reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
//===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Builder implementation for CGRecordLayout objects.
//
//===----------------------------------------------------------------------===//

#include "CGRecordLayout.h"
#include "CGCXXABI.h"
#include "CodeGenTypes.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/CodeGenOptions.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace CodeGen;

namespace {
/// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
/// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
/// detail some of the complexities and weirdnesses here.
/// * LLVM does not have unions - Unions can, in theory be represented by any
///   llvm::Type with correct size.  We choose a field via a specific heuristic
///   and add padding if necessary.
/// * LLVM does not have bitfields - Bitfields are collected into contiguous
///   runs and allocated as a single storage type for the run.  ASTRecordLayout
///   contains enough information to determine where the runs break.  Microsoft
///   and Itanium follow different rules and use different codepaths.
/// * It is desired that, when possible, bitfields use the appropriate iN type
///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
///   i24.  This isn't always possible because i24 has storage size of 32 bit
///   and if it is possible to use that extra byte of padding we must use
///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
///   C++ examples that require clipping:
///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
///   struct A { int a : 24; }; // a must be clipped because a struct like B
//    could exist: struct B : A { char b; }; // b goes at offset 3
/// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
///   fields.  The existing asserts suggest that LLVM assumes that *every* field
///   has an underlying storage type.  Therefore empty structures containing
///   zero sized subobjects such as empty records or zero sized arrays still get
///   a zero sized (empty struct) storage type.
/// * Clang reads the complete type rather than the base type when generating
///   code to access fields.  Bitfields in tail position with tail padding may
///   be clipped in the base class but not the complete class (we may discover
///   that the tail padding is not used in the complete class.) However,
///   because LLVM reads from the complete type it can generate incorrect code
///   if we do not clip the tail padding off of the bitfield in the complete
///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
///   The location of the clip is stored internally as a sentinel of type
///   SCISSOR.  If LLVM were updated to read base types (which it probably
///   should because locations of things such as VBases are bogus in the llvm
///   type anyway) then we could eliminate the SCISSOR.
/// * Itanium allows nearly empty primary virtual bases.  These bases don't get
///   get their own storage because they're laid out as part of another base
///   or at the beginning of the structure.  Determining if a VBase actually
///   gets storage awkwardly involves a walk of all bases.
/// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
struct CGRecordLowering {
  // MemberInfo is a helper structure that contains information about a record
  // member.  In additional to the standard member types, there exists a
  // sentinel member type that ensures correct rounding.
  struct MemberInfo {
    CharUnits Offset;
    enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
    llvm::Type *Data;
    union {
      const FieldDecl *FD;
      const CXXRecordDecl *RD;
    };
    MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
               const FieldDecl *FD = nullptr)
      : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
    MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
               const CXXRecordDecl *RD)
      : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
    // MemberInfos are sorted so we define a < operator.
    bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
  };
  // The constructor.
  CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
  // Short helper routines.
  /// Constructs a MemberInfo instance from an offset and llvm::Type *.
  MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
    return MemberInfo(Offset, MemberInfo::Field, Data);
  }

  /// The Microsoft bitfield layout rule allocates discrete storage
  /// units of the field's formal type and only combines adjacent
  /// fields of the same formal type.  We want to emit a layout with
  /// these discrete storage units instead of combining them into a
  /// continuous run.
  bool isDiscreteBitFieldABI() {
    return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
           D->isMsStruct(Context);
  }

  /// The Itanium base layout rule allows virtual bases to overlap
  /// other bases, which complicates layout in specific ways.
  ///
  /// Note specifically that the ms_struct attribute doesn't change this.
  bool isOverlappingVBaseABI() {
    return !Context.getTargetInfo().getCXXABI().isMicrosoft();
  }

