reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
//===- ExplodedGraph.h - Local, Path-Sens. "Exploded Graph" -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines the template classes ExplodedNode and ExplodedGraph,
//  which represent a path-sensitive, intra-procedural "exploded graph."
//  See "Precise interprocedural dataflow analysis via graph reachability"
//  by Reps, Horwitz, and Sagiv
//  (http://portal.acm.org/citation.cfm?id=199462) for the definition of an
//  exploded graph.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H

#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Analysis/Support/BumpVector.h"
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>

namespace clang {

class CFG;
class Decl;
class Expr;
class ParentMap;
class Stmt;

namespace ento {

class ExplodedGraph;

//===----------------------------------------------------------------------===//
// ExplodedGraph "implementation" classes.  These classes are not typed to
// contain a specific kind of state.  Typed-specialized versions are defined
// on top of these classes.
//===----------------------------------------------------------------------===//

// ExplodedNode is not constified all over the engine because we need to add
// successors to it at any time after creating it.

class ExplodedNode : public llvm::FoldingSetNode {
  friend class BranchNodeBuilder;
  friend class CoreEngine;
  friend class EndOfFunctionNodeBuilder;
  friend class ExplodedGraph;
  friend class IndirectGotoNodeBuilder;
  friend class NodeBuilder;
  friend class SwitchNodeBuilder;

  /// Efficiently stores a list of ExplodedNodes, or an optional flag.
  ///
  /// NodeGroup provides opaque storage for a list of ExplodedNodes, optimizing
  /// for the case when there is only one node in the group. This is a fairly
  /// common case in an ExplodedGraph, where most nodes have only one
  /// predecessor and many have only one successor. It can also be used to
  /// store a flag rather than a node list, which ExplodedNode uses to mark
  /// whether a node is a sink. If the flag is set, the group is implicitly
  /// empty and no nodes may be added.
  class NodeGroup {
    // Conceptually a discriminated union. If the low bit is set, the node is
    // a sink. If the low bit is not set, the pointer refers to the storage
    // for the nodes in the group.
    // This is not a PointerIntPair in order to keep the storage type opaque.
    uintptr_t P;

  public:
    NodeGroup(bool Flag = false) : P(Flag) {
      assert(getFlag() == Flag);
    }

    ExplodedNode * const *begin() const;

    ExplodedNode * const *end() const;

    unsigned size() const;

    bool empty() const { return P == 0 || getFlag() != 0; }

    /// Adds a node to the list.
    ///
    /// The group must not have been created with its flag set.
    void addNode(ExplodedNode *N, ExplodedGraph &G);

    /// Replaces the single node in this group with a new node.
    ///
    /// Note that this should only be used when you know the group was not
    /// created with its flag set, and that the group is empty or contains
    /// only a single node.
    void replaceNode(ExplodedNode *node);

    /// Returns whether this group was created with its flag set.
    bool getFlag() const {
      return (P & 1);
    }
  };

  /// Location - The program location (within a function body) associated
  ///  with this node.
  const ProgramPoint Location;

  /// State - The state associated with this node.
  ProgramStateRef State;

  /// Preds - The predecessors of this node.
  NodeGroup Preds;

  /// Succs - The successors of this node.
  NodeGroup Succs;

  int64_t Id;

public:
  explicit ExplodedNode(const ProgramPoint &loc, ProgramStateRef state,
                        int64_t Id, bool IsSink)
      : Location(loc), State(std::move(state)), Succs(IsSink), Id(Id) {
    assert(isSink() == IsSink);
  }

  /// getLocation - Returns the edge associated with the given node.
  ProgramPoint getLocation() const { return Location; }

  const LocationContext *getLocationContext() const {
    return getLocation().getLocationContext();
  }

  const StackFrameContext *getStackFrame() const {
    return getLocation().getStackFrame();
  }

  const Decl &getCodeDecl() const { return *getLocationContext()->getDecl(); }

  CFG &getCFG() const { return *getLocationContext()->getCFG(); }

  const CFGBlock *getCFGBlock() const;

  const ParentMap &getParentMap() const {
    return getLocationContext()->getParentMap();
  }

  template <typename T>
  T &getAnalysis() const {
    return *getLocationContext()->getAnalysis<T>();
  }

  const ProgramStateRef &getState() const { return State; }

  template <typename T>
  Optional<T> getLocationAs() const LLVM_LVALUE_FUNCTION {
    return Location.getAs<T>();
  }

