reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
//===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
/// of these conform to an LLVM "Allocator" concept which consists of an
/// Allocate method accepting a size and alignment, and a Deallocate accepting
/// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
/// Allocate and Deallocate for setting size and alignment based on the final
/// type. These overloads are typically provided by a base class template \c
/// AllocatorBase.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_ALLOCATOR_H
#define LLVM_SUPPORT_ALLOCATOR_H

#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemAlloc.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <type_traits>
#include <utility>

namespace llvm {

/// CRTP base class providing obvious overloads for the core \c
/// Allocate() methods of LLVM-style allocators.
///
/// This base class both documents the full public interface exposed by all
/// LLVM-style allocators, and redirects all of the overloads to a single core
/// set of methods which the derived class must define.
template <typename DerivedT> class AllocatorBase {
public:
  /// Allocate \a Size bytes of \a Alignment aligned memory. This method
  /// must be implemented by \c DerivedT.
  void *Allocate(size_t Size, size_t Alignment) {
#ifdef __clang__
    static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
                      &AllocatorBase::Allocate) !=
                      static_cast<void *(DerivedT::*)(size_t, size_t)>(
                          &DerivedT::Allocate),
                  "Class derives from AllocatorBase without implementing the "
                  "core Allocate(size_t, size_t) overload!");
#endif
    return static_cast<DerivedT *>(this)->Allocate(Size, Alignment);
  }

  /// Deallocate \a Ptr to \a Size bytes of memory allocated by this
  /// allocator.
  void Deallocate(const void *Ptr, size_t Size) {
#ifdef __clang__
    static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
                      &AllocatorBase::Deallocate) !=
                      static_cast<void (DerivedT::*)(const void *, size_t)>(
                          &DerivedT::Deallocate),
                  "Class derives from AllocatorBase without implementing the "
                  "core Deallocate(void *) overload!");
#endif
    return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size);
  }

  // The rest of these methods are helpers that redirect to one of the above
  // core methods.

  /// Allocate space for a sequence of objects without constructing them.
  template <typename T> T *Allocate(size_t Num = 1) {
    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
  }

  /// Deallocate space for a sequence of objects without constructing them.
  template <typename T>
  typename std::enable_if<
      !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
  Deallocate(T *Ptr, size_t Num = 1) {
    Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
  }
};

class MallocAllocator : public AllocatorBase<MallocAllocator> {
public:
  void Reset() {}

  LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size,
                                                size_t /*Alignment*/) {
    return safe_malloc(Size);
  }

  // Pull in base class overloads.
  using AllocatorBase<MallocAllocator>::Allocate;

  void Deallocate(const void *Ptr, size_t /*Size*/) {
    free(const_cast<void *>(Ptr));
  }

  // Pull in base class overloads.
  using AllocatorBase<MallocAllocator>::Deallocate;

  void PrintStats() const {}
};

namespace detail {

// We call out to an external function to actually print the message as the
// printing code uses Allocator.h in its implementation.
void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
                                size_t TotalMemory);

} // end namespace detail

/// Allocate memory in an ever growing pool, as if by bump-pointer.
///
/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
/// memory rather than relying on a boundless contiguous heap. However, it has
/// bump-pointer semantics in that it is a monotonically growing pool of memory
/// where every allocation is found by merely allocating the next N bytes in
/// the slab, or the next N bytes in the next slab.
///
/// Note that this also has a threshold for forcing allocations above a certain
/// size into their own slab.
///
/// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
/// object, which wraps malloc, to allocate memory, but it can be changed to
/// use a custom allocator.
template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
          size_t SizeThreshold = SlabSize>
class BumpPtrAllocatorImpl
    : public AllocatorBase<
          BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> {
public:
  static_assert(SizeThreshold <= SlabSize,
                "The SizeThreshold must be at most the SlabSize to ensure "
                "that objects larger than a slab go into their own memory "
                "allocation.");

