reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
//===- ExprCXX.h - Classes for representing expressions ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Defines the clang::Expr interface and subclasses for C++ expressions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_EXPRCXX_H
#define LLVM_CLANG_AST_EXPRCXX_H

#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/ExpressionTraits.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TrailingObjects.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>

namespace clang {

class ASTContext;
class DeclAccessPair;
class IdentifierInfo;
class LambdaCapture;
class NonTypeTemplateParmDecl;
class TemplateParameterList;

//===--------------------------------------------------------------------===//
// C++ Expressions.
//===--------------------------------------------------------------------===//

/// A call to an overloaded operator written using operator
/// syntax.
///
/// Represents a call to an overloaded operator written using operator
/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
/// normal call, this AST node provides better information about the
/// syntactic representation of the call.
///
/// In a C++ template, this expression node kind will be used whenever
/// any of the arguments are type-dependent. In this case, the
/// function itself will be a (possibly empty) set of functions and
/// function templates that were found by name lookup at template
/// definition time.
class CXXOperatorCallExpr final : public CallExpr {
  friend class ASTStmtReader;
  friend class ASTStmtWriter;

  SourceRange Range;

  // CXXOperatorCallExpr has some trailing objects belonging
  // to CallExpr. See CallExpr for the details.

  SourceRange getSourceRangeImpl() const LLVM_READONLY;

  CXXOperatorCallExpr(OverloadedOperatorKind OpKind, Expr *Fn,
                      ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
                      SourceLocation OperatorLoc, FPOptions FPFeatures,
                      ADLCallKind UsesADL);

  CXXOperatorCallExpr(unsigned NumArgs, EmptyShell Empty);

public:
  static CXXOperatorCallExpr *
  Create(const ASTContext &Ctx, OverloadedOperatorKind OpKind, Expr *Fn,
         ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
         SourceLocation OperatorLoc, FPOptions FPFeatures,
         ADLCallKind UsesADL = NotADL);

  static CXXOperatorCallExpr *CreateEmpty(const ASTContext &Ctx,
                                          unsigned NumArgs, EmptyShell Empty);

  /// Returns the kind of overloaded operator that this expression refers to.
  OverloadedOperatorKind getOperator() const {
    return static_cast<OverloadedOperatorKind>(
        CXXOperatorCallExprBits.OperatorKind);
  }

  static bool isAssignmentOp(OverloadedOperatorKind Opc) {
    return Opc == OO_Equal || Opc == OO_StarEqual || Opc == OO_SlashEqual ||
           Opc == OO_PercentEqual || Opc == OO_PlusEqual ||
           Opc == OO_MinusEqual || Opc == OO_LessLessEqual ||
           Opc == OO_GreaterGreaterEqual || Opc == OO_AmpEqual ||
           Opc == OO_CaretEqual || Opc == OO_PipeEqual;
  }
  bool isAssignmentOp() const { return isAssignmentOp(getOperator()); }

  /// Is this written as an infix binary operator?
  bool isInfixBinaryOp() const;

  /// Returns the location of the operator symbol in the expression.
  ///
  /// When \c getOperator()==OO_Call, this is the location of the right
  /// parentheses; when \c getOperator()==OO_Subscript, this is the location
  /// of the right bracket.
  SourceLocation getOperatorLoc() const { return getRParenLoc(); }

  SourceLocation getExprLoc() const LLVM_READONLY {
    OverloadedOperatorKind Operator = getOperator();
    return (Operator < OO_Plus || Operator >= OO_Arrow ||
            Operator == OO_PlusPlus || Operator == OO_MinusMinus)
               ? getBeginLoc()
               : getOperatorLoc();
  }

  SourceLocation getBeginLoc() const { return Range.getBegin(); }
  SourceLocation getEndLoc() const { return Range.getEnd(); }
  SourceRange getSourceRange() const { return Range; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXOperatorCallExprClass;
  }

  // Set the FP contractability status of this operator. Only meaningful for
  // operations on floating point types.
  void setFPFeatures(FPOptions F) {
    CXXOperatorCallExprBits.FPFeatures = F.getInt();
  }
  FPOptions getFPFeatures() const {
    return FPOptions(CXXOperatorCallExprBits.FPFeatures);
  }

  // Get the FP contractability status of this operator. Only meaningful for
  // operations on floating point types.
  bool isFPContractableWithinStatement() const {
    return getFPFeatures().allowFPContractWithinStatement();
  }
};

/// Represents a call to a member function that
/// may be written either with member call syntax (e.g., "obj.func()"
/// or "objptr->func()") or with normal function-call syntax
/// ("func()") within a member function that ends up calling a member
/// function. The callee in either case is a MemberExpr that contains
/// both the object argument and the member function, while the
/// arguments are the arguments within the parentheses (not including
/// the object argument).
class CXXMemberCallExpr final : public CallExpr {
  // CXXMemberCallExpr has some trailing objects belonging
  // to CallExpr. See CallExpr for the details.

  CXXMemberCallExpr(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
                    ExprValueKind VK, SourceLocation RP, unsigned MinNumArgs);

  CXXMemberCallExpr(unsigned NumArgs, EmptyShell Empty);

public:
  static CXXMemberCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
                                   ArrayRef<Expr *> Args, QualType Ty,
                                   ExprValueKind VK, SourceLocation RP,
                                   unsigned MinNumArgs = 0);

  static CXXMemberCallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
                                        EmptyShell Empty);

  /// Retrieve the implicit object argument for the member call.
  ///
  /// For example, in "x.f(5)", this returns the sub-expression "x".
  Expr *getImplicitObjectArgument() const;

  /// Retrieve the type of the object argument.
  ///
  /// Note that this always returns a non-pointer type.
  QualType getObjectType() const;

  /// Retrieve the declaration of the called method.
  CXXMethodDecl *getMethodDecl() const;

  /// Retrieve the CXXRecordDecl for the underlying type of
  /// the implicit object argument.
  ///
  /// Note that this is may not be the same declaration as that of the class
  /// context of the CXXMethodDecl which this function is calling.
  /// FIXME: Returns 0 for member pointer call exprs.
  CXXRecordDecl *getRecordDecl() const;

  SourceLocation getExprLoc() const LLVM_READONLY {
    SourceLocation CLoc = getCallee()->getExprLoc();
    if (CLoc.isValid())
      return CLoc;

    return getBeginLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXMemberCallExprClass;
  }
};

/// Represents a call to a CUDA kernel function.
class CUDAKernelCallExpr final : public CallExpr {
  friend class ASTStmtReader;

  enum { CONFIG, END_PREARG };

  // CUDAKernelCallExpr has some trailing objects belonging
  // to CallExpr. See CallExpr for the details.

  CUDAKernelCallExpr(Expr *Fn, CallExpr *Config, ArrayRef<Expr *> Args,
                     QualType Ty, ExprValueKind VK, SourceLocation RP,
                     unsigned MinNumArgs);

  CUDAKernelCallExpr(unsigned NumArgs, EmptyShell Empty);

public:
  static CUDAKernelCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
                                    CallExpr *Config, ArrayRef<Expr *> Args,
                                    QualType Ty, ExprValueKind VK,
                                    SourceLocation RP, unsigned MinNumArgs = 0);

  static CUDAKernelCallExpr *CreateEmpty(const ASTContext &Ctx,
                                         unsigned NumArgs, EmptyShell Empty);

  const CallExpr *getConfig() const {
    return cast_or_null<CallExpr>(getPreArg(CONFIG));
  }
  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CUDAKernelCallExprClass;
  }
};

/// A rewritten comparison expression that was originally written using
/// operator syntax.
///
/// In C++20, the following rewrites are performed:
/// - <tt>a == b</tt> -> <tt>b == a</tt>
/// - <tt>a != b</tt> -> <tt>!(a == b)</tt>
/// - <tt>a != b</tt> -> <tt>!(b == a)</tt>
/// - For \c \@ in \c <, \c <=, \c >, \c >=, \c <=>:
///   - <tt>a @ b</tt> -> <tt>(a <=> b) @ 0</tt>
///   - <tt>a @ b</tt> -> <tt>0 @ (b <=> a)</tt>
///
/// This expression provides access to both the original syntax and the
/// rewritten expression.
///
/// Note that the rewritten calls to \c ==, \c <=>, and \c \@ are typically
/// \c CXXOperatorCallExprs, but could theoretically be \c BinaryOperators.
class CXXRewrittenBinaryOperator : public Expr {
  friend class ASTStmtReader;

  /// The rewritten semantic form.
  Stmt *SemanticForm;

public:
  CXXRewrittenBinaryOperator(Expr *SemanticForm, bool IsReversed)
      : Expr(CXXRewrittenBinaryOperatorClass, SemanticForm->getType(),
             SemanticForm->getValueKind(), SemanticForm->getObjectKind(),
             SemanticForm->isTypeDependent(), SemanticForm->isValueDependent(),
             SemanticForm->isInstantiationDependent(),
             SemanticForm->containsUnexpandedParameterPack()),
        SemanticForm(SemanticForm) {
    CXXRewrittenBinaryOperatorBits.IsReversed = IsReversed;
  }
  CXXRewrittenBinaryOperator(EmptyShell Empty)
      : Expr(CXXRewrittenBinaryOperatorClass, Empty), SemanticForm() {}

  /// Get an equivalent semantic form for this expression.
  Expr *getSemanticForm() { return cast<Expr>(SemanticForm); }
  const Expr *getSemanticForm() const { return cast<Expr>(SemanticForm); }

  struct DecomposedForm {
    /// The original opcode, prior to rewriting.
    BinaryOperatorKind Opcode;
    /// The original left-hand side.
    const Expr *LHS;
    /// The original right-hand side.
    const Expr *RHS;
    /// The inner \c == or \c <=> operator expression.
    const Expr *InnerBinOp;
  };

  /// Decompose this operator into its syntactic form.
  DecomposedForm getDecomposedForm() const LLVM_READONLY;

  /// Determine whether this expression was rewritten in reverse form.
  bool isReversed() const { return CXXRewrittenBinaryOperatorBits.IsReversed; }

  BinaryOperatorKind getOperator() const { return getDecomposedForm().Opcode; }
  const Expr *getLHS() const { return getDecomposedForm().LHS; }
  const Expr *getRHS() const { return getDecomposedForm().RHS; }

  SourceLocation getOperatorLoc() const LLVM_READONLY {
    return getDecomposedForm().InnerBinOp->getExprLoc();
  }
  SourceLocation getExprLoc() const LLVM_READONLY { return getOperatorLoc(); }

  /// Compute the begin and end locations from the decomposed form.
  /// The locations of the semantic form are not reliable if this is
  /// a reversed expression.
  //@{
  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getDecomposedForm().LHS->getBeginLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return getDecomposedForm().RHS->getEndLoc();
  }
  SourceRange getSourceRange() const LLVM_READONLY {
    DecomposedForm DF = getDecomposedForm();
    return SourceRange(DF.LHS->getBeginLoc(), DF.RHS->getEndLoc());
  }
  //@}

  child_range children() {
    return child_range(&SemanticForm, &SemanticForm + 1);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXRewrittenBinaryOperatorClass;
  }
};

/// Abstract class common to all of the C++ "named"/"keyword" casts.
///
/// This abstract class is inherited by all of the classes
/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
/// reinterpret_cast, and CXXConstCastExpr for \c const_cast.
class CXXNamedCastExpr : public ExplicitCastExpr {
private:
  // the location of the casting op
  SourceLocation Loc;

  // the location of the right parenthesis
  SourceLocation RParenLoc;

  // range for '<' '>'
  SourceRange AngleBrackets;

protected:
  friend class ASTStmtReader;

  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
                   CastKind kind, Expr *op, unsigned PathSize,
                   TypeSourceInfo *writtenTy, SourceLocation l,
                   SourceLocation RParenLoc,
                   SourceRange AngleBrackets)
      : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
        RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}

  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
      : ExplicitCastExpr(SC, Shell, PathSize) {}

public:
  const char *getCastName() const;

  /// Retrieve the location of the cast operator keyword, e.g.,
  /// \c static_cast.
  SourceLocation getOperatorLoc() const { return Loc; }

  /// Retrieve the location of the closing parenthesis.
  SourceLocation getRParenLoc() const { return RParenLoc; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
  SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }

  static bool classof(const Stmt *T) {
    switch (T->getStmtClass()) {
    case CXXStaticCastExprClass:
    case CXXDynamicCastExprClass:
    case CXXReinterpretCastExprClass:
    case CXXConstCastExprClass:
      return true;
    default:
      return false;
    }
  }
};

/// A C++ \c static_cast expression (C++ [expr.static.cast]).
///
/// This expression node represents a C++ static cast, e.g.,
/// \c static_cast<int>(1.0).
class CXXStaticCastExpr final
    : public CXXNamedCastExpr,
      private llvm::TrailingObjects<CXXStaticCastExpr, CXXBaseSpecifier *> {
  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
                    unsigned pathSize, TypeSourceInfo *writtenTy,
                    SourceLocation l, SourceLocation RParenLoc,
                    SourceRange AngleBrackets)
      : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
                         writtenTy, l, RParenLoc, AngleBrackets) {}

  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
      : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) {}

public:
  friend class CastExpr;
  friend TrailingObjects;

  static CXXStaticCastExpr *Create(const ASTContext &Context, QualType T,
                                   ExprValueKind VK, CastKind K, Expr *Op,
                                   const CXXCastPath *Path,
                                   TypeSourceInfo *Written, SourceLocation L,
                                   SourceLocation RParenLoc,
                                   SourceRange AngleBrackets);
  static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
                                        unsigned PathSize);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXStaticCastExprClass;
  }
};

/// A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
///
/// This expression node represents a dynamic cast, e.g.,
/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
/// check to determine how to perform the type conversion.
class CXXDynamicCastExpr final
    : public CXXNamedCastExpr,
      private llvm::TrailingObjects<CXXDynamicCastExpr, CXXBaseSpecifier *> {
  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
                     SourceLocation l, SourceLocation RParenLoc,
                     SourceRange AngleBrackets)
      : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
                         writtenTy, l, RParenLoc, AngleBrackets) {}

  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
      : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) {}

public:
  friend class CastExpr;
  friend TrailingObjects;

  static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
                                    ExprValueKind VK, CastKind Kind, Expr *Op,
                                    const CXXCastPath *Path,
                                    TypeSourceInfo *Written, SourceLocation L,
                                    SourceLocation RParenLoc,
                                    SourceRange AngleBrackets);

  static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
                                         unsigned pathSize);

  bool isAlwaysNull() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDynamicCastExprClass;
  }
};

/// A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
///
/// This expression node represents a reinterpret cast, e.g.,
/// @c reinterpret_cast<int>(VoidPtr).
///
/// A reinterpret_cast provides a differently-typed view of a value but
/// (in Clang, as in most C++ implementations) performs no actual work at
/// run time.
class CXXReinterpretCastExpr final
    : public CXXNamedCastExpr,
      private llvm::TrailingObjects<CXXReinterpretCastExpr,
                                    CXXBaseSpecifier *> {
  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
                         Expr *op, unsigned pathSize,
                         TypeSourceInfo *writtenTy, SourceLocation l,
                         SourceLocation RParenLoc,
                         SourceRange AngleBrackets)
      : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
                         pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}

  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
      : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) {}

public:
  friend class CastExpr;
  friend TrailingObjects;

  static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
                                        ExprValueKind VK, CastKind Kind,
                                        Expr *Op, const CXXCastPath *Path,
                                 TypeSourceInfo *WrittenTy, SourceLocation L,
                                        SourceLocation RParenLoc,
                                        SourceRange AngleBrackets);
  static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
                                             unsigned pathSize);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXReinterpretCastExprClass;
  }
};

/// A C++ \c const_cast expression (C++ [expr.const.cast]).
///
/// This expression node represents a const cast, e.g.,
/// \c const_cast<char*>(PtrToConstChar).
///
/// A const_cast can remove type qualifiers but does not change the underlying
/// value.
class CXXConstCastExpr final
    : public CXXNamedCastExpr,
      private llvm::TrailingObjects<CXXConstCastExpr, CXXBaseSpecifier *> {
  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
                   TypeSourceInfo *writtenTy, SourceLocation l,
                   SourceLocation RParenLoc, SourceRange AngleBrackets)
      : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
                         0, writtenTy, l, RParenLoc, AngleBrackets) {}

  explicit CXXConstCastExpr(EmptyShell Empty)
      : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) {}

public:
  friend class CastExpr;
  friend TrailingObjects;

  static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
                                  ExprValueKind VK, Expr *Op,
                                  TypeSourceInfo *WrittenTy, SourceLocation L,
                                  SourceLocation RParenLoc,
                                  SourceRange AngleBrackets);
  static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXConstCastExprClass;
  }
};

/// A call to a literal operator (C++11 [over.literal])
/// written as a user-defined literal (C++11 [lit.ext]).
///
/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
/// is semantically equivalent to a normal call, this AST node provides better
/// information about the syntactic representation of the literal.
///
/// Since literal operators are never found by ADL and can only be declared at
/// namespace scope, a user-defined literal is never dependent.
class UserDefinedLiteral final : public CallExpr {
  friend class ASTStmtReader;
  friend class ASTStmtWriter;

  /// The location of a ud-suffix within the literal.
  SourceLocation UDSuffixLoc;

  // UserDefinedLiteral has some trailing objects belonging
  // to CallExpr. See CallExpr for the details.