  /// Get the value of an arbitrary expression at this node.
  SVal getSVal(const Stmt *S) const {
    return getState()->getSVal(S, getLocationContext());
  }

  static void Profile(llvm::FoldingSetNodeID &ID,
                      const ProgramPoint &Loc,
                      const ProgramStateRef &state,
                      bool IsSink) {
    ID.Add(Loc);
    ID.AddPointer(state.get());
    ID.AddBoolean(IsSink);
  }

  void Profile(llvm::FoldingSetNodeID& ID) const {
    // We avoid copy constructors by not using accessors.
    Profile(ID, Location, State, isSink());
  }

  /// addPredeccessor - Adds a predecessor to the current node, and
  ///  in tandem add this node as a successor of the other node.
  void addPredecessor(ExplodedNode *V, ExplodedGraph &G);

  unsigned succ_size() const { return Succs.size(); }
  unsigned pred_size() const { return Preds.size(); }
  bool succ_empty() const { return Succs.empty(); }
  bool pred_empty() const { return Preds.empty(); }

  bool isSink() const { return Succs.getFlag(); }

  bool hasSinglePred() const {
    return (pred_size() == 1);
  }

  ExplodedNode *getFirstPred() {
    return pred_empty() ? nullptr : *(pred_begin());
  }

  const ExplodedNode *getFirstPred() const {
    return const_cast<ExplodedNode*>(this)->getFirstPred();
  }

  ExplodedNode *getFirstSucc() {
    return succ_empty() ? nullptr : *(succ_begin());
  }

  const ExplodedNode *getFirstSucc() const {
    return const_cast<ExplodedNode*>(this)->getFirstSucc();
  }

  // Iterators over successor and predecessor vertices.
  using succ_iterator = ExplodedNode * const *;
  using succ_range = llvm::iterator_range<succ_iterator>;

  using const_succ_iterator = const ExplodedNode * const *;
  using const_succ_range = llvm::iterator_range<const_succ_iterator>;

  using pred_iterator = ExplodedNode * const *;
  using pred_range = llvm::iterator_range<pred_iterator>;

  using const_pred_iterator = const ExplodedNode * const *;
  using const_pred_range = llvm::iterator_range<const_pred_iterator>;

  pred_iterator pred_begin() { return Preds.begin(); }
  pred_iterator pred_end() { return Preds.end(); }
  pred_range preds() { return {Preds.begin(), Preds.end()}; }

  const_pred_iterator pred_begin() const {
    return const_cast<ExplodedNode*>(this)->pred_begin();
  }
  const_pred_iterator pred_end() const {
    return const_cast<ExplodedNode*>(this)->pred_end();
  }
  const_pred_range preds() const { return {Preds.begin(), Preds.end()}; }

  succ_iterator succ_begin() { return Succs.begin(); }
  succ_iterator succ_end() { return Succs.end(); }
  succ_range succs() { return {Succs.begin(), Succs.end()}; }

  const_succ_iterator succ_begin() const {
    return const_cast<ExplodedNode*>(this)->succ_begin();
  }
  const_succ_iterator succ_end() const {
    return const_cast<ExplodedNode*>(this)->succ_end();
  }
  const_succ_range succs() const { return {Succs.begin(), Succs.end()}; }

  int64_t getID() const { return Id; }

  /// The node is trivial if it has only one successor, only one predecessor,
  /// it's predecessor has only one successor,
  /// and its program state is the same as the program state of the previous
  /// node.
  /// Trivial nodes may be skipped while printing exploded graph.
  bool isTrivial() const;

  /// If the node's program point corresponds to a statement, retrieve that
  /// statement. Useful for figuring out where to put a warning or a note.
  /// If the statement belongs to a body-farmed definition,
  /// retrieve the call site for that definition.
  const Stmt *getStmtForDiagnostics() const;

  /// Find the next statement that was executed on this node's execution path.
  /// Useful for explaining control flow that follows the current node.
  /// If the statement belongs to a body-farmed definition, retrieve the
  /// call site for that definition.
  const Stmt *getNextStmtForDiagnostics() const;

  /// Find the statement that was executed immediately before this node.
  /// Useful when the node corresponds to a CFG block entrance.
  /// If the statement belongs to a body-farmed definition, retrieve the
  /// call site for that definition.
  const Stmt *getPreviousStmtForDiagnostics() const;