  BumpPtrAllocatorImpl() = default;

  template <typename T>
  BumpPtrAllocatorImpl(T &&Allocator)
      : Allocator(std::forward<T &&>(Allocator)) {}

  // Manually implement a move constructor as we must clear the old allocator's
  // slabs as a matter of correctness.
  BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
      : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
        CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
        BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize),
        Allocator(std::move(Old.Allocator)) {
    Old.CurPtr = Old.End = nullptr;
    Old.BytesAllocated = 0;
    Old.Slabs.clear();
    Old.CustomSizedSlabs.clear();
  }

  ~BumpPtrAllocatorImpl() {
    DeallocateSlabs(Slabs.begin(), Slabs.end());
    DeallocateCustomSizedSlabs();
  }

  BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
    DeallocateSlabs(Slabs.begin(), Slabs.end());
    DeallocateCustomSizedSlabs();

    CurPtr = RHS.CurPtr;
    End = RHS.End;
    BytesAllocated = RHS.BytesAllocated;
    RedZoneSize = RHS.RedZoneSize;
    Slabs = std::move(RHS.Slabs);
    CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
    Allocator = std::move(RHS.Allocator);

    RHS.CurPtr = RHS.End = nullptr;
    RHS.BytesAllocated = 0;
    RHS.Slabs.clear();
    RHS.CustomSizedSlabs.clear();
    return *this;
  }

  /// Deallocate all but the current slab and reset the current pointer
  /// to the beginning of it, freeing all memory allocated so far.
  void Reset() {
    // Deallocate all but the first slab, and deallocate all custom-sized slabs.
    DeallocateCustomSizedSlabs();
    CustomSizedSlabs.clear();

    if (Slabs.empty())
      return;

    // Reset the state.
    BytesAllocated = 0;
    CurPtr = (char *)Slabs.front();
    End = CurPtr + SlabSize;

    __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
    DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
    Slabs.erase(std::next(Slabs.begin()), Slabs.end());
  }

  /// Allocate space at the specified alignment.
  LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void *
  Allocate(size_t Size, size_t Alignment) {
    assert(Alignment > 0 && "0-byte alignnment is not allowed. Use 1 instead.");

    // Keep track of how many bytes we've allocated.
    BytesAllocated += Size;

    size_t Adjustment = alignmentAdjustment(CurPtr, Alignment);
    assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");

    size_t SizeToAllocate = Size;
#if LLVM_ADDRESS_SANITIZER_BUILD
    // Add trailing bytes as a "red zone" under ASan.
    SizeToAllocate += RedZoneSize;
#endif

    // Check if we have enough space.
    if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)) {
      char *AlignedPtr = CurPtr + Adjustment;
      CurPtr = AlignedPtr + SizeToAllocate;
      // Update the allocation point of this memory block in MemorySanitizer.
      // Without this, MemorySanitizer messages for values originated from here
      // will point to the allocation of the entire slab.
      __msan_allocated_memory(AlignedPtr, Size);
      // Similarly, tell ASan about this space.
      __asan_unpoison_memory_region(AlignedPtr, Size);
      return AlignedPtr;
    }

    // If Size is really big, allocate a separate slab for it.
    size_t PaddedSize = SizeToAllocate + Alignment - 1;
    if (PaddedSize > SizeThreshold) {
      void *NewSlab = Allocator.Allocate(PaddedSize, 0);
      // We own the new slab and don't want anyone reading anyting other than
      // pieces returned from this method.  So poison the whole slab.
      __asan_poison_memory_region(NewSlab, PaddedSize);
      CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));

      uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
      assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
      char *AlignedPtr = (char*)AlignedAddr;
      __msan_allocated_memory(AlignedPtr, Size);
      __asan_unpoison_memory_region(AlignedPtr, Size);
      return AlignedPtr;
    }