  /// Wraps llvm::Type::getIntNTy with some implicit arguments.
  llvm::Type *getIntNType(uint64_t NumBits) {
    return llvm::Type::getIntNTy(Types.getLLVMContext(),
                                 (unsigned)llvm::alignTo(NumBits, 8));
  }
  /// Gets an llvm type of size NumBytes and alignment 1.
  llvm::Type *getByteArrayType(CharUnits NumBytes) {
    assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
    llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
    return NumBytes == CharUnits::One() ? Type :
        (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
  }
  /// Gets the storage type for a field decl and handles storage
  /// for itanium bitfields that are smaller than their declared type.
  llvm::Type *getStorageType(const FieldDecl *FD) {
    llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
    if (!FD->isBitField()) return Type;
    if (isDiscreteBitFieldABI()) return Type;
    return getIntNType(std::min(FD->getBitWidthValue(Context),
                             (unsigned)Context.toBits(getSize(Type))));
  }
  /// Gets the llvm Basesubobject type from a CXXRecordDecl.
  llvm::Type *getStorageType(const CXXRecordDecl *RD) {
    return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
  }
  CharUnits bitsToCharUnits(uint64_t BitOffset) {
    return Context.toCharUnitsFromBits(BitOffset);
  }
  CharUnits getSize(llvm::Type *Type) {
    return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
  }
  CharUnits getAlignment(llvm::Type *Type) {
    return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
  }
  bool isZeroInitializable(const FieldDecl *FD) {
    return Types.isZeroInitializable(FD->getType());
  }
  bool isZeroInitializable(const RecordDecl *RD) {
    return Types.isZeroInitializable(RD);
  }
  void appendPaddingBytes(CharUnits Size) {
    if (!Size.isZero())
      FieldTypes.push_back(getByteArrayType(Size));
  }
  uint64_t getFieldBitOffset(const FieldDecl *FD) {
    return Layout.getFieldOffset(FD->getFieldIndex());
  }
  // Layout routines.
  void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
                       llvm::Type *StorageType);
  /// Lowers an ASTRecordLayout to a llvm type.
  void lower(bool NonVirtualBaseType);
  void lowerUnion();
  void accumulateFields();
  void accumulateBitFields(RecordDecl::field_iterator Field,
                        RecordDecl::field_iterator FieldEnd);
  void accumulateBases();
  void accumulateVPtrs();
  void accumulateVBases();
  /// Recursively searches all of the bases to find out if a vbase is
  /// not the primary vbase of some base class.
  bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
  void calculateZeroInit();
  /// Lowers bitfield storage types to I8 arrays for bitfields with tail
  /// padding that is or can potentially be used.
  void clipTailPadding();
  /// Determines if we need a packed llvm struct.
  void determinePacked(bool NVBaseType);
  /// Inserts padding everywhere it's needed.
  void insertPadding();
  /// Fills out the structures that are ultimately consumed.
  void fillOutputFields();
  // Input memoization fields.
  CodeGenTypes &Types;
  const ASTContext &Context;
  const RecordDecl *D;
  const CXXRecordDecl *RD;
  const ASTRecordLayout &Layout;
  const llvm::DataLayout &DataLayout;
  // Helpful intermediate data-structures.
  std::vector<MemberInfo> Members;
  // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
  SmallVector<llvm::Type *, 16> FieldTypes;
  llvm::DenseMap<const FieldDecl *, unsigned> Fields;
  llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
  llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
  llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
  bool IsZeroInitializable : 1;
  bool IsZeroInitializableAsBase : 1;
  bool Packed : 1;
private:
  CGRecordLowering(const CGRecordLowering &) = delete;
  void operator =(const CGRecordLowering &) = delete;
};
} // namespace {

CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
                                   bool Packed)
    : Types(Types), Context(Types.getContext()), D(D),
      RD(dyn_cast<CXXRecordDecl>(D)),
      Layout(Types.getContext().getASTRecordLayout(D)),
      DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
      IsZeroInitializableAsBase(true), Packed(Packed) {}

void CGRecordLowering::setBitFieldInfo(
    const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
  CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
  Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
  Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
  Info.Size = FD->getBitWidthValue(Context);
  Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
  Info.StorageOffset = StartOffset;
  if (Info.Size > Info.StorageSize)
    Info.Size = Info.StorageSize;
  // Reverse the bit offsets for big endian machines. Because we represent
  // a bitfield as a single large integer load, we can imagine the bits
  // counting from the most-significant-bit instead of the
  // least-significant-bit.
  if (DataLayout.isBigEndian())
    Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
}