  UserDefinedLiteral(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
                     ExprValueKind VK, SourceLocation LitEndLoc,
                     SourceLocation SuffixLoc);

  UserDefinedLiteral(unsigned NumArgs, EmptyShell Empty);

public:
  static UserDefinedLiteral *Create(const ASTContext &Ctx, Expr *Fn,
                                    ArrayRef<Expr *> Args, QualType Ty,
                                    ExprValueKind VK, SourceLocation LitEndLoc,
                                    SourceLocation SuffixLoc);

  static UserDefinedLiteral *CreateEmpty(const ASTContext &Ctx,
                                         unsigned NumArgs, EmptyShell Empty);

  /// The kind of literal operator which is invoked.
  enum LiteralOperatorKind {
    /// Raw form: operator "" X (const char *)
    LOK_Raw,

    /// Raw form: operator "" X<cs...> ()
    LOK_Template,

    /// operator "" X (unsigned long long)
    LOK_Integer,

    /// operator "" X (long double)
    LOK_Floating,

    /// operator "" X (const CharT *, size_t)
    LOK_String,

    /// operator "" X (CharT)
    LOK_Character
  };

  /// Returns the kind of literal operator invocation
  /// which this expression represents.
  LiteralOperatorKind getLiteralOperatorKind() const;

  /// If this is not a raw user-defined literal, get the
  /// underlying cooked literal (representing the literal with the suffix
  /// removed).
  Expr *getCookedLiteral();
  const Expr *getCookedLiteral() const {
    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
  }

  SourceLocation getBeginLoc() const {
    if (getLiteralOperatorKind() == LOK_Template)
      return getRParenLoc();
    return getArg(0)->getBeginLoc();
  }

  SourceLocation getEndLoc() const { return getRParenLoc(); }

  /// Returns the location of a ud-suffix in the expression.
  ///
  /// For a string literal, there may be multiple identical suffixes. This
  /// returns the first.
  SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }

  /// Returns the ud-suffix specified for this literal.
  const IdentifierInfo *getUDSuffix() const;

  static bool classof(const Stmt *S) {
    return S->getStmtClass() == UserDefinedLiteralClass;
  }
};

/// A boolean literal, per ([C++ lex.bool] Boolean literals).
class CXXBoolLiteralExpr : public Expr {
public:
  CXXBoolLiteralExpr(bool Val, QualType Ty, SourceLocation Loc)
      : Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
             false, false) {
    CXXBoolLiteralExprBits.Value = Val;
    CXXBoolLiteralExprBits.Loc = Loc;
  }

  explicit CXXBoolLiteralExpr(EmptyShell Empty)
      : Expr(CXXBoolLiteralExprClass, Empty) {}

  bool getValue() const { return CXXBoolLiteralExprBits.Value; }
  void setValue(bool V) { CXXBoolLiteralExprBits.Value = V; }

  SourceLocation getBeginLoc() const { return getLocation(); }
  SourceLocation getEndLoc() const { return getLocation(); }

  SourceLocation getLocation() const { return CXXBoolLiteralExprBits.Loc; }
  void setLocation(SourceLocation L) { CXXBoolLiteralExprBits.Loc = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXBoolLiteralExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// The null pointer literal (C++11 [lex.nullptr])
///
/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
class CXXNullPtrLiteralExpr : public Expr {
public:
  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation Loc)
      : Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false,
             false, false, false) {
    CXXNullPtrLiteralExprBits.Loc = Loc;
  }

  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
      : Expr(CXXNullPtrLiteralExprClass, Empty) {}

  SourceLocation getBeginLoc() const { return getLocation(); }
  SourceLocation getEndLoc() const { return getLocation(); }

  SourceLocation getLocation() const { return CXXNullPtrLiteralExprBits.Loc; }
  void setLocation(SourceLocation L) { CXXNullPtrLiteralExprBits.Loc = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
  }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// Implicit construction of a std::initializer_list<T> object from an
/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
class CXXStdInitializerListExpr : public Expr {
  Stmt *SubExpr = nullptr;

  CXXStdInitializerListExpr(EmptyShell Empty)
      : Expr(CXXStdInitializerListExprClass, Empty) {}

public:
  friend class ASTReader;
  friend class ASTStmtReader;

  CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
      : Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary,
             Ty->isDependentType(), SubExpr->isValueDependent(),
             SubExpr->isInstantiationDependent(),
             SubExpr->containsUnexpandedParameterPack()),
        SubExpr(SubExpr) {}

  Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
  const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return SubExpr->getBeginLoc();
  }

  SourceLocation getEndLoc() const LLVM_READONLY {
    return SubExpr->getEndLoc();
  }

  /// Retrieve the source range of the expression.
  SourceRange getSourceRange() const LLVM_READONLY {
    return SubExpr->getSourceRange();
  }

  static bool classof(const Stmt *S) {
    return S->getStmtClass() == CXXStdInitializerListExprClass;
  }

  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }

  const_child_range children() const {
    return const_child_range(&SubExpr, &SubExpr + 1);
  }
};

/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
/// the \c type_info that corresponds to the supplied type, or the (possibly
/// dynamic) type of the supplied expression.
///
/// This represents code like \c typeid(int) or \c typeid(*objPtr)
class CXXTypeidExpr : public Expr {
private:
  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
  SourceRange Range;

public:
  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
      : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
             // typeid is never type-dependent (C++ [temp.dep.expr]p4)
             false,
             // typeid is value-dependent if the type or expression are
             // dependent
             Operand->getType()->isDependentType(),
             Operand->getType()->isInstantiationDependentType(),
             Operand->getType()->containsUnexpandedParameterPack()),
        Operand(Operand), Range(R) {}

  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
      : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
             // typeid is never type-dependent (C++ [temp.dep.expr]p4)
             false,
             // typeid is value-dependent if the type or expression are
             // dependent
             Operand->isTypeDependent() || Operand->isValueDependent(),
             Operand->isInstantiationDependent(),
             Operand->containsUnexpandedParameterPack()),
        Operand(Operand), Range(R) {}

  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
      : Expr(CXXTypeidExprClass, Empty) {
    if (isExpr)
      Operand = (Expr*)nullptr;
    else
      Operand = (TypeSourceInfo*)nullptr;
  }

  /// Determine whether this typeid has a type operand which is potentially
  /// evaluated, per C++11 [expr.typeid]p3.
  bool isPotentiallyEvaluated() const;

  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }

  /// Retrieves the type operand of this typeid() expression after
  /// various required adjustments (removing reference types, cv-qualifiers).
  QualType getTypeOperand(ASTContext &Context) const;

  /// Retrieve source information for the type operand.
  TypeSourceInfo *getTypeOperandSourceInfo() const {
    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
    return Operand.get<TypeSourceInfo *>();
  }

  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
    Operand = TSI;
  }

  Expr *getExprOperand() const {
    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
    return static_cast<Expr*>(Operand.get<Stmt *>());
  }

  void setExprOperand(Expr *E) {
    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
    Operand = E;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
  SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
  void setSourceRange(SourceRange R) { Range = R; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXTypeidExprClass;
  }

  // Iterators
  child_range children() {
    if (isTypeOperand())
      return child_range(child_iterator(), child_iterator());
    auto **begin = reinterpret_cast<Stmt **>(&Operand);
    return child_range(begin, begin + 1);
  }

  const_child_range children() const {
    if (isTypeOperand())
      return const_child_range(const_child_iterator(), const_child_iterator());

    auto **begin =
        reinterpret_cast<Stmt **>(&const_cast<CXXTypeidExpr *>(this)->Operand);
    return const_child_range(begin, begin + 1);
  }
};

/// A member reference to an MSPropertyDecl.
///
/// This expression always has pseudo-object type, and therefore it is
/// typically not encountered in a fully-typechecked expression except
/// within the syntactic form of a PseudoObjectExpr.
class MSPropertyRefExpr : public Expr {
  Expr *BaseExpr;
  MSPropertyDecl *TheDecl;
  SourceLocation MemberLoc;
  bool IsArrow;
  NestedNameSpecifierLoc QualifierLoc;

public:
  friend class ASTStmtReader;

  MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
                    QualType ty, ExprValueKind VK,
                    NestedNameSpecifierLoc qualifierLoc,
                    SourceLocation nameLoc)
      : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary,
             /*type-dependent*/ false, baseExpr->isValueDependent(),
             baseExpr->isInstantiationDependent(),
             baseExpr->containsUnexpandedParameterPack()),
        BaseExpr(baseExpr), TheDecl(decl),
        MemberLoc(nameLoc), IsArrow(isArrow),
        QualifierLoc(qualifierLoc) {}

  MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}

  SourceRange getSourceRange() const LLVM_READONLY {
    return SourceRange(getBeginLoc(), getEndLoc());
  }

  bool isImplicitAccess() const {
    return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
  }

  SourceLocation getBeginLoc() const {
    if (!isImplicitAccess())
      return BaseExpr->getBeginLoc();
    else if (QualifierLoc)
      return QualifierLoc.getBeginLoc();
    else
        return MemberLoc;
  }

  SourceLocation getEndLoc() const { return getMemberLoc(); }

  child_range children() {
    return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
  }

  const_child_range children() const {
    auto Children = const_cast<MSPropertyRefExpr *>(this)->children();
    return const_child_range(Children.begin(), Children.end());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == MSPropertyRefExprClass;
  }

  Expr *getBaseExpr() const { return BaseExpr; }
  MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
  bool isArrow() const { return IsArrow; }
  SourceLocation getMemberLoc() const { return MemberLoc; }
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
};

/// MS property subscript expression.
/// MSVC supports 'property' attribute and allows to apply it to the
/// declaration of an empty array in a class or structure definition.
/// For example:
/// \code
/// __declspec(property(get=GetX, put=PutX)) int x[];
/// \endcode
/// The above statement indicates that x[] can be used with one or more array
/// indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and
/// p->x[a][b] = i will be turned into p->PutX(a, b, i).
/// This is a syntactic pseudo-object expression.
class MSPropertySubscriptExpr : public Expr {
  friend class ASTStmtReader;

  enum { BASE_EXPR, IDX_EXPR, NUM_SUBEXPRS = 2 };

  Stmt *SubExprs[NUM_SUBEXPRS];
  SourceLocation RBracketLoc;

  void setBase(Expr *Base) { SubExprs[BASE_EXPR] = Base; }
  void setIdx(Expr *Idx) { SubExprs[IDX_EXPR] = Idx; }

public:
  MSPropertySubscriptExpr(Expr *Base, Expr *Idx, QualType Ty, ExprValueKind VK,
                          ExprObjectKind OK, SourceLocation RBracketLoc)
      : Expr(MSPropertySubscriptExprClass, Ty, VK, OK, Idx->isTypeDependent(),
             Idx->isValueDependent(), Idx->isInstantiationDependent(),
             Idx->containsUnexpandedParameterPack()),
        RBracketLoc(RBracketLoc) {
    SubExprs[BASE_EXPR] = Base;
    SubExprs[IDX_EXPR] = Idx;
  }

  /// Create an empty array subscript expression.
  explicit MSPropertySubscriptExpr(EmptyShell Shell)
      : Expr(MSPropertySubscriptExprClass, Shell) {}

  Expr *getBase() { return cast<Expr>(SubExprs[BASE_EXPR]); }
  const Expr *getBase() const { return cast<Expr>(SubExprs[BASE_EXPR]); }

  Expr *getIdx() { return cast<Expr>(SubExprs[IDX_EXPR]); }
  const Expr *getIdx() const { return cast<Expr>(SubExprs[IDX_EXPR]); }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getBase()->getBeginLoc();
  }

  SourceLocation getEndLoc() const LLVM_READONLY { return RBracketLoc; }

  SourceLocation getRBracketLoc() const { return RBracketLoc; }
  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }

  SourceLocation getExprLoc() const LLVM_READONLY {
    return getBase()->getExprLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == MSPropertySubscriptExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
  }

  const_child_range children() const {
    return const_child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
  }
};

/// A Microsoft C++ @c __uuidof expression, which gets
/// the _GUID that corresponds to the supplied type or expression.
///
/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
class CXXUuidofExpr : public Expr {
private:
  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
  StringRef UuidStr;
  SourceRange Range;

public:
  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, StringRef UuidStr,
                SourceRange R)
      : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary, false,
             Operand->getType()->isDependentType(),
             Operand->getType()->isInstantiationDependentType(),
             Operand->getType()->containsUnexpandedParameterPack()),
        Operand(Operand), UuidStr(UuidStr), Range(R) {}

  CXXUuidofExpr(QualType Ty, Expr *Operand, StringRef UuidStr, SourceRange R)
      : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary, false,
             Operand->isTypeDependent(), Operand->isInstantiationDependent(),
             Operand->containsUnexpandedParameterPack()),
        Operand(Operand), UuidStr(UuidStr), Range(R) {}

  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
    : Expr(CXXUuidofExprClass, Empty) {
    if (isExpr)
      Operand = (Expr*)nullptr;
    else
      Operand = (TypeSourceInfo*)nullptr;
  }

  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }

  /// Retrieves the type operand of this __uuidof() expression after
  /// various required adjustments (removing reference types, cv-qualifiers).
  QualType getTypeOperand(ASTContext &Context) const;

  /// Retrieve source information for the type operand.
  TypeSourceInfo *getTypeOperandSourceInfo() const {
    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
    return Operand.get<TypeSourceInfo *>();
  }

  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
    Operand = TSI;
  }

  Expr *getExprOperand() const {
    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
    return static_cast<Expr*>(Operand.get<Stmt *>());
  }

  void setExprOperand(Expr *E) {
    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
    Operand = E;
  }

  void setUuidStr(StringRef US) { UuidStr = US; }
  StringRef getUuidStr() const { return UuidStr; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
  SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
  void setSourceRange(SourceRange R) { Range = R; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXUuidofExprClass;
  }

  // Iterators
  child_range children() {
    if (isTypeOperand())
      return child_range(child_iterator(), child_iterator());
    auto **begin = reinterpret_cast<Stmt **>(&Operand);
    return child_range(begin, begin + 1);
  }

  const_child_range children() const {
    if (isTypeOperand())
      return const_child_range(const_child_iterator(), const_child_iterator());
    auto **begin =
        reinterpret_cast<Stmt **>(&const_cast<CXXUuidofExpr *>(this)->Operand);
    return const_child_range(begin, begin + 1);
  }
};

/// Represents the \c this expression in C++.
///
/// This is a pointer to the object on which the current member function is
/// executing (C++ [expr.prim]p3). Example:
///
/// \code
/// class Foo {
/// public:
///   void bar();
///   void test() { this->bar(); }
/// };
/// \endcode
class CXXThisExpr : public Expr {
public:
  CXXThisExpr(SourceLocation L, QualType Ty, bool IsImplicit)
      : Expr(CXXThisExprClass, Ty, VK_RValue, OK_Ordinary,
             // 'this' is type-dependent if the class type of the enclosing
             // member function is dependent (C++ [temp.dep.expr]p2)
             Ty->isDependentType(), Ty->isDependentType(),
             Ty->isInstantiationDependentType(),
             /*ContainsUnexpandedParameterPack=*/false) {
    CXXThisExprBits.IsImplicit = IsImplicit;
    CXXThisExprBits.Loc = L;
  }

  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}

  SourceLocation getLocation() const { return CXXThisExprBits.Loc; }
  void setLocation(SourceLocation L) { CXXThisExprBits.Loc = L; }

  SourceLocation getBeginLoc() const { return getLocation(); }
  SourceLocation getEndLoc() const { return getLocation(); }

  bool isImplicit() const { return CXXThisExprBits.IsImplicit; }
  void setImplicit(bool I) { CXXThisExprBits.IsImplicit = I; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXThisExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// A C++ throw-expression (C++ [except.throw]).
///
/// This handles 'throw' (for re-throwing the current exception) and
/// 'throw' assignment-expression.  When assignment-expression isn't
/// present, Op will be null.
class CXXThrowExpr : public Expr {
  friend class ASTStmtReader;

  /// The optional expression in the throw statement.
  Stmt *Operand;

public:
  // \p Ty is the void type which is used as the result type of the
  // expression. The \p Loc is the location of the throw keyword.
  // \p Operand is the expression in the throw statement, and can be
  // null if not present.
  CXXThrowExpr(Expr *Operand, QualType Ty, SourceLocation Loc,
               bool IsThrownVariableInScope)
      : Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
             Operand && Operand->isInstantiationDependent(),
             Operand && Operand->containsUnexpandedParameterPack()),
        Operand(Operand) {
    CXXThrowExprBits.ThrowLoc = Loc;
    CXXThrowExprBits.IsThrownVariableInScope = IsThrownVariableInScope;
  }
  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}

  const Expr *getSubExpr() const { return cast_or_null<Expr>(Operand); }
  Expr *getSubExpr() { return cast_or_null<Expr>(Operand); }

  SourceLocation getThrowLoc() const { return CXXThrowExprBits.ThrowLoc; }

  /// Determines whether the variable thrown by this expression (if any!)
  /// is within the innermost try block.
  ///
  /// This information is required to determine whether the NRVO can apply to
  /// this variable.
  bool isThrownVariableInScope() const {
    return CXXThrowExprBits.IsThrownVariableInScope;
  }

  SourceLocation getBeginLoc() const { return getThrowLoc(); }
  SourceLocation getEndLoc() const LLVM_READONLY {
    if (!getSubExpr())
      return getThrowLoc();
    return getSubExpr()->getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXThrowExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(&Operand, Operand ? &Operand + 1 : &Operand);
  }

  const_child_range children() const {
    return const_child_range(&Operand, Operand ? &Operand + 1 : &Operand);
  }
};

/// A default argument (C++ [dcl.fct.default]).
///
/// This wraps up a function call argument that was created from the
/// corresponding parameter's default argument, when the call did not
/// explicitly supply arguments for all of the parameters.
class CXXDefaultArgExpr final : public Expr {
  friend class ASTStmtReader;

  /// The parameter whose default is being used.
  ParmVarDecl *Param;

  /// The context where the default argument expression was used.
  DeclContext *UsedContext;

  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *Param,
      DeclContext *UsedContext)
      : Expr(SC,
             Param->hasUnparsedDefaultArg()
                 ? Param->getType().getNonReferenceType()
                 : Param->getDefaultArg()->getType(),
             Param->getDefaultArg()->getValueKind(),
             Param->getDefaultArg()->getObjectKind(), false, false, false,
             false),
        Param(Param), UsedContext(UsedContext) {
    CXXDefaultArgExprBits.Loc = Loc;
  }

public:
  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}

  // \p Param is the parameter whose default argument is used by this
  // expression.
  static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
                                   ParmVarDecl *Param,
                                   DeclContext *UsedContext) {
    return new (C)
        CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param, UsedContext);
  }

  // Retrieve the parameter that the argument was created from.
  const ParmVarDecl *getParam() const { return Param; }
  ParmVarDecl *getParam() { return Param; }

  // Retrieve the actual argument to the function call.
  const Expr *getExpr() const { return getParam()->getDefaultArg(); }
  Expr *getExpr() { return getParam()->getDefaultArg(); }

  const DeclContext *getUsedContext() const { return UsedContext; }
  DeclContext *getUsedContext() { return UsedContext; }

  /// Retrieve the location where this default argument was actually used.
  SourceLocation getUsedLocation() const { return CXXDefaultArgExprBits.Loc; }

  /// Default argument expressions have no representation in the
  /// source, so they have an empty source range.
  SourceLocation getBeginLoc() const { return SourceLocation(); }
  SourceLocation getEndLoc() const { return SourceLocation(); }

  SourceLocation getExprLoc() const { return getUsedLocation(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDefaultArgExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// A use of a default initializer in a constructor or in aggregate
/// initialization.
///
/// This wraps a use of a C++ default initializer (technically,
/// a brace-or-equal-initializer for a non-static data member) when it
/// is implicitly used in a mem-initializer-list in a constructor
/// (C++11 [class.base.init]p8) or in aggregate initialization
/// (C++1y [dcl.init.aggr]p7).
class CXXDefaultInitExpr : public Expr {
  friend class ASTReader;
  friend class ASTStmtReader;

