reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
// stores that can be put together into vector-stores. Next, it attempts to
// construct vectorizable tree using the use-def chains. If a profitable tree
// was found, the SLP vectorizer performs vectorization on the tree.
//
// The pass is inspired by the work described in the paper:
//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Vectorize.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <set>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::PatternMatch;
using namespace slpvectorizer;

#define SV_NAME "slp-vectorizer"
#define DEBUG_TYPE "SLP"

STATISTIC(NumVectorInstructions, "Number of vector instructions generated");

cl::opt<bool>
    llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden,
                              cl::desc("Run the SLP vectorization passes"));

static cl::opt<int>
    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
                     cl::desc("Only vectorize if you gain more than this "
                              "number "));

static cl::opt<bool>
ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
                   cl::desc("Attempt to vectorize horizontal reductions"));

static cl::opt<bool> ShouldStartVectorizeHorAtStore(
    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
    cl::desc(
        "Attempt to vectorize horizontal reductions feeding into a store"));

static cl::opt<int>
MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
    cl::desc("Attempt to vectorize for this register size in bits"));

/// Limits the size of scheduling regions in a block.
/// It avoid long compile times for _very_ large blocks where vector
/// instructions are spread over a wide range.
/// This limit is way higher than needed by real-world functions.
static cl::opt<int>
ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
    cl::desc("Limit the size of the SLP scheduling region per block"));

static cl::opt<int> MinVectorRegSizeOption(
    "slp-min-reg-size", cl::init(128), cl::Hidden,
    cl::desc("Attempt to vectorize for this register size in bits"));

static cl::opt<unsigned> RecursionMaxDepth(
    "slp-recursion-max-depth", cl::init(12), cl::Hidden,
    cl::desc("Limit the recursion depth when building a vectorizable tree"));

static cl::opt<unsigned> MinTreeSize(
    "slp-min-tree-size", cl::init(3), cl::Hidden,
    cl::desc("Only vectorize small trees if they are fully vectorizable"));

static cl::opt<bool>
    ViewSLPTree("view-slp-tree", cl::Hidden,
                cl::desc("Display the SLP trees with Graphviz"));

// Limit the number of alias checks. The limit is chosen so that
// it has no negative effect on the llvm benchmarks.
static const unsigned AliasedCheckLimit = 10;

// Another limit for the alias checks: The maximum distance between load/store
// instructions where alias checks are done.
// This limit is useful for very large basic blocks.
static const unsigned MaxMemDepDistance = 160;

/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
/// regions to be handled.
static const int MinScheduleRegionSize = 16;

/// Predicate for the element types that the SLP vectorizer supports.
///
/// The most important thing to filter here are types which are invalid in LLVM
/// vectors. We also filter target specific types which have absolutely no
/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
/// avoids spending time checking the cost model and realizing that they will
/// be inevitably scalarized.
static bool isValidElementType(Type *Ty) {
  return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
         !Ty->isPPC_FP128Ty();
}

/// \returns true if all of the instructions in \p VL are in the same block or
/// false otherwise.
static bool allSameBlock(ArrayRef<Value *> VL) {
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
  if (!I0)
    return false;
  BasicBlock *BB = I0->getParent();
  for (int i = 1, e = VL.size(); i < e; i++) {
    Instruction *I = dyn_cast<Instruction>(VL[i]);
    if (!I)
      return false;

    if (BB != I->getParent())
      return false;
  }
  return true;
}

/// \returns True if all of the values in \p VL are constants (but not
/// globals/constant expressions).
static bool allConstant(ArrayRef<Value *> VL) {
  // Constant expressions and globals can't be vectorized like normal integer/FP
  // constants.
  for (Value *i : VL)
    if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
      return false;
  return true;
}

/// \returns True if all of the values in \p VL are identical.
static bool isSplat(ArrayRef<Value *> VL) {
  for (unsigned i = 1, e = VL.size(); i < e; ++i)
    if (VL[i] != VL[0])
      return false;
  return true;
}

/// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
static bool isCommutative(Instruction *I) {
  if (auto *IC = dyn_cast<CmpInst>(I))
    return IC->isCommutative();
  return I->isCommutative();
}

/// Checks if the vector of instructions can be represented as a shuffle, like:
/// %x0 = extractelement <4 x i8> %x, i32 0
/// %x3 = extractelement <4 x i8> %x, i32 3
/// %y1 = extractelement <4 x i8> %y, i32 1
/// %y2 = extractelement <4 x i8> %y, i32 2
/// %x0x0 = mul i8 %x0, %x0
/// %x3x3 = mul i8 %x3, %x3
/// %y1y1 = mul i8 %y1, %y1
/// %y2y2 = mul i8 %y2, %y2
/// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
/// ret <4 x i8> %ins4
/// can be transformed into:
/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
///                                                         i32 6>
/// %2 = mul <4 x i8> %1, %1
/// ret <4 x i8> %2
/// We convert this initially to something like:
/// %x0 = extractelement <4 x i8> %x, i32 0
/// %x3 = extractelement <4 x i8> %x, i32 3
/// %y1 = extractelement <4 x i8> %y, i32 1
/// %y2 = extractelement <4 x i8> %y, i32 2
/// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
/// %5 = mul <4 x i8> %4, %4
/// %6 = extractelement <4 x i8> %5, i32 0
/// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
/// %7 = extractelement <4 x i8> %5, i32 1
/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
/// %8 = extractelement <4 x i8> %5, i32 2
/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
/// %9 = extractelement <4 x i8> %5, i32 3
/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
/// ret <4 x i8> %ins4
/// InstCombiner transforms this into a shuffle and vector mul
/// TODO: Can we split off and reuse the shuffle mask detection from
/// TargetTransformInfo::getInstructionThroughput?
static Optional<TargetTransformInfo::ShuffleKind>
isShuffle(ArrayRef<Value *> VL) {
  auto *EI0 = cast<ExtractElementInst>(VL[0]);
  unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
  Value *Vec1 = nullptr;
  Value *Vec2 = nullptr;
  enum ShuffleMode { Unknown, Select, Permute };
  ShuffleMode CommonShuffleMode = Unknown;
  for (unsigned I = 0, E = VL.size(); I < E; ++I) {
    auto *EI = cast<ExtractElementInst>(VL[I]);
    auto *Vec = EI->getVectorOperand();
    // All vector operands must have the same number of vector elements.
    if (Vec->getType()->getVectorNumElements() != Size)
      return None;
    auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
    if (!Idx)
      return None;
    // Undefined behavior if Idx is negative or >= Size.
    if (Idx->getValue().uge(Size))
      continue;
    unsigned IntIdx = Idx->getValue().getZExtValue();
    // We can extractelement from undef vector.
    if (isa<UndefValue>(Vec))
      continue;
    // For correct shuffling we have to have at most 2 different vector operands
    // in all extractelement instructions.
    if (!Vec1 || Vec1 == Vec)
      Vec1 = Vec;
    else if (!Vec2 || Vec2 == Vec)
      Vec2 = Vec;
    else
      return None;
    if (CommonShuffleMode == Permute)
      continue;
    // If the extract index is not the same as the operation number, it is a
    // permutation.
    if (IntIdx != I) {
      CommonShuffleMode = Permute;
      continue;
    }
    CommonShuffleMode = Select;
  }
  // If we're not crossing lanes in different vectors, consider it as blending.
  if (CommonShuffleMode == Select && Vec2)
    return TargetTransformInfo::SK_Select;
  // If Vec2 was never used, we have a permutation of a single vector, otherwise
  // we have permutation of 2 vectors.
  return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
              : TargetTransformInfo::SK_PermuteSingleSrc;
}

namespace {

/// Main data required for vectorization of instructions.
struct InstructionsState {
  /// The very first instruction in the list with the main opcode.
  Value *OpValue = nullptr;

  /// The main/alternate instruction.
  Instruction *MainOp = nullptr;
  Instruction *AltOp = nullptr;

  /// The main/alternate opcodes for the list of instructions.
  unsigned getOpcode() const {
    return MainOp ? MainOp->getOpcode() : 0;
  }

  unsigned getAltOpcode() const {
    return AltOp ? AltOp->getOpcode() : 0;
  }

  /// Some of the instructions in the list have alternate opcodes.
  bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }

  bool isOpcodeOrAlt(Instruction *I) const {
    unsigned CheckedOpcode = I->getOpcode();
    return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
  }

  InstructionsState() = delete;
  InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
      : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
};

} // end anonymous namespace

/// Chooses the correct key for scheduling data. If \p Op has the same (or
/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
/// OpValue.
static Value *isOneOf(const InstructionsState &S, Value *Op) {
  auto *I = dyn_cast<Instruction>(Op);
  if (I && S.isOpcodeOrAlt(I))
    return Op;
  return S.OpValue;
}

/// \returns analysis of the Instructions in \p VL described in
/// InstructionsState, the Opcode that we suppose the whole list
/// could be vectorized even if its structure is diverse.
static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
                                       unsigned BaseIndex = 0) {
  // Make sure these are all Instructions.
  if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
    return InstructionsState(VL[BaseIndex], nullptr, nullptr);

  bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
  bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
  unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
  unsigned AltOpcode = Opcode;
  unsigned AltIndex = BaseIndex;

