - Return the subexpression representing the value of
  //   the expression if the condition evaluates to false.  This is
  //   the same as getRHS.
  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }

  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getCond()->getBeginLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return getRHS()->getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ConditionalOperatorClass;
  }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
  }
  const_child_range children() const {
    return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
  }
};

/// BinaryConditionalOperator - The GNU extension to the conditional
/// operator which allows the middle operand to be omitted.
///
/// This is a different expression kind on the assumption that almost
/// every client ends up needing to know that these are different.
class BinaryConditionalOperator : public AbstractConditionalOperator {
  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };

  /// - the common condition/left-hand-side expression, which will be
  ///   evaluated as the opaque value
  /// - the condition, expressed in terms of the opaque value
  /// - the left-hand-side, expressed in terms of the opaque value
  /// - the right-hand-side
  Stmt *SubExprs[NUM_SUBEXPRS];
  OpaqueValueExpr *OpaqueValue;

  friend class ASTStmtReader;
public:
  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
                            Expr *cond, Expr *lhs, Expr *rhs,
                            SourceLocation qloc, SourceLocation cloc,
                            QualType t, ExprValueKind VK, ExprObjectKind OK)
    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
           (common->isTypeDependent() || rhs->isTypeDependent()),
           (common->isValueDependent() || rhs->isValueDependent()),
           (common->isInstantiationDependent() ||
            rhs->isInstantiationDependent()),
           (common->containsUnexpandedParameterPack() ||
            rhs->containsUnexpandedParameterPack()),
                                  qloc, cloc),
      OpaqueValue(opaqueValue) {
    SubExprs[COMMON] = common;
    SubExprs[COND] = cond;
    SubExprs[LHS] = lhs;
    SubExprs[RHS] = rhs;
    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
  }

  /// Build an empty conditional operator.
  explicit BinaryConditionalOperator(EmptyShell Empty)
    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }

  /// getCommon - Return the common expression, written to the
  ///   left of the condition.  The opaque value will be bound to the
  ///   result of this expression.
  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }

  /// getOpaqueValue - Return the opaque value placeholder.
  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }

  /// getCond - Return the condition expression; this is defined
  ///   in terms of the opaque value.
  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }

  /// getTrueExpr - Return the subexpression which will be
  ///   evaluated if the condition evaluates to true;  this is defined
  ///   in terms of the opaque value.
  Expr *getTrueExpr() const {
    return cast<Expr>(SubExprs[LHS]);
  }

  /// getFalseExpr - Return the subexpression which will be
  ///   evaluated if the condnition evaluates to false; this is
  ///   defined in terms of the opaque value.
  Expr *getFalseExpr() const {
    return cast<Expr>(SubExprs[RHS]);
  }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getCommon()->getBeginLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return getFalseExpr()->getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == BinaryConditionalOperatorClass;
  }

  // Iterators
  child_range children() {
    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
  }
  const_child_range children() const {
    return const_child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
  }
};

inline Expr *AbstractConditionalOperator::getCond() const {
  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
    return co->getCond();
  return cast<BinaryConditionalOperator>(this)->getCond();
}

inline Expr *AbstractConditionalOperator::getTrueExpr() const {
  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
    return co->getTrueExpr();
  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
}

inline Expr *AbstractConditionalOperator::getFalseExpr() const {
  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
    return co->getFalseExpr();
  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
}

/// AddrLabelExpr - The GNU address of label extension, representing &&label.
class AddrLabelExpr : public Expr {
  SourceLocation AmpAmpLoc, LabelLoc;
  LabelDecl *Label;
public:
  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
                QualType t)
    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
           false),
      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}

  /// Build an empty address of a label expression.
  explicit AddrLabelExpr(EmptyShell Empty)
    : Expr(AddrLabelExprClass, Empty) { }

  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
  SourceLocation getLabelLoc() const { return LabelLoc; }
  void setLabelLoc(SourceLocation L) { LabelLoc = L; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return AmpAmpLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return LabelLoc; }

  LabelDecl *getLabel() const { return Label; }
  void setLabel(LabelDecl *L) { Label = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == AddrLabelExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
/// takes the value of the last subexpression.
///
/// A StmtExpr is always an r-value; values "returned" out of a
/// StmtExpr will be copied.
class StmtExpr : public Expr {
  Stmt *SubStmt;
  SourceLocation LParenLoc, RParenLoc;
public:
  // FIXME: Does type-dependence need to be computed differently?
  // FIXME: Do we need to compute instantiation instantiation-dependence for
  // statements? (ugh!)
  StmtExpr(CompoundStmt *substmt, QualType T,
           SourceLocation lp, SourceLocation rp) :
    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
         T->isDependentType(), false, false, false),
    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }

  /// Build an empty statement expression.
  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }

  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
  void setSubStmt(CompoundStmt *S) { SubStmt = S; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return LParenLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == StmtExprClass;
  }

  // Iterators
  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
  const_child_range children() const {
    return const_child_range(&SubStmt, &SubStmt + 1);
  }
};

/// ShuffleVectorExpr - clang-specific builtin-in function
/// __builtin_shufflevector.
/// This AST node represents a operator that does a constant
/// shuffle, similar to LLVM's shufflevector instruction. It takes
/// two vectors and a variable number of constant indices,
/// and returns the appropriately shuffled vector.
class ShuffleVectorExpr : public Expr {
  SourceLocation BuiltinLoc, RParenLoc;

  // SubExprs - the list of values passed to the __builtin_shufflevector
  // function. The first two are vectors, and the rest are constant
  // indices.  The number of values in this list is always
  // 2+the number of indices in the vector type.
  Stmt **SubExprs;
  unsigned NumExprs;

public:
  ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
                    SourceLocation BLoc, SourceLocation RP);

  /// Build an empty vector-shuffle expression.
  explicit ShuffleVectorExpr(EmptyShell Empty)
    : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }

  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }

  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ShuffleVectorExprClass;
  }

  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
  /// constant expression, the actual arguments passed in, and the function
  /// pointers.
  unsigned getNumSubExprs() const { return NumExprs; }

  /// Retrieve the array of expressions.
  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }

  /// getExpr - Return the Expr at the specified index.
  Expr *getExpr(unsigned Index) {
    assert((Index < NumExprs) && "Arg access out of range!");
    return cast<Expr>(SubExprs[Index]);
  }
  const Expr *getExpr(unsigned Index) const {
    assert((Index < NumExprs) && "Arg access out of range!");
    return cast<Expr>(SubExprs[Index]);
  }

  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);

  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
    return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
  }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
  }
  const_child_range children() const {
    return const_child_range(&SubExprs[0], &SubExprs[0] + NumExprs);
  }
};

/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
/// This AST node provides support for converting a vector type to another
/// vector type of the same arity.
class ConvertVectorExpr : public Expr {
private:
  Stmt *SrcExpr;
  TypeSourceInfo *TInfo;
  SourceLocation BuiltinLoc, RParenLoc;

  friend class ASTReader;
  friend class ASTStmtReader;
  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}

public:
  ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
             ExprValueKind VK, ExprObjectKind OK,
             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
    : Expr(ConvertVectorExprClass, DstType, VK, OK,
           DstType->isDependentType(),
           DstType->isDependentType() || SrcExpr->isValueDependent(),
           (DstType->isInstantiationDependentType() ||
            SrcExpr->isInstantiationDependent()),
           (DstType->containsUnexpandedParameterPack() ||
            SrcExpr->containsUnexpandedParameterPack())),
  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}

  /// getSrcExpr - Return the Expr to be converted.
  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }

  /// getTypeSourceInfo - Return the destination type.
  TypeSourceInfo *getTypeSourceInfo() const {
    return TInfo;
  }
  void setTypeSourceInfo(TypeSourceInfo *ti) {
    TInfo = ti;
  }

  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }

  /// getRParenLoc - Return the location of final right parenthesis.
  SourceLocation getRParenLoc() const { return RParenLoc; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ConvertVectorExprClass;
  }

  // Iterators
  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
  const_child_range children() const {
    return const_child_range(&SrcExpr, &SrcExpr + 1);
  }
};