void CGRecordLowering::lower(bool NVBaseType) {
  // The lowering process implemented in this function takes a variety of
  // carefully ordered phases.
  // 1) Store all members (fields and bases) in a list and sort them by offset.
  // 2) Add a 1-byte capstone member at the Size of the structure.
  // 3) Clip bitfield storages members if their tail padding is or might be
  //    used by another field or base.  The clipping process uses the capstone
  //    by treating it as another object that occurs after the record.
  // 4) Determine if the llvm-struct requires packing.  It's important that this
  //    phase occur after clipping, because clipping changes the llvm type.
  //    This phase reads the offset of the capstone when determining packedness
  //    and updates the alignment of the capstone to be equal of the alignment
  //    of the record after doing so.
  // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
  //    have been computed and needs to know the alignment of the record in
  //    order to understand if explicit tail padding is needed.
  // 6) Remove the capstone, we don't need it anymore.
  // 7) Determine if this record can be zero-initialized.  This phase could have
  //    been placed anywhere after phase 1.
  // 8) Format the complete list of members in a way that can be consumed by
  //    CodeGenTypes::ComputeRecordLayout.
  CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
  if (D->isUnion())
    return lowerUnion();
  accumulateFields();
  // RD implies C++.
  if (RD) {
    accumulateVPtrs();
    accumulateBases();
    if (Members.empty())
      return appendPaddingBytes(Size);
    if (!NVBaseType)
      accumulateVBases();
  }
  llvm::stable_sort(Members);
  Members.push_back(StorageInfo(Size, getIntNType(8)));
  clipTailPadding();
  determinePacked(NVBaseType);
  insertPadding();
  Members.pop_back();
  calculateZeroInit();
  fillOutputFields();
}

void CGRecordLowering::lowerUnion() {
  CharUnits LayoutSize = Layout.getSize();
  llvm::Type *StorageType = nullptr;
  bool SeenNamedMember = false;
  // Iterate through the fields setting bitFieldInfo and the Fields array. Also
  // locate the "most appropriate" storage type.  The heuristic for finding the
  // storage type isn't necessary, the first (non-0-length-bitfield) field's
  // type would work fine and be simpler but would be different than what we've
  // been doing and cause lit tests to change.
  for (const auto *Field : D->fields()) {
    if (Field->isBitField()) {
      if (Field->isZeroLengthBitField(Context))
        continue;
      llvm::Type *FieldType = getStorageType(Field);
      if (LayoutSize < getSize(FieldType))
        FieldType = getByteArrayType(LayoutSize);
      setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
    }
    Fields[Field->getCanonicalDecl()] = 0;
    llvm::Type *FieldType = getStorageType(Field);
    // Compute zero-initializable status.
    // This union might not be zero initialized: it may contain a pointer to
    // data member which might have some exotic initialization sequence.
    // If this is the case, then we aught not to try and come up with a "better"
    // type, it might not be very easy to come up with a Constant which
    // correctly initializes it.
    if (!SeenNamedMember) {
      SeenNamedMember = Field->getIdentifier();
      if (!SeenNamedMember)
        if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
          SeenNamedMember = FieldRD->findFirstNamedDataMember();
      if (SeenNamedMember && !isZeroInitializable(Field)) {
        IsZeroInitializable = IsZeroInitializableAsBase = false;
        StorageType = FieldType;
      }
    }
    // Because our union isn't zero initializable, we won't be getting a better
    // storage type.
    if (!IsZeroInitializable)
      continue;
    // Conditionally update our storage type if we've got a new "better" one.
    if (!StorageType ||
        getAlignment(FieldType) >  getAlignment(StorageType) ||
        (getAlignment(FieldType) == getAlignment(StorageType) &&
        getSize(FieldType) > getSize(StorageType)))
      StorageType = FieldType;
  }
  // If we have no storage type just pad to the appropriate size and return.
  if (!StorageType)
    return appendPaddingBytes(LayoutSize);
  // If our storage size was bigger than our required size (can happen in the
  // case of packed bitfields on Itanium) then just use an I8 array.
  if (LayoutSize < getSize(StorageType))
    StorageType = getByteArrayType(LayoutSize);
  FieldTypes.push_back(StorageType);
  appendPaddingBytes(LayoutSize - getSize(StorageType));
  // Set packed if we need it.
  if (LayoutSize % getAlignment(StorageType))
    Packed = true;
}

void CGRecordLowering::accumulateFields() {
  for (RecordDecl::field_iterator Field = D->field_begin(),
                                  FieldEnd = D->field_end();
    Field != FieldEnd;) {
    if (Field->isBitField()) {
      RecordDecl::field_iterator Start = Field;
      // Iterate to gather the list of bitfields.
      for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
      accumulateBitFields(Start, Field);
    } else if (!Field->isZeroSize(Context)) {
      Members.push_back(MemberInfo(
          bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
          getStorageType(*Field), *Field));
      ++Field;
    } else {
      ++Field;
    }
  }
}