    // Otherwise, start a new slab and try again.
    StartNewSlab();
    uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
    assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
           "Unable to allocate memory!");
    char *AlignedPtr = (char*)AlignedAddr;
    CurPtr = AlignedPtr + SizeToAllocate;
    __msan_allocated_memory(AlignedPtr, Size);
    __asan_unpoison_memory_region(AlignedPtr, Size);
    return AlignedPtr;
  }

  // Pull in base class overloads.
  using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;

  // Bump pointer allocators are expected to never free their storage; and
  // clients expect pointers to remain valid for non-dereferencing uses even
  // after deallocation.
  void Deallocate(const void *Ptr, size_t Size) {
    __asan_poison_memory_region(Ptr, Size);
  }

  // Pull in base class overloads.
  using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;

  size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }

  /// \return An index uniquely and reproducibly identifying
  /// an input pointer \p Ptr in the given allocator.
  /// The returned value is negative iff the object is inside a custom-size
  /// slab.
  /// Returns an empty optional if the pointer is not found in the allocator.
  llvm::Optional<int64_t> identifyObject(const void *Ptr) {
    const char *P = static_cast<const char *>(Ptr);
    int64_t InSlabIdx = 0;
    for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
      const char *S = static_cast<const char *>(Slabs[Idx]);
      if (P >= S && P < S + computeSlabSize(Idx))
        return InSlabIdx + static_cast<int64_t>(P - S);
      InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
    }

    // Use negative index to denote custom sized slabs.
    int64_t InCustomSizedSlabIdx = -1;
    for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
      const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
      size_t Size = CustomSizedSlabs[Idx].second;
      if (P >= S && P < S + Size)
        return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
      InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
    }
    return None;
  }

  /// A wrapper around identifyObject that additionally asserts that
  /// the object is indeed within the allocator.
  /// \return An index uniquely and reproducibly identifying
  /// an input pointer \p Ptr in the given allocator.
  int64_t identifyKnownObject(const void *Ptr) {
    Optional<int64_t> Out = identifyObject(Ptr);
    assert(Out && "Wrong allocator used");
    return *Out;
  }

  /// A wrapper around identifyKnownObject. Accepts type information
  /// about the object and produces a smaller identifier by relying on
  /// the alignment information. Note that sub-classes may have different
  /// alignment, so the most base class should be passed as template parameter
  /// in order to obtain correct results. For that reason automatic template
  /// parameter deduction is disabled.
  /// \return An index uniquely and reproducibly identifying
  /// an input pointer \p Ptr in the given allocator. This identifier is
  /// different from the ones produced by identifyObject and
  /// identifyAlignedObject.
  template <typename T>
  int64_t identifyKnownAlignedObject(const void *Ptr) {
    int64_t Out = identifyKnownObject(Ptr);
    assert(Out % alignof(T) == 0 && "Wrong alignment information");
    return Out / alignof(T);
  }

  size_t getTotalMemory() const {
    size_t TotalMemory = 0;
    for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
      TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
    for (auto &PtrAndSize : CustomSizedSlabs)
      TotalMemory += PtrAndSize.second;
    return TotalMemory;
  }

  size_t getBytesAllocated() const { return BytesAllocated; }

  void setRedZoneSize(size_t NewSize) {
    RedZoneSize = NewSize;
  }

  void PrintStats() const {
    detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
                                       getTotalMemory());
  }

private:
  /// The current pointer into the current slab.
  ///
  /// This points to the next free byte in the slab.
  char *CurPtr = nullptr;

  /// The end of the current slab.
  char *End = nullptr;

  /// The slabs allocated so far.
  SmallVector<void *, 4> Slabs;

  /// Custom-sized slabs allocated for too-large allocation requests.
  SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;

  /// How many bytes we've allocated.
  ///
  /// Used so that we can compute how much space was wasted.
  size_t BytesAllocated = 0;

  /// The number of bytes to put between allocations when running under
  /// a sanitizer.
  size_t RedZoneSize = 1;

