reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "clang/AST/RecordLayout.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"

using namespace clang;

namespace {

/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
/// For a class hierarchy like
///
/// class A { };
/// class B : A { };
/// class C : A, B { };
///
/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
/// instances, one for B and two for A.
///
/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
struct BaseSubobjectInfo {
  /// Class - The class for this base info.
  const CXXRecordDecl *Class;

  /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
  bool IsVirtual;

  /// Bases - Information about the base subobjects.
  SmallVector<BaseSubobjectInfo*, 4> Bases;

  /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
  /// of this base info (if one exists).
  BaseSubobjectInfo *PrimaryVirtualBaseInfo;

  // FIXME: Document.
  const BaseSubobjectInfo *Derived;
};

/// Externally provided layout. Typically used when the AST source, such
/// as DWARF, lacks all the information that was available at compile time, such
/// as alignment attributes on fields and pragmas in effect.
struct ExternalLayout {
  ExternalLayout() : Size(0), Align(0) {}

  /// Overall record size in bits.
  uint64_t Size;

  /// Overall record alignment in bits.
  uint64_t Align;

  /// Record field offsets in bits.
  llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;

  /// Direct, non-virtual base offsets.
  llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;

  /// Virtual base offsets.
  llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;

  /// Get the offset of the given field. The external source must provide
  /// entries for all fields in the record.
  uint64_t getExternalFieldOffset(const FieldDecl *FD) {
    assert(FieldOffsets.count(FD) &&
           "Field does not have an external offset");
    return FieldOffsets[FD];
  }

  bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
    auto Known = BaseOffsets.find(RD);
    if (Known == BaseOffsets.end())
      return false;
    BaseOffset = Known->second;
    return true;
  }

  bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
    auto Known = VirtualBaseOffsets.find(RD);
    if (Known == VirtualBaseOffsets.end())
      return false;
    BaseOffset = Known->second;
    return true;
  }
};

/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
/// offsets while laying out a C++ class.
class EmptySubobjectMap {
  const ASTContext &Context;
  uint64_t CharWidth;

  /// Class - The class whose empty entries we're keeping track of.
  const CXXRecordDecl *Class;

  /// EmptyClassOffsets - A map from offsets to empty record decls.
  typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
  typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
  EmptyClassOffsetsMapTy EmptyClassOffsets;

  /// MaxEmptyClassOffset - The highest offset known to contain an empty
  /// base subobject.
  CharUnits MaxEmptyClassOffset;

  /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
  /// member subobject that is empty.
  void ComputeEmptySubobjectSizes();

  void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);

  void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
                                 CharUnits Offset, bool PlacingEmptyBase);

  void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
                                  const CXXRecordDecl *Class, CharUnits Offset,
                                  bool PlacingOverlappingField);
  void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
                                  bool PlacingOverlappingField);

  /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
  /// subobjects beyond the given offset.
  bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
    return Offset <= MaxEmptyClassOffset;
  }

  CharUnits
  getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
    uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
    assert(FieldOffset % CharWidth == 0 &&
           "Field offset not at char boundary!");

    return Context.toCharUnitsFromBits(FieldOffset);
  }

protected:
  bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
                                 CharUnits Offset) const;

  bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
                                     CharUnits Offset);

  bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
                                      const CXXRecordDecl *Class,
                                      CharUnits Offset) const;
  bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
                                      CharUnits Offset) const;

public:
  /// This holds the size of the largest empty subobject (either a base
  /// or a member). Will be zero if the record being built doesn't contain
  /// any empty classes.
  CharUnits SizeOfLargestEmptySubobject;

  EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
  : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
      ComputeEmptySubobjectSizes();
  }

  /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
  /// at the given offset.
  /// Returns false if placing the record will result in two components
  /// (direct or indirect) of the same type having the same offset.
  bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
                            CharUnits Offset);

  /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
  /// offset.
  bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
};

void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
  // Check the bases.
  for (const CXXBaseSpecifier &Base : Class->bases()) {
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();

    CharUnits EmptySize;
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
    if (BaseDecl->isEmpty()) {
      // If the class decl is empty, get its size.
      EmptySize = Layout.getSize();
    } else {
      // Otherwise, we get the largest empty subobject for the decl.
      EmptySize = Layout.getSizeOfLargestEmptySubobject();
    }

    if (EmptySize > SizeOfLargestEmptySubobject)
      SizeOfLargestEmptySubobject = EmptySize;
  }

  // Check the fields.
  for (const FieldDecl *FD : Class->fields()) {
    const RecordType *RT =
        Context.getBaseElementType(FD->getType())->getAs<RecordType>();

    // We only care about record types.
    if (!RT)
      continue;

    CharUnits EmptySize;
    const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
    if (MemberDecl->isEmpty()) {
      // If the class decl is empty, get its size.
      EmptySize = Layout.getSize();
    } else {
      // Otherwise, we get the largest empty subobject for the decl.
      EmptySize = Layout.getSizeOfLargestEmptySubobject();
    }

    if (EmptySize > SizeOfLargestEmptySubobject)
      SizeOfLargestEmptySubobject = EmptySize;
  }
}

bool
EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
                                             CharUnits Offset) const {
  // We only need to check empty bases.
  if (!RD->isEmpty())
    return true;

  EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
  if (I == EmptyClassOffsets.end())
    return true;

  const ClassVectorTy &Classes = I->second;
  if (llvm::find(Classes, RD) == Classes.end())
    return true;

  // There is already an empty class of the same type at this offset.
  return false;
}

void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
                                             CharUnits Offset) {
  // We only care about empty bases.
  if (!RD->isEmpty())
    return;

  // If we have empty structures inside a union, we can assign both
  // the same offset. Just avoid pushing them twice in the list.
  ClassVectorTy &Classes = EmptyClassOffsets[Offset];
  if (llvm::is_contained(Classes, RD))
    return;

  Classes.push_back(RD);

  // Update the empty class offset.
  if (Offset > MaxEmptyClassOffset)
    MaxEmptyClassOffset = Offset;
}

bool
EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
                                                 CharUnits Offset) {
  // We don't have to keep looking past the maximum offset that's known to
  // contain an empty class.
  if (!AnyEmptySubobjectsBeyondOffset(Offset))
    return true;

  if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
    return false;

  // Traverse all non-virtual bases.
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
  for (const BaseSubobjectInfo *Base : Info->Bases) {
    if (Base->IsVirtual)
      continue;

    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);

    if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
      return false;
  }

  if (Info->PrimaryVirtualBaseInfo) {
    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;

    if (Info == PrimaryVirtualBaseInfo->Derived) {
      if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
        return false;
    }
  }

  // Traverse all member variables.
  unsigned FieldNo = 0;
  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    if (I->isBitField())
      continue;

    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
      return false;
  }

  return true;
}

void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
                                                  CharUnits Offset,
                                                  bool PlacingEmptyBase) {
  if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
    // We know that the only empty subobjects that can conflict with empty
    // subobject of non-empty bases, are empty bases that can be placed at
    // offset zero. Because of this, we only need to keep track of empty base
    // subobjects with offsets less than the size of the largest empty
    // subobject for our class.
    return;
  }

  AddSubobjectAtOffset(Info->Class, Offset);

  // Traverse all non-virtual bases.
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
  for (const BaseSubobjectInfo *Base : Info->Bases) {
    if (Base->IsVirtual)
      continue;

    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
  }

  if (Info->PrimaryVirtualBaseInfo) {
    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;

    if (Info == PrimaryVirtualBaseInfo->Derived)
      UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
                                PlacingEmptyBase);
  }

  // Traverse all member variables.
  unsigned FieldNo = 0;
  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    if (I->isBitField())
      continue;

    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
  }
}

bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
                                             CharUnits Offset) {
  // If we know this class doesn't have any empty subobjects we don't need to
  // bother checking.
  if (SizeOfLargestEmptySubobject.isZero())
    return true;

  if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
    return false;

  // We are able to place the base at this offset. Make sure to update the
  // empty base subobject map.
  UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
  return true;
}

bool
EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
                                                  const CXXRecordDecl *Class,
                                                  CharUnits Offset) const {
  // We don't have to keep looking past the maximum offset that's known to
  // contain an empty class.
  if (!AnyEmptySubobjectsBeyondOffset(Offset))
    return true;

  if (!CanPlaceSubobjectAtOffset(RD, Offset))
    return false;

  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  // Traverse all non-virtual bases.
  for (const CXXBaseSpecifier &Base : RD->bases()) {
    if (Base.isVirtual())
      continue;

    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();

    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
      return false;
  }

  if (RD == Class) {
    // This is the most derived class, traverse virtual bases as well.
    for (const CXXBaseSpecifier &Base : RD->vbases()) {
      const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();

      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
      if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
        return false;
    }
  }

  // Traverse all member variables.
  unsigned FieldNo = 0;
  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
       I != E; ++I, ++FieldNo) {
    if (I->isBitField())
      continue;

    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);

    if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
      return false;
  }

  return true;
}

bool
EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
                                                  CharUnits Offset) const {
  // We don't have to keep looking past the maximum offset that's known to
  // contain an empty class.
  if (!AnyEmptySubobjectsBeyondOffset(Offset))
    return true;

  QualType T = FD->getType();
  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
    return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);

  // If we have an array type we need to look at every element.
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    QualType ElemTy = Context.getBaseElementType(AT);
    const RecordType *RT = ElemTy->getAs<RecordType>();
    if (!RT)
      return true;

    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    CharUnits ElementOffset = Offset;
    for (uint64_t I = 0; I != NumElements; ++I) {
      // We don't have to keep looking past the maximum offset that's known to
      // contain an empty class.
      if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
        return true;

      if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
        return false;

      ElementOffset += Layout.getSize();
    }
  }

  return true;
}

bool
EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
                                         CharUnits Offset) {
  if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
    return false;

  // We are able to place the member variable at this offset.
  // Make sure to update the empty field subobject map.
  UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
  return true;
}

void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
    const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
    bool PlacingOverlappingField) {
  // We know that the only empty subobjects that can conflict with empty
  // field subobjects are subobjects of empty bases and potentially-overlapping
  // fields that can be placed at offset zero. Because of this, we only need to
  // keep track of empty field subobjects with offsets less than the size of
  // the largest empty subobject for our class.
  //
  // (Proof: we will only consider placing a subobject at offset zero or at
  // >= the current dsize. The only cases where the earlier subobject can be
  // placed beyond the end of dsize is if it's an empty base or a
  // potentially-overlapping field.)
  if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
    return;

  AddSubobjectAtOffset(RD, Offset);

  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  // Traverse all non-virtual bases.
  for (const CXXBaseSpecifier &Base : RD->bases()) {
    if (Base.isVirtual())
      continue;

    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();

    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
                               PlacingOverlappingField);
  }

  if (RD == Class) {
    // This is the most derived class, traverse virtual bases as well.
    for (const CXXBaseSpecifier &Base : RD->vbases()) {
      const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();

      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
      UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
                                 PlacingOverlappingField);
    }
  }

  // Traverse all member variables.
  unsigned FieldNo = 0;
  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
       I != E; ++I, ++FieldNo) {
    if (I->isBitField())
      continue;

    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);

    UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
  }
}

void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
    const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
  QualType T = FD->getType();
  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
    UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
    return;
  }

  // If we have an array type we need to update every element.
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    QualType ElemTy = Context.getBaseElementType(AT);
    const RecordType *RT = ElemTy->getAs<RecordType>();
    if (!RT)
      return;

    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    CharUnits ElementOffset = Offset;

    for (uint64_t I = 0; I != NumElements; ++I) {
      // We know that the only empty subobjects that can conflict with empty
      // field subobjects are subobjects of empty bases that can be placed at
      // offset zero. Because of this, we only need to keep track of empty field
      // subobjects with offsets less than the size of the largest empty
      // subobject for our class.
      if (!PlacingOverlappingField &&
          ElementOffset >= SizeOfLargestEmptySubobject)
        return;

      UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
                                 PlacingOverlappingField);
      ElementOffset += Layout.getSize();
    }
  }
}

typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;

class ItaniumRecordLayoutBuilder {
protected:
  // FIXME: Remove this and make the appropriate fields public.
  friend class clang::ASTContext;

  const ASTContext &Context;

  EmptySubobjectMap *EmptySubobjects;

  /// Size - The current size of the record layout.
  uint64_t Size;

  /// Alignment - The current alignment of the record layout.
  CharUnits Alignment;

  /// The alignment if attribute packed is not used.
  CharUnits UnpackedAlignment;

  /// \brief The maximum of the alignments of top-level members.
  CharUnits UnadjustedAlignment;

  SmallVector<uint64_t, 16> FieldOffsets;

  /// Whether the external AST source has provided a layout for this
  /// record.
  unsigned UseExternalLayout : 1;