void
CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
                                      RecordDecl::field_iterator FieldEnd) {
  // Run stores the first element of the current run of bitfields.  FieldEnd is
  // used as a special value to note that we don't have a current run.  A
  // bitfield run is a contiguous collection of bitfields that can be stored in
  // the same storage block.  Zero-sized bitfields and bitfields that would
  // cross an alignment boundary break a run and start a new one.
  RecordDecl::field_iterator Run = FieldEnd;
  // Tail is the offset of the first bit off the end of the current run.  It's
  // used to determine if the ASTRecordLayout is treating these two bitfields as
  // contiguous.  StartBitOffset is offset of the beginning of the Run.
  uint64_t StartBitOffset, Tail = 0;
  if (isDiscreteBitFieldABI()) {
    for (; Field != FieldEnd; ++Field) {
      uint64_t BitOffset = getFieldBitOffset(*Field);
      // Zero-width bitfields end runs.
      if (Field->isZeroLengthBitField(Context)) {
        Run = FieldEnd;
        continue;
      }
      llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
      // If we don't have a run yet, or don't live within the previous run's
      // allocated storage then we allocate some storage and start a new run.
      if (Run == FieldEnd || BitOffset >= Tail) {
        Run = Field;
        StartBitOffset = BitOffset;
        Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
        // Add the storage member to the record.  This must be added to the
        // record before the bitfield members so that it gets laid out before
        // the bitfields it contains get laid out.
        Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
      }
      // Bitfields get the offset of their storage but come afterward and remain
      // there after a stable sort.
      Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
                                   MemberInfo::Field, nullptr, *Field));
    }
    return;
  }

  // Check if OffsetInRecord is better as a single field run. When OffsetInRecord
  // has legal integer width, and its bitfield offset is naturally aligned, it
  // is better to make the bitfield a separate storage component so as it can be
  // accessed directly with lower cost.
  auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord,
                                      uint64_t StartBitOffset) {
    if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses)
      return false;
    if (!DataLayout.isLegalInteger(OffsetInRecord))
      return false;
    // Make sure StartBitOffset is natually aligned if it is treated as an
    // IType integer.
     if (StartBitOffset %
            Context.toBits(getAlignment(getIntNType(OffsetInRecord))) !=
        0)
      return false;
    return true;
  };

  // The start field is better as a single field run.
  bool StartFieldAsSingleRun = false;
  for (;;) {
    // Check to see if we need to start a new run.
    if (Run == FieldEnd) {
      // If we're out of fields, return.
      if (Field == FieldEnd)
        break;
      // Any non-zero-length bitfield can start a new run.
      if (!Field->isZeroLengthBitField(Context)) {
        Run = Field;
        StartBitOffset = getFieldBitOffset(*Field);
        Tail = StartBitOffset + Field->getBitWidthValue(Context);
        StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset,
                                                         StartBitOffset);
      }
      ++Field;
      continue;
    }

    // If the start field of a new run is better as a single run, or
    // if current field (or consecutive fields) is better as a single run, or
    // if current field has zero width bitfield and either
    // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
    // true, or
    // if the offset of current field is inconsistent with the offset of
    // previous field plus its offset,
    // skip the block below and go ahead to emit the storage.
    // Otherwise, try to add bitfields to the run.
    if (!StartFieldAsSingleRun && Field != FieldEnd &&
        !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) &&
        (!Field->isZeroLengthBitField(Context) ||
         (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
          !Context.getTargetInfo().useBitFieldTypeAlignment())) &&
        Tail == getFieldBitOffset(*Field)) {
      Tail += Field->getBitWidthValue(Context);
      ++Field;
      continue;
    }

    // We've hit a break-point in the run and need to emit a storage field.
    llvm::Type *Type = getIntNType(Tail - StartBitOffset);
    // Add the storage member to the record and set the bitfield info for all of
    // the bitfields in the run.  Bitfields get the offset of their storage but
    // come afterward and remain there after a stable sort.
    Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
    for (; Run != Field; ++Run)
      Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
                                   MemberInfo::Field, nullptr, *Run));
    Run = FieldEnd;
    StartFieldAsSingleRun = false;
  }
}

void CGRecordLowering::accumulateBases() {
  // If we've got a primary virtual base, we need to add it with the bases.
  if (Layout.isPrimaryBaseVirtual()) {
    const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
    Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
                                 getStorageType(BaseDecl), BaseDecl));
  }
  // Accumulate the non-virtual bases.
  for (const auto &Base : RD->bases()) {
    if (Base.isVirtual())
      continue;