  /// The field whose default is being used.
  FieldDecl *Field;

  /// The context where the default initializer expression was used.
  DeclContext *UsedContext;

  CXXDefaultInitExpr(const ASTContext &Ctx, SourceLocation Loc,
                     FieldDecl *Field, QualType Ty, DeclContext *UsedContext);

  CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}

public:
  /// \p Field is the non-static data member whose default initializer is used
  /// by this expression.
  static CXXDefaultInitExpr *Create(const ASTContext &Ctx, SourceLocation Loc,
                                    FieldDecl *Field, DeclContext *UsedContext) {
    return new (Ctx) CXXDefaultInitExpr(Ctx, Loc, Field, Field->getType(), UsedContext);
  }

  /// Get the field whose initializer will be used.
  FieldDecl *getField() { return Field; }
  const FieldDecl *getField() const { return Field; }

  /// Get the initialization expression that will be used.
  const Expr *getExpr() const {
    assert(Field->getInClassInitializer() && "initializer hasn't been parsed");
    return Field->getInClassInitializer();
  }
  Expr *getExpr() {
    assert(Field->getInClassInitializer() && "initializer hasn't been parsed");
    return Field->getInClassInitializer();
  }

  const DeclContext *getUsedContext() const { return UsedContext; }
  DeclContext *getUsedContext() { return UsedContext; }

  /// Retrieve the location where this default initializer expression was
  /// actually used.
  SourceLocation getUsedLocation() const { return getBeginLoc(); }

  SourceLocation getBeginLoc() const { return CXXDefaultInitExprBits.Loc; }
  SourceLocation getEndLoc() const { return CXXDefaultInitExprBits.Loc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDefaultInitExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// Represents a C++ temporary.
class CXXTemporary {
  /// The destructor that needs to be called.
  const CXXDestructorDecl *Destructor;

  explicit CXXTemporary(const CXXDestructorDecl *destructor)
      : Destructor(destructor) {}

public:
  static CXXTemporary *Create(const ASTContext &C,
                              const CXXDestructorDecl *Destructor);

  const CXXDestructorDecl *getDestructor() const { return Destructor; }

  void setDestructor(const CXXDestructorDecl *Dtor) {
    Destructor = Dtor;
  }
};

/// Represents binding an expression to a temporary.
///
/// This ensures the destructor is called for the temporary. It should only be
/// needed for non-POD, non-trivially destructable class types. For example:
///
/// \code
///   struct S {
///     S() { }  // User defined constructor makes S non-POD.
///     ~S() { } // User defined destructor makes it non-trivial.
///   };
///   void test() {
///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
///   }
/// \endcode
class CXXBindTemporaryExpr : public Expr {
  CXXTemporary *Temp = nullptr;
  Stmt *SubExpr = nullptr;

  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
      : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
             VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
             SubExpr->isValueDependent(),
             SubExpr->isInstantiationDependent(),
             SubExpr->containsUnexpandedParameterPack()),
        Temp(temp), SubExpr(SubExpr) {}

public:
  CXXBindTemporaryExpr(EmptyShell Empty)
      : Expr(CXXBindTemporaryExprClass, Empty) {}

  static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
                                      Expr* SubExpr);

  CXXTemporary *getTemporary() { return Temp; }
  const CXXTemporary *getTemporary() const { return Temp; }
  void setTemporary(CXXTemporary *T) { Temp = T; }

  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
  void setSubExpr(Expr *E) { SubExpr = E; }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return SubExpr->getBeginLoc();
  }

  SourceLocation getEndLoc() const LLVM_READONLY {
    return SubExpr->getEndLoc();
  }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXBindTemporaryExprClass;
  }

  // Iterators
  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }

  const_child_range children() const {
    return const_child_range(&SubExpr, &SubExpr + 1);
  }
};

/// Represents a call to a C++ constructor.
class CXXConstructExpr : public Expr {
  friend class ASTStmtReader;

public:
  enum ConstructionKind {
    CK_Complete,
    CK_NonVirtualBase,
    CK_VirtualBase,
    CK_Delegating
  };

private:
  /// A pointer to the constructor which will be ultimately called.
  CXXConstructorDecl *Constructor;

  SourceRange ParenOrBraceRange;

  /// The number of arguments.
  unsigned NumArgs;

  // We would like to stash the arguments of the constructor call after
  // CXXConstructExpr. However CXXConstructExpr is used as a base class of
  // CXXTemporaryObjectExpr which makes the use of llvm::TrailingObjects
  // impossible.
  //
  // Instead we manually stash the trailing object after the full object
  // containing CXXConstructExpr (that is either CXXConstructExpr or
  // CXXTemporaryObjectExpr).
  //
  // The trailing objects are:
  //
  // * An array of getNumArgs() "Stmt *" for the arguments of the
  //   constructor call.

  /// Return a pointer to the start of the trailing arguments.
  /// Defined just after CXXTemporaryObjectExpr.
  inline Stmt **getTrailingArgs();
  const Stmt *const *getTrailingArgs() const {
    return const_cast<CXXConstructExpr *>(this)->getTrailingArgs();
  }

protected:
  /// Build a C++ construction expression.
  CXXConstructExpr(StmtClass SC, QualType Ty, SourceLocation Loc,
                   CXXConstructorDecl *Ctor, bool Elidable,
                   ArrayRef<Expr *> Args, bool HadMultipleCandidates,
                   bool ListInitialization, bool StdInitListInitialization,
                   bool ZeroInitialization, ConstructionKind ConstructKind,
                   SourceRange ParenOrBraceRange);

  /// Build an empty C++ construction expression.
  CXXConstructExpr(StmtClass SC, EmptyShell Empty, unsigned NumArgs);

  /// Return the size in bytes of the trailing objects. Used by
  /// CXXTemporaryObjectExpr to allocate the right amount of storage.
  static unsigned sizeOfTrailingObjects(unsigned NumArgs) {
    return NumArgs * sizeof(Stmt *);
  }

public:
  /// Create a C++ construction expression.
  static CXXConstructExpr *
  Create(const ASTContext &Ctx, QualType Ty, SourceLocation Loc,
         CXXConstructorDecl *Ctor, bool Elidable, ArrayRef<Expr *> Args,
         bool HadMultipleCandidates, bool ListInitialization,
         bool StdInitListInitialization, bool ZeroInitialization,
         ConstructionKind ConstructKind, SourceRange ParenOrBraceRange);

  /// Create an empty C++ construction expression.
  static CXXConstructExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs);

  /// Get the constructor that this expression will (ultimately) call.
  CXXConstructorDecl *getConstructor() const { return Constructor; }

  SourceLocation getLocation() const { return CXXConstructExprBits.Loc; }
  void setLocation(SourceLocation Loc) { CXXConstructExprBits.Loc = Loc; }

  /// Whether this construction is elidable.
  bool isElidable() const { return CXXConstructExprBits.Elidable; }
  void setElidable(bool E) { CXXConstructExprBits.Elidable = E; }

  /// Whether the referred constructor was resolved from
  /// an overloaded set having size greater than 1.
  bool hadMultipleCandidates() const {
    return CXXConstructExprBits.HadMultipleCandidates;
  }
  void setHadMultipleCandidates(bool V) {
    CXXConstructExprBits.HadMultipleCandidates = V;
  }

  /// Whether this constructor call was written as list-initialization.
  bool isListInitialization() const {
    return CXXConstructExprBits.ListInitialization;
  }
  void setListInitialization(bool V) {
    CXXConstructExprBits.ListInitialization = V;
  }

  /// Whether this constructor call was written as list-initialization,
  /// but was interpreted as forming a std::initializer_list<T> from the list
  /// and passing that as a single constructor argument.
  /// See C++11 [over.match.list]p1 bullet 1.
  bool isStdInitListInitialization() const {
    return CXXConstructExprBits.StdInitListInitialization;
  }
  void setStdInitListInitialization(bool V) {
    CXXConstructExprBits.StdInitListInitialization = V;
  }

  /// Whether this construction first requires
  /// zero-initialization before the initializer is called.
  bool requiresZeroInitialization() const {
    return CXXConstructExprBits.ZeroInitialization;
  }
  void setRequiresZeroInitialization(bool ZeroInit) {
    CXXConstructExprBits.ZeroInitialization = ZeroInit;
  }

  /// Determine whether this constructor is actually constructing
  /// a base class (rather than a complete object).
  ConstructionKind getConstructionKind() const {
    return static_cast<ConstructionKind>(CXXConstructExprBits.ConstructionKind);
  }
  void setConstructionKind(ConstructionKind CK) {
    CXXConstructExprBits.ConstructionKind = CK;
  }

  using arg_iterator = ExprIterator;
  using const_arg_iterator = ConstExprIterator;
  using arg_range = llvm::iterator_range<arg_iterator>;
  using const_arg_range = llvm::iterator_range<const_arg_iterator>;

  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
  const_arg_range arguments() const {
    return const_arg_range(arg_begin(), arg_end());
  }

  arg_iterator arg_begin() { return getTrailingArgs(); }
  arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
  const_arg_iterator arg_begin() const { return getTrailingArgs(); }
  const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }

  Expr **getArgs() { return reinterpret_cast<Expr **>(getTrailingArgs()); }
  const Expr *const *getArgs() const {
    return reinterpret_cast<const Expr *const *>(getTrailingArgs());
  }

  /// Return the number of arguments to the constructor call.
  unsigned getNumArgs() const { return NumArgs; }

  /// Return the specified argument.
  Expr *getArg(unsigned Arg) {
    assert(Arg < getNumArgs() && "Arg access out of range!");
    return getArgs()[Arg];
  }
  const Expr *getArg(unsigned Arg) const {
    assert(Arg < getNumArgs() && "Arg access out of range!");
    return getArgs()[Arg];
  }

  /// Set the specified argument.
  void setArg(unsigned Arg, Expr *ArgExpr) {
    assert(Arg < getNumArgs() && "Arg access out of range!");
    getArgs()[Arg] = ArgExpr;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY;
  SourceLocation getEndLoc() const LLVM_READONLY;
  SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
  void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXConstructExprClass ||
           T->getStmtClass() == CXXTemporaryObjectExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(getTrailingArgs(), getTrailingArgs() + getNumArgs());
  }

  const_child_range children() const {
    auto Children = const_cast<CXXConstructExpr *>(this)->children();
    return const_child_range(Children.begin(), Children.end());
  }
};

/// Represents a call to an inherited base class constructor from an
/// inheriting constructor. This call implicitly forwards the arguments from
/// the enclosing context (an inheriting constructor) to the specified inherited
/// base class constructor.
class CXXInheritedCtorInitExpr : public Expr {
private:
  CXXConstructorDecl *Constructor = nullptr;

  /// The location of the using declaration.
  SourceLocation Loc;

  /// Whether this is the construction of a virtual base.
  unsigned ConstructsVirtualBase : 1;

  /// Whether the constructor is inherited from a virtual base class of the
  /// class that we construct.
  unsigned InheritedFromVirtualBase : 1;

public:
  friend class ASTStmtReader;

  /// Construct a C++ inheriting construction expression.
  CXXInheritedCtorInitExpr(SourceLocation Loc, QualType T,
                           CXXConstructorDecl *Ctor, bool ConstructsVirtualBase,
                           bool InheritedFromVirtualBase)
      : Expr(CXXInheritedCtorInitExprClass, T, VK_RValue, OK_Ordinary, false,
             false, false, false),
        Constructor(Ctor), Loc(Loc),
        ConstructsVirtualBase(ConstructsVirtualBase),
        InheritedFromVirtualBase(InheritedFromVirtualBase) {
    assert(!T->isDependentType());
  }

  /// Construct an empty C++ inheriting construction expression.
  explicit CXXInheritedCtorInitExpr(EmptyShell Empty)
      : Expr(CXXInheritedCtorInitExprClass, Empty),
        ConstructsVirtualBase(false), InheritedFromVirtualBase(false) {}

  /// Get the constructor that this expression will call.
  CXXConstructorDecl *getConstructor() const { return Constructor; }

  /// Determine whether this constructor is actually constructing
  /// a base class (rather than a complete object).
  bool constructsVBase() const { return ConstructsVirtualBase; }
  CXXConstructExpr::ConstructionKind getConstructionKind() const {
    return ConstructsVirtualBase ? CXXConstructExpr::CK_VirtualBase
                                 : CXXConstructExpr::CK_NonVirtualBase;
  }

  /// Determine whether the inherited constructor is inherited from a
  /// virtual base of the object we construct. If so, we are not responsible
  /// for calling the inherited constructor (the complete object constructor
  /// does that), and so we don't need to pass any arguments.
  bool inheritedFromVBase() const { return InheritedFromVirtualBase; }

  SourceLocation getLocation() const LLVM_READONLY { return Loc; }
  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXInheritedCtorInitExprClass;
  }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// Represents an explicit C++ type conversion that uses "functional"
/// notation (C++ [expr.type.conv]).
///
/// Example:
/// \code
///   x = int(0.5);
/// \endcode
class CXXFunctionalCastExpr final
    : public ExplicitCastExpr,
      private llvm::TrailingObjects<CXXFunctionalCastExpr, CXXBaseSpecifier *> {
  SourceLocation LParenLoc;
  SourceLocation RParenLoc;

  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
                        TypeSourceInfo *writtenTy,
                        CastKind kind, Expr *castExpr, unsigned pathSize,
                        SourceLocation lParenLoc, SourceLocation rParenLoc)
      : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
                         castExpr, pathSize, writtenTy),
        LParenLoc(lParenLoc), RParenLoc(rParenLoc) {}

  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
      : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) {}

public:
  friend class CastExpr;
  friend TrailingObjects;

  static CXXFunctionalCastExpr *Create(const ASTContext &Context, QualType T,
                                       ExprValueKind VK,
                                       TypeSourceInfo *Written,
                                       CastKind Kind, Expr *Op,
                                       const CXXCastPath *Path,
                                       SourceLocation LPLoc,
                                       SourceLocation RPLoc);
  static CXXFunctionalCastExpr *CreateEmpty(const ASTContext &Context,
                                            unsigned PathSize);

  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  /// Determine whether this expression models list-initialization.
  bool isListInitialization() const { return LParenLoc.isInvalid(); }

  SourceLocation getBeginLoc() const LLVM_READONLY;
  SourceLocation getEndLoc() const LLVM_READONLY;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXFunctionalCastExprClass;
  }
};

/// Represents a C++ functional cast expression that builds a
/// temporary object.
///
/// This expression type represents a C++ "functional" cast
/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
/// constructor to build a temporary object. With N == 1 arguments the
/// functional cast expression will be represented by CXXFunctionalCastExpr.
/// Example:
/// \code
/// struct X { X(int, float); }
///
/// X create_X() {
///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
/// };
/// \endcode
class CXXTemporaryObjectExpr final : public CXXConstructExpr {
  friend class ASTStmtReader;

  // CXXTemporaryObjectExpr has some trailing objects belonging
  // to CXXConstructExpr. See the comment inside CXXConstructExpr
  // for more details.

  TypeSourceInfo *TSI;

  CXXTemporaryObjectExpr(CXXConstructorDecl *Cons, QualType Ty,
                         TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
                         SourceRange ParenOrBraceRange,
                         bool HadMultipleCandidates, bool ListInitialization,
                         bool StdInitListInitialization,
                         bool ZeroInitialization);

  CXXTemporaryObjectExpr(EmptyShell Empty, unsigned NumArgs);

public:
  static CXXTemporaryObjectExpr *
  Create(const ASTContext &Ctx, CXXConstructorDecl *Cons, QualType Ty,
         TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
         SourceRange ParenOrBraceRange, bool HadMultipleCandidates,
         bool ListInitialization, bool StdInitListInitialization,
         bool ZeroInitialization);

  static CXXTemporaryObjectExpr *CreateEmpty(const ASTContext &Ctx,
                                             unsigned NumArgs);

  TypeSourceInfo *getTypeSourceInfo() const { return TSI; }

  SourceLocation getBeginLoc() const LLVM_READONLY;
  SourceLocation getEndLoc() const LLVM_READONLY;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXTemporaryObjectExprClass;
  }
};

Stmt **CXXConstructExpr::getTrailingArgs() {
  if (auto *E = dyn_cast<CXXTemporaryObjectExpr>(this))
    return reinterpret_cast<Stmt **>(E + 1);
  assert((getStmtClass() == CXXConstructExprClass) &&
         "Unexpected class deriving from CXXConstructExpr!");
  return reinterpret_cast<Stmt **>(this + 1);
}

/// A C++ lambda expression, which produces a function object
/// (of unspecified type) that can be invoked later.
///
/// Example:
/// \code
/// void low_pass_filter(std::vector<double> &values, double cutoff) {
///   values.erase(std::remove_if(values.begin(), values.end(),
///                               [=](double value) { return value > cutoff; });
/// }
/// \endcode
///
/// C++11 lambda expressions can capture local variables, either by copying
/// the values of those local variables at the time the function
/// object is constructed (not when it is called!) or by holding a
/// reference to the local variable. These captures can occur either
/// implicitly or can be written explicitly between the square
/// brackets ([...]) that start the lambda expression.
///
/// C++1y introduces a new form of "capture" called an init-capture that
/// includes an initializing expression (rather than capturing a variable),
/// and which can never occur implicitly.
class LambdaExpr final : public Expr,
                         private llvm::TrailingObjects<LambdaExpr, Stmt *> {
  /// The source range that covers the lambda introducer ([...]).
  SourceRange IntroducerRange;

  /// The source location of this lambda's capture-default ('=' or '&').
  SourceLocation CaptureDefaultLoc;

  /// The number of captures.
  unsigned NumCaptures : 16;

  /// The default capture kind, which is a value of type
  /// LambdaCaptureDefault.
  unsigned CaptureDefault : 2;

  /// Whether this lambda had an explicit parameter list vs. an
  /// implicit (and empty) parameter list.
  unsigned ExplicitParams : 1;

  /// Whether this lambda had the result type explicitly specified.
  unsigned ExplicitResultType : 1;

  /// The location of the closing brace ('}') that completes
  /// the lambda.
  ///
  /// The location of the brace is also available by looking up the
  /// function call operator in the lambda class. However, it is
  /// stored here to improve the performance of getSourceRange(), and
  /// to avoid having to deserialize the function call operator from a
  /// module file just to determine the source range.
  SourceLocation ClosingBrace;

  /// Construct a lambda expression.
  LambdaExpr(QualType T, SourceRange IntroducerRange,
             LambdaCaptureDefault CaptureDefault,
             SourceLocation CaptureDefaultLoc, ArrayRef<LambdaCapture> Captures,
             bool ExplicitParams, bool ExplicitResultType,
             ArrayRef<Expr *> CaptureInits, SourceLocation ClosingBrace,
             bool ContainsUnexpandedParameterPack);