  // Check for one alternate opcode from another BinaryOperator.
  // TODO - generalize to support all operators (types, calls etc.).
  for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
    unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
    if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
      if (InstOpcode == Opcode || InstOpcode == AltOpcode)
        continue;
      if (Opcode == AltOpcode) {
        AltOpcode = InstOpcode;
        AltIndex = Cnt;
        continue;
      }
    } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
      Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
      Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
      if (Ty0 == Ty1) {
        if (InstOpcode == Opcode || InstOpcode == AltOpcode)
          continue;
        if (Opcode == AltOpcode) {
          AltOpcode = InstOpcode;
          AltIndex = Cnt;
          continue;
        }
      }
    } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
      continue;
    return InstructionsState(VL[BaseIndex], nullptr, nullptr);
  }

  return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
                           cast<Instruction>(VL[AltIndex]));
}

/// \returns true if all of the values in \p VL have the same type or false
/// otherwise.
static bool allSameType(ArrayRef<Value *> VL) {
  Type *Ty = VL[0]->getType();
  for (int i = 1, e = VL.size(); i < e; i++)
    if (VL[i]->getType() != Ty)
      return false;

  return true;
}

/// \returns True if Extract{Value,Element} instruction extracts element Idx.
static Optional<unsigned> getExtractIndex(Instruction *E) {
  unsigned Opcode = E->getOpcode();
  assert((Opcode == Instruction::ExtractElement ||
          Opcode == Instruction::ExtractValue) &&
         "Expected extractelement or extractvalue instruction.");
  if (Opcode == Instruction::ExtractElement) {
    auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
    if (!CI)
      return None;
    return CI->getZExtValue();
  }
  ExtractValueInst *EI = cast<ExtractValueInst>(E);
  if (EI->getNumIndices() != 1)
    return None;
  return *EI->idx_begin();
}

/// \returns True if in-tree use also needs extract. This refers to
/// possible scalar operand in vectorized instruction.
static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
                                    TargetLibraryInfo *TLI) {
  unsigned Opcode = UserInst->getOpcode();
  switch (Opcode) {
  case Instruction::Load: {
    LoadInst *LI = cast<LoadInst>(UserInst);
    return (LI->getPointerOperand() == Scalar);
  }
  case Instruction::Store: {
    StoreInst *SI = cast<StoreInst>(UserInst);
    return (SI->getPointerOperand() == Scalar);
  }
  case Instruction::Call: {
    CallInst *CI = cast<CallInst>(UserInst);
    Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
    for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
      if (hasVectorInstrinsicScalarOpd(ID, i))
        return (CI->getArgOperand(i) == Scalar);
    }
    LLVM_FALLTHROUGH;
  }
  default:
    return false;
  }
}

/// \returns the AA location that is being access by the instruction.
static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return MemoryLocation::get(SI);
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
    return MemoryLocation::get(LI);
  return MemoryLocation();
}

/// \returns True if the instruction is not a volatile or atomic load/store.
static bool isSimple(Instruction *I) {
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
    return LI->isSimple();
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isSimple();
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    return !MI->isVolatile();
  return true;
}

namespace llvm {

namespace slpvectorizer {

/// Bottom Up SLP Vectorizer.
class BoUpSLP {
  struct TreeEntry;
  struct ScheduleData;

public:
  using ValueList = SmallVector<Value *, 8>;
  using InstrList = SmallVector<Instruction *, 16>;
  using ValueSet = SmallPtrSet<Value *, 16>;
  using StoreList = SmallVector<StoreInst *, 8>;
  using ExtraValueToDebugLocsMap =
      MapVector<Value *, SmallVector<Instruction *, 2>>;

  BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
          TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
          DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
          const DataLayout *DL, OptimizationRemarkEmitter *ORE)
      : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
        DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
    CodeMetrics::collectEphemeralValues(F, AC, EphValues);
    // Use the vector register size specified by the target unless overridden
    // by a command-line option.
    // TODO: It would be better to limit the vectorization factor based on
    //       data type rather than just register size. For example, x86 AVX has
    //       256-bit registers, but it does not support integer operations
    //       at that width (that requires AVX2).
    if (MaxVectorRegSizeOption.getNumOccurrences())
      MaxVecRegSize = MaxVectorRegSizeOption;
    else
      MaxVecRegSize = TTI->getRegisterBitWidth(true);

    if (MinVectorRegSizeOption.getNumOccurrences())
      MinVecRegSize = MinVectorRegSizeOption;
    else
      MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
  }

  /// Vectorize the tree that starts with the elements in \p VL.
  /// Returns the vectorized root.
  Value *vectorizeTree();

  /// Vectorize the tree but with the list of externally used values \p
  /// ExternallyUsedValues. Values in this MapVector can be replaced but the
  /// generated extractvalue instructions.
  Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);

  /// \returns the cost incurred by unwanted spills and fills, caused by
  /// holding live values over call sites.
  int getSpillCost() const;

  /// \returns the vectorization cost of the subtree that starts at \p VL.
  /// A negative number means that this is profitable.
  int getTreeCost();

  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
  /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
  void buildTree(ArrayRef<Value *> Roots,
                 ArrayRef<Value *> UserIgnoreLst = None);

  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
  /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
  /// into account (anf updating it, if required) list of externally used
  /// values stored in \p ExternallyUsedValues.
  void buildTree(ArrayRef<Value *> Roots,
                 ExtraValueToDebugLocsMap &ExternallyUsedValues,
                 ArrayRef<Value *> UserIgnoreLst = None);

  /// Clear the internal data structures that are created by 'buildTree'.
  void deleteTree() {
    VectorizableTree.clear();
    ScalarToTreeEntry.clear();
    MustGather.clear();
    ExternalUses.clear();
    NumOpsWantToKeepOrder.clear();
    NumOpsWantToKeepOriginalOrder = 0;
    for (auto &Iter : BlocksSchedules) {
      BlockScheduling *BS = Iter.second.get();
      BS->clear();
    }
    MinBWs.clear();
  }

  unsigned getTreeSize() const { return VectorizableTree.size(); }

  /// Perform LICM and CSE on the newly generated gather sequences.
  void optimizeGatherSequence();

  /// \returns The best order of instructions for vectorization.
  Optional<ArrayRef<unsigned>> bestOrder() const {
    auto I = std::max_element(
        NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
        [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
           const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
          return D1.second < D2.second;
        });
    if (I == NumOpsWantToKeepOrder.end() ||
        I->getSecond() <= NumOpsWantToKeepOriginalOrder)
      return None;

    return makeArrayRef(I->getFirst());
  }

  /// \return The vector element size in bits to use when vectorizing the
  /// expression tree ending at \p V. If V is a store, the size is the width of
  /// the stored value. Otherwise, the size is the width of the largest loaded
  /// value reaching V. This method is used by the vectorizer to calculate
  /// vectorization factors.
  unsigned getVectorElementSize(Value *V) const;

  /// Compute the minimum type sizes required to represent the entries in a
  /// vectorizable tree.
  void computeMinimumValueSizes();

  // \returns maximum vector register size as set by TTI or overridden by cl::opt.
  unsigned getMaxVecRegSize() const {
    return MaxVecRegSize;
  }

  // \returns minimum vector register size as set by cl::opt.
  unsigned getMinVecRegSize() const {
    return MinVecRegSize;
  }

  /// Check if ArrayType or StructType is isomorphic to some VectorType.
  ///
  /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
  unsigned canMapToVector(Type *T, const DataLayout &DL) const;

  /// \returns True if the VectorizableTree is both tiny and not fully
  /// vectorizable. We do not vectorize such trees.
  bool isTreeTinyAndNotFullyVectorizable() const;

  /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
  /// can be load combined in the backend. Load combining may not be allowed in
  /// the IR optimizer, so we do not want to alter the pattern. For example,
  /// partially transforming a scalar bswap() pattern into vector code is
  /// effectively impossible for the backend to undo.
  /// TODO: If load combining is allowed in the IR optimizer, this analysis
  ///       may not be necessary.
  bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const;

  OptimizationRemarkEmitter *getORE() { return ORE; }

  /// This structure holds any data we need about the edges being traversed
  /// during buildTree_rec(). We keep track of:
  /// (i) the user TreeEntry index, and
  /// (ii) the index of the edge.
  struct EdgeInfo {
    EdgeInfo() = default;
    EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
        : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
    /// The user TreeEntry.
    TreeEntry *UserTE = nullptr;
    /// The operand index of the use.
    unsigned EdgeIdx = UINT_MAX;
#ifndef NDEBUG
    friend inline raw_ostream &operator<<(raw_ostream &OS,
                                          const BoUpSLP::EdgeInfo &EI) {
      EI.dump(OS);
      return OS;
    }
    /// Debug print.
    void dump(raw_ostream &OS) const {
      OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
         << " EdgeIdx:" << EdgeIdx << "}";
    }
    LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
#endif
  };

  /// A helper data structure to hold the operands of a vector of instructions.
  /// This supports a fixed vector length for all operand vectors.
  class VLOperands {
    /// For each operand we need (i) the value, and (ii) the opcode that it
    /// would be attached to if the expression was in a left-linearized form.
    /// This is required to avoid illegal operand reordering.
    /// For example:
    /// \verbatim
    ///                         0 Op1
    ///                         |/
    /// Op1 Op2   Linearized    + Op2
    ///   \ /     ---------->   |/
    ///    -                    -
    ///
    /// Op1 - Op2            (0 + Op1) - Op2
    /// \endverbatim
    ///
    /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
    ///
    /// Another way to think of this is to track all the operations across the
    /// path from the operand all the way to the root of the tree and to
    /// calculate the operation that corresponds to this path. For example, the
    /// path from Op2 to the root crosses the RHS of the '-', therefore the
    /// corresponding operation is a '-' (which matches the one in the
    /// linearized tree, as shown above).
    ///
    /// For lack of a better term, we refer to this operation as Accumulated
    /// Path Operation (APO).
    struct OperandData {
      OperandData() = default;
      OperandData(Value *V, bool APO, bool IsUsed)
          : V(V), APO(APO), IsUsed(IsUsed) {}
      /// The operand value.
      Value *V = nullptr;
      /// TreeEntries only allow a single opcode, or an alternate sequence of
      /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
      /// APO. It is set to 'true' if 'V' is attached to an inverse operation
      /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
      /// (e.g., Add/Mul)
      bool APO = false;
      /// Helper data for the reordering function.
      bool IsUsed = false;
    };

