reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
//===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
#define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H

#include "CGCall.h"
#include "clang/Basic/ABI.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/IR/Module.h"

namespace llvm {
class FunctionType;
class DataLayout;
class Type;
class LLVMContext;
class StructType;
}

namespace clang {
class ASTContext;
template <typename> class CanQual;
class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXMethodDecl;
class CodeGenOptions;
class FieldDecl;
class FunctionProtoType;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
class PointerType;
class QualType;
class RecordDecl;
class TagDecl;
class TargetInfo;
class Type;
typedef CanQual<Type> CanQualType;
class GlobalDecl;

namespace CodeGen {
class ABIInfo;
class CGCXXABI;
class CGRecordLayout;
class CodeGenModule;
class RequiredArgs;

/// This class organizes the cross-module state that is used while lowering
/// AST types to LLVM types.
class CodeGenTypes {
  CodeGenModule &CGM;
  // Some of this stuff should probably be left on the CGM.
  ASTContext &Context;
  llvm::Module &TheModule;
  const TargetInfo &Target;
  CGCXXABI &TheCXXABI;

  // This should not be moved earlier, since its initialization depends on some
  // of the previous reference members being already initialized
  const ABIInfo &TheABIInfo;

  /// The opaque type map for Objective-C interfaces. All direct
  /// manipulation is done by the runtime interfaces, which are
  /// responsible for coercing to the appropriate type; these opaque
  /// types are never refined.
  llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;

  /// Maps clang struct type with corresponding record layout info.
  llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;

  /// Contains the LLVM IR type for any converted RecordDecl.
  llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;

  /// Hold memoized CGFunctionInfo results.
  llvm::FoldingSet<CGFunctionInfo> FunctionInfos;

  /// This set keeps track of records that we're currently converting
  /// to an IR type.  For example, when converting:
  /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
  /// types will be in this set.
  llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;

  llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;

  /// True if we didn't layout a function due to a being inside
  /// a recursive struct conversion, set this to true.
  bool SkippedLayout;

  SmallVector<const RecordDecl *, 8> DeferredRecords;

  /// This map keeps cache of llvm::Types and maps clang::Type to
  /// corresponding llvm::Type.
  llvm::DenseMap<const Type *, llvm::Type *> TypeCache;

  llvm::SmallSet<const Type *, 8> RecordsWithOpaqueMemberPointers;

  /// Helper for ConvertType.
  llvm::Type *ConvertFunctionTypeInternal(QualType FT);

public:
  CodeGenTypes(CodeGenModule &cgm);
  ~CodeGenTypes();

  const llvm::DataLayout &getDataLayout() const {
    return TheModule.getDataLayout();
  }
  ASTContext &getContext() const { return Context; }
  const ABIInfo &getABIInfo() const { return TheABIInfo; }
  const TargetInfo &getTarget() const { return Target; }
  CGCXXABI &getCXXABI() const { return TheCXXABI; }
  llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
  const CodeGenOptions &getCodeGenOpts() const;

  /// Convert clang calling convention to LLVM callilng convention.
  unsigned ClangCallConvToLLVMCallConv(CallingConv CC);

  /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
  /// qualification.
  CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD);

  /// ConvertType - Convert type T into a llvm::Type.
  llvm::Type *ConvertType(QualType T);

  /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
  /// ConvertType in that it is used to convert to the memory representation for
  /// a type.  For example, the scalar representation for _Bool is i1, but the
  /// memory representation is usually i8 or i32, depending on the target.
  llvm::Type *ConvertTypeForMem(QualType T);

  /// GetFunctionType - Get the LLVM function type for \arg Info.
  llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);

  llvm::FunctionType *GetFunctionType(GlobalDecl GD);

  /// isFuncTypeConvertible - Utility to check whether a function type can
  /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
  /// type).
  bool isFuncTypeConvertible(const FunctionType *FT);
  bool isFuncParamTypeConvertible(QualType Ty);

  /// Determine if a C++ inheriting constructor should have parameters matching
  /// those of its inherited constructor.
  bool inheritingCtorHasParams(const InheritedConstructor &Inherited,
                               CXXCtorType Type);

  /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
  /// given a CXXMethodDecl. If the method to has an incomplete return type,
  /// and/or incomplete argument types, this will return the opaque type.
  llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);

  const CGRecordLayout &getCGRecordLayout(const RecordDecl*);

  /// UpdateCompletedType - When we find the full definition for a TagDecl,
  /// replace the 'opaque' type we previously made for it if applicable.
  void UpdateCompletedType(const TagDecl *TD);

  /// Remove stale types from the type cache when an inheritance model
  /// gets assigned to a class.
  void RefreshTypeCacheForClass(const CXXRecordDecl *RD);