  /// Construct an empty lambda expression.
  LambdaExpr(EmptyShell Empty, unsigned NumCaptures)
      : Expr(LambdaExprClass, Empty), NumCaptures(NumCaptures),
        CaptureDefault(LCD_None), ExplicitParams(false),
        ExplicitResultType(false) {
    getStoredStmts()[NumCaptures] = nullptr;
  }

  Stmt **getStoredStmts() { return getTrailingObjects<Stmt *>(); }

  Stmt *const *getStoredStmts() const { return getTrailingObjects<Stmt *>(); }

public:
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  friend TrailingObjects;

  /// Construct a new lambda expression.
  static LambdaExpr *
  Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange,
         LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc,
         ArrayRef<LambdaCapture> Captures, bool ExplicitParams,
         bool ExplicitResultType, ArrayRef<Expr *> CaptureInits,
         SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack);

  /// Construct a new lambda expression that will be deserialized from
  /// an external source.
  static LambdaExpr *CreateDeserialized(const ASTContext &C,
                                        unsigned NumCaptures);

  /// Determine the default capture kind for this lambda.
  LambdaCaptureDefault getCaptureDefault() const {
    return static_cast<LambdaCaptureDefault>(CaptureDefault);
  }

  /// Retrieve the location of this lambda's capture-default, if any.
  SourceLocation getCaptureDefaultLoc() const {
    return CaptureDefaultLoc;
  }

  /// Determine whether one of this lambda's captures is an init-capture.
  bool isInitCapture(const LambdaCapture *Capture) const;

  /// An iterator that walks over the captures of the lambda,
  /// both implicit and explicit.
  using capture_iterator = const LambdaCapture *;

  /// An iterator over a range of lambda captures.
  using capture_range = llvm::iterator_range<capture_iterator>;

  /// Retrieve this lambda's captures.
  capture_range captures() const;

  /// Retrieve an iterator pointing to the first lambda capture.
  capture_iterator capture_begin() const;

  /// Retrieve an iterator pointing past the end of the
  /// sequence of lambda captures.
  capture_iterator capture_end() const;

  /// Determine the number of captures in this lambda.
  unsigned capture_size() const { return NumCaptures; }

  /// Retrieve this lambda's explicit captures.
  capture_range explicit_captures() const;

  /// Retrieve an iterator pointing to the first explicit
  /// lambda capture.
  capture_iterator explicit_capture_begin() const;

  /// Retrieve an iterator pointing past the end of the sequence of
  /// explicit lambda captures.
  capture_iterator explicit_capture_end() const;

  /// Retrieve this lambda's implicit captures.
  capture_range implicit_captures() const;

  /// Retrieve an iterator pointing to the first implicit
  /// lambda capture.
  capture_iterator implicit_capture_begin() const;

  /// Retrieve an iterator pointing past the end of the sequence of
  /// implicit lambda captures.
  capture_iterator implicit_capture_end() const;

  /// Iterator that walks over the capture initialization
  /// arguments.
  using capture_init_iterator = Expr **;

  /// Const iterator that walks over the capture initialization
  /// arguments.
  using const_capture_init_iterator = Expr *const *;

  /// Retrieve the initialization expressions for this lambda's captures.
  llvm::iterator_range<capture_init_iterator> capture_inits() {
    return llvm::make_range(capture_init_begin(), capture_init_end());
  }

  /// Retrieve the initialization expressions for this lambda's captures.
  llvm::iterator_range<const_capture_init_iterator> capture_inits() const {
    return llvm::make_range(capture_init_begin(), capture_init_end());
  }

  /// Retrieve the first initialization argument for this
  /// lambda expression (which initializes the first capture field).
  capture_init_iterator capture_init_begin() {
    return reinterpret_cast<Expr **>(getStoredStmts());
  }

  /// Retrieve the first initialization argument for this
  /// lambda expression (which initializes the first capture field).
  const_capture_init_iterator capture_init_begin() const {
    return reinterpret_cast<Expr *const *>(getStoredStmts());
  }

  /// Retrieve the iterator pointing one past the last
  /// initialization argument for this lambda expression.
  capture_init_iterator capture_init_end() {
    return capture_init_begin() + NumCaptures;
  }

  /// Retrieve the iterator pointing one past the last
  /// initialization argument for this lambda expression.
  const_capture_init_iterator capture_init_end() const {
    return capture_init_begin() + NumCaptures;
  }

  /// Retrieve the source range covering the lambda introducer,
  /// which contains the explicit capture list surrounded by square
  /// brackets ([...]).
  SourceRange getIntroducerRange() const { return IntroducerRange; }

  /// Retrieve the class that corresponds to the lambda.
  ///
  /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
  /// captures in its fields and provides the various operations permitted
  /// on a lambda (copying, calling).
  CXXRecordDecl *getLambdaClass() const;

  /// Retrieve the function call operator associated with this
  /// lambda expression.
  CXXMethodDecl *getCallOperator() const;

  /// Retrieve the function template call operator associated with this
  /// lambda expression.
  FunctionTemplateDecl *getDependentCallOperator() const;

  /// If this is a generic lambda expression, retrieve the template
  /// parameter list associated with it, or else return null.
  TemplateParameterList *getTemplateParameterList() const;

  /// Get the template parameters were explicitly specified (as opposed to being
  /// invented by use of an auto parameter).
  ArrayRef<NamedDecl *> getExplicitTemplateParameters() const;

  /// Whether this is a generic lambda.
  bool isGenericLambda() const { return getTemplateParameterList(); }

  /// Retrieve the body of the lambda.
  CompoundStmt *getBody() const;

  /// Determine whether the lambda is mutable, meaning that any
  /// captures values can be modified.
  bool isMutable() const;

  /// Determine whether this lambda has an explicit parameter
  /// list vs. an implicit (empty) parameter list.
  bool hasExplicitParameters() const { return ExplicitParams; }

  /// Whether this lambda had its result type explicitly specified.
  bool hasExplicitResultType() const { return ExplicitResultType; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == LambdaExprClass;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return IntroducerRange.getBegin();
  }

  SourceLocation getEndLoc() const LLVM_READONLY { return ClosingBrace; }

  child_range children() {
    // Includes initialization exprs plus body stmt
    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
  }

  const_child_range children() const {
    return const_child_range(getStoredStmts(),
                             getStoredStmts() + NumCaptures + 1);
  }
};

/// An expression "T()" which creates a value-initialized rvalue of type
/// T, which is a non-class type.  See (C++98 [5.2.3p2]).
class CXXScalarValueInitExpr : public Expr {
  friend class ASTStmtReader;

  TypeSourceInfo *TypeInfo;

public:
  /// Create an explicitly-written scalar-value initialization
  /// expression.
  CXXScalarValueInitExpr(QualType Type, TypeSourceInfo *TypeInfo,
                         SourceLocation RParenLoc)
      : Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary, false,
             false, Type->isInstantiationDependentType(),
             Type->containsUnexpandedParameterPack()),
        TypeInfo(TypeInfo) {
    CXXScalarValueInitExprBits.RParenLoc = RParenLoc;
  }

  explicit CXXScalarValueInitExpr(EmptyShell Shell)
      : Expr(CXXScalarValueInitExprClass, Shell) {}

  TypeSourceInfo *getTypeSourceInfo() const {
    return TypeInfo;
  }

  SourceLocation getRParenLoc() const {
    return CXXScalarValueInitExprBits.RParenLoc;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY;
  SourceLocation getEndLoc() const { return getRParenLoc(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXScalarValueInitExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// Represents a new-expression for memory allocation and constructor
/// calls, e.g: "new CXXNewExpr(foo)".
class CXXNewExpr final
    : public Expr,
      private llvm::TrailingObjects<CXXNewExpr, Stmt *, SourceRange> {
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  friend TrailingObjects;

  /// Points to the allocation function used.
  FunctionDecl *OperatorNew;

  /// Points to the deallocation function used in case of error. May be null.
  FunctionDecl *OperatorDelete;

  /// The allocated type-source information, as written in the source.
  TypeSourceInfo *AllocatedTypeInfo;

  /// Range of the entire new expression.
  SourceRange Range;

  /// Source-range of a paren-delimited initializer.
  SourceRange DirectInitRange;

  // CXXNewExpr is followed by several optional trailing objects.
  // They are in order:
  //
  // * An optional "Stmt *" for the array size expression.
  //    Present if and ony if isArray().
  //
  // * An optional "Stmt *" for the init expression.
  //    Present if and only if hasInitializer().
  //
  // * An array of getNumPlacementArgs() "Stmt *" for the placement new
  //   arguments, if any.
  //
  // * An optional SourceRange for the range covering the parenthesized type-id
  //    if the allocated type was expressed as a parenthesized type-id.
  //    Present if and only if isParenTypeId().
  unsigned arraySizeOffset() const { return 0; }
  unsigned initExprOffset() const { return arraySizeOffset() + isArray(); }
  unsigned placementNewArgsOffset() const {
    return initExprOffset() + hasInitializer();
  }

  unsigned numTrailingObjects(OverloadToken<Stmt *>) const {
    return isArray() + hasInitializer() + getNumPlacementArgs();
  }

  unsigned numTrailingObjects(OverloadToken<SourceRange>) const {
    return isParenTypeId();
  }

public:
  enum InitializationStyle {
    /// New-expression has no initializer as written.
    NoInit,

    /// New-expression has a C++98 paren-delimited initializer.
    CallInit,

    /// New-expression has a C++11 list-initializer.
    ListInit
  };

private:
  /// Build a c++ new expression.
  CXXNewExpr(bool IsGlobalNew, FunctionDecl *OperatorNew,
             FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
             bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
             SourceRange TypeIdParens, Optional<Expr *> ArraySize,
             InitializationStyle InitializationStyle, Expr *Initializer,
             QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
             SourceRange DirectInitRange);

  /// Build an empty c++ new expression.
  CXXNewExpr(EmptyShell Empty, bool IsArray, unsigned NumPlacementArgs,
             bool IsParenTypeId);

public:
  /// Create a c++ new expression.
  static CXXNewExpr *
  Create(const ASTContext &Ctx, bool IsGlobalNew, FunctionDecl *OperatorNew,
         FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
         bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
         SourceRange TypeIdParens, Optional<Expr *> ArraySize,
         InitializationStyle InitializationStyle, Expr *Initializer,
         QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
         SourceRange DirectInitRange);

  /// Create an empty c++ new expression.
  static CXXNewExpr *CreateEmpty(const ASTContext &Ctx, bool IsArray,
                                 bool HasInit, unsigned NumPlacementArgs,
                                 bool IsParenTypeId);

  QualType getAllocatedType() const {
    return getType()->castAs<PointerType>()->getPointeeType();
  }

  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
    return AllocatedTypeInfo;
  }

  /// True if the allocation result needs to be null-checked.
  ///
  /// C++11 [expr.new]p13:
  ///   If the allocation function returns null, initialization shall
  ///   not be done, the deallocation function shall not be called,
  ///   and the value of the new-expression shall be null.
  ///
  /// C++ DR1748:
  ///   If the allocation function is a reserved placement allocation
  ///   function that returns null, the behavior is undefined.
  ///
  /// An allocation function is not allowed to return null unless it
  /// has a non-throwing exception-specification.  The '03 rule is
  /// identical except that the definition of a non-throwing
  /// exception specification is just "is it throw()?".
  bool shouldNullCheckAllocation() const;

  FunctionDecl *getOperatorNew() const { return OperatorNew; }
  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }

  bool isArray() const { return CXXNewExprBits.IsArray; }

  Optional<Expr *> getArraySize() {
    if (!isArray())
      return None;
    return cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]);
  }
  Optional<const Expr *> getArraySize() const {
    if (!isArray())
      return None;
    return cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]);
  }

  unsigned getNumPlacementArgs() const {
    return CXXNewExprBits.NumPlacementArgs;
  }

  Expr **getPlacementArgs() {
    return reinterpret_cast<Expr **>(getTrailingObjects<Stmt *>() +
                                     placementNewArgsOffset());
  }

  Expr *getPlacementArg(unsigned I) {
    assert((I < getNumPlacementArgs()) && "Index out of range!");
    return getPlacementArgs()[I];
  }
  const Expr *getPlacementArg(unsigned I) const {
    return const_cast<CXXNewExpr *>(this)->getPlacementArg(I);
  }

  bool isParenTypeId() const { return CXXNewExprBits.IsParenTypeId; }
  SourceRange getTypeIdParens() const {
    return isParenTypeId() ? getTrailingObjects<SourceRange>()[0]
                           : SourceRange();
  }

  bool isGlobalNew() const { return CXXNewExprBits.IsGlobalNew; }

  /// Whether this new-expression has any initializer at all.
  bool hasInitializer() const {
    return CXXNewExprBits.StoredInitializationStyle > 0;
  }

  /// The kind of initializer this new-expression has.
  InitializationStyle getInitializationStyle() const {
    if (CXXNewExprBits.StoredInitializationStyle == 0)
      return NoInit;
    return static_cast<InitializationStyle>(
        CXXNewExprBits.StoredInitializationStyle - 1);
  }

  /// The initializer of this new-expression.
  Expr *getInitializer() {
    return hasInitializer()
               ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
               : nullptr;
  }
  const Expr *getInitializer() const {
    return hasInitializer()
               ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
               : nullptr;
  }

  /// Returns the CXXConstructExpr from this new-expression, or null.
  const CXXConstructExpr *getConstructExpr() const {
    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
  }

  /// Indicates whether the required alignment should be implicitly passed to
  /// the allocation function.
  bool passAlignment() const { return CXXNewExprBits.ShouldPassAlignment; }

  /// Answers whether the usual array deallocation function for the
  /// allocated type expects the size of the allocation as a
  /// parameter.
  bool doesUsualArrayDeleteWantSize() const {
    return CXXNewExprBits.UsualArrayDeleteWantsSize;
  }

  using arg_iterator = ExprIterator;
  using const_arg_iterator = ConstExprIterator;

  llvm::iterator_range<arg_iterator> placement_arguments() {
    return llvm::make_range(placement_arg_begin(), placement_arg_end());
  }

  llvm::iterator_range<const_arg_iterator> placement_arguments() const {
    return llvm::make_range(placement_arg_begin(), placement_arg_end());
  }

  arg_iterator placement_arg_begin() {
    return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
  }
  arg_iterator placement_arg_end() {
    return placement_arg_begin() + getNumPlacementArgs();
  }
  const_arg_iterator placement_arg_begin() const {
    return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
  }
  const_arg_iterator placement_arg_end() const {
    return placement_arg_begin() + getNumPlacementArgs();
  }

  using raw_arg_iterator = Stmt **;

  raw_arg_iterator raw_arg_begin() { return getTrailingObjects<Stmt *>(); }
  raw_arg_iterator raw_arg_end() {
    return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
  }
  const_arg_iterator raw_arg_begin() const {
    return getTrailingObjects<Stmt *>();
  }
  const_arg_iterator raw_arg_end() const {
    return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
  }

  SourceLocation getBeginLoc() const { return Range.getBegin(); }
  SourceLocation getEndLoc() const { return Range.getEnd(); }

  SourceRange getDirectInitRange() const { return DirectInitRange; }
  SourceRange getSourceRange() const { return Range; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXNewExprClass;
  }

  // Iterators
  child_range children() { return child_range(raw_arg_begin(), raw_arg_end()); }

  const_child_range children() const {
    return const_child_range(const_cast<CXXNewExpr *>(this)->children());
  }
};

/// Represents a \c delete expression for memory deallocation and
/// destructor calls, e.g. "delete[] pArray".
class CXXDeleteExpr : public Expr {
  friend class ASTStmtReader;

  /// Points to the operator delete overload that is used. Could be a member.
  FunctionDecl *OperatorDelete = nullptr;

  /// The pointer expression to be deleted.
  Stmt *Argument = nullptr;

public:
  CXXDeleteExpr(QualType Ty, bool GlobalDelete, bool ArrayForm,
                bool ArrayFormAsWritten, bool UsualArrayDeleteWantsSize,
                FunctionDecl *OperatorDelete, Expr *Arg, SourceLocation Loc)
      : Expr(CXXDeleteExprClass, Ty, VK_RValue, OK_Ordinary, false,
             Arg->isValueDependent(), Arg->isInstantiationDependent(),
             Arg->containsUnexpandedParameterPack()),
        OperatorDelete(OperatorDelete), Argument(Arg) {
    CXXDeleteExprBits.GlobalDelete = GlobalDelete;
    CXXDeleteExprBits.ArrayForm = ArrayForm;
    CXXDeleteExprBits.ArrayFormAsWritten = ArrayFormAsWritten;
    CXXDeleteExprBits.UsualArrayDeleteWantsSize = UsualArrayDeleteWantsSize;
    CXXDeleteExprBits.Loc = Loc;
  }

  explicit CXXDeleteExpr(EmptyShell Shell) : Expr(CXXDeleteExprClass, Shell) {}

  bool isGlobalDelete() const { return CXXDeleteExprBits.GlobalDelete; }
  bool isArrayForm() const { return CXXDeleteExprBits.ArrayForm; }
  bool isArrayFormAsWritten() const {
    return CXXDeleteExprBits.ArrayFormAsWritten;
  }

  /// Answers whether the usual array deallocation function for the
  /// allocated type expects the size of the allocation as a
  /// parameter.  This can be true even if the actual deallocation
  /// function that we're using doesn't want a size.
  bool doesUsualArrayDeleteWantSize() const {
    return CXXDeleteExprBits.UsualArrayDeleteWantsSize;
  }

  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }

  Expr *getArgument() { return cast<Expr>(Argument); }
  const Expr *getArgument() const { return cast<Expr>(Argument); }

  /// Retrieve the type being destroyed.
  ///
  /// If the type being destroyed is a dependent type which may or may not
  /// be a pointer, return an invalid type.
  QualType getDestroyedType() const;

  SourceLocation getBeginLoc() const { return CXXDeleteExprBits.Loc; }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return Argument->getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDeleteExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Argument, &Argument + 1); }

  const_child_range children() const {
    return const_child_range(&Argument, &Argument + 1);
  }
};

/// Stores the type being destroyed by a pseudo-destructor expression.
class PseudoDestructorTypeStorage {
  /// Either the type source information or the name of the type, if
  /// it couldn't be resolved due to type-dependence.
  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;

  /// The starting source location of the pseudo-destructor type.
  SourceLocation Location;

public:
  PseudoDestructorTypeStorage() = default;

  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
      : Type(II), Location(Loc) {}

  PseudoDestructorTypeStorage(TypeSourceInfo *Info);

  TypeSourceInfo *getTypeSourceInfo() const {
    return Type.dyn_cast<TypeSourceInfo *>();
  }