  /// Whether we need to infer alignment, even when we have an
  /// externally-provided layout.
  unsigned InferAlignment : 1;

  /// Packed - Whether the record is packed or not.
  unsigned Packed : 1;

  unsigned IsUnion : 1;

  unsigned IsMac68kAlign : 1;

  unsigned IsMsStruct : 1;

  /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
  /// this contains the number of bits in the last unit that can be used for
  /// an adjacent bitfield if necessary.  The unit in question is usually
  /// a byte, but larger units are used if IsMsStruct.
  unsigned char UnfilledBitsInLastUnit;
  /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
  /// of the previous field if it was a bitfield.
  unsigned char LastBitfieldTypeSize;

  /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
  /// #pragma pack.
  CharUnits MaxFieldAlignment;

  /// DataSize - The data size of the record being laid out.
  uint64_t DataSize;

  CharUnits NonVirtualSize;
  CharUnits NonVirtualAlignment;

  /// If we've laid out a field but not included its tail padding in Size yet,
  /// this is the size up to the end of that field.
  CharUnits PaddedFieldSize;

  /// PrimaryBase - the primary base class (if one exists) of the class
  /// we're laying out.
  const CXXRecordDecl *PrimaryBase;

  /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
  /// out is virtual.
  bool PrimaryBaseIsVirtual;

  /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
  /// pointer, as opposed to inheriting one from a primary base class.
  bool HasOwnVFPtr;

  /// the flag of field offset changing due to packed attribute.
  bool HasPackedField;

  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;

  /// Bases - base classes and their offsets in the record.
  BaseOffsetsMapTy Bases;

  // VBases - virtual base classes and their offsets in the record.
  ASTRecordLayout::VBaseOffsetsMapTy VBases;

  /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
  /// primary base classes for some other direct or indirect base class.
  CXXIndirectPrimaryBaseSet IndirectPrimaryBases;

  /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
  /// inheritance graph order. Used for determining the primary base class.
  const CXXRecordDecl *FirstNearlyEmptyVBase;

  /// VisitedVirtualBases - A set of all the visited virtual bases, used to
  /// avoid visiting virtual bases more than once.
  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;

  /// Valid if UseExternalLayout is true.
  ExternalLayout External;

  ItaniumRecordLayoutBuilder(const ASTContext &Context,
                             EmptySubobjectMap *EmptySubobjects)
      : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
        Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
        UnadjustedAlignment(CharUnits::One()),
        UseExternalLayout(false), InferAlignment(false), Packed(false),
        IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
        UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
        MaxFieldAlignment(CharUnits::Zero()), DataSize(0),
        NonVirtualSize(CharUnits::Zero()),
        NonVirtualAlignment(CharUnits::One()),
        PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
        PrimaryBaseIsVirtual(false), HasOwnVFPtr(false),
        HasPackedField(false), FirstNearlyEmptyVBase(nullptr) {}

  void Layout(const RecordDecl *D);
  void Layout(const CXXRecordDecl *D);
  void Layout(const ObjCInterfaceDecl *D);

  void LayoutFields(const RecordDecl *D);
  void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
  void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
                          bool FieldPacked, const FieldDecl *D);
  void LayoutBitField(const FieldDecl *D);

  TargetCXXABI getCXXABI() const {
    return Context.getTargetInfo().getCXXABI();
  }

  /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
  llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;

  typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
    BaseSubobjectInfoMapTy;

  /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
  /// of the class we're laying out to their base subobject info.
  BaseSubobjectInfoMapTy VirtualBaseInfo;

  /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
  /// class we're laying out to their base subobject info.
  BaseSubobjectInfoMapTy NonVirtualBaseInfo;

  /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
  /// bases of the given class.
  void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);

  /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
  /// single class and all of its base classes.
  BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
                                              bool IsVirtual,
                                              BaseSubobjectInfo *Derived);

  /// DeterminePrimaryBase - Determine the primary base of the given class.
  void DeterminePrimaryBase(const CXXRecordDecl *RD);

  void SelectPrimaryVBase(const CXXRecordDecl *RD);

  void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);

  /// LayoutNonVirtualBases - Determines the primary base class (if any) and
  /// lays it out. Will then proceed to lay out all non-virtual base clasess.
  void LayoutNonVirtualBases(const CXXRecordDecl *RD);

  /// LayoutNonVirtualBase - Lays out a single non-virtual base.
  void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);

  void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
                                    CharUnits Offset);

  /// LayoutVirtualBases - Lays out all the virtual bases.
  void LayoutVirtualBases(const CXXRecordDecl *RD,
                          const CXXRecordDecl *MostDerivedClass);

  /// LayoutVirtualBase - Lays out a single virtual base.
  void LayoutVirtualBase(const BaseSubobjectInfo *Base);

  /// LayoutBase - Will lay out a base and return the offset where it was
  /// placed, in chars.
  CharUnits LayoutBase(const BaseSubobjectInfo *Base);

  /// InitializeLayout - Initialize record layout for the given record decl.
  void InitializeLayout(const Decl *D);

  /// FinishLayout - Finalize record layout. Adjust record size based on the
  /// alignment.
  void FinishLayout(const NamedDecl *D);

  void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
  void UpdateAlignment(CharUnits NewAlignment) {
    UpdateAlignment(NewAlignment, NewAlignment);
  }

  /// Retrieve the externally-supplied field offset for the given
  /// field.
  ///
  /// \param Field The field whose offset is being queried.
  /// \param ComputedOffset The offset that we've computed for this field.
  uint64_t updateExternalFieldOffset(const FieldDecl *Field,
                                     uint64_t ComputedOffset);

  void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
                          uint64_t UnpackedOffset, unsigned UnpackedAlign,
                          bool isPacked, const FieldDecl *D);

  DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);

  CharUnits getSize() const {
    assert(Size % Context.getCharWidth() == 0);
    return Context.toCharUnitsFromBits(Size);
  }
  uint64_t getSizeInBits() const { return Size; }

  void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
  void setSize(uint64_t NewSize) { Size = NewSize; }

  CharUnits getAligment() const { return Alignment; }

  CharUnits getDataSize() const {
    assert(DataSize % Context.getCharWidth() == 0);
    return Context.toCharUnitsFromBits(DataSize);
  }
  uint64_t getDataSizeInBits() const { return DataSize; }

  void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
  void setDataSize(uint64_t NewSize) { DataSize = NewSize; }

  ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
  void operator=(const ItaniumRecordLayoutBuilder &) = delete;
};
} // end anonymous namespace

void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
  for (const auto &I : RD->bases()) {
    assert(!I.getType()->isDependentType() &&
           "Cannot layout class with dependent bases.");

    const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();

    // Check if this is a nearly empty virtual base.
    if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
      // If it's not an indirect primary base, then we've found our primary
      // base.
      if (!IndirectPrimaryBases.count(Base)) {
        PrimaryBase = Base;
        PrimaryBaseIsVirtual = true;
        return;
      }

      // Is this the first nearly empty virtual base?
      if (!FirstNearlyEmptyVBase)
        FirstNearlyEmptyVBase = Base;
    }

    SelectPrimaryVBase(Base);
    if (PrimaryBase)
      return;
  }
}

/// DeterminePrimaryBase - Determine the primary base of the given class.
void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
  // If the class isn't dynamic, it won't have a primary base.
  if (!RD->isDynamicClass())
    return;

  // Compute all the primary virtual bases for all of our direct and
  // indirect bases, and record all their primary virtual base classes.
  RD->getIndirectPrimaryBases(IndirectPrimaryBases);

  // If the record has a dynamic base class, attempt to choose a primary base
  // class. It is the first (in direct base class order) non-virtual dynamic
  // base class, if one exists.
  for (const auto &I : RD->bases()) {
    // Ignore virtual bases.
    if (I.isVirtual())
      continue;

    const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();

    if (Base->isDynamicClass()) {
      // We found it.
      PrimaryBase = Base;
      PrimaryBaseIsVirtual = false;
      return;
    }
  }

  // Under the Itanium ABI, if there is no non-virtual primary base class,
  // try to compute the primary virtual base.  The primary virtual base is
  // the first nearly empty virtual base that is not an indirect primary
  // virtual base class, if one exists.
  if (RD->getNumVBases() != 0) {
    SelectPrimaryVBase(RD);
    if (PrimaryBase)
      return;
  }

  // Otherwise, it is the first indirect primary base class, if one exists.
  if (FirstNearlyEmptyVBase) {
    PrimaryBase = FirstNearlyEmptyVBase;
    PrimaryBaseIsVirtual = true;
    return;
  }

  assert(!PrimaryBase && "Should not get here with a primary base!");
}

BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
    const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
  BaseSubobjectInfo *Info;

  if (IsVirtual) {
    // Check if we already have info about this virtual base.
    BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
    if (InfoSlot) {
      assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
      return InfoSlot;
    }

    // We don't, create it.
    InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    Info = InfoSlot;
  } else {
    Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
  }

  Info->Class = RD;
  Info->IsVirtual = IsVirtual;
  Info->Derived = nullptr;
  Info->PrimaryVirtualBaseInfo = nullptr;

  const CXXRecordDecl *PrimaryVirtualBase = nullptr;
  BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;

  // Check if this base has a primary virtual base.
  if (RD->getNumVBases()) {
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    if (Layout.isPrimaryBaseVirtual()) {
      // This base does have a primary virtual base.
      PrimaryVirtualBase = Layout.getPrimaryBase();
      assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");

      // Now check if we have base subobject info about this primary base.
      PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);

      if (PrimaryVirtualBaseInfo) {
        if (PrimaryVirtualBaseInfo->Derived) {
          // We did have info about this primary base, and it turns out that it
          // has already been claimed as a primary virtual base for another
          // base.
          PrimaryVirtualBase = nullptr;
        } else {
          // We can claim this base as our primary base.
          Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
          PrimaryVirtualBaseInfo->Derived = Info;
        }
      }
    }
  }

  // Now go through all direct bases.
  for (const auto &I : RD->bases()) {
    bool IsVirtual = I.isVirtual();

    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();

    Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
  }

  if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
    // Traversing the bases must have created the base info for our primary
    // virtual base.
    PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    assert(PrimaryVirtualBaseInfo &&
           "Did not create a primary virtual base!");

    // Claim the primary virtual base as our primary virtual base.
    Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    PrimaryVirtualBaseInfo->Derived = Info;
  }

  return Info;
}

void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
    const CXXRecordDecl *RD) {
  for (const auto &I : RD->bases()) {
    bool IsVirtual = I.isVirtual();

    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();

    // Compute the base subobject info for this base.
    BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
                                                       nullptr);

    if (IsVirtual) {
      // ComputeBaseInfo has already added this base for us.
      assert(VirtualBaseInfo.count(BaseDecl) &&
             "Did not add virtual base!");
    } else {
      // Add the base info to the map of non-virtual bases.
      assert(!NonVirtualBaseInfo.count(BaseDecl) &&
             "Non-virtual base already exists!");
      NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
    }
  }
}

void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
    CharUnits UnpackedBaseAlign) {
  CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;

  // The maximum field alignment overrides base align.
  if (!MaxFieldAlignment.isZero()) {
    BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
    UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
  }

  // Round up the current record size to pointer alignment.
  setSize(getSize().alignTo(BaseAlign));

  // Update the alignment.
  UpdateAlignment(BaseAlign, UnpackedBaseAlign);
}

void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
    const CXXRecordDecl *RD) {
  // Then, determine the primary base class.
  DeterminePrimaryBase(RD);

  // Compute base subobject info.
  ComputeBaseSubobjectInfo(RD);

  // If we have a primary base class, lay it out.
  if (PrimaryBase) {
    if (PrimaryBaseIsVirtual) {
      // If the primary virtual base was a primary virtual base of some other
      // base class we'll have to steal it.
      BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
      PrimaryBaseInfo->Derived = nullptr;

      // We have a virtual primary base, insert it as an indirect primary base.
      IndirectPrimaryBases.insert(PrimaryBase);

      assert(!VisitedVirtualBases.count(PrimaryBase) &&
             "vbase already visited!");
      VisitedVirtualBases.insert(PrimaryBase);

      LayoutVirtualBase(PrimaryBaseInfo);
    } else {
      BaseSubobjectInfo *PrimaryBaseInfo =
        NonVirtualBaseInfo.lookup(PrimaryBase);
      assert(PrimaryBaseInfo &&
             "Did not find base info for non-virtual primary base!");

      LayoutNonVirtualBase(PrimaryBaseInfo);
    }

  // If this class needs a vtable/vf-table and didn't get one from a
  // primary base, add it in now.
  } else if (RD->isDynamicClass()) {
    assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
    CharUnits PtrWidth =
      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
    CharUnits PtrAlign =
      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
    EnsureVTablePointerAlignment(PtrAlign);
    HasOwnVFPtr = true;
    setSize(getSize() + PtrWidth);
    setDataSize(getSize());
  }