    /// During operand reordering, we are trying to select the operand at lane
    /// that matches best with the operand at the neighboring lane. Our
    /// selection is based on the type of value we are looking for. For example,
    /// if the neighboring lane has a load, we need to look for a load that is
    /// accessing a consecutive address. These strategies are summarized in the
    /// 'ReorderingMode' enumerator.
    enum class ReorderingMode {
      Load,     ///< Matching loads to consecutive memory addresses
      Opcode,   ///< Matching instructions based on opcode (same or alternate)
      Constant, ///< Matching constants
      Splat,    ///< Matching the same instruction multiple times (broadcast)
      Failed,   ///< We failed to create a vectorizable group
    };

    using OperandDataVec = SmallVector<OperandData, 2>;

    /// A vector of operand vectors.
    SmallVector<OperandDataVec, 4> OpsVec;

    const DataLayout &DL;
    ScalarEvolution &SE;

    /// \returns the operand data at \p OpIdx and \p Lane.
    OperandData &getData(unsigned OpIdx, unsigned Lane) {
      return OpsVec[OpIdx][Lane];
    }

    /// \returns the operand data at \p OpIdx and \p Lane. Const version.
    const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
      return OpsVec[OpIdx][Lane];
    }

    /// Clears the used flag for all entries.
    void clearUsed() {
      for (unsigned OpIdx = 0, NumOperands = getNumOperands();
           OpIdx != NumOperands; ++OpIdx)
        for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
             ++Lane)
          OpsVec[OpIdx][Lane].IsUsed = false;
    }

    /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
    void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
      std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
    }

    // Search all operands in Ops[*][Lane] for the one that matches best
    // Ops[OpIdx][LastLane] and return its opreand index.
    // If no good match can be found, return None.
    Optional<unsigned>
    getBestOperand(unsigned OpIdx, int Lane, int LastLane,
                   ArrayRef<ReorderingMode> ReorderingModes) {
      unsigned NumOperands = getNumOperands();

      // The operand of the previous lane at OpIdx.
      Value *OpLastLane = getData(OpIdx, LastLane).V;

      // Our strategy mode for OpIdx.
      ReorderingMode RMode = ReorderingModes[OpIdx];

      // The linearized opcode of the operand at OpIdx, Lane.
      bool OpIdxAPO = getData(OpIdx, Lane).APO;

      const unsigned BestScore = 2;
      const unsigned GoodScore = 1;

      // The best operand index and its score.
      // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
      // are using the score to differentiate between the two.
      struct BestOpData {
        Optional<unsigned> Idx = None;
        unsigned Score = 0;
      } BestOp;

      // Iterate through all unused operands and look for the best.
      for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
        // Get the operand at Idx and Lane.
        OperandData &OpData = getData(Idx, Lane);
        Value *Op = OpData.V;
        bool OpAPO = OpData.APO;

        // Skip already selected operands.
        if (OpData.IsUsed)
          continue;

        // Skip if we are trying to move the operand to a position with a
        // different opcode in the linearized tree form. This would break the
        // semantics.
        if (OpAPO != OpIdxAPO)
          continue;

        // Look for an operand that matches the current mode.
        switch (RMode) {
        case ReorderingMode::Load:
          if (isa<LoadInst>(Op)) {
            // Figure out which is left and right, so that we can check for
            // consecutive loads
            bool LeftToRight = Lane > LastLane;
            Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
            Value *OpRight = (LeftToRight) ? Op : OpLastLane;
            if (isConsecutiveAccess(cast<LoadInst>(OpLeft),
                                    cast<LoadInst>(OpRight), DL, SE))
              BestOp.Idx = Idx;
          }
          break;
        case ReorderingMode::Opcode:
          // We accept both Instructions and Undefs, but with different scores.
          if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) &&
               cast<Instruction>(Op)->getOpcode() ==
                   cast<Instruction>(OpLastLane)->getOpcode()) ||
              (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) ||
              isa<UndefValue>(Op)) {
            // An instruction has a higher score than an undef.
            unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
            if (Score > BestOp.Score) {
              BestOp.Idx = Idx;
              BestOp.Score = Score;
            }
          }
          break;
        case ReorderingMode::Constant:
          if (isa<Constant>(Op)) {
            unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
            if (Score > BestOp.Score) {
              BestOp.Idx = Idx;
              BestOp.Score = Score;
            }
          }
          break;
        case ReorderingMode::Splat:
          if (Op == OpLastLane)
            BestOp.Idx = Idx;
          break;
        case ReorderingMode::Failed:
          return None;
        }
      }

      if (BestOp.Idx) {
        getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
        return BestOp.Idx;
      }
      // If we could not find a good match return None.
      return None;
    }

    /// Helper for reorderOperandVecs. \Returns the lane that we should start
    /// reordering from. This is the one which has the least number of operands
    /// that can freely move about.
    unsigned getBestLaneToStartReordering() const {
      unsigned BestLane = 0;
      unsigned Min = UINT_MAX;
      for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
           ++Lane) {
        unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
        if (NumFreeOps < Min) {
          Min = NumFreeOps;
          BestLane = Lane;
        }
      }
      return BestLane;
    }

    /// \Returns the maximum number of operands that are allowed to be reordered
    /// for \p Lane. This is used as a heuristic for selecting the first lane to
    /// start operand reordering.
    unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
      unsigned CntTrue = 0;
      unsigned NumOperands = getNumOperands();
      // Operands with the same APO can be reordered. We therefore need to count
      // how many of them we have for each APO, like this: Cnt[APO] = x.
      // Since we only have two APOs, namely true and false, we can avoid using
      // a map. Instead we can simply count the number of operands that
      // correspond to one of them (in this case the 'true' APO), and calculate
      // the other by subtracting it from the total number of operands.
      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
        if (getData(OpIdx, Lane).APO)
          ++CntTrue;
      unsigned CntFalse = NumOperands - CntTrue;
      return std::max(CntTrue, CntFalse);
    }

    /// Go through the instructions in VL and append their operands.
    void appendOperandsOfVL(ArrayRef<Value *> VL) {
      assert(!VL.empty() && "Bad VL");
      assert((empty() || VL.size() == getNumLanes()) &&
             "Expected same number of lanes");
      assert(isa<Instruction>(VL[0]) && "Expected instruction");
      unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
      OpsVec.resize(NumOperands);
      unsigned NumLanes = VL.size();
      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
        OpsVec[OpIdx].resize(NumLanes);
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
          assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
          // Our tree has just 3 nodes: the root and two operands.
          // It is therefore trivial to get the APO. We only need to check the
          // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
          // RHS operand. The LHS operand of both add and sub is never attached
          // to an inversese operation in the linearized form, therefore its APO
          // is false. The RHS is true only if VL[Lane] is an inverse operation.

          // Since operand reordering is performed on groups of commutative
          // operations or alternating sequences (e.g., +, -), we can safely
          // tell the inverse operations by checking commutativity.
          bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
          bool APO = (OpIdx == 0) ? false : IsInverseOperation;
          OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
                                 APO, false};
        }
      }
    }

    /// \returns the number of operands.
    unsigned getNumOperands() const { return OpsVec.size(); }

    /// \returns the number of lanes.
    unsigned getNumLanes() const { return OpsVec[0].size(); }

    /// \returns the operand value at \p OpIdx and \p Lane.
    Value *getValue(unsigned OpIdx, unsigned Lane) const {
      return getData(OpIdx, Lane).V;
    }

    /// \returns true if the data structure is empty.
    bool empty() const { return OpsVec.empty(); }

    /// Clears the data.
    void clear() { OpsVec.clear(); }

    /// \Returns true if there are enough operands identical to \p Op to fill
    /// the whole vector.
    /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
    bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
      bool OpAPO = getData(OpIdx, Lane).APO;
      for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
        if (Ln == Lane)
          continue;
        // This is set to true if we found a candidate for broadcast at Lane.
        bool FoundCandidate = false;
        for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
          OperandData &Data = getData(OpI, Ln);
          if (Data.APO != OpAPO || Data.IsUsed)
            continue;
          if (Data.V == Op) {
            FoundCandidate = true;
            Data.IsUsed = true;
            break;
          }
        }
        if (!FoundCandidate)
          return false;
      }
      return true;
    }

  public:
    /// Initialize with all the operands of the instruction vector \p RootVL.
    VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
               ScalarEvolution &SE)
        : DL(DL), SE(SE) {
      // Append all the operands of RootVL.
      appendOperandsOfVL(RootVL);
    }

    /// \Returns a value vector with the operands across all lanes for the
    /// opearnd at \p OpIdx.
    ValueList getVL(unsigned OpIdx) const {
      ValueList OpVL(OpsVec[OpIdx].size());
      assert(OpsVec[OpIdx].size() == getNumLanes() &&
             "Expected same num of lanes across all operands");
      for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
        OpVL[Lane] = OpsVec[OpIdx][Lane].V;
      return OpVL;
    }

    // Performs operand reordering for 2 or more operands.
    // The original operands are in OrigOps[OpIdx][Lane].
    // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
    void reorder() {
      unsigned NumOperands = getNumOperands();
      unsigned NumLanes = getNumLanes();
      // Each operand has its own mode. We are using this mode to help us select
      // the instructions for each lane, so that they match best with the ones
      // we have selected so far.
      SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);

      // This is a greedy single-pass algorithm. We are going over each lane
      // once and deciding on the best order right away with no back-tracking.
      // However, in order to increase its effectiveness, we start with the lane
      // that has operands that can move the least. For example, given the
      // following lanes:
      //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
      //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
      //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
      //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
      // we will start at Lane 1, since the operands of the subtraction cannot
      // be reordered. Then we will visit the rest of the lanes in a circular
      // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.