  /// Find the statement that was executed at or immediately before this node.
  /// Useful when any nearby statement will do.
  /// If the statement belongs to a body-farmed definition, retrieve the
  /// call site for that definition.
  const Stmt *getCurrentOrPreviousStmtForDiagnostics() const;

private:
  void replaceSuccessor(ExplodedNode *node) { Succs.replaceNode(node); }
  void replacePredecessor(ExplodedNode *node) { Preds.replaceNode(node); }
};

using InterExplodedGraphMap =
    llvm::DenseMap<const ExplodedNode *, const ExplodedNode *>;

class ExplodedGraph {
protected:
  friend class CoreEngine;

  // Type definitions.
  using NodeVector = std::vector<ExplodedNode *>;

  /// The roots of the simulation graph. Usually there will be only
  /// one, but clients are free to establish multiple subgraphs within a single
  /// SimulGraph. Moreover, these subgraphs can often merge when paths from
  /// different roots reach the same state at the same program location.
  NodeVector Roots;

  /// The nodes in the simulation graph which have been
  /// specially marked as the endpoint of an abstract simulation path.
  NodeVector EndNodes;

  /// Nodes - The nodes in the graph.
  llvm::FoldingSet<ExplodedNode> Nodes;

  /// BVC - Allocator and context for allocating nodes and their predecessor
  /// and successor groups.
  BumpVectorContext BVC;

  /// NumNodes - The number of nodes in the graph.
  int64_t NumNodes = 0;

  /// A list of recently allocated nodes that can potentially be recycled.
  NodeVector ChangedNodes;

  /// A list of nodes that can be reused.
  NodeVector FreeNodes;

  /// Determines how often nodes are reclaimed.
  ///
  /// If this is 0, nodes will never be reclaimed.
  unsigned ReclaimNodeInterval = 0;

  /// Counter to determine when to reclaim nodes.
  unsigned ReclaimCounter;

public:
  ExplodedGraph();
  ~ExplodedGraph();

  /// Retrieve the node associated with a (Location,State) pair,
  ///  where the 'Location' is a ProgramPoint in the CFG.  If no node for
  ///  this pair exists, it is created. IsNew is set to true if
  ///  the node was freshly created.
  ExplodedNode *getNode(const ProgramPoint &L, ProgramStateRef State,
                        bool IsSink = false,
                        bool* IsNew = nullptr);

  /// Create a node for a (Location, State) pair,
  ///  but don't store it for deduplication later.  This
  ///  is useful when copying an already completed
  ///  ExplodedGraph for further processing.
  ExplodedNode *createUncachedNode(const ProgramPoint &L,
    ProgramStateRef State,
    int64_t Id,
    bool IsSink = false);

  std::unique_ptr<ExplodedGraph> MakeEmptyGraph() const {
    return std::make_unique<ExplodedGraph>();
  }

  /// addRoot - Add an untyped node to the set of roots.
  ExplodedNode *addRoot(ExplodedNode *V) {
    Roots.push_back(V);
    return V;
  }

  /// addEndOfPath - Add an untyped node to the set of EOP nodes.
  ExplodedNode *addEndOfPath(ExplodedNode *V) {
    EndNodes.push_back(V);
    return V;
  }

  unsigned num_roots() const { return Roots.size(); }
  unsigned num_eops() const { return EndNodes.size(); }

  bool empty() const { return NumNodes == 0; }
  unsigned size() const { return NumNodes; }

  void reserve(unsigned NodeCount) { Nodes.reserve(NodeCount); }

  // Iterators.
  using NodeTy = ExplodedNode;
  using AllNodesTy = llvm::FoldingSet<ExplodedNode>;
  using roots_iterator = NodeVector::iterator;
  using const_roots_iterator = NodeVector::const_iterator;
  using eop_iterator = NodeVector::iterator;
  using const_eop_iterator = NodeVector::const_iterator;
  using node_iterator = AllNodesTy::iterator;
  using const_node_iterator = AllNodesTy::const_iterator;

  node_iterator nodes_begin() { return Nodes.begin(); }

  node_iterator nodes_end() { return Nodes.end(); }

  const_node_iterator nodes_begin() const { return Nodes.begin(); }

  const_node_iterator nodes_end() const { return Nodes.end(); }

  roots_iterator roots_begin() { return Roots.begin(); }

  roots_iterator roots_end() { return Roots.end(); }

  const_roots_iterator roots_begin() const { return Roots.begin(); }

  const_roots_iterator roots_end() const { return Roots.end(); }

  eop_iterator eop_begin() { return EndNodes.begin(); }

  eop_iterator eop_end() { return EndNodes.end(); }

  const_eop_iterator eop_begin() const { return EndNodes.begin(); }

  const_eop_iterator eop_end() const { return EndNodes.end(); }

  llvm::BumpPtrAllocator & getAllocator() { return BVC.getAllocator(); }
  BumpVectorContext &getNodeAllocator() { return BVC; }

  using NodeMap = llvm::DenseMap<const ExplodedNode *, ExplodedNode *>;