  // Now lay out the non-virtual bases.
  for (const auto &I : RD->bases()) {

    // Ignore virtual bases.
    if (I.isVirtual())
      continue;

    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();

    // Skip the primary base, because we've already laid it out.  The
    // !PrimaryBaseIsVirtual check is required because we might have a
    // non-virtual base of the same type as a primary virtual base.
    if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
      continue;

    // Lay out the base.
    BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
    assert(BaseInfo && "Did not find base info for non-virtual base!");

    LayoutNonVirtualBase(BaseInfo);
  }
}

void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
    const BaseSubobjectInfo *Base) {
  // Layout the base.
  CharUnits Offset = LayoutBase(Base);

  // Add its base class offset.
  assert(!Bases.count(Base->Class) && "base offset already exists!");
  Bases.insert(std::make_pair(Base->Class, Offset));

  AddPrimaryVirtualBaseOffsets(Base, Offset);
}

void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
    const BaseSubobjectInfo *Info, CharUnits Offset) {
  // This base isn't interesting, it has no virtual bases.
  if (!Info->Class->getNumVBases())
    return;

  // First, check if we have a virtual primary base to add offsets for.
  if (Info->PrimaryVirtualBaseInfo) {
    assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
           "Primary virtual base is not virtual!");
    if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
      // Add the offset.
      assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
             "primary vbase offset already exists!");
      VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
                                   ASTRecordLayout::VBaseInfo(Offset, false)));

      // Traverse the primary virtual base.
      AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
    }
  }

  // Now go through all direct non-virtual bases.
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
  for (const BaseSubobjectInfo *Base : Info->Bases) {
    if (Base->IsVirtual)
      continue;

    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
  }
}

void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
    const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
  const CXXRecordDecl *PrimaryBase;
  bool PrimaryBaseIsVirtual;

  if (MostDerivedClass == RD) {
    PrimaryBase = this->PrimaryBase;
    PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
  } else {
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    PrimaryBase = Layout.getPrimaryBase();
    PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
  }

  for (const CXXBaseSpecifier &Base : RD->bases()) {
    assert(!Base.getType()->isDependentType() &&
           "Cannot layout class with dependent bases.");

    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();

    if (Base.isVirtual()) {
      if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
        bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);

        // Only lay out the virtual base if it's not an indirect primary base.
        if (!IndirectPrimaryBase) {
          // Only visit virtual bases once.
          if (!VisitedVirtualBases.insert(BaseDecl).second)
            continue;

          const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
          assert(BaseInfo && "Did not find virtual base info!");
          LayoutVirtualBase(BaseInfo);
        }
      }
    }

    if (!BaseDecl->getNumVBases()) {
      // This base isn't interesting since it doesn't have any virtual bases.
      continue;
    }

    LayoutVirtualBases(BaseDecl, MostDerivedClass);
  }
}

void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
    const BaseSubobjectInfo *Base) {
  assert(!Base->Derived && "Trying to lay out a primary virtual base!");

  // Layout the base.
  CharUnits Offset = LayoutBase(Base);

  // Add its base class offset.
  assert(!VBases.count(Base->Class) && "vbase offset already exists!");
  VBases.insert(std::make_pair(Base->Class,
                       ASTRecordLayout::VBaseInfo(Offset, false)));

  AddPrimaryVirtualBaseOffsets(Base, Offset);
}

CharUnits
ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);


  CharUnits Offset;

  // Query the external layout to see if it provides an offset.
  bool HasExternalLayout = false;
  if (UseExternalLayout) {
    // FIXME: This appears to be reversed.
    if (Base->IsVirtual)
      HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
    else
      HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
  }

  // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
  // Per GCC's documentation, it only applies to non-static data members.
  CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
  CharUnits BaseAlign =
      (Packed && ((Context.getLangOpts().getClangABICompat() <=
                   LangOptions::ClangABI::Ver6) ||
                  Context.getTargetInfo().getTriple().isPS4()))
          ? CharUnits::One()
          : UnpackedBaseAlign;

  // If we have an empty base class, try to place it at offset 0.
  if (Base->Class->isEmpty() &&
      (!HasExternalLayout || Offset == CharUnits::Zero()) &&
      EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
    setSize(std::max(getSize(), Layout.getSize()));
    UpdateAlignment(BaseAlign, UnpackedBaseAlign);

    return CharUnits::Zero();
  }

  // The maximum field alignment overrides base align.
  if (!MaxFieldAlignment.isZero()) {
    BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
    UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
  }

  if (!HasExternalLayout) {
    // Round up the current record size to the base's alignment boundary.
    Offset = getDataSize().alignTo(BaseAlign);

    // Try to place the base.
    while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
      Offset += BaseAlign;
  } else {
    bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
    (void)Allowed;
    assert(Allowed && "Base subobject externally placed at overlapping offset");

    if (InferAlignment && Offset < getDataSize().alignTo(BaseAlign)) {
      // The externally-supplied base offset is before the base offset we
      // computed. Assume that the structure is packed.
      Alignment = CharUnits::One();
      InferAlignment = false;
    }
  }

  if (!Base->Class->isEmpty()) {
    // Update the data size.
    setDataSize(Offset + Layout.getNonVirtualSize());

    setSize(std::max(getSize(), getDataSize()));
  } else
    setSize(std::max(getSize(), Offset + Layout.getSize()));

  // Remember max struct/class alignment.
  UpdateAlignment(BaseAlign, UnpackedBaseAlign);

  return Offset;
}

void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
    IsUnion = RD->isUnion();
    IsMsStruct = RD->isMsStruct(Context);
  }

  Packed = D->hasAttr<PackedAttr>();

  // Honor the default struct packing maximum alignment flag.
  if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
    MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
  }

  // mac68k alignment supersedes maximum field alignment and attribute aligned,
  // and forces all structures to have 2-byte alignment. The IBM docs on it
  // allude to additional (more complicated) semantics, especially with regard
  // to bit-fields, but gcc appears not to follow that.
  if (D->hasAttr<AlignMac68kAttr>()) {
    IsMac68kAlign = true;
    MaxFieldAlignment = CharUnits::fromQuantity(2);
    Alignment = CharUnits::fromQuantity(2);
  } else {
    if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
      MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());

    if (unsigned MaxAlign = D->getMaxAlignment())
      UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
  }

  // If there is an external AST source, ask it for the various offsets.
  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
    if (ExternalASTSource *Source = Context.getExternalSource()) {
      UseExternalLayout = Source->layoutRecordType(
          RD, External.Size, External.Align, External.FieldOffsets,
          External.BaseOffsets, External.VirtualBaseOffsets);

      // Update based on external alignment.
      if (UseExternalLayout) {
        if (External.Align > 0) {
          Alignment = Context.toCharUnitsFromBits(External.Align);
        } else {
          // The external source didn't have alignment information; infer it.
          InferAlignment = true;
        }
      }
    }
}

void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
  InitializeLayout(D);
  LayoutFields(D);

  // Finally, round the size of the total struct up to the alignment of the
  // struct itself.
  FinishLayout(D);
}

void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
  InitializeLayout(RD);

  // Lay out the vtable and the non-virtual bases.
  LayoutNonVirtualBases(RD);

  LayoutFields(RD);

  NonVirtualSize = Context.toCharUnitsFromBits(
      llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
  NonVirtualAlignment = Alignment;

  // Lay out the virtual bases and add the primary virtual base offsets.
  LayoutVirtualBases(RD, RD);

  // Finally, round the size of the total struct up to the alignment
  // of the struct itself.
  FinishLayout(RD);

#ifndef NDEBUG
  // Check that we have base offsets for all bases.
  for (const CXXBaseSpecifier &Base : RD->bases()) {
    if (Base.isVirtual())
      continue;

    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();

    assert(Bases.count(BaseDecl) && "Did not find base offset!");
  }

  // And all virtual bases.
  for (const CXXBaseSpecifier &Base : RD->vbases()) {
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();

    assert(VBases.count(BaseDecl) && "Did not find base offset!");
  }
#endif
}

void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
    const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);

    UpdateAlignment(SL.getAlignment());

    // We start laying out ivars not at the end of the superclass
    // structure, but at the next byte following the last field.
    setDataSize(SL.getDataSize());
    setSize(getDataSize());
  }

  InitializeLayout(D);
  // Layout each ivar sequentially.
  for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
       IVD = IVD->getNextIvar())
    LayoutField(IVD, false);

  // Finally, round the size of the total struct up to the alignment of the
  // struct itself.
  FinishLayout(D);
}

void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
  // Layout each field, for now, just sequentially, respecting alignment.  In
  // the future, this will need to be tweakable by targets.
  bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
  bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
  for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
    auto Next(I);
    ++Next;
    LayoutField(*I,
                InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
  }
}

// Rounds the specified size to have it a multiple of the char size.
static uint64_t
roundUpSizeToCharAlignment(uint64_t Size,
                           const ASTContext &Context) {
  uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
  return llvm::alignTo(Size, CharAlignment);
}

void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
                                                    uint64_t TypeSize,
                                                    bool FieldPacked,
                                                    const FieldDecl *D) {
  assert(Context.getLangOpts().CPlusPlus &&
         "Can only have wide bit-fields in C++!");

  // Itanium C++ ABI 2.4:
  //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
  //   sizeof(T')*8 <= n.

  QualType IntegralPODTypes[] = {
    Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
    Context.UnsignedLongTy, Context.UnsignedLongLongTy
  };

  QualType Type;
  for (const QualType &QT : IntegralPODTypes) {
    uint64_t Size = Context.getTypeSize(QT);

    if (Size > FieldSize)
      break;

    Type = QT;
  }
  assert(!Type.isNull() && "Did not find a type!");

  CharUnits TypeAlign = Context.getTypeAlignInChars(Type);

  // We're not going to use any of the unfilled bits in the last byte.
  UnfilledBitsInLastUnit = 0;
  LastBitfieldTypeSize = 0;

  uint64_t FieldOffset;
  uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;

  if (IsUnion) {
    uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
                                                           Context);
    setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
    FieldOffset = 0;
  } else {
    // The bitfield is allocated starting at the next offset aligned
    // appropriately for T', with length n bits.
    FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));

    uint64_t NewSizeInBits = FieldOffset + FieldSize;

    setDataSize(
        llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
    UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
  }

  // Place this field at the current location.
  FieldOffsets.push_back(FieldOffset);

  CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
                    Context.toBits(TypeAlign), FieldPacked, D);

  // Update the size.
  setSize(std::max(getSizeInBits(), getDataSizeInBits()));

  // Remember max struct/class alignment.
  UpdateAlignment(TypeAlign);
}

void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
  bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
  uint64_t FieldSize = D->getBitWidthValue(Context);
  TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
  uint64_t TypeSize = FieldInfo.Width;
  unsigned FieldAlign = FieldInfo.Align;

  // UnfilledBitsInLastUnit is the difference between the end of the
  // last allocated bitfield (i.e. the first bit offset available for
  // bitfields) and the end of the current data size in bits (i.e. the
  // first bit offset available for non-bitfields).  The current data
  // size in bits is always a multiple of the char size; additionally,
  // for ms_struct records it's also a multiple of the
  // LastBitfieldTypeSize (if set).

  // The struct-layout algorithm is dictated by the platform ABI,
  // which in principle could use almost any rules it likes.  In
  // practice, UNIXy targets tend to inherit the algorithm described
  // in the System V generic ABI.  The basic bitfield layout rule in
  // System V is to place bitfields at the next available bit offset
  // where the entire bitfield would fit in an aligned storage unit of
  // the declared type; it's okay if an earlier or later non-bitfield
  // is allocated in the same storage unit.  However, some targets
  // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
  // require this storage unit to be aligned, and therefore always put
  // the bitfield at the next available bit offset.

  // ms_struct basically requests a complete replacement of the
  // platform ABI's struct-layout algorithm, with the high-level goal
  // of duplicating MSVC's layout.  For non-bitfields, this follows
  // the standard algorithm.  The basic bitfield layout rule is to
  // allocate an entire unit of the bitfield's declared type
  // (e.g. 'unsigned long'), then parcel it up among successive
  // bitfields whose declared types have the same size, making a new
  // unit as soon as the last can no longer store the whole value.
  // Since it completely replaces the platform ABI's algorithm,
  // settings like !useBitFieldTypeAlignment() do not apply.

  // A zero-width bitfield forces the use of a new storage unit for
  // later bitfields.  In general, this occurs by rounding up the
  // current size of the struct as if the algorithm were about to
  // place a non-bitfield of the field's formal type.  Usually this
  // does not change the alignment of the struct itself, but it does
  // on some targets (those that useZeroLengthBitfieldAlignment(),
  // e.g. ARM).  In ms_struct layout, zero-width bitfields are
  // ignored unless they follow a non-zero-width bitfield.