    // Bases can be zero-sized even if not technically empty if they
    // contain only a trailing array member.
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    if (!BaseDecl->isEmpty() &&
        !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
      Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
          MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
  }
}

void CGRecordLowering::accumulateVPtrs() {
  if (Layout.hasOwnVFPtr())
    Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
        llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
            getPointerTo()->getPointerTo()));
  if (Layout.hasOwnVBPtr())
    Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
        llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
}

void CGRecordLowering::accumulateVBases() {
  CharUnits ScissorOffset = Layout.getNonVirtualSize();
  // In the itanium ABI, it's possible to place a vbase at a dsize that is
  // smaller than the nvsize.  Here we check to see if such a base is placed
  // before the nvsize and set the scissor offset to that, instead of the
  // nvsize.
  if (isOverlappingVBaseABI())
    for (const auto &Base : RD->vbases()) {
      const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
      if (BaseDecl->isEmpty())
        continue;
      // If the vbase is a primary virtual base of some base, then it doesn't
      // get its own storage location but instead lives inside of that base.
      if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
        continue;
      ScissorOffset = std::min(ScissorOffset,
                               Layout.getVBaseClassOffset(BaseDecl));
    }
  Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
                               RD));
  for (const auto &Base : RD->vbases()) {
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    if (BaseDecl->isEmpty())
      continue;
    CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
    // If the vbase is a primary virtual base of some base, then it doesn't
    // get its own storage location but instead lives inside of that base.
    if (isOverlappingVBaseABI() &&
        Context.isNearlyEmpty(BaseDecl) &&
        !hasOwnStorage(RD, BaseDecl)) {
      Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
                                   BaseDecl));
      continue;
    }
    // If we've got a vtordisp, add it as a storage type.
    if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
      Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
                                    getIntNType(32)));
    Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
                                 getStorageType(BaseDecl), BaseDecl));
  }
}

bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
                                     const CXXRecordDecl *Query) {
  const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
  if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
    return false;
  for (const auto &Base : Decl->bases())
    if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
      return false;
  return true;
}

void CGRecordLowering::calculateZeroInit() {
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
                                               MemberEnd = Members.end();
       IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
    if (Member->Kind == MemberInfo::Field) {
      if (!Member->FD || isZeroInitializable(Member->FD))
        continue;
      IsZeroInitializable = IsZeroInitializableAsBase = false;
    } else if (Member->Kind == MemberInfo::Base ||
               Member->Kind == MemberInfo::VBase) {
      if (isZeroInitializable(Member->RD))
        continue;
      IsZeroInitializable = false;
      if (Member->Kind == MemberInfo::Base)
        IsZeroInitializableAsBase = false;
    }
  }
}

void CGRecordLowering::clipTailPadding() {
  std::vector<MemberInfo>::iterator Prior = Members.begin();
  CharUnits Tail = getSize(Prior->Data);
  for (std::vector<MemberInfo>::iterator Member = Prior + 1,
                                         MemberEnd = Members.end();
       Member != MemberEnd; ++Member) {
    // Only members with data and the scissor can cut into tail padding.
    if (!Member->Data && Member->Kind != MemberInfo::Scissor)
      continue;
    if (Member->Offset < Tail) {
      assert(Prior->Kind == MemberInfo::Field &&
             "Only storage fields have tail padding!");
      if (!Prior->FD || Prior->FD->isBitField())
        Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo(
            cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
      else {
        assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() &&
               "should not have reused this field's tail padding");
        Prior->Data = getByteArrayType(
            Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).first);
      }
    }
    if (Member->Data)
      Prior = Member;
    Tail = Prior->Offset + getSize(Prior->Data);
  }
}