  IdentifierInfo *getIdentifier() const {
    return Type.dyn_cast<IdentifierInfo *>();
  }

  SourceLocation getLocation() const { return Location; }
};

/// Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
///
/// A pseudo-destructor is an expression that looks like a member access to a
/// destructor of a scalar type, except that scalar types don't have
/// destructors. For example:
///
/// \code
/// typedef int T;
/// void f(int *p) {
///   p->T::~T();
/// }
/// \endcode
///
/// Pseudo-destructors typically occur when instantiating templates such as:
///
/// \code
/// template<typename T>
/// void destroy(T* ptr) {
///   ptr->T::~T();
/// }
/// \endcode
///
/// for scalar types. A pseudo-destructor expression has no run-time semantics
/// beyond evaluating the base expression.
class CXXPseudoDestructorExpr : public Expr {
  friend class ASTStmtReader;

  /// The base expression (that is being destroyed).
  Stmt *Base = nullptr;

  /// Whether the operator was an arrow ('->'); otherwise, it was a
  /// period ('.').
  bool IsArrow : 1;

  /// The location of the '.' or '->' operator.
  SourceLocation OperatorLoc;

  /// The nested-name-specifier that follows the operator, if present.
  NestedNameSpecifierLoc QualifierLoc;

  /// The type that precedes the '::' in a qualified pseudo-destructor
  /// expression.
  TypeSourceInfo *ScopeType = nullptr;

  /// The location of the '::' in a qualified pseudo-destructor
  /// expression.
  SourceLocation ColonColonLoc;

  /// The location of the '~'.
  SourceLocation TildeLoc;

  /// The type being destroyed, or its name if we were unable to
  /// resolve the name.
  PseudoDestructorTypeStorage DestroyedType;

public:
  CXXPseudoDestructorExpr(const ASTContext &Context,
                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
                          NestedNameSpecifierLoc QualifierLoc,
                          TypeSourceInfo *ScopeType,
                          SourceLocation ColonColonLoc,
                          SourceLocation TildeLoc,
                          PseudoDestructorTypeStorage DestroyedType);

  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
      : Expr(CXXPseudoDestructorExprClass, Shell), IsArrow(false) {}

  Expr *getBase() const { return cast<Expr>(Base); }

  /// Determines whether this member expression actually had
  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
  /// x->Base::foo.
  bool hasQualifier() const { return QualifierLoc.hasQualifier(); }

  /// Retrieves the nested-name-specifier that qualifies the type name,
  /// with source-location information.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }

  /// If the member name was qualified, retrieves the
  /// nested-name-specifier that precedes the member name. Otherwise, returns
  /// null.
  NestedNameSpecifier *getQualifier() const {
    return QualifierLoc.getNestedNameSpecifier();
  }

  /// Determine whether this pseudo-destructor expression was written
  /// using an '->' (otherwise, it used a '.').
  bool isArrow() const { return IsArrow; }

  /// Retrieve the location of the '.' or '->' operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// Retrieve the scope type in a qualified pseudo-destructor
  /// expression.
  ///
  /// Pseudo-destructor expressions can have extra qualification within them
  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
  /// Here, if the object type of the expression is (or may be) a scalar type,
  /// \p T may also be a scalar type and, therefore, cannot be part of a
  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
  /// destructor expression.
  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }

  /// Retrieve the location of the '::' in a qualified pseudo-destructor
  /// expression.
  SourceLocation getColonColonLoc() const { return ColonColonLoc; }

  /// Retrieve the location of the '~'.
  SourceLocation getTildeLoc() const { return TildeLoc; }

  /// Retrieve the source location information for the type
  /// being destroyed.
  ///
  /// This type-source information is available for non-dependent
  /// pseudo-destructor expressions and some dependent pseudo-destructor
  /// expressions. Returns null if we only have the identifier for a
  /// dependent pseudo-destructor expression.
  TypeSourceInfo *getDestroyedTypeInfo() const {
    return DestroyedType.getTypeSourceInfo();
  }

  /// In a dependent pseudo-destructor expression for which we do not
  /// have full type information on the destroyed type, provides the name
  /// of the destroyed type.
  IdentifierInfo *getDestroyedTypeIdentifier() const {
    return DestroyedType.getIdentifier();
  }

  /// Retrieve the type being destroyed.
  QualType getDestroyedType() const;

  /// Retrieve the starting location of the type being destroyed.
  SourceLocation getDestroyedTypeLoc() const {
    return DestroyedType.getLocation();
  }

  /// Set the name of destroyed type for a dependent pseudo-destructor
  /// expression.
  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
  }

  /// Set the destroyed type.
  void setDestroyedType(TypeSourceInfo *Info) {
    DestroyedType = PseudoDestructorTypeStorage(Info);
  }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return Base->getBeginLoc();
  }
  SourceLocation getEndLoc() const LLVM_READONLY;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXPseudoDestructorExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Base, &Base + 1); }

  const_child_range children() const {
    return const_child_range(&Base, &Base + 1);
  }
};

/// A type trait used in the implementation of various C++11 and
/// Library TR1 trait templates.
///
/// \code
///   __is_pod(int) == true
///   __is_enum(std::string) == false
///   __is_trivially_constructible(vector<int>, int*, int*)
/// \endcode
class TypeTraitExpr final
    : public Expr,
      private llvm::TrailingObjects<TypeTraitExpr, TypeSourceInfo *> {
  /// The location of the type trait keyword.
  SourceLocation Loc;

  ///  The location of the closing parenthesis.
  SourceLocation RParenLoc;

  // Note: The TypeSourceInfos for the arguments are allocated after the
  // TypeTraitExpr.

  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
                ArrayRef<TypeSourceInfo *> Args,
                SourceLocation RParenLoc,
                bool Value);

  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) {}

  size_t numTrailingObjects(OverloadToken<TypeSourceInfo *>) const {
    return getNumArgs();
  }

public:
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  friend TrailingObjects;

  /// Create a new type trait expression.
  static TypeTraitExpr *Create(const ASTContext &C, QualType T,
                               SourceLocation Loc, TypeTrait Kind,
                               ArrayRef<TypeSourceInfo *> Args,
                               SourceLocation RParenLoc,
                               bool Value);

  static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
                                           unsigned NumArgs);

  /// Determine which type trait this expression uses.
  TypeTrait getTrait() const {
    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
  }

  bool getValue() const {
    assert(!isValueDependent());
    return TypeTraitExprBits.Value;
  }

  /// Determine the number of arguments to this type trait.
  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }

  /// Retrieve the Ith argument.
  TypeSourceInfo *getArg(unsigned I) const {
    assert(I < getNumArgs() && "Argument out-of-range");
    return getArgs()[I];
  }

  /// Retrieve the argument types.
  ArrayRef<TypeSourceInfo *> getArgs() const {
    return llvm::makeArrayRef(getTrailingObjects<TypeSourceInfo *>(),
                              getNumArgs());
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == TypeTraitExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// An Embarcadero array type trait, as used in the implementation of
/// __array_rank and __array_extent.
///
/// Example:
/// \code
///   __array_rank(int[10][20]) == 2
///   __array_extent(int, 1)    == 20
/// \endcode
class ArrayTypeTraitExpr : public Expr {
  /// The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
  unsigned ATT : 2;

  /// The value of the type trait. Unspecified if dependent.
  uint64_t Value = 0;

  /// The array dimension being queried, or -1 if not used.
  Expr *Dimension;

  /// The location of the type trait keyword.
  SourceLocation Loc;

  /// The location of the closing paren.
  SourceLocation RParen;

  /// The type being queried.
  TypeSourceInfo *QueriedType = nullptr;

public:
  friend class ASTStmtReader;

  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
                     TypeSourceInfo *queried, uint64_t value,
                     Expr *dimension, SourceLocation rparen, QualType ty)
      : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
             false, queried->getType()->isDependentType(),
             (queried->getType()->isInstantiationDependentType() ||
              (dimension && dimension->isInstantiationDependent())),
             queried->getType()->containsUnexpandedParameterPack()),
        ATT(att), Value(value), Dimension(dimension),
        Loc(loc), RParen(rparen), QueriedType(queried) {}

  explicit ArrayTypeTraitExpr(EmptyShell Empty)
      : Expr(ArrayTypeTraitExprClass, Empty), ATT(0) {}

  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParen; }

  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }

  QualType getQueriedType() const { return QueriedType->getType(); }

  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }

  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }

  Expr *getDimensionExpression() const { return Dimension; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ArrayTypeTraitExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// An expression trait intrinsic.
///
/// Example:
/// \code
///   __is_lvalue_expr(std::cout) == true
///   __is_lvalue_expr(1) == false
/// \endcode
class ExpressionTraitExpr : public Expr {
  /// The trait. A ExpressionTrait enum in MSVC compatible unsigned.
  unsigned ET : 31;

  /// The value of the type trait. Unspecified if dependent.
  unsigned Value : 1;

  /// The location of the type trait keyword.
  SourceLocation Loc;

  /// The location of the closing paren.
  SourceLocation RParen;

  /// The expression being queried.
  Expr* QueriedExpression = nullptr;

public:
  friend class ASTStmtReader;

  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
                     Expr *queried, bool value,
                     SourceLocation rparen, QualType resultType)
      : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
             false, // Not type-dependent
             // Value-dependent if the argument is type-dependent.
             queried->isTypeDependent(),
             queried->isInstantiationDependent(),
             queried->containsUnexpandedParameterPack()),
        ET(et), Value(value), Loc(loc), RParen(rparen),
        QueriedExpression(queried) {}

  explicit ExpressionTraitExpr(EmptyShell Empty)
      : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false) {}

  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParen; }

  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }

  Expr *getQueriedExpression() const { return QueriedExpression; }

  bool getValue() const { return Value; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ExpressionTraitExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// A reference to an overloaded function set, either an
/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
class OverloadExpr : public Expr {
  friend class ASTStmtReader;
  friend class ASTStmtWriter;

  /// The common name of these declarations.
  DeclarationNameInfo NameInfo;

  /// The nested-name-specifier that qualifies the name, if any.
  NestedNameSpecifierLoc QualifierLoc;

protected:
  OverloadExpr(StmtClass SC, const ASTContext &Context,
               NestedNameSpecifierLoc QualifierLoc,
               SourceLocation TemplateKWLoc,
               const DeclarationNameInfo &NameInfo,
               const TemplateArgumentListInfo *TemplateArgs,
               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
               bool KnownDependent, bool KnownInstantiationDependent,
               bool KnownContainsUnexpandedParameterPack);

  OverloadExpr(StmtClass SC, EmptyShell Empty, unsigned NumResults,
               bool HasTemplateKWAndArgsInfo);

  /// Return the results. Defined after UnresolvedMemberExpr.
  inline DeclAccessPair *getTrailingResults();
  const DeclAccessPair *getTrailingResults() const {
    return const_cast<OverloadExpr *>(this)->getTrailingResults();
  }

  /// Return the optional template keyword and arguments info.
  /// Defined after UnresolvedMemberExpr.
  inline ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo();
  const ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo() const {
    return const_cast<OverloadExpr *>(this)
        ->getTrailingASTTemplateKWAndArgsInfo();
  }

  /// Return the optional template arguments. Defined after
  /// UnresolvedMemberExpr.
  inline TemplateArgumentLoc *getTrailingTemplateArgumentLoc();
  const TemplateArgumentLoc *getTrailingTemplateArgumentLoc() const {
    return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
  }

  bool hasTemplateKWAndArgsInfo() const {
    return OverloadExprBits.HasTemplateKWAndArgsInfo;
  }

public:
  struct FindResult {
    OverloadExpr *Expression;
    bool IsAddressOfOperand;
    bool HasFormOfMemberPointer;
  };

  /// Finds the overloaded expression in the given expression \p E of
  /// OverloadTy.
  ///
  /// \return the expression (which must be there) and true if it has
  /// the particular form of a member pointer expression
  static FindResult find(Expr *E) {
    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));

    FindResult Result;

    E = E->IgnoreParens();
    if (isa<UnaryOperator>(E)) {
      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
      E = cast<UnaryOperator>(E)->getSubExpr();
      auto *Ovl = cast<OverloadExpr>(E->IgnoreParens());

      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
      Result.IsAddressOfOperand = true;
      Result.Expression = Ovl;
    } else {
      Result.HasFormOfMemberPointer = false;
      Result.IsAddressOfOperand = false;
      Result.Expression = cast<OverloadExpr>(E);
    }

    return Result;
  }

  /// Gets the naming class of this lookup, if any.
  /// Defined after UnresolvedMemberExpr.
  inline CXXRecordDecl *getNamingClass();
  const CXXRecordDecl *getNamingClass() const {
    return const_cast<OverloadExpr *>(this)->getNamingClass();
  }

  using decls_iterator = UnresolvedSetImpl::iterator;

  decls_iterator decls_begin() const {
    return UnresolvedSetIterator(getTrailingResults());
  }
  decls_iterator decls_end() const {
    return UnresolvedSetIterator(getTrailingResults() + getNumDecls());
  }
  llvm::iterator_range<decls_iterator> decls() const {
    return llvm::make_range(decls_begin(), decls_end());
  }

  /// Gets the number of declarations in the unresolved set.
  unsigned getNumDecls() const { return OverloadExprBits.NumResults; }

  /// Gets the full name info.
  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }

  /// Gets the name looked up.
  DeclarationName getName() const { return NameInfo.getName(); }

  /// Gets the location of the name.
  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }

  /// Fetches the nested-name qualifier, if one was given.
  NestedNameSpecifier *getQualifier() const {
    return QualifierLoc.getNestedNameSpecifier();
  }

  /// Fetches the nested-name qualifier with source-location
  /// information, if one was given.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }

  /// Retrieve the location of the template keyword preceding
  /// this name, if any.
  SourceLocation getTemplateKeywordLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingASTTemplateKWAndArgsInfo()->TemplateKWLoc;
  }

  /// Retrieve the location of the left angle bracket starting the
  /// explicit template argument list following the name, if any.
  SourceLocation getLAngleLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingASTTemplateKWAndArgsInfo()->LAngleLoc;
  }

  /// Retrieve the location of the right angle bracket ending the
  /// explicit template argument list following the name, if any.
  SourceLocation getRAngleLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingASTTemplateKWAndArgsInfo()->RAngleLoc;
  }

  /// Determines whether the name was preceded by the template keyword.
  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }

  /// Determines whether this expression had explicit template arguments.
  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }

  TemplateArgumentLoc const *getTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return nullptr;
    return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
  }

  unsigned getNumTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return 0;

    return getTrailingASTTemplateKWAndArgsInfo()->NumTemplateArgs;
  }

  ArrayRef<TemplateArgumentLoc> template_arguments() const {
    return {getTemplateArgs(), getNumTemplateArgs()};
  }

  /// Copies the template arguments into the given structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    if (hasExplicitTemplateArgs())
      getTrailingASTTemplateKWAndArgsInfo()->copyInto(getTemplateArgs(), List);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedLookupExprClass ||
           T->getStmtClass() == UnresolvedMemberExprClass;
  }
};

/// A reference to a name which we were able to look up during
/// parsing but could not resolve to a specific declaration.
///
/// This arises in several ways:
///   * we might be waiting for argument-dependent lookup;
///   * the name might resolve to an overloaded function;
/// and eventually:
///   * the lookup might have included a function template.
///
/// These never include UnresolvedUsingValueDecls, which are always class
/// members and therefore appear only in UnresolvedMemberLookupExprs.
class UnresolvedLookupExpr final
    : public OverloadExpr,
      private llvm::TrailingObjects<UnresolvedLookupExpr, DeclAccessPair,
                                    ASTTemplateKWAndArgsInfo,
                                    TemplateArgumentLoc> {
  friend class ASTStmtReader;
  friend class OverloadExpr;
  friend TrailingObjects;

  /// The naming class (C++ [class.access.base]p5) of the lookup, if
  /// any.  This can generally be recalculated from the context chain,
  /// but that can be fairly expensive for unqualified lookups.
  CXXRecordDecl *NamingClass;

  // UnresolvedLookupExpr is followed by several trailing objects.
  // They are in order:
  //
  // * An array of getNumResults() DeclAccessPair for the results. These are
  //   undesugared, which is to say, they may include UsingShadowDecls.
  //   Access is relative to the naming class.
  //
  // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
  //   template keyword and arguments. Present if and only if
  //   hasTemplateKWAndArgsInfo().
  //
  // * An array of getNumTemplateArgs() TemplateArgumentLoc containing
  //   location information for the explicitly specified template arguments.