  // A field alignment restriction (e.g. from #pragma pack) or
  // specification (e.g. from __attribute__((aligned))) changes the
  // formal alignment of the field.  For System V, this alters the
  // required alignment of the notional storage unit that must contain
  // the bitfield.  For ms_struct, this only affects the placement of
  // new storage units.  In both cases, the effect of #pragma pack is
  // ignored on zero-width bitfields.

  // On System V, a packed field (e.g. from #pragma pack or
  // __attribute__((packed))) always uses the next available bit
  // offset.

  // In an ms_struct struct, the alignment of a fundamental type is
  // always equal to its size.  This is necessary in order to mimic
  // the i386 alignment rules on targets which might not fully align
  // all types (e.g. Darwin PPC32, where alignof(long long) == 4).

  // First, some simple bookkeeping to perform for ms_struct structs.
  if (IsMsStruct) {
    // The field alignment for integer types is always the size.
    FieldAlign = TypeSize;

    // If the previous field was not a bitfield, or was a bitfield
    // with a different storage unit size, or if this field doesn't fit into
    // the current storage unit, we're done with that storage unit.
    if (LastBitfieldTypeSize != TypeSize ||
        UnfilledBitsInLastUnit < FieldSize) {
      // Also, ignore zero-length bitfields after non-bitfields.
      if (!LastBitfieldTypeSize && !FieldSize)
        FieldAlign = 1;

      UnfilledBitsInLastUnit = 0;
      LastBitfieldTypeSize = 0;
    }
  }

  // If the field is wider than its declared type, it follows
  // different rules in all cases.
  if (FieldSize > TypeSize) {
    LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
    return;
  }

  // Compute the next available bit offset.
  uint64_t FieldOffset =
    IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);

  // Handle targets that don't honor bitfield type alignment.
  if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
    // Some such targets do honor it on zero-width bitfields.
    if (FieldSize == 0 &&
        Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
      // The alignment to round up to is the max of the field's natural
      // alignment and a target-specific fixed value (sometimes zero).
      unsigned ZeroLengthBitfieldBoundary =
        Context.getTargetInfo().getZeroLengthBitfieldBoundary();
      FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);

    // If that doesn't apply, just ignore the field alignment.
    } else {
      FieldAlign = 1;
    }
  }

  // Remember the alignment we would have used if the field were not packed.
  unsigned UnpackedFieldAlign = FieldAlign;

  // Ignore the field alignment if the field is packed unless it has zero-size.
  if (!IsMsStruct && FieldPacked && FieldSize != 0)
    FieldAlign = 1;

  // But, if there's an 'aligned' attribute on the field, honor that.
  unsigned ExplicitFieldAlign = D->getMaxAlignment();
  if (ExplicitFieldAlign) {
    FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
    UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
  }

  // But, if there's a #pragma pack in play, that takes precedent over
  // even the 'aligned' attribute, for non-zero-width bitfields.
  unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
  if (!MaxFieldAlignment.isZero() && FieldSize) {
    UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
    if (FieldPacked)
      FieldAlign = UnpackedFieldAlign;
    else
      FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
  }

  // But, ms_struct just ignores all of that in unions, even explicit
  // alignment attributes.
  if (IsMsStruct && IsUnion) {
    FieldAlign = UnpackedFieldAlign = 1;
  }

  // For purposes of diagnostics, we're going to simultaneously
  // compute the field offsets that we would have used if we weren't
  // adding any alignment padding or if the field weren't packed.
  uint64_t UnpaddedFieldOffset = FieldOffset;
  uint64_t UnpackedFieldOffset = FieldOffset;

  // Check if we need to add padding to fit the bitfield within an
  // allocation unit with the right size and alignment.  The rules are
  // somewhat different here for ms_struct structs.
  if (IsMsStruct) {
    // If it's not a zero-width bitfield, and we can fit the bitfield
    // into the active storage unit (and we haven't already decided to
    // start a new storage unit), just do so, regardless of any other
    // other consideration.  Otherwise, round up to the right alignment.
    if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
      FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
      UnpackedFieldOffset =
          llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
      UnfilledBitsInLastUnit = 0;
    }

  } else {
    // #pragma pack, with any value, suppresses the insertion of padding.
    bool AllowPadding = MaxFieldAlignment.isZero();

    // Compute the real offset.
    if (FieldSize == 0 ||
        (AllowPadding &&
         (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
      FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
    } else if (ExplicitFieldAlign &&
               (MaxFieldAlignmentInBits == 0 ||
                ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
               Context.getTargetInfo().useExplicitBitFieldAlignment()) {
      // TODO: figure it out what needs to be done on targets that don't honor
      // bit-field type alignment like ARM APCS ABI.
      FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
    }

    // Repeat the computation for diagnostic purposes.
    if (FieldSize == 0 ||
        (AllowPadding &&
         (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
      UnpackedFieldOffset =
          llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
    else if (ExplicitFieldAlign &&
             (MaxFieldAlignmentInBits == 0 ||
              ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
             Context.getTargetInfo().useExplicitBitFieldAlignment())
      UnpackedFieldOffset =
          llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
  }

  // If we're using external layout, give the external layout a chance
  // to override this information.
  if (UseExternalLayout)
    FieldOffset = updateExternalFieldOffset(D, FieldOffset);

  // Okay, place the bitfield at the calculated offset.
  FieldOffsets.push_back(FieldOffset);

  // Bookkeeping:

  // Anonymous members don't affect the overall record alignment,
  // except on targets where they do.
  if (!IsMsStruct &&
      !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
      !D->getIdentifier())
    FieldAlign = UnpackedFieldAlign = 1;

  // Diagnose differences in layout due to padding or packing.
  if (!UseExternalLayout)
    CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
                      UnpackedFieldAlign, FieldPacked, D);

  // Update DataSize to include the last byte containing (part of) the bitfield.

  // For unions, this is just a max operation, as usual.
  if (IsUnion) {
    // For ms_struct, allocate the entire storage unit --- unless this
    // is a zero-width bitfield, in which case just use a size of 1.
    uint64_t RoundedFieldSize;
    if (IsMsStruct) {
      RoundedFieldSize =
        (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth());

    // Otherwise, allocate just the number of bytes required to store
    // the bitfield.
    } else {
      RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
    }
    setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));

  // For non-zero-width bitfields in ms_struct structs, allocate a new
  // storage unit if necessary.
  } else if (IsMsStruct && FieldSize) {
    // We should have cleared UnfilledBitsInLastUnit in every case
    // where we changed storage units.
    if (!UnfilledBitsInLastUnit) {
      setDataSize(FieldOffset + TypeSize);
      UnfilledBitsInLastUnit = TypeSize;
    }
    UnfilledBitsInLastUnit -= FieldSize;
    LastBitfieldTypeSize = TypeSize;

  // Otherwise, bump the data size up to include the bitfield,
  // including padding up to char alignment, and then remember how
  // bits we didn't use.
  } else {
    uint64_t NewSizeInBits = FieldOffset + FieldSize;
    uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
    setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
    UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;

    // The only time we can get here for an ms_struct is if this is a
    // zero-width bitfield, which doesn't count as anything for the
    // purposes of unfilled bits.
    LastBitfieldTypeSize = 0;
  }

  // Update the size.
  setSize(std::max(getSizeInBits(), getDataSizeInBits()));

  // Remember max struct/class alignment.
  UnadjustedAlignment =
      std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
  UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
                  Context.toCharUnitsFromBits(UnpackedFieldAlign));
}

void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
                                             bool InsertExtraPadding) {
  if (D->isBitField()) {
    LayoutBitField(D);
    return;
  }

  uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;

  // Reset the unfilled bits.
  UnfilledBitsInLastUnit = 0;
  LastBitfieldTypeSize = 0;

  auto *FieldClass = D->getType()->getAsCXXRecordDecl();
  bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
  bool IsOverlappingEmptyField = PotentiallyOverlapping && FieldClass->isEmpty();
  bool FieldPacked = Packed || D->hasAttr<PackedAttr>();

  CharUnits FieldOffset = (IsUnion || IsOverlappingEmptyField)
                              ? CharUnits::Zero()
                              : getDataSize();
  CharUnits FieldSize;
  CharUnits FieldAlign;
  // The amount of this class's dsize occupied by the field.
  // This is equal to FieldSize unless we're permitted to pack
  // into the field's tail padding.
  CharUnits EffectiveFieldSize;

  if (D->getType()->isIncompleteArrayType()) {
    // This is a flexible array member; we can't directly
    // query getTypeInfo about these, so we figure it out here.
    // Flexible array members don't have any size, but they
    // have to be aligned appropriately for their element type.
    EffectiveFieldSize = FieldSize = CharUnits::Zero();
    const ArrayType* ATy = Context.getAsArrayType(D->getType());
    FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
  } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
    unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
    EffectiveFieldSize = FieldSize =
      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
    FieldAlign =
      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
  } else {
    std::pair<CharUnits, CharUnits> FieldInfo =
      Context.getTypeInfoInChars(D->getType());
    EffectiveFieldSize = FieldSize = FieldInfo.first;
    FieldAlign = FieldInfo.second;

    // A potentially-overlapping field occupies its dsize or nvsize, whichever
    // is larger.
    if (PotentiallyOverlapping) {
      const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
      EffectiveFieldSize =
          std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
    }

    if (IsMsStruct) {
      // If MS bitfield layout is required, figure out what type is being
      // laid out and align the field to the width of that type.

      // Resolve all typedefs down to their base type and round up the field
      // alignment if necessary.
      QualType T = Context.getBaseElementType(D->getType());
      if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
        CharUnits TypeSize = Context.getTypeSizeInChars(BTy);

        if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
          assert(
              !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
              "Non PowerOf2 size in MSVC mode");
          // Base types with sizes that aren't a power of two don't work
          // with the layout rules for MS structs. This isn't an issue in
          // MSVC itself since there are no such base data types there.
          // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
          // Any structs involving that data type obviously can't be ABI
          // compatible with MSVC regardless of how it is laid out.

          // Since ms_struct can be mass enabled (via a pragma or via the
          // -mms-bitfields command line parameter), this can trigger for
          // structs that don't actually need MSVC compatibility, so we
          // need to be able to sidestep the ms_struct layout for these types.

          // Since the combination of -mms-bitfields together with structs
          // like max_align_t (which contains a long double) for mingw is
          // quite comon (and GCC handles it silently), just handle it
          // silently there. For other targets that have ms_struct enabled
          // (most probably via a pragma or attribute), trigger a diagnostic
          // that defaults to an error.
          if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
            Diag(D->getLocation(), diag::warn_npot_ms_struct);
        }
        if (TypeSize > FieldAlign &&
            llvm::isPowerOf2_64(TypeSize.getQuantity()))
          FieldAlign = TypeSize;
      }
    }
  }

  // The align if the field is not packed. This is to check if the attribute
  // was unnecessary (-Wpacked).
  CharUnits UnpackedFieldAlign = FieldAlign;
  CharUnits UnpackedFieldOffset = FieldOffset;

  if (FieldPacked)
    FieldAlign = CharUnits::One();
  CharUnits MaxAlignmentInChars =
    Context.toCharUnitsFromBits(D->getMaxAlignment());
  FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
  UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);

  // The maximum field alignment overrides the aligned attribute.
  if (!MaxFieldAlignment.isZero()) {
    FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
    UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
  }

  // Round up the current record size to the field's alignment boundary.
  FieldOffset = FieldOffset.alignTo(FieldAlign);
  UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);

  if (UseExternalLayout) {
    FieldOffset = Context.toCharUnitsFromBits(
                    updateExternalFieldOffset(D, Context.toBits(FieldOffset)));

    if (!IsUnion && EmptySubobjects) {
      // Record the fact that we're placing a field at this offset.
      bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
      (void)Allowed;
      assert(Allowed && "Externally-placed field cannot be placed here");
    }
  } else {
    if (!IsUnion && EmptySubobjects) {
      // Check if we can place the field at this offset.
      while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
        // We couldn't place the field at the offset. Try again at a new offset.
        // We try offset 0 (for an empty field) and then dsize(C) onwards.
        if (FieldOffset == CharUnits::Zero() &&
            getDataSize() != CharUnits::Zero())
          FieldOffset = getDataSize().alignTo(FieldAlign);
        else
          FieldOffset += FieldAlign;
      }
    }
  }

  // Place this field at the current location.
  FieldOffsets.push_back(Context.toBits(FieldOffset));

  if (!UseExternalLayout)
    CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
                      Context.toBits(UnpackedFieldOffset),
                      Context.toBits(UnpackedFieldAlign), FieldPacked, D);

  if (InsertExtraPadding) {
    CharUnits ASanAlignment = CharUnits::fromQuantity(8);
    CharUnits ExtraSizeForAsan = ASanAlignment;
    if (FieldSize % ASanAlignment)
      ExtraSizeForAsan +=
          ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
    EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
  }