      // Find the first lane that we will start our search from.
      unsigned FirstLane = getBestLaneToStartReordering();

      // Initialize the modes.
      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
        Value *OpLane0 = getValue(OpIdx, FirstLane);
        // Keep track if we have instructions with all the same opcode on one
        // side.
        if (isa<LoadInst>(OpLane0))
          ReorderingModes[OpIdx] = ReorderingMode::Load;
        else if (isa<Instruction>(OpLane0)) {
          // Check if OpLane0 should be broadcast.
          if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
            ReorderingModes[OpIdx] = ReorderingMode::Splat;
          else
            ReorderingModes[OpIdx] = ReorderingMode::Opcode;
        }
        else if (isa<Constant>(OpLane0))
          ReorderingModes[OpIdx] = ReorderingMode::Constant;
        else if (isa<Argument>(OpLane0))
          // Our best hope is a Splat. It may save some cost in some cases.
          ReorderingModes[OpIdx] = ReorderingMode::Splat;
        else
          // NOTE: This should be unreachable.
          ReorderingModes[OpIdx] = ReorderingMode::Failed;
      }

      // If the initial strategy fails for any of the operand indexes, then we
      // perform reordering again in a second pass. This helps avoid assigning
      // high priority to the failed strategy, and should improve reordering for
      // the non-failed operand indexes.
      for (int Pass = 0; Pass != 2; ++Pass) {
        // Skip the second pass if the first pass did not fail.
        bool StrategyFailed = false;
        // Mark all operand data as free to use.
        clearUsed();
        // We keep the original operand order for the FirstLane, so reorder the
        // rest of the lanes. We are visiting the nodes in a circular fashion,
        // using FirstLane as the center point and increasing the radius
        // distance.
        for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
          // Visit the lane on the right and then the lane on the left.
          for (int Direction : {+1, -1}) {
            int Lane = FirstLane + Direction * Distance;
            if (Lane < 0 || Lane >= (int)NumLanes)
              continue;
            int LastLane = Lane - Direction;
            assert(LastLane >= 0 && LastLane < (int)NumLanes &&
                   "Out of bounds");
            // Look for a good match for each operand.
            for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
              // Search for the operand that matches SortedOps[OpIdx][Lane-1].
              Optional<unsigned> BestIdx =
                  getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
              // By not selecting a value, we allow the operands that follow to
              // select a better matching value. We will get a non-null value in
              // the next run of getBestOperand().
              if (BestIdx) {
                // Swap the current operand with the one returned by
                // getBestOperand().
                swap(OpIdx, BestIdx.getValue(), Lane);
              } else {
                // We failed to find a best operand, set mode to 'Failed'.
                ReorderingModes[OpIdx] = ReorderingMode::Failed;
                // Enable the second pass.
                StrategyFailed = true;
              }
            }
          }
        }
        // Skip second pass if the strategy did not fail.
        if (!StrategyFailed)
          break;
      }
    }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
      switch (RMode) {
      case ReorderingMode::Load:
        return "Load";
      case ReorderingMode::Opcode:
        return "Opcode";
      case ReorderingMode::Constant:
        return "Constant";
      case ReorderingMode::Splat:
        return "Splat";
      case ReorderingMode::Failed:
        return "Failed";
      }
      llvm_unreachable("Unimplemented Reordering Type");
    }

    LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
                                                   raw_ostream &OS) {
      return OS << getModeStr(RMode);
    }

    /// Debug print.
    LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
      printMode(RMode, dbgs());
    }

    friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
      return printMode(RMode, OS);
    }

    LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
      const unsigned Indent = 2;
      unsigned Cnt = 0;
      for (const OperandDataVec &OpDataVec : OpsVec) {
        OS << "Operand " << Cnt++ << "\n";
        for (const OperandData &OpData : OpDataVec) {
          OS.indent(Indent) << "{";
          if (Value *V = OpData.V)
            OS << *V;
          else
            OS << "null";
          OS << ", APO:" << OpData.APO << "}\n";
        }
        OS << "\n";
      }
      return OS;
    }

    /// Debug print.
    LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
#endif
  };

  /// Checks if the instruction is marked for deletion.
  bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }

  /// Marks values operands for later deletion by replacing them with Undefs.
  void eraseInstructions(ArrayRef<Value *> AV);

  ~BoUpSLP();

private:
  /// Checks if all users of \p I are the part of the vectorization tree.
  bool areAllUsersVectorized(Instruction *I) const;

  /// \returns the cost of the vectorizable entry.
  int getEntryCost(TreeEntry *E);

  /// This is the recursive part of buildTree.
  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
                     const EdgeInfo &EI);

  /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
  /// be vectorized to use the original vector (or aggregate "bitcast" to a
  /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
  /// returns false, setting \p CurrentOrder to either an empty vector or a
  /// non-identity permutation that allows to reuse extract instructions.
  bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
                       SmallVectorImpl<unsigned> &CurrentOrder) const;

  /// Vectorize a single entry in the tree.
  Value *vectorizeTree(TreeEntry *E);

  /// Vectorize a single entry in the tree, starting in \p VL.
  Value *vectorizeTree(ArrayRef<Value *> VL);

  /// \returns the scalarization cost for this type. Scalarization in this
  /// context means the creation of vectors from a group of scalars.
  int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const;

  /// \returns the scalarization cost for this list of values. Assuming that
  /// this subtree gets vectorized, we may need to extract the values from the
  /// roots. This method calculates the cost of extracting the values.
  int getGatherCost(ArrayRef<Value *> VL) const;

  /// Set the Builder insert point to one after the last instruction in
  /// the bundle
  void setInsertPointAfterBundle(TreeEntry *E);

  /// \returns a vector from a collection of scalars in \p VL.
  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);

  /// \returns whether the VectorizableTree is fully vectorizable and will
  /// be beneficial even the tree height is tiny.
  bool isFullyVectorizableTinyTree() const;

  /// Reorder commutative or alt operands to get better probability of
  /// generating vectorized code.
  static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
                                             SmallVectorImpl<Value *> &Left,
                                             SmallVectorImpl<Value *> &Right,
                                             const DataLayout &DL,
                                             ScalarEvolution &SE);
  struct TreeEntry {
    using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
    TreeEntry(VecTreeTy &Container) : Container(Container) {}

    /// \returns true if the scalars in VL are equal to this entry.
    bool isSame(ArrayRef<Value *> VL) const {
      if (VL.size() == Scalars.size())
        return std::equal(VL.begin(), VL.end(), Scalars.begin());
      return VL.size() == ReuseShuffleIndices.size() &&
             std::equal(
                 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
                 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
    }

    /// A vector of scalars.
    ValueList Scalars;

    /// The Scalars are vectorized into this value. It is initialized to Null.
    Value *VectorizedValue = nullptr;

    /// Do we need to gather this sequence ?
    bool NeedToGather = false;

    /// Does this sequence require some shuffling?
    SmallVector<unsigned, 4> ReuseShuffleIndices;

    /// Does this entry require reordering?
    ArrayRef<unsigned> ReorderIndices;

    /// Points back to the VectorizableTree.
    ///
    /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
    /// to be a pointer and needs to be able to initialize the child iterator.
    /// Thus we need a reference back to the container to translate the indices
    /// to entries.
    VecTreeTy &Container;

    /// The TreeEntry index containing the user of this entry.  We can actually
    /// have multiple users so the data structure is not truly a tree.
    SmallVector<EdgeInfo, 1> UserTreeIndices;

    /// The index of this treeEntry in VectorizableTree.
    int Idx = -1;

  private:
    /// The operands of each instruction in each lane Operands[op_index][lane].
    /// Note: This helps avoid the replication of the code that performs the
    /// reordering of operands during buildTree_rec() and vectorizeTree().
    SmallVector<ValueList, 2> Operands;

    /// The main/alternate instruction.
    Instruction *MainOp = nullptr;
    Instruction *AltOp = nullptr;

  public:
    /// Set this bundle's \p OpIdx'th operand to \p OpVL.
    void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
      if (Operands.size() < OpIdx + 1)
        Operands.resize(OpIdx + 1);
      assert(Operands[OpIdx].size() == 0 && "Already resized?");
      Operands[OpIdx].resize(Scalars.size());
      for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
        Operands[OpIdx][Lane] = OpVL[Lane];
    }

    /// Set the operands of this bundle in their original order.
    void setOperandsInOrder() {
      assert(Operands.empty() && "Already initialized?");
      auto *I0 = cast<Instruction>(Scalars[0]);
      Operands.resize(I0->getNumOperands());
      unsigned NumLanes = Scalars.size();
      for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
           OpIdx != NumOperands; ++OpIdx) {
        Operands[OpIdx].resize(NumLanes);
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
          auto *I = cast<Instruction>(Scalars[Lane]);
          assert(I->getNumOperands() == NumOperands &&
                 "Expected same number of operands");
          Operands[OpIdx][Lane] = I->getOperand(OpIdx);
        }
      }
    }