void CGRecordLowering::determinePacked(bool NVBaseType) {
  if (Packed)
    return;
  CharUnits Alignment = CharUnits::One();
  CharUnits NVAlignment = CharUnits::One();
  CharUnits NVSize =
      !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
                                               MemberEnd = Members.end();
       Member != MemberEnd; ++Member) {
    if (!Member->Data)
      continue;
    // If any member falls at an offset that it not a multiple of its alignment,
    // then the entire record must be packed.
    if (Member->Offset % getAlignment(Member->Data))
      Packed = true;
    if (Member->Offset < NVSize)
      NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
    Alignment = std::max(Alignment, getAlignment(Member->Data));
  }
  // If the size of the record (the capstone's offset) is not a multiple of the
  // record's alignment, it must be packed.
  if (Members.back().Offset % Alignment)
    Packed = true;
  // If the non-virtual sub-object is not a multiple of the non-virtual
  // sub-object's alignment, it must be packed.  We cannot have a packed
  // non-virtual sub-object and an unpacked complete object or vise versa.
  if (NVSize % NVAlignment)
    Packed = true;
  // Update the alignment of the sentinel.
  if (!Packed)
    Members.back().Data = getIntNType(Context.toBits(Alignment));
}

void CGRecordLowering::insertPadding() {
  std::vector<std::pair<CharUnits, CharUnits> > Padding;
  CharUnits Size = CharUnits::Zero();
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
                                               MemberEnd = Members.end();
       Member != MemberEnd; ++Member) {
    if (!Member->Data)
      continue;
    CharUnits Offset = Member->Offset;
    assert(Offset >= Size);
    // Insert padding if we need to.
    if (Offset !=
        Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data)))
      Padding.push_back(std::make_pair(Size, Offset - Size));
    Size = Offset + getSize(Member->Data);
  }
  if (Padding.empty())
    return;
  // Add the padding to the Members list and sort it.
  for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
        Pad = Padding.begin(), PadEnd = Padding.end();
        Pad != PadEnd; ++Pad)
    Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
  llvm::stable_sort(Members);
}

void CGRecordLowering::fillOutputFields() {
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
                                               MemberEnd = Members.end();
       Member != MemberEnd; ++Member) {
    if (Member->Data)
      FieldTypes.push_back(Member->Data);
    if (Member->Kind == MemberInfo::Field) {
      if (Member->FD)
        Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
      // A field without storage must be a bitfield.
      if (!Member->Data)
        setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
    } else if (Member->Kind == MemberInfo::Base)
      NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
    else if (Member->Kind == MemberInfo::VBase)
      VirtualBases[Member->RD] = FieldTypes.size() - 1;
  }
}

CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
                                        const FieldDecl *FD,
                                        uint64_t Offset, uint64_t Size,
                                        uint64_t StorageSize,
                                        CharUnits StorageOffset) {
  // This function is vestigial from CGRecordLayoutBuilder days but is still
  // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
  // when addressed will allow for the removal of this function.
  llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
  CharUnits TypeSizeInBytes =
    CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
  uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);

  bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();

  if (Size > TypeSizeInBits) {
    // We have a wide bit-field. The extra bits are only used for padding, so
    // if we have a bitfield of type T, with size N:
    //
    // T t : N;
    //
    // We can just assume that it's:
    //
    // T t : sizeof(T);
    //
    Size = TypeSizeInBits;
  }

  // Reverse the bit offsets for big endian machines. Because we represent
  // a bitfield as a single large integer load, we can imagine the bits
  // counting from the most-significant-bit instead of the
  // least-significant-bit.
  if (Types.getDataLayout().isBigEndian()) {
    Offset = StorageSize - (Offset + Size);
  }

  return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
}

CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
                                                  llvm::StructType *Ty) {
  CGRecordLowering Builder(*this, D, /*Packed=*/false);

  Builder.lower(/*NonVirtualBaseType=*/false);

  // If we're in C++, compute the base subobject type.
  llvm::StructType *BaseTy = nullptr;
  if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
    BaseTy = Ty;
    if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
      CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
      BaseBuilder.lower(/*NonVirtualBaseType=*/true);
      BaseTy = llvm::StructType::create(
          getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
      addRecordTypeName(D, BaseTy, ".base");
      // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
      // on both of them with the same index.
      assert(Builder.Packed == BaseBuilder.Packed &&
             "Non-virtual and complete types must agree on packedness");
    }
  }

  // Fill in the struct *after* computing the base type.  Filling in the body
  // signifies that the type is no longer opaque and record layout is complete,
  // but we may need to recursively layout D while laying D out as a base type.
  Ty->setBody(Builder.FieldTypes, Builder.Packed);