  /// The allocator instance we use to get slabs of memory.
  AllocatorT Allocator;

  static size_t computeSlabSize(unsigned SlabIdx) {
    // Scale the actual allocated slab size based on the number of slabs
    // allocated. Every 128 slabs allocated, we double the allocated size to
    // reduce allocation frequency, but saturate at multiplying the slab size by
    // 2^30.
    return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128));
  }

  /// Allocate a new slab and move the bump pointers over into the new
  /// slab, modifying CurPtr and End.
  void StartNewSlab() {
    size_t AllocatedSlabSize = computeSlabSize(Slabs.size());

    void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0);
    // We own the new slab and don't want anyone reading anything other than
    // pieces returned from this method.  So poison the whole slab.
    __asan_poison_memory_region(NewSlab, AllocatedSlabSize);

    Slabs.push_back(NewSlab);
    CurPtr = (char *)(NewSlab);
    End = ((char *)NewSlab) + AllocatedSlabSize;
  }

  /// Deallocate a sequence of slabs.
  void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
                       SmallVectorImpl<void *>::iterator E) {
    for (; I != E; ++I) {
      size_t AllocatedSlabSize =
          computeSlabSize(std::distance(Slabs.begin(), I));
      Allocator.Deallocate(*I, AllocatedSlabSize);
    }
  }

  /// Deallocate all memory for custom sized slabs.
  void DeallocateCustomSizedSlabs() {
    for (auto &PtrAndSize : CustomSizedSlabs) {
      void *Ptr = PtrAndSize.first;
      size_t Size = PtrAndSize.second;
      Allocator.Deallocate(Ptr, Size);
    }
  }

  template <typename T> friend class SpecificBumpPtrAllocator;
};

/// The standard BumpPtrAllocator which just uses the default template
/// parameters.
typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;

/// A BumpPtrAllocator that allows only elements of a specific type to be
/// allocated.
///
/// This allows calling the destructor in DestroyAll() and when the allocator is
/// destroyed.
template <typename T> class SpecificBumpPtrAllocator {
  BumpPtrAllocator Allocator;

public:
  SpecificBumpPtrAllocator() {
    // Because SpecificBumpPtrAllocator walks the memory to call destructors,
    // it can't have red zones between allocations.
    Allocator.setRedZoneSize(0);
  }
  SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
      : Allocator(std::move(Old.Allocator)) {}
  ~SpecificBumpPtrAllocator() { DestroyAll(); }

  SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
    Allocator = std::move(RHS.Allocator);
    return *this;
  }

  /// Call the destructor of each allocated object and deallocate all but the
  /// current slab and reset the current pointer to the beginning of it, freeing
  /// all memory allocated so far.
  void DestroyAll() {
    auto DestroyElements = [](char *Begin, char *End) {
      assert(Begin == (char *)alignAddr(Begin, alignof(T)));
      for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
        reinterpret_cast<T *>(Ptr)->~T();
    };

    for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
         ++I) {
      size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
          std::distance(Allocator.Slabs.begin(), I));
      char *Begin = (char *)alignAddr(*I, alignof(T));
      char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
                                               : (char *)*I + AllocatedSlabSize;

      DestroyElements(Begin, End);
    }

    for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
      void *Ptr = PtrAndSize.first;
      size_t Size = PtrAndSize.second;
      DestroyElements((char *)alignAddr(Ptr, alignof(T)), (char *)Ptr + Size);
    }

    Allocator.Reset();
  }

  /// Allocate space for an array of objects without constructing them.
  T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
};

} // end namespace llvm

template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
void *operator new(size_t Size,
                   llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
                                              SizeThreshold> &Allocator) {
  struct S {
    char c;
    union {
      double D;
      long double LD;
      long long L;
      void *P;
    } x;
  };
  return Allocator.Allocate(
      Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
}

template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
void operator delete(
    void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) {
}

#endif // LLVM_SUPPORT_ALLOCATOR_H