    /// \returns the \p OpIdx operand of this TreeEntry.
    ValueList &getOperand(unsigned OpIdx) {
      assert(OpIdx < Operands.size() && "Off bounds");
      return Operands[OpIdx];
    }

    /// \returns the number of operands.
    unsigned getNumOperands() const { return Operands.size(); }

    /// \return the single \p OpIdx operand.
    Value *getSingleOperand(unsigned OpIdx) const {
      assert(OpIdx < Operands.size() && "Off bounds");
      assert(!Operands[OpIdx].empty() && "No operand available");
      return Operands[OpIdx][0];
    }

    /// Some of the instructions in the list have alternate opcodes.
    bool isAltShuffle() const {
      return getOpcode() != getAltOpcode();
    }

    bool isOpcodeOrAlt(Instruction *I) const {
      unsigned CheckedOpcode = I->getOpcode();
      return (getOpcode() == CheckedOpcode ||
              getAltOpcode() == CheckedOpcode);
    }

    /// Chooses the correct key for scheduling data. If \p Op has the same (or
    /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
    /// \p OpValue.
    Value *isOneOf(Value *Op) const {
      auto *I = dyn_cast<Instruction>(Op);
      if (I && isOpcodeOrAlt(I))
        return Op;
      return MainOp;
    }

    void setOperations(const InstructionsState &S) {
      MainOp = S.MainOp;
      AltOp = S.AltOp;
    }

    Instruction *getMainOp() const {
      return MainOp;
    }

    Instruction *getAltOp() const {
      return AltOp;
    }

    /// The main/alternate opcodes for the list of instructions.
    unsigned getOpcode() const {
      return MainOp ? MainOp->getOpcode() : 0;
    }

    unsigned getAltOpcode() const {
      return AltOp ? AltOp->getOpcode() : 0;
    }

    /// Update operations state of this entry if reorder occurred.
    bool updateStateIfReorder() {
      if (ReorderIndices.empty())
        return false;
      InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
      setOperations(S);
      return true;
    }

#ifndef NDEBUG
    /// Debug printer.
    LLVM_DUMP_METHOD void dump() const {
      dbgs() << Idx << ".\n";
      for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
        dbgs() << "Operand " << OpI << ":\n";
        for (const Value *V : Operands[OpI])
          dbgs().indent(2) << *V << "\n";
      }
      dbgs() << "Scalars: \n";
      for (Value *V : Scalars)
        dbgs().indent(2) << *V << "\n";
      dbgs() << "NeedToGather: " << NeedToGather << "\n";
      dbgs() << "MainOp: " << *MainOp << "\n";
      dbgs() << "AltOp: " << *AltOp << "\n";
      dbgs() << "VectorizedValue: ";
      if (VectorizedValue)
        dbgs() << *VectorizedValue;
      else
        dbgs() << "NULL";
      dbgs() << "\n";
      dbgs() << "ReuseShuffleIndices: ";
      if (ReuseShuffleIndices.empty())
        dbgs() << "Emtpy";
      else
        for (unsigned ReuseIdx : ReuseShuffleIndices)
          dbgs() << ReuseIdx << ", ";
      dbgs() << "\n";
      dbgs() << "ReorderIndices: ";
      for (unsigned ReorderIdx : ReorderIndices)
        dbgs() << ReorderIdx << ", ";
      dbgs() << "\n";
      dbgs() << "UserTreeIndices: ";
      for (const auto &EInfo : UserTreeIndices)
        dbgs() << EInfo << ", ";
      dbgs() << "\n";
    }
#endif
  };

  /// Create a new VectorizableTree entry.
  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
                          const InstructionsState &S,
                          const EdgeInfo &UserTreeIdx,
                          ArrayRef<unsigned> ReuseShuffleIndices = None,
                          ArrayRef<unsigned> ReorderIndices = None) {
    bool Vectorized = (bool)Bundle;
    VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
    TreeEntry *Last = VectorizableTree.back().get();
    Last->Idx = VectorizableTree.size() - 1;
    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
    Last->NeedToGather = !Vectorized;
    Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
                                     ReuseShuffleIndices.end());
    Last->ReorderIndices = ReorderIndices;
    Last->setOperations(S);
    if (Vectorized) {
      for (int i = 0, e = VL.size(); i != e; ++i) {
        assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
        ScalarToTreeEntry[VL[i]] = Last;
      }
      // Update the scheduler bundle to point to this TreeEntry.
      unsigned Lane = 0;
      for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
           BundleMember = BundleMember->NextInBundle) {
        BundleMember->TE = Last;
        BundleMember->Lane = Lane;
        ++Lane;
      }
      assert((!Bundle.getValue() || Lane == VL.size()) &&
             "Bundle and VL out of sync");
    } else {
      MustGather.insert(VL.begin(), VL.end());
    }

    if (UserTreeIdx.UserTE)
      Last->UserTreeIndices.push_back(UserTreeIdx);

    return Last;
  }

  /// -- Vectorization State --
  /// Holds all of the tree entries.
  TreeEntry::VecTreeTy VectorizableTree;

#ifndef NDEBUG
  /// Debug printer.
  LLVM_DUMP_METHOD void dumpVectorizableTree() const {
    for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
      VectorizableTree[Id]->dump();
      dbgs() << "\n";
    }
  }
#endif

  TreeEntry *getTreeEntry(Value *V) {
    auto I = ScalarToTreeEntry.find(V);
    if (I != ScalarToTreeEntry.end())
      return I->second;
    return nullptr;
  }

  const TreeEntry *getTreeEntry(Value *V) const {
    auto I = ScalarToTreeEntry.find(V);
    if (I != ScalarToTreeEntry.end())
      return I->second;
    return nullptr;
  }

  /// Maps a specific scalar to its tree entry.
  SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;

  /// A list of scalars that we found that we need to keep as scalars.
  ValueSet MustGather;

  /// This POD struct describes one external user in the vectorized tree.
  struct ExternalUser {
    ExternalUser(Value *S, llvm::User *U, int L)
        : Scalar(S), User(U), Lane(L) {}

    // Which scalar in our function.
    Value *Scalar;

    // Which user that uses the scalar.
    llvm::User *User;

    // Which lane does the scalar belong to.
    int Lane;
  };
  using UserList = SmallVector<ExternalUser, 16>;

  /// Checks if two instructions may access the same memory.
  ///
  /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
  /// is invariant in the calling loop.
  bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
                 Instruction *Inst2) {
    // First check if the result is already in the cache.
    AliasCacheKey key = std::make_pair(Inst1, Inst2);
    Optional<bool> &result = AliasCache[key];
    if (result.hasValue()) {
      return result.getValue();
    }
    MemoryLocation Loc2 = getLocation(Inst2, AA);
    bool aliased = true;
    if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
      // Do the alias check.
      aliased = AA->alias(Loc1, Loc2);
    }
    // Store the result in the cache.
    result = aliased;
    return aliased;
  }

  using AliasCacheKey = std::pair<Instruction *, Instruction *>;

  /// Cache for alias results.
  /// TODO: consider moving this to the AliasAnalysis itself.
  DenseMap<AliasCacheKey, Optional<bool>> AliasCache;

  /// Removes an instruction from its block and eventually deletes it.
  /// It's like Instruction::eraseFromParent() except that the actual deletion
  /// is delayed until BoUpSLP is destructed.
  /// This is required to ensure that there are no incorrect collisions in the
  /// AliasCache, which can happen if a new instruction is allocated at the
  /// same address as a previously deleted instruction.
  void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
    auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
    It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
  }

  /// Temporary store for deleted instructions. Instructions will be deleted
  /// eventually when the BoUpSLP is destructed.
  DenseMap<Instruction *, bool> DeletedInstructions;

  /// A list of values that need to extracted out of the tree.
  /// This list holds pairs of (Internal Scalar : External User). External User
  /// can be nullptr, it means that this Internal Scalar will be used later,
  /// after vectorization.
  UserList ExternalUses;

  /// Values used only by @llvm.assume calls.
  SmallPtrSet<const Value *, 32> EphValues;

  /// Holds all of the instructions that we gathered.
  SetVector<Instruction *> GatherSeq;

  /// A list of blocks that we are going to CSE.
  SetVector<BasicBlock *> CSEBlocks;

  /// Contains all scheduling relevant data for an instruction.
  /// A ScheduleData either represents a single instruction or a member of an
  /// instruction bundle (= a group of instructions which is combined into a
  /// vector instruction).
  struct ScheduleData {
    // The initial value for the dependency counters. It means that the
    // dependencies are not calculated yet.
    enum { InvalidDeps = -1 };

    ScheduleData() = default;

    void init(int BlockSchedulingRegionID, Value *OpVal) {
      FirstInBundle = this;
      NextInBundle = nullptr;
      NextLoadStore = nullptr;
      IsScheduled = false;
      SchedulingRegionID = BlockSchedulingRegionID;
      UnscheduledDepsInBundle = UnscheduledDeps;
      clearDependencies();
      OpValue = OpVal;
      TE = nullptr;
      Lane = -1;
    }

    /// Returns true if the dependency information has been calculated.
    bool hasValidDependencies() const { return Dependencies != InvalidDeps; }

    /// Returns true for single instructions and for bundle representatives
    /// (= the head of a bundle).
    bool isSchedulingEntity() const { return FirstInBundle == this; }

    /// Returns true if it represents an instruction bundle and not only a
    /// single instruction.
    bool isPartOfBundle() const {
      return NextInBundle != nullptr || FirstInBundle != this;
    }