/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
/// This AST node is similar to the conditional operator (?:) in C, with
/// the following exceptions:
/// - the test expression must be a integer constant expression.
/// - the expression returned acts like the chosen subexpression in every
///   visible way: the type is the same as that of the chosen subexpression,
///   and all predicates (whether it's an l-value, whether it's an integer
///   constant expression, etc.) return the same result as for the chosen
///   sub-expression.
class ChooseExpr : public Expr {
  enum { COND, LHS, RHS, END_EXPR };
  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
  SourceLocation BuiltinLoc, RParenLoc;
  bool CondIsTrue;
public:
  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
             QualType t, ExprValueKind VK, ExprObjectKind OK,
             SourceLocation RP, bool condIsTrue,
             bool TypeDependent, bool ValueDependent)
    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
           (cond->isInstantiationDependent() ||
            lhs->isInstantiationDependent() ||
            rhs->isInstantiationDependent()),
           (cond->containsUnexpandedParameterPack() ||
            lhs->containsUnexpandedParameterPack() ||
            rhs->containsUnexpandedParameterPack())),
      BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
      SubExprs[COND] = cond;
      SubExprs[LHS] = lhs;
      SubExprs[RHS] = rhs;
    }

  /// Build an empty __builtin_choose_expr.
  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }

  /// isConditionTrue - Return whether the condition is true (i.e. not
  /// equal to zero).
  bool isConditionTrue() const {
    assert(!isConditionDependent() &&
           "Dependent condition isn't true or false");
    return CondIsTrue;
  }
  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }

  bool isConditionDependent() const {
    return getCond()->isTypeDependent() || getCond()->isValueDependent();
  }

  /// getChosenSubExpr - Return the subexpression chosen according to the
  /// condition.
  Expr *getChosenSubExpr() const {
    return isConditionTrue() ? getLHS() : getRHS();
  }

  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
  void setCond(Expr *E) { SubExprs[COND] = E; }
  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
  void setLHS(Expr *E) { SubExprs[LHS] = E; }
  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
  void setRHS(Expr *E) { SubExprs[RHS] = E; }

  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }

  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ChooseExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
  }
  const_child_range children() const {
    return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
  }
};

/// GNUNullExpr - Implements the GNU __null extension, which is a name
/// for a null pointer constant that has integral type (e.g., int or
/// long) and is the same size and alignment as a pointer. The __null
/// extension is typically only used by system headers, which define
/// NULL as __null in C++ rather than using 0 (which is an integer
/// that may not match the size of a pointer).
class GNUNullExpr : public Expr {
  /// TokenLoc - The location of the __null keyword.
  SourceLocation TokenLoc;

public:
  GNUNullExpr(QualType Ty, SourceLocation Loc)
    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
           false),
      TokenLoc(Loc) { }

  /// Build an empty GNU __null expression.
  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }

  /// getTokenLocation - The location of the __null token.
  SourceLocation getTokenLocation() const { return TokenLoc; }
  void setTokenLocation(SourceLocation L) { TokenLoc = L; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return TokenLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return TokenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == GNUNullExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// Represents a call to the builtin function \c __builtin_va_arg.
class VAArgExpr : public Expr {
  Stmt *Val;
  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
  SourceLocation BuiltinLoc, RParenLoc;
public:
  VAArgExpr(SourceLocation BLoc, Expr *e, TypeSourceInfo *TInfo,
            SourceLocation RPLoc, QualType t, bool IsMS)
      : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(),
             false, (TInfo->getType()->isInstantiationDependentType() ||
                     e->isInstantiationDependent()),
             (TInfo->getType()->containsUnexpandedParameterPack() ||
              e->containsUnexpandedParameterPack())),
        Val(e), TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {}

  /// Create an empty __builtin_va_arg expression.
  explicit VAArgExpr(EmptyShell Empty)
      : Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}

  const Expr *getSubExpr() const { return cast<Expr>(Val); }
  Expr *getSubExpr() { return cast<Expr>(Val); }
  void setSubExpr(Expr *E) { Val = E; }

  /// Returns whether this is really a Win64 ABI va_arg expression.
  bool isMicrosoftABI() const { return TInfo.getInt(); }
  void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }

  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }

  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }

  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == VAArgExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Val, &Val+1); }
  const_child_range children() const {
    return const_child_range(&Val, &Val + 1);
  }
};

/// Represents a function call to one of __builtin_LINE(), __builtin_COLUMN(),
/// __builtin_FUNCTION(), or __builtin_FILE().
class SourceLocExpr final : public Expr {
  SourceLocation BuiltinLoc, RParenLoc;
  DeclContext *ParentContext;

public:
  enum IdentKind { Function, File, Line, Column };

  SourceLocExpr(const ASTContext &Ctx, IdentKind Type, SourceLocation BLoc,
                SourceLocation RParenLoc, DeclContext *Context);

  /// Build an empty call expression.
  explicit SourceLocExpr(EmptyShell Empty) : Expr(SourceLocExprClass, Empty) {}

  /// Return the result of evaluating this SourceLocExpr in the specified
  /// (and possibly null) default argument or initialization context.
  APValue EvaluateInContext(const ASTContext &Ctx,
                            const Expr *DefaultExpr) const;

  /// Return a string representing the name of the specific builtin function.
  StringRef getBuiltinStr() const;

  IdentKind getIdentKind() const {
    return static_cast<IdentKind>(SourceLocExprBits.Kind);
  }

  bool isStringType() const {
    switch (getIdentKind()) {
    case File:
    case Function:
      return true;
    case Line:
    case Column:
      return false;
    }
    llvm_unreachable("unknown source location expression kind");
  }
  bool isIntType() const LLVM_READONLY { return !isStringType(); }

  /// If the SourceLocExpr has been resolved return the subexpression
  /// representing the resolved value. Otherwise return null.
  const DeclContext *getParentContext() const { return ParentContext; }
  DeclContext *getParentContext() { return ParentContext; }

  SourceLocation getLocation() const { return BuiltinLoc; }
  SourceLocation getBeginLoc() const { return BuiltinLoc; }
  SourceLocation getEndLoc() const { return RParenLoc; }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(child_iterator(), child_iterator());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SourceLocExprClass;
  }

private:
  friend class ASTStmtReader;
};

/// Describes an C or C++ initializer list.
///
/// InitListExpr describes an initializer list, which can be used to
/// initialize objects of different types, including
/// struct/class/union types, arrays, and vectors. For example:
///
/// @code
/// struct foo x = { 1, { 2, 3 } };
/// @endcode
///
/// Prior to semantic analysis, an initializer list will represent the
/// initializer list as written by the user, but will have the
/// placeholder type "void". This initializer list is called the
/// syntactic form of the initializer, and may contain C99 designated
/// initializers (represented as DesignatedInitExprs), initializations
/// of subobject members without explicit braces, and so on. Clients
/// interested in the original syntax of the initializer list should
/// use the syntactic form of the initializer list.
///
/// After semantic analysis, the initializer list will represent the
/// semantic form of the initializer, where the initializations of all
/// subobjects are made explicit with nested InitListExpr nodes and
/// C99 designators have been eliminated by placing the designated
/// initializations into the subobject they initialize. Additionally,
/// any "holes" in the initialization, where no initializer has been
/// specified for a particular subobject, will be replaced with
/// implicitly-generated ImplicitValueInitExpr expressions that
/// value-initialize the subobjects. Note, however, that the
/// initializer lists may still have fewer initializers than there are
/// elements to initialize within the object.
///
/// After semantic analysis has completed, given an initializer list,
/// method isSemanticForm() returns true if and only if this is the
/// semantic form of the initializer list (note: the same AST node
/// may at the same time be the syntactic form).
/// Given the semantic form of the initializer list, one can retrieve
/// the syntactic form of that initializer list (when different)
/// using method getSyntacticForm(); the method returns null if applied
/// to a initializer list which is already in syntactic form.
/// Similarly, given the syntactic form (i.e., an initializer list such
/// that isSemanticForm() returns false), one can retrieve the semantic
/// form using method getSemanticForm().
/// Since many initializer lists have the same syntactic and semantic forms,
/// getSyntacticForm() may return NULL, indicating that the current
/// semantic initializer list also serves as its syntactic form.
class InitListExpr : public Expr {
  // FIXME: Eliminate this vector in favor of ASTContext allocation
  typedef ASTVector<Stmt *> InitExprsTy;
  InitExprsTy InitExprs;
  SourceLocation LBraceLoc, RBraceLoc;