  UnresolvedLookupExpr(const ASTContext &Context, CXXRecordDecl *NamingClass,
                       NestedNameSpecifierLoc QualifierLoc,
                       SourceLocation TemplateKWLoc,
                       const DeclarationNameInfo &NameInfo, bool RequiresADL,
                       bool Overloaded,
                       const TemplateArgumentListInfo *TemplateArgs,
                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);

  UnresolvedLookupExpr(EmptyShell Empty, unsigned NumResults,
                       bool HasTemplateKWAndArgsInfo);

  unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const {
    return getNumDecls();
  }

  unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
    return hasTemplateKWAndArgsInfo();
  }

public:
  static UnresolvedLookupExpr *
  Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
         NestedNameSpecifierLoc QualifierLoc,
         const DeclarationNameInfo &NameInfo, bool RequiresADL, bool Overloaded,
         UnresolvedSetIterator Begin, UnresolvedSetIterator End);

  static UnresolvedLookupExpr *
  Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
         NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
         const DeclarationNameInfo &NameInfo, bool RequiresADL,
         const TemplateArgumentListInfo *Args, UnresolvedSetIterator Begin,
         UnresolvedSetIterator End);

  static UnresolvedLookupExpr *CreateEmpty(const ASTContext &Context,
                                           unsigned NumResults,
                                           bool HasTemplateKWAndArgsInfo,
                                           unsigned NumTemplateArgs);

  /// True if this declaration should be extended by
  /// argument-dependent lookup.
  bool requiresADL() const { return UnresolvedLookupExprBits.RequiresADL; }

  /// True if this lookup is overloaded.
  bool isOverloaded() const { return UnresolvedLookupExprBits.Overloaded; }

  /// Gets the 'naming class' (in the sense of C++0x
  /// [class.access.base]p5) of the lookup.  This is the scope
  /// that was looked in to find these results.
  CXXRecordDecl *getNamingClass() { return NamingClass; }
  const CXXRecordDecl *getNamingClass() const { return NamingClass; }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    if (NestedNameSpecifierLoc l = getQualifierLoc())
      return l.getBeginLoc();
    return getNameInfo().getBeginLoc();
  }

  SourceLocation getEndLoc() const LLVM_READONLY {
    if (hasExplicitTemplateArgs())
      return getRAngleLoc();
    return getNameInfo().getEndLoc();
  }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedLookupExprClass;
  }
};

/// A qualified reference to a name whose declaration cannot
/// yet be resolved.
///
/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
/// it expresses a reference to a declaration such as
/// X<T>::value. The difference, however, is that an
/// DependentScopeDeclRefExpr node is used only within C++ templates when
/// the qualification (e.g., X<T>::) refers to a dependent type. In
/// this case, X<T>::value cannot resolve to a declaration because the
/// declaration will differ from one instantiation of X<T> to the
/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
/// qualifier (X<T>::) and the name of the entity being referenced
/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
/// declaration can be found.
class DependentScopeDeclRefExpr final
    : public Expr,
      private llvm::TrailingObjects<DependentScopeDeclRefExpr,
                                    ASTTemplateKWAndArgsInfo,
                                    TemplateArgumentLoc> {
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  friend TrailingObjects;

  /// The nested-name-specifier that qualifies this unresolved
  /// declaration name.
  NestedNameSpecifierLoc QualifierLoc;

  /// The name of the entity we will be referencing.
  DeclarationNameInfo NameInfo;

  DependentScopeDeclRefExpr(QualType Ty, NestedNameSpecifierLoc QualifierLoc,
                            SourceLocation TemplateKWLoc,
                            const DeclarationNameInfo &NameInfo,
                            const TemplateArgumentListInfo *Args);

  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
    return hasTemplateKWAndArgsInfo();
  }

  bool hasTemplateKWAndArgsInfo() const {
    return DependentScopeDeclRefExprBits.HasTemplateKWAndArgsInfo;
  }

public:
  static DependentScopeDeclRefExpr *
  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
         SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo,
         const TemplateArgumentListInfo *TemplateArgs);

  static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &Context,
                                                bool HasTemplateKWAndArgsInfo,
                                                unsigned NumTemplateArgs);

  /// Retrieve the name that this expression refers to.
  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }

  /// Retrieve the name that this expression refers to.
  DeclarationName getDeclName() const { return NameInfo.getName(); }

  /// Retrieve the location of the name within the expression.
  ///
  /// For example, in "X<T>::value" this is the location of "value".
  SourceLocation getLocation() const { return NameInfo.getLoc(); }

  /// Retrieve the nested-name-specifier that qualifies the
  /// name, with source location information.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }

  /// Retrieve the nested-name-specifier that qualifies this
  /// declaration.
  NestedNameSpecifier *getQualifier() const {
    return QualifierLoc.getNestedNameSpecifier();
  }

  /// Retrieve the location of the template keyword preceding
  /// this name, if any.
  SourceLocation getTemplateKeywordLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
  }

  /// Retrieve the location of the left angle bracket starting the
  /// explicit template argument list following the name, if any.
  SourceLocation getLAngleLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
  }

  /// Retrieve the location of the right angle bracket ending the
  /// explicit template argument list following the name, if any.
  SourceLocation getRAngleLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
  }

  /// Determines whether the name was preceded by the template keyword.
  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }

  /// Determines whether this lookup had explicit template arguments.
  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }

  /// Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    if (hasExplicitTemplateArgs())
      getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
          getTrailingObjects<TemplateArgumentLoc>(), List);
  }

  TemplateArgumentLoc const *getTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return nullptr;

    return getTrailingObjects<TemplateArgumentLoc>();
  }

  unsigned getNumTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return 0;

    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
  }

  ArrayRef<TemplateArgumentLoc> template_arguments() const {
    return {getTemplateArgs(), getNumTemplateArgs()};
  }

  /// Note: getBeginLoc() is the start of the whole DependentScopeDeclRefExpr,
  /// and differs from getLocation().getStart().
  SourceLocation getBeginLoc() const LLVM_READONLY {
    return QualifierLoc.getBeginLoc();
  }

  SourceLocation getEndLoc() const LLVM_READONLY {
    if (hasExplicitTemplateArgs())
      return getRAngleLoc();
    return getLocation();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DependentScopeDeclRefExprClass;
  }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// Represents an expression -- generally a full-expression -- that
/// introduces cleanups to be run at the end of the sub-expression's
/// evaluation.  The most common source of expression-introduced
/// cleanups is temporary objects in C++, but several other kinds of
/// expressions can create cleanups, including basically every
/// call in ARC that returns an Objective-C pointer.
///
/// This expression also tracks whether the sub-expression contains a
/// potentially-evaluated block literal.  The lifetime of a block
/// literal is the extent of the enclosing scope.
class ExprWithCleanups final
    : public FullExpr,
      private llvm::TrailingObjects<ExprWithCleanups, BlockDecl *> {
public:
  /// The type of objects that are kept in the cleanup.
  /// It's useful to remember the set of blocks;  we could also
  /// remember the set of temporaries, but there's currently
  /// no need.
  using CleanupObject = BlockDecl *;

private:
  friend class ASTStmtReader;
  friend TrailingObjects;

  ExprWithCleanups(EmptyShell, unsigned NumObjects);
  ExprWithCleanups(Expr *SubExpr, bool CleanupsHaveSideEffects,
                   ArrayRef<CleanupObject> Objects);

public:
  static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
                                  unsigned numObjects);

  static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
                                  bool CleanupsHaveSideEffects,
                                  ArrayRef<CleanupObject> objects);

  ArrayRef<CleanupObject> getObjects() const {
    return llvm::makeArrayRef(getTrailingObjects<CleanupObject>(),
                              getNumObjects());
  }

  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }

  CleanupObject getObject(unsigned i) const {
    assert(i < getNumObjects() && "Index out of range");
    return getObjects()[i];
  }

  bool cleanupsHaveSideEffects() const {
    return ExprWithCleanupsBits.CleanupsHaveSideEffects;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return SubExpr->getBeginLoc();
  }

  SourceLocation getEndLoc() const LLVM_READONLY {
    return SubExpr->getEndLoc();
  }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ExprWithCleanupsClass;
  }

  // Iterators
  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }

  const_child_range children() const {
    return const_child_range(&SubExpr, &SubExpr + 1);
  }
};

/// Describes an explicit type conversion that uses functional
/// notion but could not be resolved because one or more arguments are
/// type-dependent.
///
/// The explicit type conversions expressed by
/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
/// type-dependent. For example, this would occur in a template such
/// as:
///
/// \code
///   template<typename T, typename A1>
///   inline T make_a(const A1& a1) {
///     return T(a1);
///   }
/// \endcode
///
/// When the returned expression is instantiated, it may resolve to a
/// constructor call, conversion function call, or some kind of type
/// conversion.
class CXXUnresolvedConstructExpr final
    : public Expr,
      private llvm::TrailingObjects<CXXUnresolvedConstructExpr, Expr *> {
  friend class ASTStmtReader;
  friend TrailingObjects;

  /// The type being constructed.
  TypeSourceInfo *TSI;

  /// The location of the left parentheses ('(').
  SourceLocation LParenLoc;

  /// The location of the right parentheses (')').
  SourceLocation RParenLoc;

  CXXUnresolvedConstructExpr(TypeSourceInfo *TSI, SourceLocation LParenLoc,
                             ArrayRef<Expr *> Args, SourceLocation RParenLoc);

  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
      : Expr(CXXUnresolvedConstructExprClass, Empty) {
    CXXUnresolvedConstructExprBits.NumArgs = NumArgs;
  }

public:
  static CXXUnresolvedConstructExpr *Create(const ASTContext &Context,
                                            TypeSourceInfo *Type,
                                            SourceLocation LParenLoc,
                                            ArrayRef<Expr *> Args,
                                            SourceLocation RParenLoc);

  static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &Context,
                                                 unsigned NumArgs);

  /// Retrieve the type that is being constructed, as specified
  /// in the source code.
  QualType getTypeAsWritten() const { return TSI->getType(); }

  /// Retrieve the type source information for the type being
  /// constructed.
  TypeSourceInfo *getTypeSourceInfo() const { return TSI; }

  /// Retrieve the location of the left parentheses ('(') that
  /// precedes the argument list.
  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }

  /// Retrieve the location of the right parentheses (')') that
  /// follows the argument list.
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  /// Determine whether this expression models list-initialization.
  /// If so, there will be exactly one subexpression, which will be
  /// an InitListExpr.
  bool isListInitialization() const { return LParenLoc.isInvalid(); }

  /// Retrieve the number of arguments.
  unsigned arg_size() const { return CXXUnresolvedConstructExprBits.NumArgs; }

  using arg_iterator = Expr **;
  using arg_range = llvm::iterator_range<arg_iterator>;

  arg_iterator arg_begin() { return getTrailingObjects<Expr *>(); }
  arg_iterator arg_end() { return arg_begin() + arg_size(); }
  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }

  using const_arg_iterator = const Expr* const *;
  using const_arg_range = llvm::iterator_range<const_arg_iterator>;

  const_arg_iterator arg_begin() const { return getTrailingObjects<Expr *>(); }
  const_arg_iterator arg_end() const { return arg_begin() + arg_size(); }
  const_arg_range arguments() const {
    return const_arg_range(arg_begin(), arg_end());
  }

  Expr *getArg(unsigned I) {
    assert(I < arg_size() && "Argument index out-of-range");
    return arg_begin()[I];
  }

  const Expr *getArg(unsigned I) const {
    assert(I < arg_size() && "Argument index out-of-range");
    return arg_begin()[I];
  }

  void setArg(unsigned I, Expr *E) {
    assert(I < arg_size() && "Argument index out-of-range");
    arg_begin()[I] = E;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY;
  SourceLocation getEndLoc() const LLVM_READONLY {
    if (!RParenLoc.isValid() && arg_size() > 0)
      return getArg(arg_size() - 1)->getEndLoc();
    return RParenLoc;
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
  }

  // Iterators
  child_range children() {
    auto **begin = reinterpret_cast<Stmt **>(arg_begin());
    return child_range(begin, begin + arg_size());
  }

  const_child_range children() const {
    auto **begin = reinterpret_cast<Stmt **>(
        const_cast<CXXUnresolvedConstructExpr *>(this)->arg_begin());
    return const_child_range(begin, begin + arg_size());
  }
};

/// Represents a C++ member access expression where the actual
/// member referenced could not be resolved because the base
/// expression or the member name was dependent.
///
/// Like UnresolvedMemberExprs, these can be either implicit or
/// explicit accesses.  It is only possible to get one of these with
/// an implicit access if a qualifier is provided.
class CXXDependentScopeMemberExpr final
    : public Expr,
      private llvm::TrailingObjects<CXXDependentScopeMemberExpr,
                                    ASTTemplateKWAndArgsInfo,
                                    TemplateArgumentLoc, NamedDecl *> {
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  friend TrailingObjects;

  /// The expression for the base pointer or class reference,
  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
  Stmt *Base;

  /// The type of the base expression.  Never null, even for
  /// implicit accesses.
  QualType BaseType;

  /// The nested-name-specifier that precedes the member name, if any.
  /// FIXME: This could be in principle store as a trailing object.
  /// However the performance impact of doing so should be investigated first.
  NestedNameSpecifierLoc QualifierLoc;

  /// The member to which this member expression refers, which
  /// can be name, overloaded operator, or destructor.
  ///
  /// FIXME: could also be a template-id
  DeclarationNameInfo MemberNameInfo;

  // CXXDependentScopeMemberExpr is followed by several trailing objects,
  // some of which optional. They are in order:
  //
  // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
  //   template keyword and arguments. Present if and only if
  //   hasTemplateKWAndArgsInfo().
  //
  // * An array of getNumTemplateArgs() TemplateArgumentLoc containing location
  //   information for the explicitly specified template arguments.
  //
  // * An optional NamedDecl *. In a qualified member access expression such
  //   as t->Base::f, this member stores the resolves of name lookup in the
  //   context of the member access expression, to be used at instantiation
  //   time. Present if and only if hasFirstQualifierFoundInScope().

  bool hasTemplateKWAndArgsInfo() const {
    return CXXDependentScopeMemberExprBits.HasTemplateKWAndArgsInfo;
  }

  bool hasFirstQualifierFoundInScope() const {
    return CXXDependentScopeMemberExprBits.HasFirstQualifierFoundInScope;
  }

  unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
    return hasTemplateKWAndArgsInfo();
  }

  unsigned numTrailingObjects(OverloadToken<TemplateArgumentLoc>) const {
    return getNumTemplateArgs();
  }

  unsigned numTrailingObjects(OverloadToken<NamedDecl *>) const {
    return hasFirstQualifierFoundInScope();
  }

  CXXDependentScopeMemberExpr(const ASTContext &Ctx, Expr *Base,
                              QualType BaseType, bool IsArrow,
                              SourceLocation OperatorLoc,
                              NestedNameSpecifierLoc QualifierLoc,
                              SourceLocation TemplateKWLoc,
                              NamedDecl *FirstQualifierFoundInScope,
                              DeclarationNameInfo MemberNameInfo,
                              const TemplateArgumentListInfo *TemplateArgs);

  CXXDependentScopeMemberExpr(EmptyShell Empty, bool HasTemplateKWAndArgsInfo,
                              bool HasFirstQualifierFoundInScope);

public:
  static CXXDependentScopeMemberExpr *
  Create(const ASTContext &Ctx, Expr *Base, QualType BaseType, bool IsArrow,
         SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
         SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
         DeclarationNameInfo MemberNameInfo,
         const TemplateArgumentListInfo *TemplateArgs);

  static CXXDependentScopeMemberExpr *
  CreateEmpty(const ASTContext &Ctx, bool HasTemplateKWAndArgsInfo,
              unsigned NumTemplateArgs, bool HasFirstQualifierFoundInScope);

  /// True if this is an implicit access, i.e. one in which the
  /// member being accessed was not written in the source.  The source
  /// location of the operator is invalid in this case.
  bool isImplicitAccess() const {
    if (!Base)
      return true;
    return cast<Expr>(Base)->isImplicitCXXThis();
  }

  /// Retrieve the base object of this member expressions,
  /// e.g., the \c x in \c x.m.
  Expr *getBase() const {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }

  QualType getBaseType() const { return BaseType; }

  /// Determine whether this member expression used the '->'
  /// operator; otherwise, it used the '.' operator.
  bool isArrow() const { return CXXDependentScopeMemberExprBits.IsArrow; }

  /// Retrieve the location of the '->' or '.' operator.
  SourceLocation getOperatorLoc() const {
    return CXXDependentScopeMemberExprBits.OperatorLoc;
  }

  /// Retrieve the nested-name-specifier that qualifies the member name.
  NestedNameSpecifier *getQualifier() const {
    return QualifierLoc.getNestedNameSpecifier();
  }

  /// Retrieve the nested-name-specifier that qualifies the member
  /// name, with source location information.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }

  /// Retrieve the first part of the nested-name-specifier that was
  /// found in the scope of the member access expression when the member access
  /// was initially parsed.
  ///
  /// This function only returns a useful result when member access expression
  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
  /// returned by this function describes what was found by unqualified name
  /// lookup for the identifier "Base" within the scope of the member access
  /// expression itself. At template instantiation time, this information is
  /// combined with the results of name lookup into the type of the object
  /// expression itself (the class type of x).
  NamedDecl *getFirstQualifierFoundInScope() const {
    if (!hasFirstQualifierFoundInScope())
      return nullptr;
    return *getTrailingObjects<NamedDecl *>();
  }

  /// Retrieve the name of the member that this expression refers to.
  const DeclarationNameInfo &getMemberNameInfo() const {
    return MemberNameInfo;
  }

  /// Retrieve the name of the member that this expression refers to.
  DeclarationName getMember() const { return MemberNameInfo.getName(); }

  // Retrieve the location of the name of the member that this
  // expression refers to.
  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }

  /// Retrieve the location of the template keyword preceding the
  /// member name, if any.
  SourceLocation getTemplateKeywordLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
  }

  /// Retrieve the location of the left angle bracket starting the
  /// explicit template argument list following the member name, if any.
  SourceLocation getLAngleLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
  }

  /// Retrieve the location of the right angle bracket ending the
  /// explicit template argument list following the member name, if any.
  SourceLocation getRAngleLoc() const {
    if (!hasTemplateKWAndArgsInfo())
      return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
  }

  /// Determines whether the member name was preceded by the template keyword.
  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }

  /// Determines whether this member expression actually had a C++
  /// template argument list explicitly specified, e.g., x.f<int>.
  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }

  /// Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    if (hasExplicitTemplateArgs())
      getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
          getTrailingObjects<TemplateArgumentLoc>(), List);
  }

  /// Retrieve the template arguments provided as part of this
  /// template-id.
  const TemplateArgumentLoc *getTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return nullptr;

    return getTrailingObjects<TemplateArgumentLoc>();
  }

  /// Retrieve the number of template arguments provided as part of this
  /// template-id.
  unsigned getNumTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return 0;

    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
  }

  ArrayRef<TemplateArgumentLoc> template_arguments() const {
    return {getTemplateArgs(), getNumTemplateArgs()};
  }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    if (!isImplicitAccess())
      return Base->getBeginLoc();
    if (getQualifier())
      return getQualifierLoc().getBeginLoc();
    return MemberNameInfo.getBeginLoc();
  }

  SourceLocation getEndLoc() const LLVM_READONLY {
    if (hasExplicitTemplateArgs())
      return getRAngleLoc();
    return MemberNameInfo.getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
  }

  // Iterators
  child_range children() {
    if (isImplicitAccess())
      return child_range(child_iterator(), child_iterator());
    return child_range(&Base, &Base + 1);
  }

  const_child_range children() const {
    if (isImplicitAccess())
      return const_child_range(const_child_iterator(), const_child_iterator());
    return const_child_range(&Base, &Base + 1);
  }
};

/// Represents a C++ member access expression for which lookup
/// produced a set of overloaded functions.
///
/// The member access may be explicit or implicit:
/// \code
///    struct A {
///      int a, b;
///      int explicitAccess() { return this->a + this->A::b; }
///      int implicitAccess() { return a + A::b; }
///    };
/// \endcode
///
/// In the final AST, an explicit access always becomes a MemberExpr.
/// An implicit access may become either a MemberExpr or a
/// DeclRefExpr, depending on whether the member is static.
class UnresolvedMemberExpr final
    : public OverloadExpr,
      private llvm::TrailingObjects<UnresolvedMemberExpr, DeclAccessPair,
                                    ASTTemplateKWAndArgsInfo,
                                    TemplateArgumentLoc> {
  friend class ASTStmtReader;
  friend class OverloadExpr;
  friend TrailingObjects;

  /// The expression for the base pointer or class reference,
  /// e.g., the \c x in x.f.
  ///
  /// This can be null if this is an 'unbased' member expression.
  Stmt *Base;

  /// The type of the base expression; never null.
  QualType BaseType;

  /// The location of the '->' or '.' operator.
  SourceLocation OperatorLoc;

  // UnresolvedMemberExpr is followed by several trailing objects.
  // They are in order:
  //
  // * An array of getNumResults() DeclAccessPair for the results. These are
  //   undesugared, which is to say, they may include UsingShadowDecls.
  //   Access is relative to the naming class.
  //
  // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
  //   template keyword and arguments. Present if and only if
  //   hasTemplateKWAndArgsInfo().
  //
  // * An array of getNumTemplateArgs() TemplateArgumentLoc containing
  //   location information for the explicitly specified template arguments.