    /// Returns true if it is ready for scheduling, i.e. it has no more
    /// unscheduled depending instructions/bundles.
    bool isReady() const {
      assert(isSchedulingEntity() &&
             "can't consider non-scheduling entity for ready list");
      return UnscheduledDepsInBundle == 0 && !IsScheduled;
    }

    /// Modifies the number of unscheduled dependencies, also updating it for
    /// the whole bundle.
    int incrementUnscheduledDeps(int Incr) {
      UnscheduledDeps += Incr;
      return FirstInBundle->UnscheduledDepsInBundle += Incr;
    }

    /// Sets the number of unscheduled dependencies to the number of
    /// dependencies.
    void resetUnscheduledDeps() {
      incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
    }

    /// Clears all dependency information.
    void clearDependencies() {
      Dependencies = InvalidDeps;
      resetUnscheduledDeps();
      MemoryDependencies.clear();
    }

    void dump(raw_ostream &os) const {
      if (!isSchedulingEntity()) {
        os << "/ " << *Inst;
      } else if (NextInBundle) {
        os << '[' << *Inst;
        ScheduleData *SD = NextInBundle;
        while (SD) {
          os << ';' << *SD->Inst;
          SD = SD->NextInBundle;
        }
        os << ']';
      } else {
        os << *Inst;
      }
    }

    Instruction *Inst = nullptr;

    /// Points to the head in an instruction bundle (and always to this for
    /// single instructions).
    ScheduleData *FirstInBundle = nullptr;

    /// Single linked list of all instructions in a bundle. Null if it is a
    /// single instruction.
    ScheduleData *NextInBundle = nullptr;

    /// Single linked list of all memory instructions (e.g. load, store, call)
    /// in the block - until the end of the scheduling region.
    ScheduleData *NextLoadStore = nullptr;

    /// The dependent memory instructions.
    /// This list is derived on demand in calculateDependencies().
    SmallVector<ScheduleData *, 4> MemoryDependencies;

    /// This ScheduleData is in the current scheduling region if this matches
    /// the current SchedulingRegionID of BlockScheduling.
    int SchedulingRegionID = 0;

    /// Used for getting a "good" final ordering of instructions.
    int SchedulingPriority = 0;

    /// The number of dependencies. Constitutes of the number of users of the
    /// instruction plus the number of dependent memory instructions (if any).
    /// This value is calculated on demand.
    /// If InvalidDeps, the number of dependencies is not calculated yet.
    int Dependencies = InvalidDeps;

    /// The number of dependencies minus the number of dependencies of scheduled
    /// instructions. As soon as this is zero, the instruction/bundle gets ready
    /// for scheduling.
    /// Note that this is negative as long as Dependencies is not calculated.
    int UnscheduledDeps = InvalidDeps;

    /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
    /// single instructions.
    int UnscheduledDepsInBundle = InvalidDeps;

    /// True if this instruction is scheduled (or considered as scheduled in the
    /// dry-run).
    bool IsScheduled = false;

    /// Opcode of the current instruction in the schedule data.
    Value *OpValue = nullptr;

    /// The TreeEntry that this instruction corresponds to.
    TreeEntry *TE = nullptr;

    /// The lane of this node in the TreeEntry.
    int Lane = -1;
  };

#ifndef NDEBUG
  friend inline raw_ostream &operator<<(raw_ostream &os,
                                        const BoUpSLP::ScheduleData &SD) {
    SD.dump(os);
    return os;
  }
#endif

  friend struct GraphTraits<BoUpSLP *>;
  friend struct DOTGraphTraits<BoUpSLP *>;

  /// Contains all scheduling data for a basic block.
  struct BlockScheduling {
    BlockScheduling(BasicBlock *BB)
        : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}

    void clear() {
      ReadyInsts.clear();
      ScheduleStart = nullptr;
      ScheduleEnd = nullptr;
      FirstLoadStoreInRegion = nullptr;
      LastLoadStoreInRegion = nullptr;

      // Reduce the maximum schedule region size by the size of the
      // previous scheduling run.
      ScheduleRegionSizeLimit -= ScheduleRegionSize;
      if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
        ScheduleRegionSizeLimit = MinScheduleRegionSize;
      ScheduleRegionSize = 0;

      // Make a new scheduling region, i.e. all existing ScheduleData is not
      // in the new region yet.
      ++SchedulingRegionID;
    }

    ScheduleData *getScheduleData(Value *V) {
      ScheduleData *SD = ScheduleDataMap[V];
      if (SD && SD->SchedulingRegionID == SchedulingRegionID)
        return SD;
      return nullptr;
    }

    ScheduleData *getScheduleData(Value *V, Value *Key) {
      if (V == Key)
        return getScheduleData(V);
      auto I = ExtraScheduleDataMap.find(V);
      if (I != ExtraScheduleDataMap.end()) {
        ScheduleData *SD = I->second[Key];
        if (SD && SD->SchedulingRegionID == SchedulingRegionID)
          return SD;
      }
      return nullptr;
    }

    bool isInSchedulingRegion(ScheduleData *SD) {
      return SD->SchedulingRegionID == SchedulingRegionID;
    }

    /// Marks an instruction as scheduled and puts all dependent ready
    /// instructions into the ready-list.
    template <typename ReadyListType>
    void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
      SD->IsScheduled = true;
      LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");

      ScheduleData *BundleMember = SD;
      while (BundleMember) {
        if (BundleMember->Inst != BundleMember->OpValue) {
          BundleMember = BundleMember->NextInBundle;
          continue;
        }
        // Handle the def-use chain dependencies.

        // Decrement the unscheduled counter and insert to ready list if ready.
        auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
          doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
            if (OpDef && OpDef->hasValidDependencies() &&
                OpDef->incrementUnscheduledDeps(-1) == 0) {
              // There are no more unscheduled dependencies after
              // decrementing, so we can put the dependent instruction
              // into the ready list.
              ScheduleData *DepBundle = OpDef->FirstInBundle;
              assert(!DepBundle->IsScheduled &&
                     "already scheduled bundle gets ready");
              ReadyList.insert(DepBundle);
              LLVM_DEBUG(dbgs()
                         << "SLP:    gets ready (def): " << *DepBundle << "\n");
            }
          });
        };

        // If BundleMember is a vector bundle, its operands may have been
        // reordered duiring buildTree(). We therefore need to get its operands
        // through the TreeEntry.
        if (TreeEntry *TE = BundleMember->TE) {
          int Lane = BundleMember->Lane;
          assert(Lane >= 0 && "Lane not set");
          for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
               OpIdx != NumOperands; ++OpIdx)
            if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
              DecrUnsched(I);
        } else {
          // If BundleMember is a stand-alone instruction, no operand reordering
          // has taken place, so we directly access its operands.
          for (Use &U : BundleMember->Inst->operands())
            if (auto *I = dyn_cast<Instruction>(U.get()))
              DecrUnsched(I);
        }
        // Handle the memory dependencies.
        for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
          if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
            // There are no more unscheduled dependencies after decrementing,
            // so we can put the dependent instruction into the ready list.
            ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
            assert(!DepBundle->IsScheduled &&
                   "already scheduled bundle gets ready");
            ReadyList.insert(DepBundle);
            LLVM_DEBUG(dbgs()
                       << "SLP:    gets ready (mem): " << *DepBundle << "\n");
          }
        }
        BundleMember = BundleMember->NextInBundle;
      }
    }

    void doForAllOpcodes(Value *V,
                         function_ref<void(ScheduleData *SD)> Action) {
      if (ScheduleData *SD = getScheduleData(V))
        Action(SD);
      auto I = ExtraScheduleDataMap.find(V);
      if (I != ExtraScheduleDataMap.end())
        for (auto &P : I->second)
          if (P.second->SchedulingRegionID == SchedulingRegionID)
            Action(P.second);
    }

    /// Put all instructions into the ReadyList which are ready for scheduling.
    template <typename ReadyListType>
    void initialFillReadyList(ReadyListType &ReadyList) {
      for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
        doForAllOpcodes(I, [&](ScheduleData *SD) {
          if (SD->isSchedulingEntity() && SD->isReady()) {
            ReadyList.insert(SD);
            LLVM_DEBUG(dbgs()
                       << "SLP:    initially in ready list: " << *I << "\n");
          }
        });
      }
    }

    /// Checks if a bundle of instructions can be scheduled, i.e. has no
    /// cyclic dependencies. This is only a dry-run, no instructions are
    /// actually moved at this stage.
    /// \returns the scheduling bundle. The returned Optional value is non-None
    /// if \p VL is allowed to be scheduled.
    Optional<ScheduleData *>
    tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
                      const InstructionsState &S);

    /// Un-bundles a group of instructions.
    void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);

    /// Allocates schedule data chunk.
    ScheduleData *allocateScheduleDataChunks();

    /// Extends the scheduling region so that V is inside the region.
    /// \returns true if the region size is within the limit.
    bool extendSchedulingRegion(Value *V, const InstructionsState &S);

    /// Initialize the ScheduleData structures for new instructions in the
    /// scheduling region.
    void initScheduleData(Instruction *FromI, Instruction *ToI,
                          ScheduleData *PrevLoadStore,
                          ScheduleData *NextLoadStore);

    /// Updates the dependency information of a bundle and of all instructions/
    /// bundles which depend on the original bundle.
    void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
                               BoUpSLP *SLP);

    /// Sets all instruction in the scheduling region to un-scheduled.
    void resetSchedule();

    BasicBlock *BB;