  /// The alternative form of the initializer list (if it exists).
  /// The int part of the pair stores whether this initializer list is
  /// in semantic form. If not null, the pointer points to:
  ///   - the syntactic form, if this is in semantic form;
  ///   - the semantic form, if this is in syntactic form.
  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;

  /// Either:
  ///  If this initializer list initializes an array with more elements than
  ///  there are initializers in the list, specifies an expression to be used
  ///  for value initialization of the rest of the elements.
  /// Or
  ///  If this initializer list initializes a union, specifies which
  ///  field within the union will be initialized.
  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;

public:
  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
               ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);

  /// Build an empty initializer list.
  explicit InitListExpr(EmptyShell Empty)
    : Expr(InitListExprClass, Empty), AltForm(nullptr, true) { }

  unsigned getNumInits() const { return InitExprs.size(); }

  /// Retrieve the set of initializers.
  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }

  /// Retrieve the set of initializers.
  Expr * const *getInits() const {
    return reinterpret_cast<Expr * const *>(InitExprs.data());
  }

  ArrayRef<Expr *> inits() {
    return llvm::makeArrayRef(getInits(), getNumInits());
  }

  ArrayRef<Expr *> inits() const {
    return llvm::makeArrayRef(getInits(), getNumInits());
  }

  const Expr *getInit(unsigned Init) const {
    assert(Init < getNumInits() && "Initializer access out of range!");
    return cast_or_null<Expr>(InitExprs[Init]);
  }

  Expr *getInit(unsigned Init) {
    assert(Init < getNumInits() && "Initializer access out of range!");
    return cast_or_null<Expr>(InitExprs[Init]);
  }

  void setInit(unsigned Init, Expr *expr) {
    assert(Init < getNumInits() && "Initializer access out of range!");
    InitExprs[Init] = expr;

    if (expr) {
      ExprBits.TypeDependent |= expr->isTypeDependent();
      ExprBits.ValueDependent |= expr->isValueDependent();
      ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
      ExprBits.ContainsUnexpandedParameterPack |=
          expr->containsUnexpandedParameterPack();
    }
  }

  /// Reserve space for some number of initializers.
  void reserveInits(const ASTContext &C, unsigned NumInits);

  /// Specify the number of initializers
  ///
  /// If there are more than @p NumInits initializers, the remaining
  /// initializers will be destroyed. If there are fewer than @p
  /// NumInits initializers, NULL expressions will be added for the
  /// unknown initializers.
  void resizeInits(const ASTContext &Context, unsigned NumInits);

  /// Updates the initializer at index @p Init with the new
  /// expression @p expr, and returns the old expression at that
  /// location.
  ///
  /// When @p Init is out of range for this initializer list, the
  /// initializer list will be extended with NULL expressions to
  /// accommodate the new entry.
  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);

  /// If this initializer list initializes an array with more elements
  /// than there are initializers in the list, specifies an expression to be
  /// used for value initialization of the rest of the elements.
  Expr *getArrayFiller() {
    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
  }
  const Expr *getArrayFiller() const {
    return const_cast<InitListExpr *>(this)->getArrayFiller();
  }
  void setArrayFiller(Expr *filler);

  /// Return true if this is an array initializer and its array "filler"
  /// has been set.
  bool hasArrayFiller() const { return getArrayFiller(); }

  /// If this initializes a union, specifies which field in the
  /// union to initialize.
  ///
  /// Typically, this field is the first named field within the
  /// union. However, a designated initializer can specify the
  /// initialization of a different field within the union.
  FieldDecl *getInitializedFieldInUnion() {
    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
  }
  const FieldDecl *getInitializedFieldInUnion() const {
    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
  }
  void setInitializedFieldInUnion(FieldDecl *FD) {
    assert((FD == nullptr
            || getInitializedFieldInUnion() == nullptr
            || getInitializedFieldInUnion() == FD)
           && "Only one field of a union may be initialized at a time!");
    ArrayFillerOrUnionFieldInit = FD;
  }

  // Explicit InitListExpr's originate from source code (and have valid source
  // locations). Implicit InitListExpr's are created by the semantic analyzer.
  // FIXME: This is wrong; InitListExprs created by semantic analysis have
  // valid source locations too!
  bool isExplicit() const {
    return LBraceLoc.isValid() && RBraceLoc.isValid();
  }

  // Is this an initializer for an array of characters, initialized by a string
  // literal or an @encode?
  bool isStringLiteralInit() const;

  /// Is this a transparent initializer list (that is, an InitListExpr that is
  /// purely syntactic, and whose semantics are that of the sole contained
  /// initializer)?
  bool isTransparent() const;

  /// Is this the zero initializer {0} in a language which considers it
  /// idiomatic?
  bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const;

  SourceLocation getLBraceLoc() const { return LBraceLoc; }
  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
  SourceLocation getRBraceLoc() const { return RBraceLoc; }
  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }

  bool isSemanticForm() const { return AltForm.getInt(); }
  InitListExpr *getSemanticForm() const {
    return isSemanticForm() ? nullptr : AltForm.getPointer();
  }
  bool isSyntacticForm() const {
    return !AltForm.getInt() || !AltForm.getPointer();
  }
  InitListExpr *getSyntacticForm() const {
    return isSemanticForm() ? AltForm.getPointer() : nullptr;
  }

  void setSyntacticForm(InitListExpr *Init) {
    AltForm.setPointer(Init);
    AltForm.setInt(true);
    Init->AltForm.setPointer(this);
    Init->AltForm.setInt(false);
  }

  bool hadArrayRangeDesignator() const {
    return InitListExprBits.HadArrayRangeDesignator != 0;
  }
  void sawArrayRangeDesignator(bool ARD = true) {
    InitListExprBits.HadArrayRangeDesignator = ARD;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY;
  SourceLocation getEndLoc() const LLVM_READONLY;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == InitListExprClass;
  }

  // Iterators
  child_range children() {
    const_child_range CCR = const_cast<const InitListExpr *>(this)->children();
    return child_range(cast_away_const(CCR.begin()),
                       cast_away_const(CCR.end()));
  }

  const_child_range children() const {
    // FIXME: This does not include the array filler expression.
    if (InitExprs.empty())
      return const_child_range(const_child_iterator(), const_child_iterator());
    return const_child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
  }

  typedef InitExprsTy::iterator iterator;
  typedef InitExprsTy::const_iterator const_iterator;
  typedef InitExprsTy::reverse_iterator reverse_iterator;
  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;

  iterator begin() { return InitExprs.begin(); }
  const_iterator begin() const { return InitExprs.begin(); }
  iterator end() { return InitExprs.end(); }
  const_iterator end() const { return InitExprs.end(); }
  reverse_iterator rbegin() { return InitExprs.rbegin(); }
  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
  reverse_iterator rend() { return InitExprs.rend(); }
  const_reverse_iterator rend() const { return InitExprs.rend(); }

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// Represents a C99 designated initializer expression.
///
/// A designated initializer expression (C99 6.7.8) contains one or
/// more designators (which can be field designators, array
/// designators, or GNU array-range designators) followed by an
/// expression that initializes the field or element(s) that the
/// designators refer to. For example, given:
///
/// @code
/// struct point {
///   double x;
///   double y;
/// };
/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
/// @endcode
///
/// The InitListExpr contains three DesignatedInitExprs, the first of
/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
/// designators, one array designator for @c [2] followed by one field
/// designator for @c .y. The initialization expression will be 1.0.
class DesignatedInitExpr final
    : public Expr,
      private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
public:
  /// Forward declaration of the Designator class.
  class Designator;

private:
  /// The location of the '=' or ':' prior to the actual initializer
  /// expression.
  SourceLocation EqualOrColonLoc;

  /// Whether this designated initializer used the GNU deprecated
  /// syntax rather than the C99 '=' syntax.
  unsigned GNUSyntax : 1;

  /// The number of designators in this initializer expression.
  unsigned NumDesignators : 15;

  /// The number of subexpressions of this initializer expression,
  /// which contains both the initializer and any additional
  /// expressions used by array and array-range designators.
  unsigned NumSubExprs : 16;

  /// The designators in this designated initialization
  /// expression.
  Designator *Designators;