  // Reserve space for this field.
  if (!IsOverlappingEmptyField) {
    uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
    if (IsUnion)
      setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
    else
      setDataSize(FieldOffset + EffectiveFieldSize);

    PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
    setSize(std::max(getSizeInBits(), getDataSizeInBits()));
  } else {
    setSize(std::max(getSizeInBits(),
                     (uint64_t)Context.toBits(FieldOffset + FieldSize)));
  }

  // Remember max struct/class alignment.
  UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
  UpdateAlignment(FieldAlign, UnpackedFieldAlign);
}

void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
  // In C++, records cannot be of size 0.
  if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
      // Compatibility with gcc requires a class (pod or non-pod)
      // which is not empty but of size 0; such as having fields of
      // array of zero-length, remains of Size 0
      if (RD->isEmpty())
        setSize(CharUnits::One());
    }
    else
      setSize(CharUnits::One());
  }

  // If we have any remaining field tail padding, include that in the overall
  // size.
  setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));

  // Finally, round the size of the record up to the alignment of the
  // record itself.
  uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
  uint64_t UnpackedSizeInBits =
      llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
  uint64_t RoundedSize =
      llvm::alignTo(getSizeInBits(), Context.toBits(Alignment));

  if (UseExternalLayout) {
    // If we're inferring alignment, and the external size is smaller than
    // our size after we've rounded up to alignment, conservatively set the
    // alignment to 1.
    if (InferAlignment && External.Size < RoundedSize) {
      Alignment = CharUnits::One();
      InferAlignment = false;
    }
    setSize(External.Size);
    return;
  }

  // Set the size to the final size.
  setSize(RoundedSize);

  unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
    // Warn if padding was introduced to the struct/class/union.
    if (getSizeInBits() > UnpaddedSize) {
      unsigned PadSize = getSizeInBits() - UnpaddedSize;
      bool InBits = true;
      if (PadSize % CharBitNum == 0) {
        PadSize = PadSize / CharBitNum;
        InBits = false;
      }
      Diag(RD->getLocation(), diag::warn_padded_struct_size)
          << Context.getTypeDeclType(RD)
          << PadSize
          << (InBits ? 1 : 0); // (byte|bit)
    }

    // Warn if we packed it unnecessarily, when the unpacked alignment is not
    // greater than the one after packing, the size in bits doesn't change and
    // the offset of each field is identical.
    if (Packed && UnpackedAlignment <= Alignment &&
        UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
      Diag(D->getLocation(), diag::warn_unnecessary_packed)
          << Context.getTypeDeclType(RD);
  }
}

void ItaniumRecordLayoutBuilder::UpdateAlignment(
    CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
  // The alignment is not modified when using 'mac68k' alignment or when
  // we have an externally-supplied layout that also provides overall alignment.
  if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
    return;

  if (NewAlignment > Alignment) {
    assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
           "Alignment not a power of 2");
    Alignment = NewAlignment;
  }

  if (UnpackedNewAlignment > UnpackedAlignment) {
    assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
           "Alignment not a power of 2");
    UnpackedAlignment = UnpackedNewAlignment;
  }
}

uint64_t
ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
                                                      uint64_t ComputedOffset) {
  uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);

  if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
    // The externally-supplied field offset is before the field offset we
    // computed. Assume that the structure is packed.
    Alignment = CharUnits::One();
    InferAlignment = false;
  }

  // Use the externally-supplied field offset.
  return ExternalFieldOffset;
}

/// Get diagnostic %select index for tag kind for
/// field padding diagnostic message.
/// WARNING: Indexes apply to particular diagnostics only!
///
/// \returns diagnostic %select index.
static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
  switch (Tag) {
  case TTK_Struct: return 0;
  case TTK_Interface: return 1;
  case TTK_Class: return 2;
  default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
  }
}

void ItaniumRecordLayoutBuilder::CheckFieldPadding(
    uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
    unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
  // We let objc ivars without warning, objc interfaces generally are not used
  // for padding tricks.
  if (isa<ObjCIvarDecl>(D))
    return;

  // Don't warn about structs created without a SourceLocation.  This can
  // be done by clients of the AST, such as codegen.
  if (D->getLocation().isInvalid())
    return;

  unsigned CharBitNum = Context.getTargetInfo().getCharWidth();

  // Warn if padding was introduced to the struct/class.
  if (!IsUnion && Offset > UnpaddedOffset) {
    unsigned PadSize = Offset - UnpaddedOffset;
    bool InBits = true;
    if (PadSize % CharBitNum == 0) {
      PadSize = PadSize / CharBitNum;
      InBits = false;
    }
    if (D->getIdentifier())
      Diag(D->getLocation(), diag::warn_padded_struct_field)
          << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
          << Context.getTypeDeclType(D->getParent())
          << PadSize
          << (InBits ? 1 : 0) // (byte|bit)
          << D->getIdentifier();
    else
      Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
          << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
          << Context.getTypeDeclType(D->getParent())
          << PadSize
          << (InBits ? 1 : 0); // (byte|bit)
 }
 if (isPacked && Offset != UnpackedOffset) {
   HasPackedField = true;
 }
}

static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
                                               const CXXRecordDecl *RD) {
  // If a class isn't polymorphic it doesn't have a key function.
  if (!RD->isPolymorphic())
    return nullptr;

  // A class that is not externally visible doesn't have a key function. (Or
  // at least, there's no point to assigning a key function to such a class;
  // this doesn't affect the ABI.)
  if (!RD->isExternallyVisible())
    return nullptr;

  // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
  // Same behavior as GCC.
  TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
  if (TSK == TSK_ImplicitInstantiation ||
      TSK == TSK_ExplicitInstantiationDeclaration ||
      TSK == TSK_ExplicitInstantiationDefinition)
    return nullptr;

  bool allowInlineFunctions =
    Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();

  for (const CXXMethodDecl *MD : RD->methods()) {
    if (!MD->isVirtual())
      continue;

    if (MD->isPure())
      continue;

    // Ignore implicit member functions, they are always marked as inline, but
    // they don't have a body until they're defined.
    if (MD->isImplicit())
      continue;

    if (MD->isInlineSpecified())
      continue;

    if (MD->hasInlineBody())
      continue;

    // Ignore inline deleted or defaulted functions.
    if (!MD->isUserProvided())
      continue;

    // In certain ABIs, ignore functions with out-of-line inline definitions.
    if (!allowInlineFunctions) {
      const FunctionDecl *Def;
      if (MD->hasBody(Def) && Def->isInlineSpecified())
        continue;
    }

    if (Context.getLangOpts().CUDA) {
      // While compiler may see key method in this TU, during CUDA
      // compilation we should ignore methods that are not accessible
      // on this side of compilation.
      if (Context.getLangOpts().CUDAIsDevice) {
        // In device mode ignore methods without __device__ attribute.
        if (!MD->hasAttr<CUDADeviceAttr>())
          continue;
      } else {
        // In host mode ignore __device__-only methods.
        if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
          continue;
      }
    }

    // If the key function is dllimport but the class isn't, then the class has
    // no key function. The DLL that exports the key function won't export the
    // vtable in this case.
    if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
      return nullptr;

    // We found it.
    return MD;
  }

  return nullptr;
}

DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
                                                   unsigned DiagID) {
  return Context.getDiagnostics().Report(Loc, DiagID);
}

/// Does the target C++ ABI require us to skip over the tail-padding
/// of the given class (considering it as a base class) when allocating
/// objects?
static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
  switch (ABI.getTailPaddingUseRules()) {
  case TargetCXXABI::AlwaysUseTailPadding:
    return false;

  case TargetCXXABI::UseTailPaddingUnlessPOD03:
    // FIXME: To the extent that this is meant to cover the Itanium ABI
    // rules, we should implement the restrictions about over-sized
    // bitfields:
    //
    // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
    //   In general, a type is considered a POD for the purposes of
    //   layout if it is a POD type (in the sense of ISO C++
    //   [basic.types]). However, a POD-struct or POD-union (in the
    //   sense of ISO C++ [class]) with a bitfield member whose
    //   declared width is wider than the declared type of the
    //   bitfield is not a POD for the purpose of layout.  Similarly,
    //   an array type is not a POD for the purpose of layout if the
    //   element type of the array is not a POD for the purpose of
    //   layout.
    //
    //   Where references to the ISO C++ are made in this paragraph,
    //   the Technical Corrigendum 1 version of the standard is
    //   intended.
    return RD->isPOD();

  case TargetCXXABI::UseTailPaddingUnlessPOD11:
    // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
    // but with a lot of abstraction penalty stripped off.  This does
    // assume that these properties are set correctly even in C++98
    // mode; fortunately, that is true because we want to assign
    // consistently semantics to the type-traits intrinsics (or at
    // least as many of them as possible).
    return RD->isTrivial() && RD->isCXX11StandardLayout();
  }

  llvm_unreachable("bad tail-padding use kind");
}

static bool isMsLayout(const ASTContext &Context) {
  return Context.getTargetInfo().getCXXABI().isMicrosoft();
}

// This section contains an implementation of struct layout that is, up to the
// included tests, compatible with cl.exe (2013).  The layout produced is
// significantly different than those produced by the Itanium ABI.  Here we note
// the most important differences.
//
// * The alignment of bitfields in unions is ignored when computing the
//   alignment of the union.
// * The existence of zero-width bitfield that occurs after anything other than
//   a non-zero length bitfield is ignored.
// * There is no explicit primary base for the purposes of layout.  All bases
//   with vfptrs are laid out first, followed by all bases without vfptrs.
// * The Itanium equivalent vtable pointers are split into a vfptr (virtual
//   function pointer) and a vbptr (virtual base pointer).  They can each be
//   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
//   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
//   placed after the lexicographically last non-virtual base.  This placement
//   is always before fields but can be in the middle of the non-virtual bases
//   due to the two-pass layout scheme for non-virtual-bases.
// * Virtual bases sometimes require a 'vtordisp' field that is laid out before
//   the virtual base and is used in conjunction with virtual overrides during
//   construction and destruction.  This is always a 4 byte value and is used as
//   an alternative to constructor vtables.
// * vtordisps are allocated in a block of memory with size and alignment equal
//   to the alignment of the completed structure (before applying __declspec(
//   align())).  The vtordisp always occur at the end of the allocation block,
//   immediately prior to the virtual base.
// * vfptrs are injected after all bases and fields have been laid out.  In
//   order to guarantee proper alignment of all fields, the vfptr injection
//   pushes all bases and fields back by the alignment imposed by those bases
//   and fields.  This can potentially add a significant amount of padding.
//   vfptrs are always injected at offset 0.
// * vbptrs are injected after all bases and fields have been laid out.  In
//   order to guarantee proper alignment of all fields, the vfptr injection
//   pushes all bases and fields back by the alignment imposed by those bases
//   and fields.  This can potentially add a significant amount of padding.
//   vbptrs are injected immediately after the last non-virtual base as
//   lexicographically ordered in the code.  If this site isn't pointer aligned
//   the vbptr is placed at the next properly aligned location.  Enough padding
//   is added to guarantee a fit.
// * The last zero sized non-virtual base can be placed at the end of the
//   struct (potentially aliasing another object), or may alias with the first
//   field, even if they are of the same type.
// * The last zero size virtual base may be placed at the end of the struct
//   potentially aliasing another object.
// * The ABI attempts to avoid aliasing of zero sized bases by adding padding
//   between bases or vbases with specific properties.  The criteria for
//   additional padding between two bases is that the first base is zero sized
//   or ends with a zero sized subobject and the second base is zero sized or
//   trails with a zero sized base or field (sharing of vfptrs can reorder the
//   layout of the so the leading base is not always the first one declared).
//   This rule does take into account fields that are not records, so padding
//   will occur even if the last field is, e.g. an int. The padding added for
//   bases is 1 byte.  The padding added between vbases depends on the alignment
//   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
// * There is no concept of non-virtual alignment, non-virtual alignment and
//   alignment are always identical.
// * There is a distinction between alignment and required alignment.
//   __declspec(align) changes the required alignment of a struct.  This
//   alignment is _always_ obeyed, even in the presence of #pragma pack. A
//   record inherits required alignment from all of its fields and bases.
// * __declspec(align) on bitfields has the effect of changing the bitfield's
//   alignment instead of its required alignment.  This is the only known way
//   to make the alignment of a struct bigger than 8.  Interestingly enough
//   this alignment is also immune to the effects of #pragma pack and can be
//   used to create structures with large alignment under #pragma pack.
//   However, because it does not impact required alignment, such a structure,
//   when used as a field or base, will not be aligned if #pragma pack is
//   still active at the time of use.
//
// Known incompatibilities:
// * all: #pragma pack between fields in a record
// * 2010 and back: If the last field in a record is a bitfield, every object
//   laid out after the record will have extra padding inserted before it.  The
//   extra padding will have size equal to the size of the storage class of the
//   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
//   padding can be avoided by adding a 0 sized bitfield after the non-zero-
//   sized bitfield.
// * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
//   greater due to __declspec(align()) then a second layout phase occurs after
//   The locations of the vf and vb pointers are known.  This layout phase
//   suffers from the "last field is a bitfield" bug in 2010 and results in
//   _every_ field getting padding put in front of it, potentially including the
//   vfptr, leaving the vfprt at a non-zero location which results in a fault if
//   anything tries to read the vftbl.  The second layout phase also treats
//   bitfields as separate entities and gives them each storage rather than
//   packing them.  Additionally, because this phase appears to perform a
//   (an unstable) sort on the members before laying them out and because merged
//   bitfields have the same address, the bitfields end up in whatever order
//   the sort left them in, a behavior we could never hope to replicate.