    /// Simple memory allocation for ScheduleData.
    std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;

    /// The size of a ScheduleData array in ScheduleDataChunks.
    int ChunkSize;

    /// The allocator position in the current chunk, which is the last entry
    /// of ScheduleDataChunks.
    int ChunkPos;

    /// Attaches ScheduleData to Instruction.
    /// Note that the mapping survives during all vectorization iterations, i.e.
    /// ScheduleData structures are recycled.
    DenseMap<Value *, ScheduleData *> ScheduleDataMap;

    /// Attaches ScheduleData to Instruction with the leading key.
    DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
        ExtraScheduleDataMap;

    struct ReadyList : SmallVector<ScheduleData *, 8> {
      void insert(ScheduleData *SD) { push_back(SD); }
    };

    /// The ready-list for scheduling (only used for the dry-run).
    ReadyList ReadyInsts;

    /// The first instruction of the scheduling region.
    Instruction *ScheduleStart = nullptr;

    /// The first instruction _after_ the scheduling region.
    Instruction *ScheduleEnd = nullptr;

    /// The first memory accessing instruction in the scheduling region
    /// (can be null).
    ScheduleData *FirstLoadStoreInRegion = nullptr;

    /// The last memory accessing instruction in the scheduling region
    /// (can be null).
    ScheduleData *LastLoadStoreInRegion = nullptr;

    /// The current size of the scheduling region.
    int ScheduleRegionSize = 0;

    /// The maximum size allowed for the scheduling region.
    int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;

    /// The ID of the scheduling region. For a new vectorization iteration this
    /// is incremented which "removes" all ScheduleData from the region.
    // Make sure that the initial SchedulingRegionID is greater than the
    // initial SchedulingRegionID in ScheduleData (which is 0).
    int SchedulingRegionID = 1;
  };

  /// Attaches the BlockScheduling structures to basic blocks.
  MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;

  /// Performs the "real" scheduling. Done before vectorization is actually
  /// performed in a basic block.
  void scheduleBlock(BlockScheduling *BS);

  /// List of users to ignore during scheduling and that don't need extracting.
  ArrayRef<Value *> UserIgnoreList;

  using OrdersType = SmallVector<unsigned, 4>;
  /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
  /// sorted SmallVectors of unsigned.
  struct OrdersTypeDenseMapInfo {
    static OrdersType getEmptyKey() {
      OrdersType V;
      V.push_back(~1U);
      return V;
    }

    static OrdersType getTombstoneKey() {
      OrdersType V;
      V.push_back(~2U);
      return V;
    }

    static unsigned getHashValue(const OrdersType &V) {
      return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
    }

    static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
      return LHS == RHS;
    }
  };

  /// Contains orders of operations along with the number of bundles that have
  /// operations in this order. It stores only those orders that require
  /// reordering, if reordering is not required it is counted using \a
  /// NumOpsWantToKeepOriginalOrder.
  DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
  /// Number of bundles that do not require reordering.
  unsigned NumOpsWantToKeepOriginalOrder = 0;

  // Analysis and block reference.
  Function *F;
  ScalarEvolution *SE;
  TargetTransformInfo *TTI;
  TargetLibraryInfo *TLI;
  AliasAnalysis *AA;
  LoopInfo *LI;
  DominatorTree *DT;
  AssumptionCache *AC;
  DemandedBits *DB;
  const DataLayout *DL;
  OptimizationRemarkEmitter *ORE;

  unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
  unsigned MinVecRegSize; // Set by cl::opt (default: 128).

  /// Instruction builder to construct the vectorized tree.
  IRBuilder<> Builder;

  /// A map of scalar integer values to the smallest bit width with which they
  /// can legally be represented. The values map to (width, signed) pairs,
  /// where "width" indicates the minimum bit width and "signed" is True if the
  /// value must be signed-extended, rather than zero-extended, back to its
  /// original width.
  MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
};

} // end namespace slpvectorizer

template <> struct GraphTraits<BoUpSLP *> {
  using TreeEntry = BoUpSLP::TreeEntry;

  /// NodeRef has to be a pointer per the GraphWriter.
  using NodeRef = TreeEntry *;

  using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;

  /// Add the VectorizableTree to the index iterator to be able to return
  /// TreeEntry pointers.
  struct ChildIteratorType
      : public iterator_adaptor_base<
            ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
    ContainerTy &VectorizableTree;

    ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
                      ContainerTy &VT)
        : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}

    NodeRef operator*() { return I->UserTE; }
  };

  static NodeRef getEntryNode(BoUpSLP &R) {
    return R.VectorizableTree[0].get();
  }

  static ChildIteratorType child_begin(NodeRef N) {
    return {N->UserTreeIndices.begin(), N->Container};
  }

  static ChildIteratorType child_end(NodeRef N) {
    return {N->UserTreeIndices.end(), N->Container};
  }

  /// For the node iterator we just need to turn the TreeEntry iterator into a
  /// TreeEntry* iterator so that it dereferences to NodeRef.
  class nodes_iterator {
    using ItTy = ContainerTy::iterator;
    ItTy It;

  public:
    nodes_iterator(const ItTy &It2) : It(It2) {}
    NodeRef operator*() { return It->get(); }
    nodes_iterator operator++() {
      ++It;
      return *this;
    }
    bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
  };

  static nodes_iterator nodes_begin(BoUpSLP *R) {
    return nodes_iterator(R->VectorizableTree.begin());
  }

  static nodes_iterator nodes_end(BoUpSLP *R) {
    return nodes_iterator(R->VectorizableTree.end());
  }

  static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
};

template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
  using TreeEntry = BoUpSLP::TreeEntry;

  DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}

  std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
    std::string Str;
    raw_string_ostream OS(Str);
    if (isSplat(Entry->Scalars)) {
      OS << "<splat> " << *Entry->Scalars[0];
      return Str;
    }
    for (auto V : Entry->Scalars) {
      OS << *V;
      if (std::any_of(
              R->ExternalUses.begin(), R->ExternalUses.end(),
              [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
        OS << " <extract>";
      OS << "\n";
    }
    return Str;
  }

  static std::string getNodeAttributes(const TreeEntry *Entry,
                                       const BoUpSLP *) {
    if (Entry->NeedToGather)
      return "color=red";
    return "";
  }
};

} // end namespace llvm

BoUpSLP::~BoUpSLP() {
  for (const auto &Pair : DeletedInstructions) {
    // Replace operands of ignored instructions with Undefs in case if they were
    // marked for deletion.
    if (Pair.getSecond()) {
      Value *Undef = UndefValue::get(Pair.getFirst()->getType());
      Pair.getFirst()->replaceAllUsesWith(Undef);
    }
    Pair.getFirst()->dropAllReferences();
  }
  for (const auto &Pair : DeletedInstructions) {
    assert(Pair.getFirst()->use_empty() &&
           "trying to erase instruction with users.");
    Pair.getFirst()->eraseFromParent();
  }
}

void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
  for (auto *V : AV) {
    if (auto *I = dyn_cast<Instruction>(V))
      eraseInstruction(I, /*ReplaceWithUndef=*/true);
  };
}

void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
                        ArrayRef<Value *> UserIgnoreLst) {
  ExtraValueToDebugLocsMap ExternallyUsedValues;
  buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
}

void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
                        ExtraValueToDebugLocsMap &ExternallyUsedValues,
                        ArrayRef<Value *> UserIgnoreLst) {
  deleteTree();
  UserIgnoreList = UserIgnoreLst;
  if (!allSameType(Roots))
    return;
  buildTree_rec(Roots, 0, EdgeInfo());

  // Collect the values that we need to extract from the tree.
  for (auto &TEPtr : VectorizableTree) {
    TreeEntry *Entry = TEPtr.get();

    // No need to handle users of gathered values.
    if (Entry->NeedToGather)
      continue;

    // For each lane:
    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
      Value *Scalar = Entry->Scalars[Lane];
      int FoundLane = Lane;
      if (!Entry->ReuseShuffleIndices.empty()) {
        FoundLane =
            std::distance(Entry->ReuseShuffleIndices.begin(),
                          llvm::find(Entry->ReuseShuffleIndices, FoundLane));
      }

      // Check if the scalar is externally used as an extra arg.
      auto ExtI = ExternallyUsedValues.find(Scalar);
      if (ExtI != ExternallyUsedValues.end()) {
        LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
                          << Lane << " from " << *Scalar << ".\n");
        ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
      }
      for (User *U : Scalar->users()) {
        LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");

        Instruction *UserInst = dyn_cast<Instruction>(U);
        if (!UserInst)
          continue;

        // Skip in-tree scalars that become vectors
        if (TreeEntry *UseEntry = getTreeEntry(U)) {
          Value *UseScalar = UseEntry->Scalars[0];
          // Some in-tree scalars will remain as scalar in vectorized
          // instructions. If that is the case, the one in Lane 0 will
          // be used.
          if (UseScalar != U ||
              !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
            LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
                              << ".\n");
            assert(!UseEntry->NeedToGather && "Bad state");
            continue;
          }
        }

        // Ignore users in the user ignore list.
        if (is_contained(UserIgnoreList, UserInst))
          continue;

        LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
                          << Lane << " from " << *Scalar << ".\n");
        ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
      }
    }
  }
}

void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
                            const EdgeInfo &UserTreeIdx) {
  assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");

  InstructionsState S = getSameOpcode(VL);
  if (Depth == RecursionMaxDepth) {
    LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
    return;
  }

  // Don't handle vectors.
  if (S.OpValue->getType()->isVectorTy()) {
    LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
    return;
  }

  if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
    if (SI->getValueOperand()->getType()->isVectorTy()) {
      LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }

  // If all of the operands are identical or constant we have a simple solution.
  if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
    LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
    return;
  }

  // We now know that this is a vector of instructions of the same type from
  // the same block.