  DesignatedInitExpr(const ASTContext &C, QualType Ty,
                     llvm::ArrayRef<Designator> Designators,
                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
                     ArrayRef<Expr *> IndexExprs, Expr *Init);

  explicit DesignatedInitExpr(unsigned NumSubExprs)
    : Expr(DesignatedInitExprClass, EmptyShell()),
      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }

public:
  /// A field designator, e.g., ".x".
  struct FieldDesignator {
    /// Refers to the field that is being initialized. The low bit
    /// of this field determines whether this is actually a pointer
    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
    /// initially constructed, a field designator will store an
    /// IdentifierInfo*. After semantic analysis has resolved that
    /// name, the field designator will instead store a FieldDecl*.
    uintptr_t NameOrField;

    /// The location of the '.' in the designated initializer.
    unsigned DotLoc;

    /// The location of the field name in the designated initializer.
    unsigned FieldLoc;
  };

  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
  struct ArrayOrRangeDesignator {
    /// Location of the first index expression within the designated
    /// initializer expression's list of subexpressions.
    unsigned Index;
    /// The location of the '[' starting the array range designator.
    unsigned LBracketLoc;
    /// The location of the ellipsis separating the start and end
    /// indices. Only valid for GNU array-range designators.
    unsigned EllipsisLoc;
    /// The location of the ']' terminating the array range designator.
    unsigned RBracketLoc;
  };

  /// Represents a single C99 designator.
  ///
  /// @todo This class is infuriatingly similar to clang::Designator,
  /// but minor differences (storing indices vs. storing pointers)
  /// keep us from reusing it. Try harder, later, to rectify these
  /// differences.
  class Designator {
    /// The kind of designator this describes.
    enum {
      FieldDesignator,
      ArrayDesignator,
      ArrayRangeDesignator
    } Kind;

    union {
      /// A field designator, e.g., ".x".
      struct FieldDesignator Field;
      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
      struct ArrayOrRangeDesignator ArrayOrRange;
    };
    friend class DesignatedInitExpr;

  public:
    Designator() {}

    /// Initializes a field designator.
    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
               SourceLocation FieldLoc)
      : Kind(FieldDesignator) {
      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
      Field.DotLoc = DotLoc.getRawEncoding();
      Field.FieldLoc = FieldLoc.getRawEncoding();
    }

    /// Initializes an array designator.
    Designator(unsigned Index, SourceLocation LBracketLoc,
               SourceLocation RBracketLoc)
      : Kind(ArrayDesignator) {
      ArrayOrRange.Index = Index;
      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
    }

    /// Initializes a GNU array-range designator.
    Designator(unsigned Index, SourceLocation LBracketLoc,
               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
      : Kind(ArrayRangeDesignator) {
      ArrayOrRange.Index = Index;
      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
    }

    bool isFieldDesignator() const { return Kind == FieldDesignator; }
    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }

    IdentifierInfo *getFieldName() const;

    FieldDecl *getField() const {
      assert(Kind == FieldDesignator && "Only valid on a field designator");
      if (Field.NameOrField & 0x01)
        return nullptr;
      else
        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
    }

    void setField(FieldDecl *FD) {
      assert(Kind == FieldDesignator && "Only valid on a field designator");
      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
    }

    SourceLocation getDotLoc() const {
      assert(Kind == FieldDesignator && "Only valid on a field designator");
      return SourceLocation::getFromRawEncoding(Field.DotLoc);
    }

    SourceLocation getFieldLoc() const {
      assert(Kind == FieldDesignator && "Only valid on a field designator");
      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
    }

    SourceLocation getLBracketLoc() const {
      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
             "Only valid on an array or array-range designator");
      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
    }

    SourceLocation getRBracketLoc() const {
      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
             "Only valid on an array or array-range designator");
      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
    }

    SourceLocation getEllipsisLoc() const {
      assert(Kind == ArrayRangeDesignator &&
             "Only valid on an array-range designator");
      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
    }

    unsigned getFirstExprIndex() const {
      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
             "Only valid on an array or array-range designator");
      return ArrayOrRange.Index;
    }

    SourceLocation getBeginLoc() const LLVM_READONLY {
      if (Kind == FieldDesignator)
        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
      else
        return getLBracketLoc();
    }
    SourceLocation getEndLoc() const LLVM_READONLY {
      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
    }
    SourceRange getSourceRange() const LLVM_READONLY {
      return SourceRange(getBeginLoc(), getEndLoc());
    }
  };

  static DesignatedInitExpr *Create(const ASTContext &C,
                                    llvm::ArrayRef<Designator> Designators,
                                    ArrayRef<Expr*> IndexExprs,
                                    SourceLocation EqualOrColonLoc,
                                    bool GNUSyntax, Expr *Init);

  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
                                         unsigned NumIndexExprs);

  /// Returns the number of designators in this initializer.
  unsigned size() const { return NumDesignators; }

  // Iterator access to the designators.
  llvm::MutableArrayRef<Designator> designators() {
    return {Designators, NumDesignators};
  }

  llvm::ArrayRef<Designator> designators() const {
    return {Designators, NumDesignators};
  }

  Designator *getDesignator(unsigned Idx) { return &designators()[Idx]; }
  const Designator *getDesignator(unsigned Idx) const {
    return &designators()[Idx];
  }

  void setDesignators(const ASTContext &C, const Designator *Desigs,
                      unsigned NumDesigs);

  Expr *getArrayIndex(const Designator &D) const;
  Expr *getArrayRangeStart(const Designator &D) const;
  Expr *getArrayRangeEnd(const Designator &D) const;

  /// Retrieve the location of the '=' that precedes the
  /// initializer value itself, if present.
  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }

  /// Whether this designated initializer should result in direct-initialization
  /// of the designated subobject (eg, '{.foo{1, 2, 3}}').
  bool isDirectInit() const { return EqualOrColonLoc.isInvalid(); }

  /// Determines whether this designated initializer used the
  /// deprecated GNU syntax for designated initializers.
  bool usesGNUSyntax() const { return GNUSyntax; }
  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }

  /// Retrieve the initializer value.
  Expr *getInit() const {
    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
  }

  void setInit(Expr *init) {
    *child_begin() = init;
  }

  /// Retrieve the total number of subexpressions in this
  /// designated initializer expression, including the actual
  /// initialized value and any expressions that occur within array
  /// and array-range designators.
  unsigned getNumSubExprs() const { return NumSubExprs; }

  Expr *getSubExpr(unsigned Idx) const {
    assert(Idx < NumSubExprs && "Subscript out of range");
    return cast<Expr>(getTrailingObjects<Stmt *>()[Idx]);
  }

  void setSubExpr(unsigned Idx, Expr *E) {
    assert(Idx < NumSubExprs && "Subscript out of range");
    getTrailingObjects<Stmt *>()[Idx] = E;
  }

  /// Replaces the designator at index @p Idx with the series
  /// of designators in [First, Last).
  void ExpandDesignator(const ASTContext &C, unsigned Idx,
                        const Designator *First, const Designator *Last);

  SourceRange getDesignatorsSourceRange() const;

  SourceLocation getBeginLoc() const LLVM_READONLY;
  SourceLocation getEndLoc() const LLVM_READONLY;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DesignatedInitExprClass;
  }

  // Iterators
  child_range children() {
    Stmt **begin = getTrailingObjects<Stmt *>();
    return child_range(begin, begin + NumSubExprs);
  }
  const_child_range children() const {
    Stmt * const *begin = getTrailingObjects<Stmt *>();
    return const_child_range(begin, begin + NumSubExprs);
  }

  friend TrailingObjects;
};

/// Represents a place-holder for an object not to be initialized by
/// anything.
///
/// This only makes sense when it appears as part of an updater of a
/// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
/// initializes a big object, and the NoInitExpr's mark the spots within the
/// big object not to be overwritten by the updater.
///
/// \see DesignatedInitUpdateExpr
class NoInitExpr : public Expr {
public:
  explicit NoInitExpr(QualType ty)
    : Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
           false, false, ty->isInstantiationDependentType(), false) { }

  explicit NoInitExpr(EmptyShell Empty)
    : Expr(NoInitExprClass, Empty) { }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == NoInitExprClass;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
  SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