namespace {
struct MicrosoftRecordLayoutBuilder {
  struct ElementInfo {
    CharUnits Size;
    CharUnits Alignment;
  };
  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
  MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
private:
  MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
  void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
public:
  void layout(const RecordDecl *RD);
  void cxxLayout(const CXXRecordDecl *RD);
  /// Initializes size and alignment and honors some flags.
  void initializeLayout(const RecordDecl *RD);
  /// Initialized C++ layout, compute alignment and virtual alignment and
  /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
  /// laid out.
  void initializeCXXLayout(const CXXRecordDecl *RD);
  void layoutNonVirtualBases(const CXXRecordDecl *RD);
  void layoutNonVirtualBase(const CXXRecordDecl *RD,
                            const CXXRecordDecl *BaseDecl,
                            const ASTRecordLayout &BaseLayout,
                            const ASTRecordLayout *&PreviousBaseLayout);
  void injectVFPtr(const CXXRecordDecl *RD);
  void injectVBPtr(const CXXRecordDecl *RD);
  /// Lays out the fields of the record.  Also rounds size up to
  /// alignment.
  void layoutFields(const RecordDecl *RD);
  void layoutField(const FieldDecl *FD);
  void layoutBitField(const FieldDecl *FD);
  /// Lays out a single zero-width bit-field in the record and handles
  /// special cases associated with zero-width bit-fields.
  void layoutZeroWidthBitField(const FieldDecl *FD);
  void layoutVirtualBases(const CXXRecordDecl *RD);
  void finalizeLayout(const RecordDecl *RD);
  /// Gets the size and alignment of a base taking pragma pack and
  /// __declspec(align) into account.
  ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
  /// Gets the size and alignment of a field taking pragma  pack and
  /// __declspec(align) into account.  It also updates RequiredAlignment as a
  /// side effect because it is most convenient to do so here.
  ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
  /// Places a field at an offset in CharUnits.
  void placeFieldAtOffset(CharUnits FieldOffset) {
    FieldOffsets.push_back(Context.toBits(FieldOffset));
  }
  /// Places a bitfield at a bit offset.
  void placeFieldAtBitOffset(uint64_t FieldOffset) {
    FieldOffsets.push_back(FieldOffset);
  }
  /// Compute the set of virtual bases for which vtordisps are required.
  void computeVtorDispSet(
      llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
      const CXXRecordDecl *RD) const;
  const ASTContext &Context;
  /// The size of the record being laid out.
  CharUnits Size;
  /// The non-virtual size of the record layout.
  CharUnits NonVirtualSize;
  /// The data size of the record layout.
  CharUnits DataSize;
  /// The current alignment of the record layout.
  CharUnits Alignment;
  /// The maximum allowed field alignment. This is set by #pragma pack.
  CharUnits MaxFieldAlignment;
  /// The alignment that this record must obey.  This is imposed by
  /// __declspec(align()) on the record itself or one of its fields or bases.
  CharUnits RequiredAlignment;
  /// The size of the allocation of the currently active bitfield.
  /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
  /// is true.
  CharUnits CurrentBitfieldSize;
  /// Offset to the virtual base table pointer (if one exists).
  CharUnits VBPtrOffset;
  /// Minimum record size possible.
  CharUnits MinEmptyStructSize;
  /// The size and alignment info of a pointer.
  ElementInfo PointerInfo;
  /// The primary base class (if one exists).
  const CXXRecordDecl *PrimaryBase;
  /// The class we share our vb-pointer with.
  const CXXRecordDecl *SharedVBPtrBase;
  /// The collection of field offsets.
  SmallVector<uint64_t, 16> FieldOffsets;
  /// Base classes and their offsets in the record.
  BaseOffsetsMapTy Bases;
  /// virtual base classes and their offsets in the record.
  ASTRecordLayout::VBaseOffsetsMapTy VBases;
  /// The number of remaining bits in our last bitfield allocation.
  /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
  /// true.
  unsigned RemainingBitsInField;
  bool IsUnion : 1;
  /// True if the last field laid out was a bitfield and was not 0
  /// width.
  bool LastFieldIsNonZeroWidthBitfield : 1;
  /// True if the class has its own vftable pointer.
  bool HasOwnVFPtr : 1;
  /// True if the class has a vbtable pointer.
  bool HasVBPtr : 1;
  /// True if the last sub-object within the type is zero sized or the
  /// object itself is zero sized.  This *does not* count members that are not
  /// records.  Only used for MS-ABI.
  bool EndsWithZeroSizedObject : 1;
  /// True if this class is zero sized or first base is zero sized or
  /// has this property.  Only used for MS-ABI.
  bool LeadsWithZeroSizedBase : 1;

  /// True if the external AST source provided a layout for this record.
  bool UseExternalLayout : 1;

  /// The layout provided by the external AST source. Only active if
  /// UseExternalLayout is true.
  ExternalLayout External;
};
} // namespace

MicrosoftRecordLayoutBuilder::ElementInfo
MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
    const ASTRecordLayout &Layout) {
  ElementInfo Info;
  Info.Alignment = Layout.getAlignment();
  // Respect pragma pack.
  if (!MaxFieldAlignment.isZero())
    Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
  // Track zero-sized subobjects here where it's already available.
  EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
  // Respect required alignment, this is necessary because we may have adjusted
  // the alignment in the case of pragam pack.  Note that the required alignment
  // doesn't actually apply to the struct alignment at this point.
  Alignment = std::max(Alignment, Info.Alignment);
  RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
  Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
  Info.Size = Layout.getNonVirtualSize();
  return Info;
}

MicrosoftRecordLayoutBuilder::ElementInfo
MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
    const FieldDecl *FD) {
  // Get the alignment of the field type's natural alignment, ignore any
  // alignment attributes.
  ElementInfo Info;
  std::tie(Info.Size, Info.Alignment) =
      Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
  // Respect align attributes on the field.
  CharUnits FieldRequiredAlignment =
      Context.toCharUnitsFromBits(FD->getMaxAlignment());
  // Respect align attributes on the type.
  if (Context.isAlignmentRequired(FD->getType()))
    FieldRequiredAlignment = std::max(
        Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
  // Respect attributes applied to subobjects of the field.
  if (FD->isBitField())
    // For some reason __declspec align impacts alignment rather than required
    // alignment when it is applied to bitfields.
    Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
  else {
    if (auto RT =
            FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
      auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
      EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
      FieldRequiredAlignment = std::max(FieldRequiredAlignment,
                                        Layout.getRequiredAlignment());
    }
    // Capture required alignment as a side-effect.
    RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
  }
  // Respect pragma pack, attribute pack and declspec align
  if (!MaxFieldAlignment.isZero())
    Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
  if (FD->hasAttr<PackedAttr>())
    Info.Alignment = CharUnits::One();
  Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
  return Info;
}

void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
  // For C record layout, zero-sized records always have size 4.
  MinEmptyStructSize = CharUnits::fromQuantity(4);
  initializeLayout(RD);
  layoutFields(RD);
  DataSize = Size = Size.alignTo(Alignment);
  RequiredAlignment = std::max(
      RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
  finalizeLayout(RD);
}

void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
  // The C++ standard says that empty structs have size 1.
  MinEmptyStructSize = CharUnits::One();
  initializeLayout(RD);
  initializeCXXLayout(RD);
  layoutNonVirtualBases(RD);
  layoutFields(RD);
  injectVBPtr(RD);
  injectVFPtr(RD);
  if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
    Alignment = std::max(Alignment, PointerInfo.Alignment);
  auto RoundingAlignment = Alignment;
  if (!MaxFieldAlignment.isZero())
    RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
  if (!UseExternalLayout)
    Size = Size.alignTo(RoundingAlignment);
  NonVirtualSize = Size;
  RequiredAlignment = std::max(
      RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
  layoutVirtualBases(RD);
  finalizeLayout(RD);
}

void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
  IsUnion = RD->isUnion();
  Size = CharUnits::Zero();
  Alignment = CharUnits::One();
  // In 64-bit mode we always perform an alignment step after laying out vbases.
  // In 32-bit mode we do not.  The check to see if we need to perform alignment
  // checks the RequiredAlignment field and performs alignment if it isn't 0.
  RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
                          ? CharUnits::One()
                          : CharUnits::Zero();
  // Compute the maximum field alignment.
  MaxFieldAlignment = CharUnits::Zero();
  // Honor the default struct packing maximum alignment flag.
  if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
      MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
  // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
  // than the pointer size.
  if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
    unsigned PackedAlignment = MFAA->getAlignment();
    if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
      MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
  }
  // Packed attribute forces max field alignment to be 1.
  if (RD->hasAttr<PackedAttr>())
    MaxFieldAlignment = CharUnits::One();

  // Try to respect the external layout if present.
  UseExternalLayout = false;
  if (ExternalASTSource *Source = Context.getExternalSource())
    UseExternalLayout = Source->layoutRecordType(
        RD, External.Size, External.Align, External.FieldOffsets,
        External.BaseOffsets, External.VirtualBaseOffsets);
}

void
MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
  EndsWithZeroSizedObject = false;
  LeadsWithZeroSizedBase = false;
  HasOwnVFPtr = false;
  HasVBPtr = false;
  PrimaryBase = nullptr;
  SharedVBPtrBase = nullptr;
  // Calculate pointer size and alignment.  These are used for vfptr and vbprt
  // injection.
  PointerInfo.Size =
      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
  PointerInfo.Alignment =
      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
  // Respect pragma pack.
  if (!MaxFieldAlignment.isZero())
    PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
}

void
MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
  // The MS-ABI lays out all bases that contain leading vfptrs before it lays
  // out any bases that do not contain vfptrs.  We implement this as two passes
  // over the bases.  This approach guarantees that the primary base is laid out
  // first.  We use these passes to calculate some additional aggregated
  // information about the bases, such as required alignment and the presence of
  // zero sized members.
  const ASTRecordLayout *PreviousBaseLayout = nullptr;
  // Iterate through the bases and lay out the non-virtual ones.
  for (const CXXBaseSpecifier &Base : RD->bases()) {
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
    // Mark and skip virtual bases.
    if (Base.isVirtual()) {
      HasVBPtr = true;
      continue;
    }
    // Check for a base to share a VBPtr with.
    if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
      SharedVBPtrBase = BaseDecl;
      HasVBPtr = true;
    }
    // Only lay out bases with extendable VFPtrs on the first pass.
    if (!BaseLayout.hasExtendableVFPtr())
      continue;
    // If we don't have a primary base, this one qualifies.
    if (!PrimaryBase) {
      PrimaryBase = BaseDecl;
      LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
    }
    // Lay out the base.
    layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
  }
  // Figure out if we need a fresh VFPtr for this class.
  if (!PrimaryBase && RD->isDynamicClass())
    for (CXXRecordDecl::method_iterator i = RD->method_begin(),
                                        e = RD->method_end();
         !HasOwnVFPtr && i != e; ++i)
      HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
  // If we don't have a primary base then we have a leading object that could
  // itself lead with a zero-sized object, something we track.
  bool CheckLeadingLayout = !PrimaryBase;
  // Iterate through the bases and lay out the non-virtual ones.
  for (const CXXBaseSpecifier &Base : RD->bases()) {
    if (Base.isVirtual())
      continue;
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
    // Only lay out bases without extendable VFPtrs on the second pass.
    if (BaseLayout.hasExtendableVFPtr()) {
      VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
      continue;
    }
    // If this is the first layout, check to see if it leads with a zero sized
    // object.  If it does, so do we.
    if (CheckLeadingLayout) {
      CheckLeadingLayout = false;
      LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
    }
    // Lay out the base.
    layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
    VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
  }
  // Set our VBPtroffset if we know it at this point.
  if (!HasVBPtr)
    VBPtrOffset = CharUnits::fromQuantity(-1);
  else if (SharedVBPtrBase) {
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
    VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
  }
}

static bool recordUsesEBO(const RecordDecl *RD) {
  if (!isa<CXXRecordDecl>(RD))
    return false;
  if (RD->hasAttr<EmptyBasesAttr>())
    return true;
  if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
    // TODO: Double check with the next version of MSVC.
    if (LVA->getVersion() <= LangOptions::MSVC2015)
      return false;
  // TODO: Some later version of MSVC will change the default behavior of the
  // compiler to enable EBO by default.  When this happens, we will need an
  // additional isCompatibleWithMSVC check.
  return false;
}

void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
    const CXXRecordDecl *RD,
    const CXXRecordDecl *BaseDecl,
    const ASTRecordLayout &BaseLayout,
    const ASTRecordLayout *&PreviousBaseLayout) {
  // Insert padding between two bases if the left first one is zero sized or
  // contains a zero sized subobject and the right is zero sized or one leads
  // with a zero sized base.
  bool MDCUsesEBO = recordUsesEBO(RD);
  if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
      BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
    Size++;
  ElementInfo Info = getAdjustedElementInfo(BaseLayout);
  CharUnits BaseOffset;