  // The arrangement methods are split into three families:
  //   - those meant to drive the signature and prologue/epilogue
  //     of a function declaration or definition,
  //   - those meant for the computation of the LLVM type for an abstract
  //     appearance of a function, and
  //   - those meant for performing the IR-generation of a call.
  // They differ mainly in how they deal with optional (i.e. variadic)
  // arguments, as well as unprototyped functions.
  //
  // Key points:
  // - The CGFunctionInfo for emitting a specific call site must include
  //   entries for the optional arguments.
  // - The function type used at the call site must reflect the formal
  //   signature of the declaration being called, or else the call will
  //   go awry.
  // - For the most part, unprototyped functions are called by casting to
  //   a formal signature inferred from the specific argument types used
  //   at the call-site.  However, some targets (e.g. x86-64) screw with
  //   this for compatibility reasons.

  const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);

  /// Given a function info for a declaration, return the function info
  /// for a call with the given arguments.
  ///
  /// Often this will be able to simply return the declaration info.
  const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI,
                                    const CallArgList &args);

  /// Free functions are functions that are compatible with an ordinary
  /// C function pointer type.
  const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
  const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
                                                const FunctionType *Ty,
                                                bool ChainCall);
  const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
  const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);

  /// A nullary function is a freestanding function of type 'void ()'.
  /// This method works for both calls and declarations.
  const CGFunctionInfo &arrangeNullaryFunction();

  /// A builtin function is a freestanding function using the default
  /// C conventions.
  const CGFunctionInfo &
  arrangeBuiltinFunctionDeclaration(QualType resultType,
                                    const FunctionArgList &args);
  const CGFunctionInfo &
  arrangeBuiltinFunctionDeclaration(CanQualType resultType,
                                    ArrayRef<CanQualType> argTypes);
  const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType,
                                                   const CallArgList &args);

  /// Objective-C methods are C functions with some implicit parameters.
  const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
  const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
                                                        QualType receiverType);
  const CGFunctionInfo &arrangeUnprototypedObjCMessageSend(
                                                     QualType returnType,
                                                     const CallArgList &args);

  /// Block invocation functions are C functions with an implicit parameter.
  const CGFunctionInfo &arrangeBlockFunctionDeclaration(
                                                 const FunctionProtoType *type,
                                                 const FunctionArgList &args);
  const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
                                                 const FunctionType *type);

  /// C++ methods have some special rules and also have implicit parameters.
  const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
  const CGFunctionInfo &arrangeCXXStructorDeclaration(GlobalDecl GD);
  const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
                                                  const CXXConstructorDecl *D,
                                                  CXXCtorType CtorKind,
                                                  unsigned ExtraPrefixArgs,
                                                  unsigned ExtraSuffixArgs,
                                                  bool PassProtoArgs = true);

  const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
                                             const FunctionProtoType *type,
                                             RequiredArgs required,
                                             unsigned numPrefixArgs);
  const CGFunctionInfo &
  arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD);
  const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
                                                 CXXCtorType CT);
  const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
                                             const FunctionProtoType *FTP,
                                             const CXXMethodDecl *MD);

  /// "Arrange" the LLVM information for a call or type with the given
  /// signature.  This is largely an internal method; other clients
  /// should use one of the above routines, which ultimately defer to
  /// this.
  ///
  /// \param argTypes - must all actually be canonical as params
  const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
                                                bool instanceMethod,
                                                bool chainCall,
                                                ArrayRef<CanQualType> argTypes,
                                                FunctionType::ExtInfo info,
                    ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
                                                RequiredArgs args);

  /// Compute a new LLVM record layout object for the given record.
  CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
                                      llvm::StructType *Ty);

  /// addRecordTypeName - Compute a name from the given record decl with an
  /// optional suffix and name the given LLVM type using it.
  void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
                         StringRef suffix);


public:  // These are internal details of CGT that shouldn't be used externally.
  /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
  llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);

  /// getExpandedTypes - Expand the type \arg Ty into the LLVM
  /// argument types it would be passed as. See ABIArgInfo::Expand.
  void getExpandedTypes(QualType Ty,
                        SmallVectorImpl<llvm::Type *>::iterator &TI);

  /// IsZeroInitializable - Return whether a type can be
  /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
  bool isZeroInitializable(QualType T);

  /// Check if the pointer type can be zero-initialized (in the C++ sense)
  /// with an LLVM zeroinitializer.
  bool isPointerZeroInitializable(QualType T);

  /// IsZeroInitializable - Return whether a record type can be
  /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
  bool isZeroInitializable(const RecordDecl *RD);

  bool isRecordLayoutComplete(const Type *Ty) const;
  bool noRecordsBeingLaidOut() const {
    return RecordsBeingLaidOut.empty();
  }
  bool isRecordBeingLaidOut(const Type *Ty) const {
    return RecordsBeingLaidOut.count(Ty);
  }

};

}  // end namespace CodeGen
}  // end namespace clang

#endif