// In cases like:
//   struct Q { int a, b, c; };
//   Q *getQ();
//   void foo() {
//     struct A { Q q; } a = { *getQ(), .q.b = 3 };
//   }
//
// We will have an InitListExpr for a, with type A, and then a
// DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
// is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
//
class DesignatedInitUpdateExpr : public Expr {
  // BaseAndUpdaterExprs[0] is the base expression;
  // BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
  Stmt *BaseAndUpdaterExprs[2];

public:
  DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc,
                           Expr *baseExprs, SourceLocation rBraceLoc);

  explicit DesignatedInitUpdateExpr(EmptyShell Empty)
    : Expr(DesignatedInitUpdateExprClass, Empty) { }

  SourceLocation getBeginLoc() const LLVM_READONLY;
  SourceLocation getEndLoc() const LLVM_READONLY;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DesignatedInitUpdateExprClass;
  }

  Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
  void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }

  InitListExpr *getUpdater() const {
    return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
  }
  void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }

  // Iterators
  // children = the base and the updater
  child_range children() {
    return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
  }
  const_child_range children() const {
    return const_child_range(&BaseAndUpdaterExprs[0],
                             &BaseAndUpdaterExprs[0] + 2);
  }
};

/// Represents a loop initializing the elements of an array.
///
/// The need to initialize the elements of an array occurs in a number of
/// contexts:
///
///  * in the implicit copy/move constructor for a class with an array member
///  * when a lambda-expression captures an array by value
///  * when a decomposition declaration decomposes an array
///
/// There are two subexpressions: a common expression (the source array)
/// that is evaluated once up-front, and a per-element initializer that
/// runs once for each array element.
///
/// Within the per-element initializer, the common expression may be referenced
/// via an OpaqueValueExpr, and the current index may be obtained via an
/// ArrayInitIndexExpr.
class ArrayInitLoopExpr : public Expr {
  Stmt *SubExprs[2];

  explicit ArrayInitLoopExpr(EmptyShell Empty)
      : Expr(ArrayInitLoopExprClass, Empty), SubExprs{} {}

public:
  explicit ArrayInitLoopExpr(QualType T, Expr *CommonInit, Expr *ElementInit)
      : Expr(ArrayInitLoopExprClass, T, VK_RValue, OK_Ordinary, false,
             CommonInit->isValueDependent() || ElementInit->isValueDependent(),
             T->isInstantiationDependentType(),
             CommonInit->containsUnexpandedParameterPack() ||
                 ElementInit->containsUnexpandedParameterPack()),
        SubExprs{CommonInit, ElementInit} {}

  /// Get the common subexpression shared by all initializations (the source
  /// array).
  OpaqueValueExpr *getCommonExpr() const {
    return cast<OpaqueValueExpr>(SubExprs[0]);
  }

  /// Get the initializer to use for each array element.
  Expr *getSubExpr() const { return cast<Expr>(SubExprs[1]); }

  llvm::APInt getArraySize() const {
    return cast<ConstantArrayType>(getType()->castAsArrayTypeUnsafe())
        ->getSize();
  }

  static bool classof(const Stmt *S) {
    return S->getStmtClass() == ArrayInitLoopExprClass;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getCommonExpr()->getBeginLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return getCommonExpr()->getEndLoc();
  }

  child_range children() {
    return child_range(SubExprs, SubExprs + 2);
  }
  const_child_range children() const {
    return const_child_range(SubExprs, SubExprs + 2);
  }

  friend class ASTReader;
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// Represents the index of the current element of an array being
/// initialized by an ArrayInitLoopExpr. This can only appear within the
/// subexpression of an ArrayInitLoopExpr.
class ArrayInitIndexExpr : public Expr {
  explicit ArrayInitIndexExpr(EmptyShell Empty)
      : Expr(ArrayInitIndexExprClass, Empty) {}

public:
  explicit ArrayInitIndexExpr(QualType T)
      : Expr(ArrayInitIndexExprClass, T, VK_RValue, OK_Ordinary,
             false, false, false, false) {}

  static bool classof(const Stmt *S) {
    return S->getStmtClass() == ArrayInitIndexExprClass;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
  SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }

  friend class ASTReader;
  friend class ASTStmtReader;
};

/// Represents an implicitly-generated value initialization of
/// an object of a given type.
///
/// Implicit value initializations occur within semantic initializer
/// list expressions (InitListExpr) as placeholders for subobject
/// initializations not explicitly specified by the user.
///
/// \see InitListExpr
class ImplicitValueInitExpr : public Expr {
public:
  explicit ImplicitValueInitExpr(QualType ty)
    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
           false, false, ty->isInstantiationDependentType(), false) { }

  /// Construct an empty implicit value initialization.
  explicit ImplicitValueInitExpr(EmptyShell Empty)
    : Expr(ImplicitValueInitExprClass, Empty) { }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ImplicitValueInitExprClass;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
  SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

class ParenListExpr final
    : public Expr,
      private llvm::TrailingObjects<ParenListExpr, Stmt *> {
  friend class ASTStmtReader;
  friend TrailingObjects;

  /// The location of the left and right parentheses.
  SourceLocation LParenLoc, RParenLoc;

  /// Build a paren list.
  ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
                SourceLocation RParenLoc);

  /// Build an empty paren list.
  ParenListExpr(EmptyShell Empty, unsigned NumExprs);

public:
  /// Create a paren list.
  static ParenListExpr *Create(const ASTContext &Ctx, SourceLocation LParenLoc,
                               ArrayRef<Expr *> Exprs,
                               SourceLocation RParenLoc);

  /// Create an empty paren list.
  static ParenListExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumExprs);

  /// Return the number of expressions in this paren list.
  unsigned getNumExprs() const { return ParenListExprBits.NumExprs; }

  Expr *getExpr(unsigned Init) {
    assert(Init < getNumExprs() && "Initializer access out of range!");
    return getExprs()[Init];
  }

  const Expr *getExpr(unsigned Init) const {
    return const_cast<ParenListExpr *>(this)->getExpr(Init);
  }

  Expr **getExprs() {
    return reinterpret_cast<Expr **>(getTrailingObjects<Stmt *>());
  }

  ArrayRef<Expr *> exprs() {
    return llvm::makeArrayRef(getExprs(), getNumExprs());
  }

  SourceLocation getLParenLoc() const { return LParenLoc; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  SourceLocation getBeginLoc() const { return getLParenLoc(); }
  SourceLocation getEndLoc() const { return getRParenLoc(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ParenListExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(getTrailingObjects<Stmt *>(),
                       getTrailingObjects<Stmt *>() + getNumExprs());
  }
  const_child_range children() const {
    return const_child_range(getTrailingObjects<Stmt *>(),
                             getTrailingObjects<Stmt *>() + getNumExprs());
  }
};

/// Represents a C11 generic selection.
///
/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
/// expression, followed by one or more generic associations.  Each generic
/// association specifies a type name and an expression, or "default" and an
/// expression (in which case it is known as a default generic association).
/// The type and value of the generic selection are identical to those of its
/// result expression, which is defined as the expression in the generic
/// association with a type name that is compatible with the type of the
/// controlling expression, or the expression in the default generic association
/// if no types are compatible.  For example:
///
/// @code
/// _Generic(X, double: 1, float: 2, default: 3)
/// @endcode
///
/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
/// or 3 if "hello".
///
/// As an extension, generic selections are allowed in C++, where the following
/// additional semantics apply:
///
/// Any generic selection whose controlling expression is type-dependent or
/// which names a dependent type in its association list is result-dependent,
/// which means that the choice of result expression is dependent.
/// Result-dependent generic associations are both type- and value-dependent.
class GenericSelectionExpr final
    : public Expr,
      private llvm::TrailingObjects<GenericSelectionExpr, Stmt *,
                                    TypeSourceInfo *> {
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  friend TrailingObjects;

  /// The number of association expressions and the index of the result
  /// expression in the case where the generic selection expression is not
  /// result-dependent. The result index is equal to ResultDependentIndex
  /// if and only if the generic selection expression is result-dependent.
  unsigned NumAssocs, ResultIndex;
  enum : unsigned {
    ResultDependentIndex = std::numeric_limits<unsigned>::max(),
    ControllingIndex = 0,
    AssocExprStartIndex = 1
  };

  /// The location of the "default" and of the right parenthesis.
  SourceLocation DefaultLoc, RParenLoc;