  UnresolvedMemberExpr(const ASTContext &Context, bool HasUnresolvedUsing,
                       Expr *Base, QualType BaseType, bool IsArrow,
                       SourceLocation OperatorLoc,
                       NestedNameSpecifierLoc QualifierLoc,
                       SourceLocation TemplateKWLoc,
                       const DeclarationNameInfo &MemberNameInfo,
                       const TemplateArgumentListInfo *TemplateArgs,
                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);

  UnresolvedMemberExpr(EmptyShell Empty, unsigned NumResults,
                       bool HasTemplateKWAndArgsInfo);

  unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const {
    return getNumDecls();
  }

  unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
    return hasTemplateKWAndArgsInfo();
  }

public:
  static UnresolvedMemberExpr *
  Create(const ASTContext &Context, bool HasUnresolvedUsing, Expr *Base,
         QualType BaseType, bool IsArrow, SourceLocation OperatorLoc,
         NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
         const DeclarationNameInfo &MemberNameInfo,
         const TemplateArgumentListInfo *TemplateArgs,
         UnresolvedSetIterator Begin, UnresolvedSetIterator End);

  static UnresolvedMemberExpr *CreateEmpty(const ASTContext &Context,
                                           unsigned NumResults,
                                           bool HasTemplateKWAndArgsInfo,
                                           unsigned NumTemplateArgs);

  /// True if this is an implicit access, i.e., one in which the
  /// member being accessed was not written in the source.
  ///
  /// The source location of the operator is invalid in this case.
  bool isImplicitAccess() const;

  /// Retrieve the base object of this member expressions,
  /// e.g., the \c x in \c x.m.
  Expr *getBase() {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }
  const Expr *getBase() const {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }

  QualType getBaseType() const { return BaseType; }

  /// Determine whether the lookup results contain an unresolved using
  /// declaration.
  bool hasUnresolvedUsing() const {
    return UnresolvedMemberExprBits.HasUnresolvedUsing;
  }

  /// Determine whether this member expression used the '->'
  /// operator; otherwise, it used the '.' operator.
  bool isArrow() const { return UnresolvedMemberExprBits.IsArrow; }

  /// Retrieve the location of the '->' or '.' operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// Retrieve the naming class of this lookup.
  CXXRecordDecl *getNamingClass();
  const CXXRecordDecl *getNamingClass() const {
    return const_cast<UnresolvedMemberExpr *>(this)->getNamingClass();
  }

  /// Retrieve the full name info for the member that this expression
  /// refers to.
  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }

  /// Retrieve the name of the member that this expression refers to.
  DeclarationName getMemberName() const { return getName(); }

  /// Retrieve the location of the name of the member that this
  /// expression refers to.
  SourceLocation getMemberLoc() const { return getNameLoc(); }

  /// Return the preferred location (the member name) for the arrow when
  /// diagnosing a problem with this expression.
  SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    if (!isImplicitAccess())
      return Base->getBeginLoc();
    if (NestedNameSpecifierLoc l = getQualifierLoc())
      return l.getBeginLoc();
    return getMemberNameInfo().getBeginLoc();
  }

  SourceLocation getEndLoc() const LLVM_READONLY {
    if (hasExplicitTemplateArgs())
      return getRAngleLoc();
    return getMemberNameInfo().getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedMemberExprClass;
  }

  // Iterators
  child_range children() {
    if (isImplicitAccess())
      return child_range(child_iterator(), child_iterator());
    return child_range(&Base, &Base + 1);
  }

  const_child_range children() const {
    if (isImplicitAccess())
      return const_child_range(const_child_iterator(), const_child_iterator());
    return const_child_range(&Base, &Base + 1);
  }
};

DeclAccessPair *OverloadExpr::getTrailingResults() {
  if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
    return ULE->getTrailingObjects<DeclAccessPair>();
  return cast<UnresolvedMemberExpr>(this)->getTrailingObjects<DeclAccessPair>();
}

ASTTemplateKWAndArgsInfo *OverloadExpr::getTrailingASTTemplateKWAndArgsInfo() {
  if (!hasTemplateKWAndArgsInfo())
    return nullptr;

  if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
    return ULE->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
  return cast<UnresolvedMemberExpr>(this)
      ->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
}

TemplateArgumentLoc *OverloadExpr::getTrailingTemplateArgumentLoc() {
  if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
    return ULE->getTrailingObjects<TemplateArgumentLoc>();
  return cast<UnresolvedMemberExpr>(this)
      ->getTrailingObjects<TemplateArgumentLoc>();
}

CXXRecordDecl *OverloadExpr::getNamingClass() {
  if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
    return ULE->getNamingClass();
  return cast<UnresolvedMemberExpr>(this)->getNamingClass();
}

/// Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
///
/// The noexcept expression tests whether a given expression might throw. Its
/// result is a boolean constant.
class CXXNoexceptExpr : public Expr {
  friend class ASTStmtReader;

  Stmt *Operand;
  SourceRange Range;

public:
  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
                  SourceLocation Keyword, SourceLocation RParen)
      : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
             /*TypeDependent*/ false,
             /*ValueDependent*/ Val == CT_Dependent,
             Val == CT_Dependent || Operand->isInstantiationDependent(),
             Operand->containsUnexpandedParameterPack()),
        Operand(Operand), Range(Keyword, RParen) {
    CXXNoexceptExprBits.Value = Val == CT_Cannot;
  }

  CXXNoexceptExpr(EmptyShell Empty) : Expr(CXXNoexceptExprClass, Empty) {}

  Expr *getOperand() const { return static_cast<Expr *>(Operand); }

  SourceLocation getBeginLoc() const { return Range.getBegin(); }
  SourceLocation getEndLoc() const { return Range.getEnd(); }
  SourceRange getSourceRange() const { return Range; }

  bool getValue() const { return CXXNoexceptExprBits.Value; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXNoexceptExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Operand, &Operand + 1); }

  const_child_range children() const {
    return const_child_range(&Operand, &Operand + 1);
  }
};

/// Represents a C++11 pack expansion that produces a sequence of
/// expressions.
///
/// A pack expansion expression contains a pattern (which itself is an
/// expression) followed by an ellipsis. For example:
///
/// \code
/// template<typename F, typename ...Types>
/// void forward(F f, Types &&...args) {
///   f(static_cast<Types&&>(args)...);
/// }
/// \endcode
///
/// Here, the argument to the function object \c f is a pack expansion whose
/// pattern is \c static_cast<Types&&>(args). When the \c forward function
/// template is instantiated, the pack expansion will instantiate to zero or
/// or more function arguments to the function object \c f.
class PackExpansionExpr : public Expr {
  friend class ASTStmtReader;
  friend class ASTStmtWriter;

  SourceLocation EllipsisLoc;

  /// The number of expansions that will be produced by this pack
  /// expansion expression, if known.
  ///
  /// When zero, the number of expansions is not known. Otherwise, this value
  /// is the number of expansions + 1.
  unsigned NumExpansions;

  Stmt *Pattern;

public:
  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
                    Optional<unsigned> NumExpansions)
      : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
             Pattern->getObjectKind(), /*TypeDependent=*/true,
             /*ValueDependent=*/true, /*InstantiationDependent=*/true,
             /*ContainsUnexpandedParameterPack=*/false),
        EllipsisLoc(EllipsisLoc),
        NumExpansions(NumExpansions ? *NumExpansions + 1 : 0),
        Pattern(Pattern) {}

  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) {}

  /// Retrieve the pattern of the pack expansion.
  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }

  /// Retrieve the pattern of the pack expansion.
  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }

  /// Retrieve the location of the ellipsis that describes this pack
  /// expansion.
  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }

  /// Determine the number of expansions that will be produced when
  /// this pack expansion is instantiated, if already known.
  Optional<unsigned> getNumExpansions() const {
    if (NumExpansions)
      return NumExpansions - 1;

    return None;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return Pattern->getBeginLoc();
  }

  SourceLocation getEndLoc() const LLVM_READONLY { return EllipsisLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == PackExpansionExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(&Pattern, &Pattern + 1);
  }

  const_child_range children() const {
    return const_child_range(&Pattern, &Pattern + 1);
  }
};

/// Represents an expression that computes the length of a parameter
/// pack.
///
/// \code
/// template<typename ...Types>
/// struct count {
///   static const unsigned value = sizeof...(Types);
/// };
/// \endcode
class SizeOfPackExpr final
    : public Expr,
      private llvm::TrailingObjects<SizeOfPackExpr, TemplateArgument> {
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
  friend TrailingObjects;

  /// The location of the \c sizeof keyword.
  SourceLocation OperatorLoc;

  /// The location of the name of the parameter pack.
  SourceLocation PackLoc;

  /// The location of the closing parenthesis.
  SourceLocation RParenLoc;

  /// The length of the parameter pack, if known.
  ///
  /// When this expression is not value-dependent, this is the length of
  /// the pack. When the expression was parsed rather than instantiated
  /// (and thus is value-dependent), this is zero.
  ///
  /// After partial substitution into a sizeof...(X) expression (for instance,
  /// within an alias template or during function template argument deduction),
  /// we store a trailing array of partially-substituted TemplateArguments,
  /// and this is the length of that array.
  unsigned Length;

  /// The parameter pack.
  NamedDecl *Pack = nullptr;

  /// Create an expression that computes the length of
  /// the given parameter pack.
  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
                 SourceLocation PackLoc, SourceLocation RParenLoc,
                 Optional<unsigned> Length, ArrayRef<TemplateArgument> PartialArgs)
      : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
             /*TypeDependent=*/false, /*ValueDependent=*/!Length,
             /*InstantiationDependent=*/!Length,
             /*ContainsUnexpandedParameterPack=*/false),
        OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
        Length(Length ? *Length : PartialArgs.size()), Pack(Pack) {
    assert((!Length || PartialArgs.empty()) &&
           "have partial args for non-dependent sizeof... expression");
    auto *Args = getTrailingObjects<TemplateArgument>();
    std::uninitialized_copy(PartialArgs.begin(), PartialArgs.end(), Args);
  }

  /// Create an empty expression.
  SizeOfPackExpr(EmptyShell Empty, unsigned NumPartialArgs)
      : Expr(SizeOfPackExprClass, Empty), Length(NumPartialArgs) {}

public:
  static SizeOfPackExpr *Create(ASTContext &Context, SourceLocation OperatorLoc,
                                NamedDecl *Pack, SourceLocation PackLoc,
                                SourceLocation RParenLoc,
                                Optional<unsigned> Length = None,
                                ArrayRef<TemplateArgument> PartialArgs = None);
  static SizeOfPackExpr *CreateDeserialized(ASTContext &Context,
                                            unsigned NumPartialArgs);

  /// Determine the location of the 'sizeof' keyword.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// Determine the location of the parameter pack.
  SourceLocation getPackLoc() const { return PackLoc; }

  /// Determine the location of the right parenthesis.
  SourceLocation getRParenLoc() const { return RParenLoc; }

  /// Retrieve the parameter pack.
  NamedDecl *getPack() const { return Pack; }

  /// Retrieve the length of the parameter pack.
  ///
  /// This routine may only be invoked when the expression is not
  /// value-dependent.
  unsigned getPackLength() const {
    assert(!isValueDependent() &&
           "Cannot get the length of a value-dependent pack size expression");
    return Length;
  }

  /// Determine whether this represents a partially-substituted sizeof...
  /// expression, such as is produced for:
  ///
  ///   template<typename ...Ts> using X = int[sizeof...(Ts)];
  ///   template<typename ...Us> void f(X<Us..., 1, 2, 3, Us...>);
  bool isPartiallySubstituted() const {
    return isValueDependent() && Length;
  }

  /// Get
  ArrayRef<TemplateArgument> getPartialArguments() const {
    assert(isPartiallySubstituted());
    const auto *Args = getTrailingObjects<TemplateArgument>();
    return llvm::makeArrayRef(Args, Args + Length);
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return OperatorLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SizeOfPackExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// Represents a reference to a non-type template parameter
/// that has been substituted with a template argument.
class SubstNonTypeTemplateParmExpr : public Expr {
  friend class ASTReader;
  friend class ASTStmtReader;

  /// The replaced parameter.
  NonTypeTemplateParmDecl *Param;

  /// The replacement expression.
  Stmt *Replacement;

  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
      : Expr(SubstNonTypeTemplateParmExprClass, Empty) {}

public:
  SubstNonTypeTemplateParmExpr(QualType Ty, ExprValueKind ValueKind,
                               SourceLocation Loc,
                               NonTypeTemplateParmDecl *Param,
                               Expr *Replacement)
      : Expr(SubstNonTypeTemplateParmExprClass, Ty, ValueKind, OK_Ordinary,
             Replacement->isTypeDependent(), Replacement->isValueDependent(),
             Replacement->isInstantiationDependent(),
             Replacement->containsUnexpandedParameterPack()),
        Param(Param), Replacement(Replacement) {
    SubstNonTypeTemplateParmExprBits.NameLoc = Loc;
  }

  SourceLocation getNameLoc() const {
    return SubstNonTypeTemplateParmExprBits.NameLoc;
  }
  SourceLocation getBeginLoc() const { return getNameLoc(); }
  SourceLocation getEndLoc() const { return getNameLoc(); }

  Expr *getReplacement() const { return cast<Expr>(Replacement); }

  NonTypeTemplateParmDecl *getParameter() const { return Param; }

  static bool classof(const Stmt *s) {
    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Replacement, &Replacement + 1); }

  const_child_range children() const {
    return const_child_range(&Replacement, &Replacement + 1);
  }
};

/// Represents a reference to a non-type template parameter pack that
/// has been substituted with a non-template argument pack.
///
/// When a pack expansion in the source code contains multiple parameter packs
/// and those parameter packs correspond to different levels of template
/// parameter lists, this node is used to represent a non-type template
/// parameter pack from an outer level, which has already had its argument pack
/// substituted but that still lives within a pack expansion that itself
/// could not be instantiated. When actually performing a substitution into
/// that pack expansion (e.g., when all template parameters have corresponding
/// arguments), this type will be replaced with the appropriate underlying
/// expression at the current pack substitution index.
class SubstNonTypeTemplateParmPackExpr : public Expr {
  friend class ASTReader;
  friend class ASTStmtReader;

  /// The non-type template parameter pack itself.
  NonTypeTemplateParmDecl *Param;

  /// A pointer to the set of template arguments that this
  /// parameter pack is instantiated with.
  const TemplateArgument *Arguments;

  /// The number of template arguments in \c Arguments.
  unsigned NumArguments;

  /// The location of the non-type template parameter pack reference.
  SourceLocation NameLoc;

  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
      : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) {}

public:
  SubstNonTypeTemplateParmPackExpr(QualType T,
                                   ExprValueKind ValueKind,
                                   NonTypeTemplateParmDecl *Param,
                                   SourceLocation NameLoc,
                                   const TemplateArgument &ArgPack);

  /// Retrieve the non-type template parameter pack being substituted.
  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }

  /// Retrieve the location of the parameter pack name.
  SourceLocation getParameterPackLocation() const { return NameLoc; }

  /// Retrieve the template argument pack containing the substituted
  /// template arguments.
  TemplateArgument getArgumentPack() const;

  SourceLocation getBeginLoc() const LLVM_READONLY { return NameLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return NameLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// Represents a reference to a function parameter pack or init-capture pack
/// that has been substituted but not yet expanded.
///
/// When a pack expansion contains multiple parameter packs at different levels,
/// this node is used to represent a function parameter pack at an outer level
/// which we have already substituted to refer to expanded parameters, but where
/// the containing pack expansion cannot yet be expanded.
///
/// \code
/// template<typename...Ts> struct S {
///   template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
/// };
/// template struct S<int, int>;
/// \endcode
class FunctionParmPackExpr final
    : public Expr,
      private llvm::TrailingObjects<FunctionParmPackExpr, VarDecl *> {
  friend class ASTReader;
  friend class ASTStmtReader;
  friend TrailingObjects;

  /// The function parameter pack which was referenced.
  VarDecl *ParamPack;

  /// The location of the function parameter pack reference.
  SourceLocation NameLoc;

  /// The number of expansions of this pack.
  unsigned NumParameters;

  FunctionParmPackExpr(QualType T, VarDecl *ParamPack,
                       SourceLocation NameLoc, unsigned NumParams,
                       VarDecl *const *Params);

public:
  static FunctionParmPackExpr *Create(const ASTContext &Context, QualType T,
                                      VarDecl *ParamPack,
                                      SourceLocation NameLoc,
                                      ArrayRef<VarDecl *> Params);
  static FunctionParmPackExpr *CreateEmpty(const ASTContext &Context,
                                           unsigned NumParams);

  /// Get the parameter pack which this expression refers to.
  VarDecl *getParameterPack() const { return ParamPack; }

  /// Get the location of the parameter pack.
  SourceLocation getParameterPackLocation() const { return NameLoc; }

  /// Iterators over the parameters which the parameter pack expanded
  /// into.
  using iterator = VarDecl * const *;
  iterator begin() const { return getTrailingObjects<VarDecl *>(); }
  iterator end() const { return begin() + NumParameters; }

  /// Get the number of parameters in this parameter pack.
  unsigned getNumExpansions() const { return NumParameters; }

  /// Get an expansion of the parameter pack by index.
  VarDecl *getExpansion(unsigned I) const { return begin()[I]; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return NameLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return NameLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == FunctionParmPackExprClass;
  }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

/// Represents a prvalue temporary that is written into memory so that
/// a reference can bind to it.
///
/// Prvalue expressions are materialized when they need to have an address
/// in memory for a reference to bind to. This happens when binding a
/// reference to the result of a conversion, e.g.,
///
/// \code
/// const int &r = 1.0;
/// \endcode
///
/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
/// then materialized via a \c MaterializeTemporaryExpr, and the reference
/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
/// (either an lvalue or an xvalue, depending on the kind of reference binding
/// to it), maintaining the invariant that references always bind to glvalues.
///
/// Reference binding and copy-elision can both extend the lifetime of a
/// temporary. When either happens, the expression will also track the
/// declaration which is responsible for the lifetime extension.
class MaterializeTemporaryExpr : public Expr {
private:
  friend class ASTStmtReader;
  friend class ASTStmtWriter;

  struct ExtraState {
    /// The temporary-generating expression whose value will be
    /// materialized.
    Stmt *Temporary;