  // Respect the external AST source base offset, if present.
  bool FoundBase = false;
  if (UseExternalLayout) {
    FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
    if (FoundBase) {
      assert(BaseOffset >= Size && "base offset already allocated");
      Size = BaseOffset;
    }
  }

  if (!FoundBase) {
    if (MDCUsesEBO && BaseDecl->isEmpty()) {
      assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
      BaseOffset = CharUnits::Zero();
    } else {
      // Otherwise, lay the base out at the end of the MDC.
      BaseOffset = Size = Size.alignTo(Info.Alignment);
    }
  }
  Bases.insert(std::make_pair(BaseDecl, BaseOffset));
  Size += BaseLayout.getNonVirtualSize();
  PreviousBaseLayout = &BaseLayout;
}

void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
  LastFieldIsNonZeroWidthBitfield = false;
  for (const FieldDecl *Field : RD->fields())
    layoutField(Field);
}

void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
  if (FD->isBitField()) {
    layoutBitField(FD);
    return;
  }
  LastFieldIsNonZeroWidthBitfield = false;
  ElementInfo Info = getAdjustedElementInfo(FD);
  Alignment = std::max(Alignment, Info.Alignment);
  CharUnits FieldOffset;
  if (UseExternalLayout)
    FieldOffset =
        Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
  else if (IsUnion)
    FieldOffset = CharUnits::Zero();
  else
    FieldOffset = Size.alignTo(Info.Alignment);
  placeFieldAtOffset(FieldOffset);
  Size = std::max(Size, FieldOffset + Info.Size);
}

void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
  unsigned Width = FD->getBitWidthValue(Context);
  if (Width == 0) {
    layoutZeroWidthBitField(FD);
    return;
  }
  ElementInfo Info = getAdjustedElementInfo(FD);
  // Clamp the bitfield to a containable size for the sake of being able
  // to lay them out.  Sema will throw an error.
  if (Width > Context.toBits(Info.Size))
    Width = Context.toBits(Info.Size);
  // Check to see if this bitfield fits into an existing allocation.  Note:
  // MSVC refuses to pack bitfields of formal types with different sizes
  // into the same allocation.
  if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
      CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
    placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
    RemainingBitsInField -= Width;
    return;
  }
  LastFieldIsNonZeroWidthBitfield = true;
  CurrentBitfieldSize = Info.Size;
  if (UseExternalLayout) {
    auto FieldBitOffset = External.getExternalFieldOffset(FD);
    placeFieldAtBitOffset(FieldBitOffset);
    auto NewSize = Context.toCharUnitsFromBits(
        llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
        Context.toBits(Info.Size));
    Size = std::max(Size, NewSize);
    Alignment = std::max(Alignment, Info.Alignment);
  } else if (IsUnion) {
    placeFieldAtOffset(CharUnits::Zero());
    Size = std::max(Size, Info.Size);
    // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
  } else {
    // Allocate a new block of memory and place the bitfield in it.
    CharUnits FieldOffset = Size.alignTo(Info.Alignment);
    placeFieldAtOffset(FieldOffset);
    Size = FieldOffset + Info.Size;
    Alignment = std::max(Alignment, Info.Alignment);
    RemainingBitsInField = Context.toBits(Info.Size) - Width;
  }
}

void
MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
  // Zero-width bitfields are ignored unless they follow a non-zero-width
  // bitfield.
  if (!LastFieldIsNonZeroWidthBitfield) {
    placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
    // TODO: Add a Sema warning that MS ignores alignment for zero
    // sized bitfields that occur after zero-size bitfields or non-bitfields.
    return;
  }
  LastFieldIsNonZeroWidthBitfield = false;
  ElementInfo Info = getAdjustedElementInfo(FD);
  if (IsUnion) {
    placeFieldAtOffset(CharUnits::Zero());
    Size = std::max(Size, Info.Size);
    // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
  } else {
    // Round up the current record size to the field's alignment boundary.
    CharUnits FieldOffset = Size.alignTo(Info.Alignment);
    placeFieldAtOffset(FieldOffset);
    Size = FieldOffset;
    Alignment = std::max(Alignment, Info.Alignment);
  }
}

void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
  if (!HasVBPtr || SharedVBPtrBase)
    return;
  // Inject the VBPointer at the injection site.
  CharUnits InjectionSite = VBPtrOffset;
  // But before we do, make sure it's properly aligned.
  VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
  // Determine where the first field should be laid out after the vbptr.
  CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
  // Shift everything after the vbptr down, unless we're using an external
  // layout.
  if (UseExternalLayout) {
    // It is possible that there were no fields or bases located after vbptr,
    // so the size was not adjusted before.
    if (Size < FieldStart)
      Size = FieldStart;
    return;
  }
  // Make sure that the amount we push the fields back by is a multiple of the
  // alignment.
  CharUnits Offset = (FieldStart - InjectionSite)
                         .alignTo(std::max(RequiredAlignment, Alignment));
  Size += Offset;
  for (uint64_t &FieldOffset : FieldOffsets)
    FieldOffset += Context.toBits(Offset);
  for (BaseOffsetsMapTy::value_type &Base : Bases)
    if (Base.second >= InjectionSite)
      Base.second += Offset;
}

void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
  if (!HasOwnVFPtr)
    return;
  // Make sure that the amount we push the struct back by is a multiple of the
  // alignment.
  CharUnits Offset =
      PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
  // Push back the vbptr, but increase the size of the object and push back
  // regular fields by the offset only if not using external record layout.
  if (HasVBPtr)
    VBPtrOffset += Offset;

  if (UseExternalLayout) {
    // The class may have no bases or fields, but still have a vfptr
    // (e.g. it's an interface class). The size was not correctly set before
    // in this case.
    if (FieldOffsets.empty() && Bases.empty())
      Size += Offset;
    return;
  }

  Size += Offset;

  // If we're using an external layout, the fields offsets have already
  // accounted for this adjustment.
  for (uint64_t &FieldOffset : FieldOffsets)
    FieldOffset += Context.toBits(Offset);
  for (BaseOffsetsMapTy::value_type &Base : Bases)
    Base.second += Offset;
}

void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
  if (!HasVBPtr)
    return;
  // Vtordisps are always 4 bytes (even in 64-bit mode)
  CharUnits VtorDispSize = CharUnits::fromQuantity(4);
  CharUnits VtorDispAlignment = VtorDispSize;
  // vtordisps respect pragma pack.
  if (!MaxFieldAlignment.isZero())
    VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
  // The alignment of the vtordisp is at least the required alignment of the
  // entire record.  This requirement may be present to support vtordisp
  // injection.
  for (const CXXBaseSpecifier &VBase : RD->vbases()) {
    const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
    RequiredAlignment =
        std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
  }
  VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
  // Compute the vtordisp set.
  llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
  computeVtorDispSet(HasVtorDispSet, RD);
  // Iterate through the virtual bases and lay them out.
  const ASTRecordLayout *PreviousBaseLayout = nullptr;
  for (const CXXBaseSpecifier &VBase : RD->vbases()) {
    const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
    bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
    // Insert padding between two bases if the left first one is zero sized or
    // contains a zero sized subobject and the right is zero sized or one leads
    // with a zero sized base.  The padding between virtual bases is 4
    // bytes (in both 32 and 64 bits modes) and always involves rounding up to
    // the required alignment, we don't know why.
    if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
         BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
        HasVtordisp) {
      Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
      Alignment = std::max(VtorDispAlignment, Alignment);
    }
    // Insert the virtual base.
    ElementInfo Info = getAdjustedElementInfo(BaseLayout);
    CharUnits BaseOffset;

    // Respect the external AST source base offset, if present.
    if (UseExternalLayout) {
      if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
        BaseOffset = Size;
    } else
      BaseOffset = Size.alignTo(Info.Alignment);

    assert(BaseOffset >= Size && "base offset already allocated");

    VBases.insert(std::make_pair(BaseDecl,
        ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
    Size = BaseOffset + BaseLayout.getNonVirtualSize();
    PreviousBaseLayout = &BaseLayout;
  }
}

void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
  // Respect required alignment.  Note that in 32-bit mode Required alignment
  // may be 0 and cause size not to be updated.
  DataSize = Size;
  if (!RequiredAlignment.isZero()) {
    Alignment = std::max(Alignment, RequiredAlignment);
    auto RoundingAlignment = Alignment;
    if (!MaxFieldAlignment.isZero())
      RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
    RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
    Size = Size.alignTo(RoundingAlignment);
  }
  if (Size.isZero()) {
    if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
      EndsWithZeroSizedObject = true;
      LeadsWithZeroSizedBase = true;
    }
    // Zero-sized structures have size equal to their alignment if a
    // __declspec(align) came into play.
    if (RequiredAlignment >= MinEmptyStructSize)
      Size = Alignment;
    else
      Size = MinEmptyStructSize;
  }

  if (UseExternalLayout) {
    Size = Context.toCharUnitsFromBits(External.Size);
    if (External.Align)
      Alignment = Context.toCharUnitsFromBits(External.Align);
  }
}

// Recursively walks the non-virtual bases of a class and determines if any of
// them are in the bases with overridden methods set.
static bool
RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
                     BasesWithOverriddenMethods,
                 const CXXRecordDecl *RD) {
  if (BasesWithOverriddenMethods.count(RD))
    return true;
  // If any of a virtual bases non-virtual bases (recursively) requires a
  // vtordisp than so does this virtual base.
  for (const CXXBaseSpecifier &Base : RD->bases())
    if (!Base.isVirtual() &&
        RequiresVtordisp(BasesWithOverriddenMethods,
                         Base.getType()->getAsCXXRecordDecl()))
      return true;
  return false;
}

void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
    llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
    const CXXRecordDecl *RD) const {
  // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
  // vftables.
  if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
    for (const CXXBaseSpecifier &Base : RD->vbases()) {
      const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
      const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
      if (Layout.hasExtendableVFPtr())
        HasVtordispSet.insert(BaseDecl);
    }
    return;
  }

  // If any of our bases need a vtordisp for this type, so do we.  Check our
  // direct bases for vtordisp requirements.
  for (const CXXBaseSpecifier &Base : RD->bases()) {
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
    for (const auto &bi : Layout.getVBaseOffsetsMap())
      if (bi.second.hasVtorDisp())
        HasVtordispSet.insert(bi.first);
  }
  // We don't introduce any additional vtordisps if either:
  // * A user declared constructor or destructor aren't declared.
  // * #pragma vtordisp(0) or the /vd0 flag are in use.
  if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
      RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
    return;
  // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
  // possible for a partially constructed object with virtual base overrides to
  // escape a non-trivial constructor.
  assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
  // Compute a set of base classes which define methods we override.  A virtual
  // base in this set will require a vtordisp.  A virtual base that transitively
  // contains one of these bases as a non-virtual base will also require a
  // vtordisp.
  llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
  llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
  // Seed the working set with our non-destructor, non-pure virtual methods.
  for (const CXXMethodDecl *MD : RD->methods())
    if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
      Work.insert(MD);
  while (!Work.empty()) {
    const CXXMethodDecl *MD = *Work.begin();
    auto MethodRange = MD->overridden_methods();
    // If a virtual method has no-overrides it lives in its parent's vtable.
    if (MethodRange.begin() == MethodRange.end())
      BasesWithOverriddenMethods.insert(MD->getParent());
    else
      Work.insert(MethodRange.begin(), MethodRange.end());
    // We've finished processing this element, remove it from the working set.
    Work.erase(MD);
  }
  // For each of our virtual bases, check if it is in the set of overridden
  // bases or if it transitively contains a non-virtual base that is.
  for (const CXXBaseSpecifier &Base : RD->vbases()) {
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    if (!HasVtordispSet.count(BaseDecl) &&
        RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
      HasVtordispSet.insert(BaseDecl);
  }
}