  // GenericSelectionExpr is followed by several trailing objects.
  // They are (in order):
  //
  // * A single Stmt * for the controlling expression.
  // * An array of getNumAssocs() Stmt * for the association expressions.
  // * An array of getNumAssocs() TypeSourceInfo *, one for each of the
  //   association expressions.
  unsigned numTrailingObjects(OverloadToken<Stmt *>) const {
    // Add one to account for the controlling expression; the remainder
    // are the associated expressions.
    return 1 + getNumAssocs();
  }

  unsigned numTrailingObjects(OverloadToken<TypeSourceInfo *>) const {
    return getNumAssocs();
  }

  template <bool Const> class AssociationIteratorTy;
  /// Bundle together an association expression and its TypeSourceInfo.
  /// The Const template parameter is for the const and non-const versions
  /// of AssociationTy.
  template <bool Const> class AssociationTy {
    friend class GenericSelectionExpr;
    template <bool OtherConst> friend class AssociationIteratorTy;
    using ExprPtrTy =
        typename std::conditional<Const, const Expr *, Expr *>::type;
    using TSIPtrTy = typename std::conditional<Const, const TypeSourceInfo *,
                                               TypeSourceInfo *>::type;
    ExprPtrTy E;
    TSIPtrTy TSI;
    bool Selected;
    AssociationTy(ExprPtrTy E, TSIPtrTy TSI, bool Selected)
        : E(E), TSI(TSI), Selected(Selected) {}

  public:
    ExprPtrTy getAssociationExpr() const { return E; }
    TSIPtrTy getTypeSourceInfo() const { return TSI; }
    QualType getType() const { return TSI ? TSI->getType() : QualType(); }
    bool isSelected() const { return Selected; }
    AssociationTy *operator->() { return this; }
    const AssociationTy *operator->() const { return this; }
  }; // class AssociationTy

  /// Iterator over const and non-const Association objects. The Association
  /// objects are created on the fly when the iterator is dereferenced.
  /// This abstract over how exactly the association expressions and the
  /// corresponding TypeSourceInfo * are stored.
  template <bool Const>
  class AssociationIteratorTy
      : public llvm::iterator_facade_base<
            AssociationIteratorTy<Const>, std::input_iterator_tag,
            AssociationTy<Const>, std::ptrdiff_t, AssociationTy<Const>,
            AssociationTy<Const>> {
    friend class GenericSelectionExpr;
    // FIXME: This iterator could conceptually be a random access iterator, and
    // it would be nice if we could strengthen the iterator category someday.
    // However this iterator does not satisfy two requirements of forward
    // iterators:
    // a) reference = T& or reference = const T&
    // b) If It1 and It2 are both dereferenceable, then It1 == It2 if and only
    //    if *It1 and *It2 are bound to the same objects.
    // An alternative design approach was discussed during review;
    // store an Association object inside the iterator, and return a reference
    // to it when dereferenced. This idea was discarded beacuse of nasty
    // lifetime issues:
    //    AssociationIterator It = ...;
    //    const Association &Assoc = *It++; // Oops, Assoc is dangling.
    using BaseTy = typename AssociationIteratorTy::iterator_facade_base;
    using StmtPtrPtrTy =
        typename std::conditional<Const, const Stmt *const *, Stmt **>::type;
    using TSIPtrPtrTy =
        typename std::conditional<Const, const TypeSourceInfo *const *,
                                  TypeSourceInfo **>::type;
    StmtPtrPtrTy E; // = nullptr; FIXME: Once support for gcc 4.8 is dropped.
    TSIPtrPtrTy TSI; // Kept in sync with E.
    unsigned Offset = 0, SelectedOffset = 0;
    AssociationIteratorTy(StmtPtrPtrTy E, TSIPtrPtrTy TSI, unsigned Offset,
                          unsigned SelectedOffset)
        : E(E), TSI(TSI), Offset(Offset), SelectedOffset(SelectedOffset) {}

  public:
    AssociationIteratorTy() : E(nullptr), TSI(nullptr) {}
    typename BaseTy::reference operator*() const {
      return AssociationTy<Const>(cast<Expr>(*E), *TSI,
                                  Offset == SelectedOffset);
    }
    typename BaseTy::pointer operator->() const { return **this; }
    using BaseTy::operator++;
    AssociationIteratorTy &operator++() {
      ++E;
      ++TSI;
      ++Offset;
      return *this;
    }
    bool operator==(AssociationIteratorTy Other) const { return E == Other.E; }
  }; // class AssociationIterator

  /// Build a non-result-dependent generic selection expression.
  GenericSelectionExpr(const ASTContext &Context, SourceLocation GenericLoc,
                       Expr *ControllingExpr,
                       ArrayRef<TypeSourceInfo *> AssocTypes,
                       ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
                       SourceLocation RParenLoc,
                       bool ContainsUnexpandedParameterPack,
                       unsigned ResultIndex);

  /// Build a result-dependent generic selection expression.
  GenericSelectionExpr(const ASTContext &Context, SourceLocation GenericLoc,
                       Expr *ControllingExpr,
                       ArrayRef<TypeSourceInfo *> AssocTypes,
                       ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
                       SourceLocation RParenLoc,
                       bool ContainsUnexpandedParameterPack);

  /// Build an empty generic selection expression for deserialization.
  explicit GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs);

public:
  /// Create a non-result-dependent generic selection expression.
  static GenericSelectionExpr *
  Create(const ASTContext &Context, SourceLocation GenericLoc,
         Expr *ControllingExpr, ArrayRef<TypeSourceInfo *> AssocTypes,
         ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
         SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
         unsigned ResultIndex);

  /// Create a result-dependent generic selection expression.
  static GenericSelectionExpr *
  Create(const ASTContext &Context, SourceLocation GenericLoc,
         Expr *ControllingExpr, ArrayRef<TypeSourceInfo *> AssocTypes,
         ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
         SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack);

  /// Create an empty generic selection expression for deserialization.
  static GenericSelectionExpr *CreateEmpty(const ASTContext &Context,
                                           unsigned NumAssocs);

  using Association = AssociationTy<false>;
  using ConstAssociation = AssociationTy<true>;
  using AssociationIterator = AssociationIteratorTy<false>;
  using ConstAssociationIterator = AssociationIteratorTy<true>;
  using association_range = llvm::iterator_range<AssociationIterator>;
  using const_association_range =
      llvm::iterator_range<ConstAssociationIterator>;

  /// The number of association expressions.
  unsigned getNumAssocs() const { return NumAssocs; }

  /// The zero-based index of the result expression's generic association in
  /// the generic selection's association list.  Defined only if the
  /// generic selection is not result-dependent.
  unsigned getResultIndex() const {
    assert(!isResultDependent() &&
           "Generic selection is result-dependent but getResultIndex called!");
    return ResultIndex;
  }

  /// Whether this generic selection is result-dependent.
  bool isResultDependent() const { return ResultIndex == ResultDependentIndex; }

  /// Return the controlling expression of this generic selection expression.
  Expr *getControllingExpr() {
    return cast<Expr>(getTrailingObjects<Stmt *>()[ControllingIndex]);
  }
  const Expr *getControllingExpr() const {
    return cast<Expr>(getTrailingObjects<Stmt *>()[ControllingIndex]);
  }

  /// Return the result expression of this controlling expression. Defined if
  /// and only if the generic selection expression is not result-dependent.
  Expr *getResultExpr() {
    return cast<Expr>(
        getTrailingObjects<Stmt *>()[AssocExprStartIndex + getResultIndex()]);
  }
  const Expr *getResultExpr() const {
    return cast<Expr>(
        getTrailingObjects<Stmt *>()[AssocExprStartIndex + getResultIndex()]);
  }

  ArrayRef<Expr *> getAssocExprs() const {
    return {reinterpret_cast<Expr *const *>(getTrailingObjects<Stmt *>() +
                                            AssocExprStartIndex),
            NumAssocs};
  }
  ArrayRef<TypeSourceInfo *> getAssocTypeSourceInfos() const {
    return {getTrailingObjects<TypeSourceInfo *>(), NumAssocs};
  }