    /// The declaration which lifetime-extended this reference, if any.
    /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
    const ValueDecl *ExtendingDecl;

    unsigned ManglingNumber;
  };
  llvm::PointerUnion<Stmt *, ExtraState *> State;

public:
  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
                           bool BoundToLvalueReference)
      : Expr(MaterializeTemporaryExprClass, T,
             BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
             Temporary->isTypeDependent(), Temporary->isValueDependent(),
             Temporary->isInstantiationDependent(),
             Temporary->containsUnexpandedParameterPack()),
        State(Temporary) {}

  MaterializeTemporaryExpr(EmptyShell Empty)
      : Expr(MaterializeTemporaryExprClass, Empty) {}

  Stmt *getTemporary() const {
    return State.is<Stmt *>() ? State.get<Stmt *>()
                              : State.get<ExtraState *>()->Temporary;
  }

  /// Retrieve the temporary-generating subexpression whose value will
  /// be materialized into a glvalue.
  Expr *GetTemporaryExpr() const { return static_cast<Expr *>(getTemporary()); }

  /// Retrieve the storage duration for the materialized temporary.
  StorageDuration getStorageDuration() const {
    const ValueDecl *ExtendingDecl = getExtendingDecl();
    if (!ExtendingDecl)
      return SD_FullExpression;
    // FIXME: This is not necessarily correct for a temporary materialized
    // within a default initializer.
    if (isa<FieldDecl>(ExtendingDecl))
      return SD_Automatic;
    // FIXME: This only works because storage class specifiers are not allowed
    // on decomposition declarations.
    if (isa<BindingDecl>(ExtendingDecl))
      return ExtendingDecl->getDeclContext()->isFunctionOrMethod()
                 ? SD_Automatic
                 : SD_Static;
    return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
  }

  /// Get the declaration which triggered the lifetime-extension of this
  /// temporary, if any.
  const ValueDecl *getExtendingDecl() const {
    return State.is<Stmt *>() ? nullptr
                              : State.get<ExtraState *>()->ExtendingDecl;
  }

  void setExtendingDecl(const ValueDecl *ExtendedBy, unsigned ManglingNumber);

  unsigned getManglingNumber() const {
    return State.is<Stmt *>() ? 0 : State.get<ExtraState *>()->ManglingNumber;
  }

  /// Determine whether this materialized temporary is bound to an
  /// lvalue reference; otherwise, it's bound to an rvalue reference.
  bool isBoundToLvalueReference() const {
    return getValueKind() == VK_LValue;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY {
    return getTemporary()->getBeginLoc();
  }

  SourceLocation getEndLoc() const LLVM_READONLY {
    return getTemporary()->getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == MaterializeTemporaryExprClass;
  }

  // Iterators
  child_range children() {
    if (State.is<Stmt *>())
      return child_range(State.getAddrOfPtr1(), State.getAddrOfPtr1() + 1);

    auto ES = State.get<ExtraState *>();
    return child_range(&ES->Temporary, &ES->Temporary + 1);
  }

  const_child_range children() const {
    if (State.is<Stmt *>())
      return const_child_range(State.getAddrOfPtr1(),
                               State.getAddrOfPtr1() + 1);

    auto ES = State.get<ExtraState *>();
    return const_child_range(&ES->Temporary, &ES->Temporary + 1);
  }
};

/// Represents a folding of a pack over an operator.
///
/// This expression is always dependent and represents a pack expansion of the
/// forms:
///
///    ( expr op ... )
///    ( ... op expr )
///    ( expr op ... op expr )
class CXXFoldExpr : public Expr {
  friend class ASTStmtReader;
  friend class ASTStmtWriter;

  SourceLocation LParenLoc;
  SourceLocation EllipsisLoc;
  SourceLocation RParenLoc;
  // When 0, the number of expansions is not known. Otherwise, this is one more
  // than the number of expansions.
  unsigned NumExpansions;
  Stmt *SubExprs[2];
  BinaryOperatorKind Opcode;

public:
  CXXFoldExpr(QualType T, SourceLocation LParenLoc, Expr *LHS,
              BinaryOperatorKind Opcode, SourceLocation EllipsisLoc, Expr *RHS,
              SourceLocation RParenLoc, Optional<unsigned> NumExpansions)
      : Expr(CXXFoldExprClass, T, VK_RValue, OK_Ordinary,
             /*Dependent*/ true, true, true,
             /*ContainsUnexpandedParameterPack*/ false),
        LParenLoc(LParenLoc), EllipsisLoc(EllipsisLoc), RParenLoc(RParenLoc),
        NumExpansions(NumExpansions ? *NumExpansions + 1 : 0), Opcode(Opcode) {
    SubExprs[0] = LHS;
    SubExprs[1] = RHS;
  }

  CXXFoldExpr(EmptyShell Empty) : Expr(CXXFoldExprClass, Empty) {}

  Expr *getLHS() const { return static_cast<Expr*>(SubExprs[0]); }
  Expr *getRHS() const { return static_cast<Expr*>(SubExprs[1]); }

  /// Does this produce a right-associated sequence of operators?
  bool isRightFold() const {
    return getLHS() && getLHS()->containsUnexpandedParameterPack();
  }

  /// Does this produce a left-associated sequence of operators?
  bool isLeftFold() const { return !isRightFold(); }

  /// Get the pattern, that is, the operand that contains an unexpanded pack.
  Expr *getPattern() const { return isLeftFold() ? getRHS() : getLHS(); }

  /// Get the operand that doesn't contain a pack, for a binary fold.
  Expr *getInit() const { return isLeftFold() ? getLHS() : getRHS(); }

  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
  BinaryOperatorKind getOperator() const { return Opcode; }

  Optional<unsigned> getNumExpansions() const {
    if (NumExpansions)
      return NumExpansions - 1;
    return None;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return LParenLoc; }

  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXFoldExprClass;
  }

  // Iterators
  child_range children() { return child_range(SubExprs, SubExprs + 2); }

  const_child_range children() const {
    return const_child_range(SubExprs, SubExprs + 2);
  }
};

/// Represents an expression that might suspend coroutine execution;
/// either a co_await or co_yield expression.
///
/// Evaluation of this expression first evaluates its 'ready' expression. If
/// that returns 'false':
///  -- execution of the coroutine is suspended
///  -- the 'suspend' expression is evaluated
///     -- if the 'suspend' expression returns 'false', the coroutine is
///        resumed
///     -- otherwise, control passes back to the resumer.
/// If the coroutine is not suspended, or when it is resumed, the 'resume'
/// expression is evaluated, and its result is the result of the overall
/// expression.
class CoroutineSuspendExpr : public Expr {
  friend class ASTStmtReader;

  SourceLocation KeywordLoc;

  enum SubExpr { Common, Ready, Suspend, Resume, Count };

  Stmt *SubExprs[SubExpr::Count];
  OpaqueValueExpr *OpaqueValue = nullptr;

public:
  CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, Expr *Common,
                       Expr *Ready, Expr *Suspend, Expr *Resume,
                       OpaqueValueExpr *OpaqueValue)
      : Expr(SC, Resume->getType(), Resume->getValueKind(),
             Resume->getObjectKind(), Resume->isTypeDependent(),
             Resume->isValueDependent(), Common->isInstantiationDependent(),
             Common->containsUnexpandedParameterPack()),
        KeywordLoc(KeywordLoc), OpaqueValue(OpaqueValue) {
    SubExprs[SubExpr::Common] = Common;
    SubExprs[SubExpr::Ready] = Ready;
    SubExprs[SubExpr::Suspend] = Suspend;
    SubExprs[SubExpr::Resume] = Resume;
  }

  CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, QualType Ty,
                       Expr *Common)
      : Expr(SC, Ty, VK_RValue, OK_Ordinary, true, true, true,
             Common->containsUnexpandedParameterPack()),
        KeywordLoc(KeywordLoc) {
    assert(Common->isTypeDependent() && Ty->isDependentType() &&
           "wrong constructor for non-dependent co_await/co_yield expression");
    SubExprs[SubExpr::Common] = Common;
    SubExprs[SubExpr::Ready] = nullptr;
    SubExprs[SubExpr::Suspend] = nullptr;
    SubExprs[SubExpr::Resume] = nullptr;
  }

  CoroutineSuspendExpr(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) {
    SubExprs[SubExpr::Common] = nullptr;
    SubExprs[SubExpr::Ready] = nullptr;
    SubExprs[SubExpr::Suspend] = nullptr;
    SubExprs[SubExpr::Resume] = nullptr;
  }

  SourceLocation getKeywordLoc() const { return KeywordLoc; }

  Expr *getCommonExpr() const {
    return static_cast<Expr*>(SubExprs[SubExpr::Common]);
  }

  /// getOpaqueValue - Return the opaque value placeholder.
  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }

  Expr *getReadyExpr() const {
    return static_cast<Expr*>(SubExprs[SubExpr::Ready]);
  }

  Expr *getSuspendExpr() const {
    return static_cast<Expr*>(SubExprs[SubExpr::Suspend]);
  }

  Expr *getResumeExpr() const {
    return static_cast<Expr*>(SubExprs[SubExpr::Resume]);
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; }

  SourceLocation getEndLoc() const LLVM_READONLY {
    return getCommonExpr()->getEndLoc();
  }

  child_range children() {
    return child_range(SubExprs, SubExprs + SubExpr::Count);
  }

  const_child_range children() const {
    return const_child_range(SubExprs, SubExprs + SubExpr::Count);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CoawaitExprClass ||
           T->getStmtClass() == CoyieldExprClass;
  }
};

/// Represents a 'co_await' expression.
class CoawaitExpr : public CoroutineSuspendExpr {
  friend class ASTStmtReader;

public:
  CoawaitExpr(SourceLocation CoawaitLoc, Expr *Operand, Expr *Ready,
              Expr *Suspend, Expr *Resume, OpaqueValueExpr *OpaqueValue,
              bool IsImplicit = false)
      : CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Operand, Ready,
                             Suspend, Resume, OpaqueValue) {
    CoawaitBits.IsImplicit = IsImplicit;
  }

  CoawaitExpr(SourceLocation CoawaitLoc, QualType Ty, Expr *Operand,
              bool IsImplicit = false)
      : CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Ty, Operand) {
    CoawaitBits.IsImplicit = IsImplicit;
  }

  CoawaitExpr(EmptyShell Empty)
      : CoroutineSuspendExpr(CoawaitExprClass, Empty) {}

  Expr *getOperand() const {
    // FIXME: Dig out the actual operand or store it.
    return getCommonExpr();
  }

  bool isImplicit() const { return CoawaitBits.IsImplicit; }
  void setIsImplicit(bool value = true) { CoawaitBits.IsImplicit = value; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CoawaitExprClass;
  }
};

/// Represents a 'co_await' expression while the type of the promise
/// is dependent.
class DependentCoawaitExpr : public Expr {
  friend class ASTStmtReader;

  SourceLocation KeywordLoc;
  Stmt *SubExprs[2];

public:
  DependentCoawaitExpr(SourceLocation KeywordLoc, QualType Ty, Expr *Op,
                       UnresolvedLookupExpr *OpCoawait)
      : Expr(DependentCoawaitExprClass, Ty, VK_RValue, OK_Ordinary,
             /*TypeDependent*/ true, /*ValueDependent*/ true,
             /*InstantiationDependent*/ true,
             Op->containsUnexpandedParameterPack()),
        KeywordLoc(KeywordLoc) {
    // NOTE: A co_await expression is dependent on the coroutines promise
    // type and may be dependent even when the `Op` expression is not.
    assert(Ty->isDependentType() &&
           "wrong constructor for non-dependent co_await/co_yield expression");
    SubExprs[0] = Op;
    SubExprs[1] = OpCoawait;
  }

  DependentCoawaitExpr(EmptyShell Empty)
      : Expr(DependentCoawaitExprClass, Empty) {}

  Expr *getOperand() const { return cast<Expr>(SubExprs[0]); }

  UnresolvedLookupExpr *getOperatorCoawaitLookup() const {
    return cast<UnresolvedLookupExpr>(SubExprs[1]);
  }

  SourceLocation getKeywordLoc() const { return KeywordLoc; }

  SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; }

  SourceLocation getEndLoc() const LLVM_READONLY {
    return getOperand()->getEndLoc();
  }

  child_range children() { return child_range(SubExprs, SubExprs + 2); }

  const_child_range children() const {
    return const_child_range(SubExprs, SubExprs + 2);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DependentCoawaitExprClass;
  }
};

/// Represents a 'co_yield' expression.
class CoyieldExpr : public CoroutineSuspendExpr {
  friend class ASTStmtReader;

public:
  CoyieldExpr(SourceLocation CoyieldLoc, Expr *Operand, Expr *Ready,
              Expr *Suspend, Expr *Resume, OpaqueValueExpr *OpaqueValue)
      : CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Operand, Ready,
                             Suspend, Resume, OpaqueValue) {}
  CoyieldExpr(SourceLocation CoyieldLoc, QualType Ty, Expr *Operand)
      : CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Ty, Operand) {}
  CoyieldExpr(EmptyShell Empty)
      : CoroutineSuspendExpr(CoyieldExprClass, Empty) {}

  Expr *getOperand() const {
    // FIXME: Dig out the actual operand or store it.
    return getCommonExpr();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CoyieldExprClass;
  }
};

/// Represents a C++2a __builtin_bit_cast(T, v) expression. Used to implement
/// std::bit_cast. These can sometimes be evaluated as part of a constant
/// expression, but otherwise CodeGen to a simple memcpy in general.
class BuiltinBitCastExpr final
    : public ExplicitCastExpr,
      private llvm::TrailingObjects<BuiltinBitCastExpr, CXXBaseSpecifier *> {
  friend class ASTStmtReader;
  friend class CastExpr;
  friend class TrailingObjects;

  SourceLocation KWLoc;
  SourceLocation RParenLoc;

public:
  BuiltinBitCastExpr(QualType T, ExprValueKind VK, CastKind CK, Expr *SrcExpr,
                     TypeSourceInfo *DstType, SourceLocation KWLoc,
                     SourceLocation RParenLoc)
      : ExplicitCastExpr(BuiltinBitCastExprClass, T, VK, CK, SrcExpr, 0,
                         DstType),
        KWLoc(KWLoc), RParenLoc(RParenLoc) {}

  SourceLocation getBeginLoc() const LLVM_READONLY { return KWLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == BuiltinBitCastExprClass;
  }
};

/// \brief Represents the specialization of a concept - evaluates to a prvalue
/// of type bool.
///
/// According to C++2a [expr.prim.id]p3 an id-expression that denotes the
/// specialization of a concept results in a prvalue of type bool.
class ConceptSpecializationExpr final : public Expr,
      private llvm::TrailingObjects<ConceptSpecializationExpr,
                                    TemplateArgument> {
  friend class ASTStmtReader;
  friend TrailingObjects;

  // \brief The optional nested name specifier used when naming the concept.
  NestedNameSpecifierLoc NestedNameSpec;

  /// \brief The location of the template keyword, if specified when naming the
  /// concept.
  SourceLocation TemplateKWLoc;

  /// \brief The location of the concept name in the expression.
  SourceLocation ConceptNameLoc;

  /// \brief The declaration found by name lookup when the expression was
  /// created.
  /// Can differ from NamedConcept when, for example, the concept was found
  /// through a UsingShadowDecl.
  NamedDecl *FoundDecl;

  /// \brief The concept named, and whether or not the concept with the given
  /// arguments was satisfied when the expression was created.
  /// If any of the template arguments are dependent (this expr would then be
  /// isValueDependent()), this bit is to be ignored.
  llvm::PointerIntPair<ConceptDecl *, 1, bool> NamedConcept;

  /// \brief The template argument list source info used to specialize the
  /// concept.
  const ASTTemplateArgumentListInfo *ArgsAsWritten = nullptr;

  /// \brief The number of template arguments in the tail-allocated list of
  /// converted template arguments.
  unsigned NumTemplateArgs;

  ConceptSpecializationExpr(ASTContext &C, NestedNameSpecifierLoc NNS,
                            SourceLocation TemplateKWLoc,
                            SourceLocation ConceptNameLoc, NamedDecl *FoundDecl,
                            ConceptDecl *NamedConcept,
                            const ASTTemplateArgumentListInfo *ArgsAsWritten,
                            ArrayRef<TemplateArgument> ConvertedArgs,
                            Optional<bool> IsSatisfied);

  ConceptSpecializationExpr(EmptyShell Empty, unsigned NumTemplateArgs);

public:

  static ConceptSpecializationExpr *
  Create(ASTContext &C, NestedNameSpecifierLoc NNS,
         SourceLocation TemplateKWLoc, SourceLocation ConceptNameLoc,
         NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
         const ASTTemplateArgumentListInfo *ArgsAsWritten,
         ArrayRef<TemplateArgument> ConvertedArgs, Optional<bool> IsSatisfied);

  static ConceptSpecializationExpr *
  Create(ASTContext &C, EmptyShell Empty, unsigned NumTemplateArgs);

  const NestedNameSpecifierLoc &getNestedNameSpecifierLoc() const {
    return NestedNameSpec;
  }

  NamedDecl *getFoundDecl() const {
    return FoundDecl;
  }

  ConceptDecl *getNamedConcept() const {
    return NamedConcept.getPointer();
  }

  ArrayRef<TemplateArgument> getTemplateArguments() const {
    return ArrayRef<TemplateArgument>(getTrailingObjects<TemplateArgument>(),
                                      NumTemplateArgs);
  }

  const ASTTemplateArgumentListInfo *getTemplateArgsAsWritten() const {
    return ArgsAsWritten;
  }

  /// \brief Set new template arguments for this concept specialization.
  void setTemplateArguments(const ASTTemplateArgumentListInfo *ArgsAsWritten,
                            ArrayRef<TemplateArgument> Converted);

  /// \brief Whether or not the concept with the given arguments was satisfied
  /// when the expression was created. This method assumes that the expression
  /// is not dependent!
  bool isSatisfied() const {
    assert(!isValueDependent()
           && "isSatisfied called on a dependent ConceptSpecializationExpr");
    return NamedConcept.getInt();
  }

  SourceLocation getConceptNameLoc() const { return ConceptNameLoc; }

  SourceLocation getTemplateKWLoc() const { return TemplateKWLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ConceptSpecializationExprClass;
  }

  SourceLocation getBeginLoc() const LLVM_READONLY { return ConceptNameLoc; }
  SourceLocation getEndLoc() const LLVM_READONLY {
    return ArgsAsWritten->RAngleLoc;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
  const_child_range children() const {
    return const_child_range(const_child_iterator(), const_child_iterator());
  }
};

} // namespace clang

#endif // LLVM_CLANG_AST_EXPRCXX_H