  /// Creates a trimmed version of the graph that only contains paths leading
  /// to the given nodes.
  ///
  /// \param Nodes The nodes which must appear in the final graph. Presumably
  ///              these are end-of-path nodes (i.e. they have no successors).
  /// \param[out] ForwardMap A optional map from nodes in this graph to nodes in
  ///                        the returned graph.
  /// \param[out] InverseMap An optional map from nodes in the returned graph to
  ///                        nodes in this graph.
  /// \returns The trimmed graph
  std::unique_ptr<ExplodedGraph>
  trim(ArrayRef<const NodeTy *> Nodes,
       InterExplodedGraphMap *ForwardMap = nullptr,
       InterExplodedGraphMap *InverseMap = nullptr) const;

  /// Enable tracking of recently allocated nodes for potential reclamation
  /// when calling reclaimRecentlyAllocatedNodes().
  void enableNodeReclamation(unsigned Interval) {
    ReclaimCounter = ReclaimNodeInterval = Interval;
  }

  /// Reclaim "uninteresting" nodes created since the last time this method
  /// was called.
  void reclaimRecentlyAllocatedNodes();

  /// Returns true if nodes for the given expression kind are always
  ///        kept around.
  static bool isInterestingLValueExpr(const Expr *Ex);

private:
  bool shouldCollect(const ExplodedNode *node);
  void collectNode(ExplodedNode *node);
};

class ExplodedNodeSet {
  using ImplTy = llvm::SmallSetVector<ExplodedNode *, 4>;
  ImplTy Impl;

public:
  ExplodedNodeSet(ExplodedNode *N) {
    assert(N && !static_cast<ExplodedNode*>(N)->isSink());
    Impl.insert(N);
  }

  ExplodedNodeSet() = default;

  void Add(ExplodedNode *N) {
    if (N && !static_cast<ExplodedNode*>(N)->isSink()) Impl.insert(N);
  }

  using iterator = ImplTy::iterator;
  using const_iterator = ImplTy::const_iterator;

  unsigned size() const { return Impl.size();  }
  bool empty()    const { return Impl.empty(); }
  bool erase(ExplodedNode *N) { return Impl.remove(N); }

  void clear() { Impl.clear(); }

  void insert(const ExplodedNodeSet &S) {
    assert(&S != this);
    if (empty())
      Impl = S.Impl;
    else
      Impl.insert(S.begin(), S.end());
  }

  iterator begin() { return Impl.begin(); }
  iterator end() { return Impl.end(); }

  const_iterator begin() const { return Impl.begin(); }
  const_iterator end() const { return Impl.end(); }
};

} // namespace ento

} // namespace clang

// GraphTraits

namespace llvm {
  template <> struct GraphTraits<clang::ento::ExplodedGraph *> {
    using GraphTy = clang::ento::ExplodedGraph *;
    using NodeRef = clang::ento::ExplodedNode *;
    using ChildIteratorType = clang::ento::ExplodedNode::succ_iterator;
    using nodes_iterator = llvm::df_iterator<GraphTy>;

    static NodeRef getEntryNode(const GraphTy G) {
      return *G->roots_begin();
    }

    static bool predecessorOfTrivial(NodeRef N) {
      return N->succ_size() == 1 && N->getFirstSucc()->isTrivial();
    }

    static ChildIteratorType child_begin(NodeRef N) {
      if (predecessorOfTrivial(N))
        return child_begin(*N->succ_begin());
      return N->succ_begin();
    }

    static ChildIteratorType child_end(NodeRef N) {
      if (predecessorOfTrivial(N))
        return child_end(N->getFirstSucc());
      return N->succ_end();
    }

    static nodes_iterator nodes_begin(const GraphTy G) {
      return df_begin(G);
    }

    static nodes_iterator nodes_end(const GraphTy G) {
      return df_end(G);
    }
  };
} // namespace llvm

#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H