  /// Return the Ith association expression with its TypeSourceInfo,
  /// bundled together in GenericSelectionExpr::(Const)Association.
  Association getAssociation(unsigned I) {
    assert(I < getNumAssocs() &&
           "Out-of-range index in GenericSelectionExpr::getAssociation!");
    return Association(
        cast<Expr>(getTrailingObjects<Stmt *>()[AssocExprStartIndex + I]),
        getTrailingObjects<TypeSourceInfo *>()[I],
        !isResultDependent() && (getResultIndex() == I));
  }
  ConstAssociation getAssociation(unsigned I) const {
    assert(I < getNumAssocs() &&
           "Out-of-range index in GenericSelectionExpr::getAssociation!");
    return ConstAssociation(
        cast<Expr>(getTrailingObjects<Stmt *>()[AssocExprStartIndex + I]),
        getTrailingObjects<TypeSourceInfo *>()[I],
        !isResultDependent() && (getResultIndex() == I));
  }

  association_range associations() {
    AssociationIterator Begin(getTrailingObjects<Stmt *>() +
                                  AssocExprStartIndex,
                              getTrailingObjects<TypeSourceInfo *>(),
                              /*Offset=*/0, ResultIndex);
    AssociationIterator End(Begin.E + NumAssocs, Begin.TSI + NumAssocs,
                            /*Offset=*/NumAssocs, ResultIndex);
    return llvm::make_range(Begin, End);
  }

  const_association_range associations() const {
    ConstAssociationIterator Begin(getTrailingObjects<Stmt *>() +
                                       AssocExprStartIndex,
                                   getTrailingObjects<TypeSourceInfo *>(),
                                   /*Offset=*/0, ResultIndex);
    ConstAssociationIterator End(Begin.E + NumAssocs, Begin.TSI + NumAssocs,
                                 /*Offset=*/NumAssocs, ResultIndex);
    return llvm::make_range(Begin, End);
  }

  SourceLocation getGenericLoc() const {
    return GenericSelectionExprBits.GenericLoc;
  }
  SourceLocation getDefaultLoc() const { return DefaultLoc; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  SourceLocation getBeginLoc() const { return getGenericLoc(); }
  SourceLocation getEndLoc() const { return getRParenLoc(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == GenericSelectionExprClass;
  }

  child_range children() {
    return child_range(getTrailingObjects<Stmt *>(),
                       getTrailingObjects<Stmt *>() +
                           numTrailingObjects(OverloadToken<Stmt *>()));
  }
  const_child_range children() const {
    return const_child_range(getTrailingObjects<Stmt *>(),
                             getTrailingObjects<Stmt *>() +
                                 numTrailingObjects(OverloadToken<Stmt *>()));
  }
};

//===----------------------------------------------------------------------===//
// Clang Extensions
//===----------------------------------------------------------------------===//

/// ExtVectorElementExpr - This represents access to specific elements of a
/// vector, and may occur on the left hand side or right hand side.  For example
/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
///
/// Note that the base may have either vector or pointer to vector type, just
/// like a struct field reference.
///
class ExtVectorElementExpr : public Expr {
  Stmt *Base;
  IdentifierInfo *Accessor;
  SourceLocation AccessorLoc;
public:
  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
                       IdentifierInfo &accessor, SourceLocation loc)
    : Expr(ExtVectorElementExprClass, ty, VK,
           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
           base->isTypeDependent(), base->isValueDependent(),
           base->isInstantiationDependent(),
           base->containsUnexpandedParameterPack()),
      Base(base), Accessor(&accessor), AccessorLoc(loc) {}

  /// Build an empty vector element expression.
  explicit ExtVectorElementExpr(EmptyShell Empty)
    : Expr(ExtVectorElementExprClass, Empty) { }

  const Expr *getBase() const { return cast<Expr>(Base); }
  Expr *getBase() { return cast<Expr>(Base); }
  void setBase(Expr *E) { Base = E; }

  IdentifierInfo &getAccessor() const { return *Accessor; }
  void setAccessor(IdentifierInfo *II) { Accessor = II; }

  SourceLocation getAccessorLoc() const { return AccessorLoc; }
  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }

  /// getNumElements - Get the number of components being selected.
  unsigned getNumElements() const;

  /// containsDuplicateElements - Return true if any element access is
  /// repeated.
  bool containsDuplicateElements() const;

  /// getEncodedElementAccess - Encode the elements accessed into an llvm
  /// aggregate Constant of ConstantInt(s).
  void getEncodedElementAccess(SmallVectorImpl<uint32_t> &Elts) const;

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getBase()->getBeginLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY { return AccessorLoc; }

  /// isArrow - Return true if the base expression is a pointer to vector,
  /// return false if the base expression is a vector.
  bool isArrow() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ExtVectorElementExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Base, &Base+1); }
  const_child_range children() const {
    return const_child_range(&Base, &Base + 1);
  }
};

/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
class BlockExpr : public Expr {
protected:
  BlockDecl *TheBlock;
public:
  BlockExpr(BlockDecl *BD, QualType ty)
    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
           ty->isDependentType(), ty->isDependentType(),
           ty->isInstantiationDependentType() || BD->isDependentContext(),
           false),
      TheBlock(BD) {}

  /// Build an empty block expression.
  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }

  const BlockDecl *getBlockDecl() const { return TheBlock; }
  BlockDecl *getBlockDecl() { return TheBlock; }
  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }

  // Convenience functions for probing the underlying BlockDecl.
  SourceLocation getCaretLocation() const;
  const Stmt *getBody() const;
  Stmt *getBody();

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getCaretLocation();
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return getBody()->getEndLoc();
  }

  /// getFunctionType - Return the underlying function type for this block.
  const FunctionProtoType *getFunctionType() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == BlockExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
/// This AST node provides support for reinterpreting a type to another
/// type of the same size.
class AsTypeExpr : public Expr {
private:
  Stmt *SrcExpr;
  SourceLocation BuiltinLoc, RParenLoc;

  friend class ASTReader;
  friend class ASTStmtReader;
  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}

public:
  AsTypeExpr(Expr* SrcExpr, QualType DstType,
             ExprValueKind VK, ExprObjectKind OK,
             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
    : Expr(AsTypeExprClass, DstType, VK, OK,
           DstType->isDependentType(),
           DstType->isDependentType() || SrcExpr->isValueDependent(),
           (DstType->isInstantiationDependentType() ||
            SrcExpr->isInstantiationDependent()),
           (DstType->containsUnexpandedParameterPack() ||
            SrcExpr->containsUnexpandedParameterPack())),
  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}

  /// getSrcExpr - Return the Expr to be converted.
  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }

  /// getBuiltinLoc - Return the location of the __builtin_astype token.
  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }

  /// getRParenLoc - Return the location of final right parenthesis.
  SourceLocation getRParenLoc() const { return RParenLoc; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == AsTypeExprClass;
  }

  // Iterators
  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
  const_child_range children() const {
    return const_child_range(&SrcExpr, &SrcExpr + 1);
  }
};

/// PseudoObjectExpr - An expression which accesses a pseudo-object
/// l-value.  A pseudo-object is an abstract object, accesses to which
/// are translated to calls.  The pseudo-object expression has a
/// syntactic form, which shows how the expression was actually
/// written in the source code, and a semantic form, which is a series
/// of expressions to be executed in order which detail how the
/// operation is actually evaluated.  Optionally, one of the semantic
/// forms may also provide a result value for the expression.
///
/// If any of the semantic-form expressions is an OpaqueValueExpr,
/// that OVE is required to have a source expression, and it is bound
/// to the result of that source expression.  Such OVEs may appear
/// only in subsequent semantic-form expressions and as
/// sub-expressions of the syntactic form.
///
/// PseudoObjectExpr should be used only when an operation can be
/// usefully described in terms of fairly simple rewrite rules on
/// objects and functions that are meant to be used by end-developers.
/// For example, under the Itanium ABI, dynamic casts are implemented
/// as a call to a runtime function called __dynamic_cast; using this
/// class to describe that would be inappropriate because that call is
/// not really part of the user-visible semantics, and instead the
/// cast is properly reflected in the AST and IR-generation has been
/// taught to generate the call as necessary.  In contrast, an
/// Objective-C property access is semantically defined to be
/// equivalent to a particular message send, and this is very much
/// part of the user model.  The name of this class encourages this
/// modelling design.
class PseudoObjectExpr final
    : public Expr,
      private llvm::TrailingObjects<PseudoObjectExpr, Expr *> {
  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
  // Always at least two, because the first sub-expression is the
  // syntactic form.

  // PseudoObjectExprBits.ResultIndex - The index of the
  // sub-expression holding the result.  0 means the result is void,
  // which is unambiguous because it's the index of the syntactic
  // form.  Note that this is therefore 1 higher than the value passed
  // in to Create, which is an index within the semantic forms.
  // Note also that ASTStmtWriter assumes this encoding.