  CGRecordLayout *RL =
    new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
                        Builder.IsZeroInitializableAsBase);

  RL->NonVirtualBases.swap(Builder.NonVirtualBases);
  RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);

  // Add all the field numbers.
  RL->FieldInfo.swap(Builder.Fields);

  // Add bitfield info.
  RL->BitFields.swap(Builder.BitFields);

  // Dump the layout, if requested.
  if (getContext().getLangOpts().DumpRecordLayouts) {
    llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
    llvm::outs() << "Record: ";
    D->dump(llvm::outs());
    llvm::outs() << "\nLayout: ";
    RL->print(llvm::outs());
  }

#ifndef NDEBUG
  // Verify that the computed LLVM struct size matches the AST layout size.
  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);

  uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
  assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
         "Type size mismatch!");

  if (BaseTy) {
    CharUnits NonVirtualSize  = Layout.getNonVirtualSize();

    uint64_t AlignedNonVirtualTypeSizeInBits =
      getContext().toBits(NonVirtualSize);

    assert(AlignedNonVirtualTypeSizeInBits ==
           getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
           "Type size mismatch!");
  }

  // Verify that the LLVM and AST field offsets agree.
  llvm::StructType *ST = RL->getLLVMType();
  const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);

  const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
  RecordDecl::field_iterator it = D->field_begin();
  for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
    const FieldDecl *FD = *it;

    // Ignore zero-sized fields.
    if (FD->isZeroSize(getContext()))
      continue;

    // For non-bit-fields, just check that the LLVM struct offset matches the
    // AST offset.
    if (!FD->isBitField()) {
      unsigned FieldNo = RL->getLLVMFieldNo(FD);
      assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
             "Invalid field offset!");
      continue;
    }

    // Ignore unnamed bit-fields.
    if (!FD->getDeclName())
      continue;

    const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
    llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));

    // Unions have overlapping elements dictating their layout, but for
    // non-unions we can verify that this section of the layout is the exact
    // expected size.
    if (D->isUnion()) {
      // For unions we verify that the start is zero and the size
      // is in-bounds. However, on BE systems, the offset may be non-zero, but
      // the size + offset should match the storage size in that case as it
      // "starts" at the back.
      if (getDataLayout().isBigEndian())
        assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
               Info.StorageSize &&
               "Big endian union bitfield does not end at the back");
      else
        assert(Info.Offset == 0 &&
               "Little endian union bitfield with a non-zero offset");
      assert(Info.StorageSize <= SL->getSizeInBits() &&
             "Union not large enough for bitfield storage");
    } else {
      assert(Info.StorageSize ==
             getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
             "Storage size does not match the element type size");
    }
    assert(Info.Size > 0 && "Empty bitfield!");
    assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
           "Bitfield outside of its allocated storage");
  }
#endif

  return RL;
}

void CGRecordLayout::print(raw_ostream &OS) const {
  OS << "<CGRecordLayout\n";
  OS << "  LLVMType:" << *CompleteObjectType << "\n";
  if (BaseSubobjectType)
    OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
  OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
  OS << "  BitFields:[\n";

  // Print bit-field infos in declaration order.
  std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
  for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
         it = BitFields.begin(), ie = BitFields.end();
       it != ie; ++it) {
    const RecordDecl *RD = it->first->getParent();
    unsigned Index = 0;
    for (RecordDecl::field_iterator
           it2 = RD->field_begin(); *it2 != it->first; ++it2)
      ++Index;
    BFIs.push_back(std::make_pair(Index, &it->second));
  }
  llvm::array_pod_sort(BFIs.begin(), BFIs.end());
  for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
    OS.indent(4);
    BFIs[i].second->print(OS);
    OS << "\n";
  }

  OS << "]>\n";
}

LLVM_DUMP_METHOD void CGRecordLayout::dump() const {
  print(llvm::errs());
}

void CGBitFieldInfo::print(raw_ostream &OS) const {
  OS << "<CGBitFieldInfo"
     << " Offset:" << Offset
     << " Size:" << Size
     << " IsSigned:" << IsSigned
     << " StorageSize:" << StorageSize
     << " StorageOffset:" << StorageOffset.getQuantity() << ">";
}

LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const {
  print(llvm::errs());
}