/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &
ASTContext::getASTRecordLayout(const RecordDecl *D) const {
  // These asserts test different things.  A record has a definition
  // as soon as we begin to parse the definition.  That definition is
  // not a complete definition (which is what isDefinition() tests)
  // until we *finish* parsing the definition.

  if (D->hasExternalLexicalStorage() && !D->getDefinition())
    getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));

  D = D->getDefinition();
  assert(D && "Cannot get layout of forward declarations!");
  assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
  assert(D->isCompleteDefinition() && "Cannot layout type before complete!");

  // Look up this layout, if already laid out, return what we have.
  // Note that we can't save a reference to the entry because this function
  // is recursive.
  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
  if (Entry) return *Entry;

  const ASTRecordLayout *NewEntry = nullptr;

  if (isMsLayout(*this)) {
    MicrosoftRecordLayoutBuilder Builder(*this);
    if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
      Builder.cxxLayout(RD);
      NewEntry = new (*this) ASTRecordLayout(
          *this, Builder.Size, Builder.Alignment, Builder.Alignment,
          Builder.RequiredAlignment,
          Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase,
          Builder.VBPtrOffset, Builder.DataSize, Builder.FieldOffsets,
          Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(),
          Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
          Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
          Builder.Bases, Builder.VBases);
    } else {
      Builder.layout(D);
      NewEntry = new (*this) ASTRecordLayout(
          *this, Builder.Size, Builder.Alignment, Builder.Alignment,
          Builder.RequiredAlignment,
          Builder.Size, Builder.FieldOffsets);
    }
  } else {
    if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
      EmptySubobjectMap EmptySubobjects(*this, RD);
      ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
      Builder.Layout(RD);

      // In certain situations, we are allowed to lay out objects in the
      // tail-padding of base classes.  This is ABI-dependent.
      // FIXME: this should be stored in the record layout.
      bool skipTailPadding =
          mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);

      // FIXME: This should be done in FinalizeLayout.
      CharUnits DataSize =
          skipTailPadding ? Builder.getSize() : Builder.getDataSize();
      CharUnits NonVirtualSize =
          skipTailPadding ? DataSize : Builder.NonVirtualSize;
      NewEntry = new (*this) ASTRecordLayout(
          *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
          /*RequiredAlignment : used by MS-ABI)*/
          Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
          CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
          NonVirtualSize, Builder.NonVirtualAlignment,
          EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
          Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
          Builder.VBases);
    } else {
      ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
      Builder.Layout(D);

      NewEntry = new (*this) ASTRecordLayout(
          *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
          /*RequiredAlignment : used by MS-ABI)*/
          Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
    }
  }

  ASTRecordLayouts[D] = NewEntry;

  if (getLangOpts().DumpRecordLayouts) {
    llvm::outs() << "\n*** Dumping AST Record Layout\n";
    DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
  }

  return *NewEntry;
}

const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
  if (!getTargetInfo().getCXXABI().hasKeyFunctions())
    return nullptr;

  assert(RD->getDefinition() && "Cannot get key function for forward decl!");
  RD = RD->getDefinition();

  // Beware:
  //  1) computing the key function might trigger deserialization, which might
  //     invalidate iterators into KeyFunctions
  //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
  //     invalidate the LazyDeclPtr within the map itself
  LazyDeclPtr Entry = KeyFunctions[RD];
  const Decl *Result =
      Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);

  // Store it back if it changed.
  if (Entry.isOffset() || Entry.isValid() != bool(Result))
    KeyFunctions[RD] = const_cast<Decl*>(Result);

  return cast_or_null<CXXMethodDecl>(Result);
}

void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
  assert(Method == Method->getFirstDecl() &&
         "not working with method declaration from class definition");

  // Look up the cache entry.  Since we're working with the first
  // declaration, its parent must be the class definition, which is
  // the correct key for the KeyFunctions hash.
  const auto &Map = KeyFunctions;
  auto I = Map.find(Method->getParent());

  // If it's not cached, there's nothing to do.
  if (I == Map.end()) return;

  // If it is cached, check whether it's the target method, and if so,
  // remove it from the cache. Note, the call to 'get' might invalidate
  // the iterator and the LazyDeclPtr object within the map.
  LazyDeclPtr Ptr = I->second;
  if (Ptr.get(getExternalSource()) == Method) {
    // FIXME: remember that we did this for module / chained PCH state?
    KeyFunctions.erase(Method->getParent());
  }
}

static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
  const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
  return Layout.getFieldOffset(FD->getFieldIndex());
}

uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
  uint64_t OffsetInBits;
  if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
    OffsetInBits = ::getFieldOffset(*this, FD);
  } else {
    const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);

    OffsetInBits = 0;
    for (const NamedDecl *ND : IFD->chain())
      OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
  }

  return OffsetInBits;
}

uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
                                          const ObjCImplementationDecl *ID,
                                          const ObjCIvarDecl *Ivar) const {
  const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();

  // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
  // in here; it should never be necessary because that should be the lexical
  // decl context for the ivar.

  // If we know have an implementation (and the ivar is in it) then
  // look up in the implementation layout.
  const ASTRecordLayout *RL;
  if (ID && declaresSameEntity(ID->getClassInterface(), Container))
    RL = &getASTObjCImplementationLayout(ID);
  else
    RL = &getASTObjCInterfaceLayout(Container);

  // Compute field index.
  //
  // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
  // implemented. This should be fixed to get the information from the layout
  // directly.
  unsigned Index = 0;

  for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
       IVD; IVD = IVD->getNextIvar()) {
    if (Ivar == IVD)
      break;
    ++Index;
  }
  assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");

  return RL->getFieldOffset(Index);
}

/// getObjCLayout - Get or compute information about the layout of the
/// given interface.
///
/// \param Impl - If given, also include the layout of the interface's
/// implementation. This may differ by including synthesized ivars.
const ASTRecordLayout &
ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
                          const ObjCImplementationDecl *Impl) const {
  // Retrieve the definition
  if (D->hasExternalLexicalStorage() && !D->getDefinition())
    getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
  D = D->getDefinition();
  assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");

  // Look up this layout, if already laid out, return what we have.
  const ObjCContainerDecl *Key =
    Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
    return *Entry;

  // Add in synthesized ivar count if laying out an implementation.
  if (Impl) {
    unsigned SynthCount = CountNonClassIvars(D);
    // If there aren't any synthesized ivars then reuse the interface
    // entry. Note we can't cache this because we simply free all
    // entries later; however we shouldn't look up implementations
    // frequently.
    if (SynthCount == 0)
      return getObjCLayout(D, nullptr);
  }

  ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
  Builder.Layout(D);

  const ASTRecordLayout *NewEntry =
    new (*this) ASTRecordLayout(*this, Builder.getSize(),
                                Builder.Alignment,
                                Builder.UnadjustedAlignment,
                                /*RequiredAlignment : used by MS-ABI)*/
                                Builder.Alignment,
                                Builder.getDataSize(),
                                Builder.FieldOffsets);

  ObjCLayouts[Key] = NewEntry;

  return *NewEntry;
}

static void PrintOffset(raw_ostream &OS,
                        CharUnits Offset, unsigned IndentLevel) {
  OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
  OS.indent(IndentLevel * 2);
}

static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
                                unsigned Begin, unsigned Width,
                                unsigned IndentLevel) {
  llvm::SmallString<10> Buffer;
  {
    llvm::raw_svector_ostream BufferOS(Buffer);
    BufferOS << Offset.getQuantity() << ':';
    if (Width == 0) {
      BufferOS << '-';
    } else {
      BufferOS << Begin << '-' << (Begin + Width - 1);
    }
  }

  OS << llvm::right_justify(Buffer, 10) << " | ";
  OS.indent(IndentLevel * 2);
}

static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
  OS << "           | ";
  OS.indent(IndentLevel * 2);
}

static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
                             const ASTContext &C,
                             CharUnits Offset,
                             unsigned IndentLevel,
                             const char* Description,
                             bool PrintSizeInfo,
                             bool IncludeVirtualBases) {
  const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
  auto CXXRD = dyn_cast<CXXRecordDecl>(RD);

  PrintOffset(OS, Offset, IndentLevel);
  OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
  if (Description)
    OS << ' ' << Description;
  if (CXXRD && CXXRD->isEmpty())
    OS << " (empty)";
  OS << '\n';

  IndentLevel++;

  // Dump bases.
  if (CXXRD) {
    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
    bool HasOwnVFPtr = Layout.hasOwnVFPtr();
    bool HasOwnVBPtr = Layout.hasOwnVBPtr();

    // Vtable pointer.
    if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
      PrintOffset(OS, Offset, IndentLevel);
      OS << '(' << *RD << " vtable pointer)\n";
    } else if (HasOwnVFPtr) {
      PrintOffset(OS, Offset, IndentLevel);
      // vfptr (for Microsoft C++ ABI)
      OS << '(' << *RD << " vftable pointer)\n";
    }

    // Collect nvbases.
    SmallVector<const CXXRecordDecl *, 4> Bases;
    for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
      assert(!Base.getType()->isDependentType() &&
             "Cannot layout class with dependent bases.");
      if (!Base.isVirtual())
        Bases.push_back(Base.getType()->getAsCXXRecordDecl());
    }

    // Sort nvbases by offset.
    llvm::stable_sort(
        Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
          return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
        });

    // Dump (non-virtual) bases
    for (const CXXRecordDecl *Base : Bases) {
      CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
      DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
                       Base == PrimaryBase ? "(primary base)" : "(base)",
                       /*PrintSizeInfo=*/false,
                       /*IncludeVirtualBases=*/false);
    }

    // vbptr (for Microsoft C++ ABI)
    if (HasOwnVBPtr) {
      PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
      OS << '(' << *RD << " vbtable pointer)\n";
    }
  }

  // Dump fields.
  uint64_t FieldNo = 0;
  for (RecordDecl::field_iterator I = RD->field_begin(),
         E = RD->field_end(); I != E; ++I, ++FieldNo) {
    const FieldDecl &Field = **I;
    uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
    CharUnits FieldOffset =
      Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);

    // Recursively dump fields of record type.
    if (auto RT = Field.getType()->getAs<RecordType>()) {
      DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
                       Field.getName().data(),
                       /*PrintSizeInfo=*/false,
                       /*IncludeVirtualBases=*/true);
      continue;
    }

    if (Field.isBitField()) {
      uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
      unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
      unsigned Width = Field.getBitWidthValue(C);
      PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
    } else {
      PrintOffset(OS, FieldOffset, IndentLevel);
    }
    OS << Field.getType().getAsString() << ' ' << Field << '\n';
  }

  // Dump virtual bases.
  if (CXXRD && IncludeVirtualBases) {
    const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
      Layout.getVBaseOffsetsMap();

    for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
      assert(Base.isVirtual() && "Found non-virtual class!");
      const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();

      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);

      if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
        PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
        OS << "(vtordisp for vbase " << *VBase << ")\n";
      }

      DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
                       VBase == Layout.getPrimaryBase() ?
                         "(primary virtual base)" : "(virtual base)",
                       /*PrintSizeInfo=*/false,
                       /*IncludeVirtualBases=*/false);
    }
  }

  if (!PrintSizeInfo) return;

  PrintIndentNoOffset(OS, IndentLevel - 1);
  OS << "[sizeof=" << Layout.getSize().getQuantity();
  if (CXXRD && !isMsLayout(C))
    OS << ", dsize=" << Layout.getDataSize().getQuantity();
  OS << ", align=" << Layout.getAlignment().getQuantity();

  if (CXXRD) {
    OS << ",\n";
    PrintIndentNoOffset(OS, IndentLevel - 1);
    OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
    OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
  }
  OS << "]\n";
}

void ASTContext::DumpRecordLayout(const RecordDecl *RD,
                                  raw_ostream &OS,
                                  bool Simple) const {
  if (!Simple) {
    ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
                       /*PrintSizeInfo*/true,
                       /*IncludeVirtualBases=*/true);
    return;
  }

  // The "simple" format is designed to be parsed by the
  // layout-override testing code.  There shouldn't be any external
  // uses of this format --- when LLDB overrides a layout, it sets up
  // the data structures directly --- so feel free to adjust this as
  // you like as long as you also update the rudimentary parser for it
  // in libFrontend.

  const ASTRecordLayout &Info = getASTRecordLayout(RD);
  OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
  OS << "\nLayout: ";
  OS << "<ASTRecordLayout\n";
  OS << "  Size:" << toBits(Info.getSize()) << "\n";
  if (!isMsLayout(*this))
    OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
  OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
  OS << "  FieldOffsets: [";
  for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
    if (i) OS << ", ";
    OS << Info.getFieldOffset(i);
  }
  OS << "]>\n";
}