  Expr **getSubExprsBuffer() { return getTrailingObjects<Expr *>(); }
  const Expr * const *getSubExprsBuffer() const {
    return getTrailingObjects<Expr *>();
  }

  PseudoObjectExpr(QualType type, ExprValueKind VK,
                   Expr *syntactic, ArrayRef<Expr*> semantic,
                   unsigned resultIndex);

  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);

  unsigned getNumSubExprs() const {
    return PseudoObjectExprBits.NumSubExprs;
  }

public:
  /// NoResult - A value for the result index indicating that there is
  /// no semantic result.
  enum : unsigned { NoResult = ~0U };

  static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
                                  ArrayRef<Expr*> semantic,
                                  unsigned resultIndex);

  static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
                                  unsigned numSemanticExprs);

  /// Return the syntactic form of this expression, i.e. the
  /// expression it actually looks like.  Likely to be expressed in
  /// terms of OpaqueValueExprs bound in the semantic form.
  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }

  /// Return the index of the result-bearing expression into the semantics
  /// expressions, or PseudoObjectExpr::NoResult if there is none.
  unsigned getResultExprIndex() const {
    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
    return PseudoObjectExprBits.ResultIndex - 1;
  }

  /// Return the result-bearing expression, or null if there is none.
  Expr *getResultExpr() {
    if (PseudoObjectExprBits.ResultIndex == 0)
      return nullptr;
    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
  }
  const Expr *getResultExpr() const {
    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
  }

  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }

  typedef Expr * const *semantics_iterator;
  typedef const Expr * const *const_semantics_iterator;
  semantics_iterator semantics_begin() {
    return getSubExprsBuffer() + 1;
  }
  const_semantics_iterator semantics_begin() const {
    return getSubExprsBuffer() + 1;
  }
  semantics_iterator semantics_end() {
    return getSubExprsBuffer() + getNumSubExprs();
  }
  const_semantics_iterator semantics_end() const {
    return getSubExprsBuffer() + getNumSubExprs();
  }

  llvm::iterator_range<semantics_iterator> semantics() {
    return llvm::make_range(semantics_begin(), semantics_end());
  }
  llvm::iterator_range<const_semantics_iterator> semantics() const {
    return llvm::make_range(semantics_begin(), semantics_end());
  }

  Expr *getSemanticExpr(unsigned index) {
    assert(index + 1 < getNumSubExprs());
    return getSubExprsBuffer()[index + 1];
  }
  const Expr *getSemanticExpr(unsigned index) const {
    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
  }

  SourceLocation getExprLoc() const LLVM_READONLY {
    return getSyntacticForm()->getExprLoc();
  }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getSyntacticForm()->getBeginLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return getSyntacticForm()->getEndLoc();
  }

  child_range children() {
    const_child_range CCR =
        const_cast<const PseudoObjectExpr *>(this)->children();
    return child_range(cast_away_const(CCR.begin()),
                       cast_away_const(CCR.end()));
  }
  const_child_range children() const {
    Stmt *const *cs = const_cast<Stmt *const *>(
        reinterpret_cast<const Stmt *const *>(getSubExprsBuffer()));
    return const_child_range(cs, cs + getNumSubExprs());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == PseudoObjectExprClass;
  }

  friend TrailingObjects;
  friend class ASTStmtReader;
};

/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>,
/// and corresponding __opencl_atomic_* for OpenCL 2.0.
/// All of these instructions take one primary pointer, at least one memory
/// order. The instructions for which getScopeModel returns non-null value
/// take one synch scope.
class AtomicExpr : public Expr {
public:
  enum AtomicOp {
#define BUILTIN(ID, TYPE, ATTRS)
#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
#include "clang/Basic/Builtins.def"
    // Avoid trailing comma
    BI_First = 0
  };

private:
  /// Location of sub-expressions.
  /// The location of Scope sub-expression is NumSubExprs - 1, which is
  /// not fixed, therefore is not defined in enum.
  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
  Stmt *SubExprs[END_EXPR + 1];
  unsigned NumSubExprs;
  SourceLocation BuiltinLoc, RParenLoc;
  AtomicOp Op;

  friend class ASTStmtReader;
public:
  AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
             AtomicOp op, SourceLocation RP);

  /// Determine the number of arguments the specified atomic builtin
  /// should have.
  static unsigned getNumSubExprs(AtomicOp Op);

  /// Build an empty AtomicExpr.
  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }

  Expr *getPtr() const {
    return cast<Expr>(SubExprs[PTR]);
  }
  Expr *getOrder() const {
    return cast<Expr>(SubExprs[ORDER]);
  }
  Expr *getScope() const {
    assert(getScopeModel() && "No scope");
    return cast<Expr>(SubExprs[NumSubExprs - 1]);
  }
  Expr *getVal1() const {
    if (Op == AO__c11_atomic_init || Op == AO__opencl_atomic_init)
      return cast<Expr>(SubExprs[ORDER]);
    assert(NumSubExprs > VAL1);
    return cast<Expr>(SubExprs[VAL1]);
  }
  Expr *getOrderFail() const {
    assert(NumSubExprs > ORDER_FAIL);
    return cast<Expr>(SubExprs[ORDER_FAIL]);
  }
  Expr *getVal2() const {
    if (Op == AO__atomic_exchange)
      return cast<Expr>(SubExprs[ORDER_FAIL]);
    assert(NumSubExprs > VAL2);
    return cast<Expr>(SubExprs[VAL2]);
  }
  Expr *getWeak() const {
    assert(NumSubExprs > WEAK);
    return cast<Expr>(SubExprs[WEAK]);
  }
  QualType getValueType() const;

  AtomicOp getOp() const { return Op; }
  unsigned getNumSubExprs() const { return NumSubExprs; }

  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
  const Expr * const *getSubExprs() const {
    return reinterpret_cast<Expr * const *>(SubExprs);
  }

  bool isVolatile() const {
    return getPtr()->getType()->getPointeeType().isVolatileQualified();
  }

  bool isCmpXChg() const {
    return getOp() == AO__c11_atomic_compare_exchange_strong ||
           getOp() == AO__c11_atomic_compare_exchange_weak ||
           getOp() == AO__opencl_atomic_compare_exchange_strong ||
           getOp() == AO__opencl_atomic_compare_exchange_weak ||
           getOp() == AO__atomic_compare_exchange ||
           getOp() == AO__atomic_compare_exchange_n;
  }

  bool isOpenCL() const {
    return getOp() >= AO__opencl_atomic_init &&
           getOp() <= AO__opencl_atomic_fetch_max;
  }

  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
  SourceLocation getRParenLoc() const { return RParenLoc; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == AtomicExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(SubExprs, SubExprs+NumSubExprs);
  }
  const_child_range children() const {
    return const_child_range(SubExprs, SubExprs + NumSubExprs);
  }

  /// Get atomic scope model for the atomic op code.
  /// \return empty atomic scope model if the atomic op code does not have
  ///   scope operand.
  static std::unique_ptr<AtomicScopeModel> getScopeModel(AtomicOp Op) {
    auto Kind =
        (Op >= AO__opencl_atomic_load && Op <= AO__opencl_atomic_fetch_max)
            ? AtomicScopeModelKind::OpenCL
            : AtomicScopeModelKind::None;
    return AtomicScopeModel::create(Kind);
  }

  /// Get atomic scope model.
  /// \return empty atomic scope model if this atomic expression does not have
  ///   scope operand.
  std::unique_ptr<AtomicScopeModel> getScopeModel() const {
    return getScopeModel(getOp());
  }
};

/// TypoExpr - Internal placeholder for expressions where typo correction
/// still needs to be performed and/or an error diagnostic emitted.
class TypoExpr : public Expr {
public:
  TypoExpr(QualType T)
      : Expr(TypoExprClass, T, VK_LValue, OK_Ordinary,
             /*isTypeDependent*/ true,
             /*isValueDependent*/ true,
             /*isInstantiationDependent*/ true,
             /*containsUnexpandedParameterPack*/ false) {
    assert(T->isDependentType() && "TypoExpr given a non-dependent type");
  }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
  SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == TypoExprClass;
  }

};
} // end namespace clang

#endif // LLVM_CLANG_AST_EXPR_H