  // Don't vectorize ephemeral values.
  for (Value *V : VL) {
    if (EphValues.count(V)) {
      LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
                        << ") is ephemeral.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }
  }

  // Check if this is a duplicate of another entry.
  if (TreeEntry *E = getTreeEntry(S.OpValue)) {
    LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
    if (!E->isSame(VL)) {
      LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }
    // Record the reuse of the tree node.  FIXME, currently this is only used to
    // properly draw the graph rather than for the actual vectorization.
    E->UserTreeIndices.push_back(UserTreeIdx);
    LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
                      << ".\n");
    return;
  }

  // Check that none of the instructions in the bundle are already in the tree.
  for (Value *V : VL) {
    auto *I = dyn_cast<Instruction>(V);
    if (!I)
      continue;
    if (getTreeEntry(I)) {
      LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
                        << ") is already in tree.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }
  }

  // If any of the scalars is marked as a value that needs to stay scalar, then
  // we need to gather the scalars.
  // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
  for (Value *V : VL) {
    if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
      LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }
  }

  // Check that all of the users of the scalars that we want to vectorize are
  // schedulable.
  auto *VL0 = cast<Instruction>(S.OpValue);
  BasicBlock *BB = VL0->getParent();

  if (!DT->isReachableFromEntry(BB)) {
    // Don't go into unreachable blocks. They may contain instructions with
    // dependency cycles which confuse the final scheduling.
    LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
    return;
  }

  // Check that every instruction appears once in this bundle.
  SmallVector<unsigned, 4> ReuseShuffleIndicies;
  SmallVector<Value *, 4> UniqueValues;
  DenseMap<Value *, unsigned> UniquePositions;
  for (Value *V : VL) {
    auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
    ReuseShuffleIndicies.emplace_back(Res.first->second);
    if (Res.second)
      UniqueValues.emplace_back(V);
  }
  size_t NumUniqueScalarValues = UniqueValues.size();
  if (NumUniqueScalarValues == VL.size()) {
    ReuseShuffleIndicies.clear();
  } else {
    LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
    if (NumUniqueScalarValues <= 1 ||
        !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
      LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }
    VL = UniqueValues;
  }

  auto &BSRef = BlocksSchedules[BB];
  if (!BSRef)
    BSRef = std::make_unique<BlockScheduling>(BB);

  BlockScheduling &BS = *BSRef.get();

  Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
  if (!Bundle) {
    LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
    assert((!BS.getScheduleData(VL0) ||
            !BS.getScheduleData(VL0)->isPartOfBundle()) &&
           "tryScheduleBundle should cancelScheduling on failure");
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                 ReuseShuffleIndicies);
    return;
  }
  LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");

  unsigned ShuffleOrOp = S.isAltShuffle() ?
                (unsigned) Instruction::ShuffleVector : S.getOpcode();
  switch (ShuffleOrOp) {
    case Instruction::PHI: {
      auto *PH = cast<PHINode>(VL0);

      // Check for terminator values (e.g. invoke).
      for (unsigned j = 0; j < VL.size(); ++j)
        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
          Instruction *Term = dyn_cast<Instruction>(
              cast<PHINode>(VL[j])->getIncomingValueForBlock(
                  PH->getIncomingBlock(i)));
          if (Term && Term->isTerminator()) {
            LLVM_DEBUG(dbgs()
                       << "SLP: Need to swizzle PHINodes (terminator use).\n");
            BS.cancelScheduling(VL, VL0);
            newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                         ReuseShuffleIndicies);
            return;
          }
        }

      TreeEntry *TE =
          newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");

      // Keeps the reordered operands to avoid code duplication.
      SmallVector<ValueList, 2> OperandsVec;
      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *j : VL)
          Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
              PH->getIncomingBlock(i)));
        TE->setOperand(i, Operands);
        OperandsVec.push_back(Operands);
      }
      for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
        buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
      return;
    }
    case Instruction::ExtractValue:
    case Instruction::ExtractElement: {
      OrdersType CurrentOrder;
      bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
      if (Reuse) {
        LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
        ++NumOpsWantToKeepOriginalOrder;
        newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                     ReuseShuffleIndicies);
        // This is a special case, as it does not gather, but at the same time
        // we are not extending buildTree_rec() towards the operands.
        ValueList Op0;
        Op0.assign(VL.size(), VL0->getOperand(0));
        VectorizableTree.back()->setOperand(0, Op0);
        return;
      }
      if (!CurrentOrder.empty()) {
        LLVM_DEBUG({
          dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
                    "with order";
          for (unsigned Idx : CurrentOrder)
            dbgs() << " " << Idx;
          dbgs() << "\n";
        });
        // Insert new order with initial value 0, if it does not exist,
        // otherwise return the iterator to the existing one.
        auto StoredCurrentOrderAndNum =
            NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
        ++StoredCurrentOrderAndNum->getSecond();
        newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                     ReuseShuffleIndicies,
                     StoredCurrentOrderAndNum->getFirst());
        // This is a special case, as it does not gather, but at the same time
        // we are not extending buildTree_rec() towards the operands.
        ValueList Op0;
        Op0.assign(VL.size(), VL0->getOperand(0));
        VectorizableTree.back()->setOperand(0, Op0);
        return;
      }
      LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                   ReuseShuffleIndicies);
      BS.cancelScheduling(VL, VL0);
      return;
    }
    case Instruction::Load: {
      // Check that a vectorized load would load the same memory as a scalar
      // load. For example, we don't want to vectorize loads that are smaller
      // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
      // treats loading/storing it as an i8 struct. If we vectorize loads/stores
      // from such a struct, we read/write packed bits disagreeing with the
      // unvectorized version.
      Type *ScalarTy = VL0->getType();

      if (DL->getTypeSizeInBits(ScalarTy) !=
          DL->getTypeAllocSizeInBits(ScalarTy)) {
        BS.cancelScheduling(VL, VL0);
        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                     ReuseShuffleIndicies);
        LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
        return;
      }

      // Make sure all loads in the bundle are simple - we can't vectorize
      // atomic or volatile loads.
      SmallVector<Value *, 4> PointerOps(VL.size());
      auto POIter = PointerOps.begin();
      for (Value *V : VL) {
        auto *L = cast<LoadInst>(V);
        if (!L->isSimple()) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
          return;
        }
        *POIter = L->getPointerOperand();
        ++POIter;
      }

      OrdersType CurrentOrder;
      // Check the order of pointer operands.
      if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
        Value *Ptr0;
        Value *PtrN;
        if (CurrentOrder.empty()) {
          Ptr0 = PointerOps.front();
          PtrN = PointerOps.back();
        } else {
          Ptr0 = PointerOps[CurrentOrder.front()];
          PtrN = PointerOps[CurrentOrder.back()];
        }
        const SCEV *Scev0 = SE->getSCEV(Ptr0);
        const SCEV *ScevN = SE->getSCEV(PtrN);
        const auto *Diff =
            dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
        uint64_t Size = DL->getTypeAllocSize(ScalarTy);
        // Check that the sorted loads are consecutive.
        if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) {
          if (CurrentOrder.empty()) {
            // Original loads are consecutive and does not require reordering.
            ++NumOpsWantToKeepOriginalOrder;
            TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
                                         UserTreeIdx, ReuseShuffleIndicies);
            TE->setOperandsInOrder();
            LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
          } else {
            // Need to reorder.
            auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
            ++I->getSecond();
            TreeEntry *TE =
                newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                             ReuseShuffleIndicies, I->getFirst());
            TE->setOperandsInOrder();
            LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
          }
          return;
        }
      }

      LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
      BS.cancelScheduling(VL, VL0);
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                   ReuseShuffleIndicies);
      return;
    }
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::SIToFP:
    case Instruction::UIToFP:
    case Instruction::Trunc:
    case Instruction::FPTrunc:
    case Instruction::BitCast: {
      Type *SrcTy = VL0->getOperand(0)->getType();
      for (Value *V : VL) {
        Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
        if (Ty != SrcTy || !isValidElementType(Ty)) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs()
                     << "SLP: Gathering casts with different src types.\n");
          return;
        }
      }
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");

      TE->setOperandsInOrder();
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *V : VL)
          Operands.push_back(cast<Instruction>(V)->getOperand(i));

        buildTree_rec(Operands, Depth + 1, {TE, i});
      }
      return;
    }
    case Instruction::ICmp:
    case Instruction::FCmp: {
      // Check that all of the compares have the same predicate.
      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
      CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
      Type *ComparedTy = VL0->getOperand(0)->getType();
      for (Value *V : VL) {
        CmpInst *Cmp = cast<CmpInst>(V);
        if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
            Cmp->getOperand(0)->getType() != ComparedTy) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs()
                     << "SLP: Gathering cmp with different predicate.\n");
          return;
        }
      }

      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");

      ValueList Left, Right;
      if (cast<CmpInst>(VL0)->isCommutative()) {
        // Commutative predicate - collect + sort operands of the instructions
        // so that each side is more likely to have the same opcode.
        assert(P0 == SwapP0 && "Commutative Predicate mismatch");
        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
      } else {
        // Collect operands - commute if it uses the swapped predicate.
        for (Value *V : VL) {
          auto *Cmp = cast<CmpInst>(V);
          Value *LHS = Cmp->getOperand(0);
          Value *RHS = Cmp->getOperand(1);
          if (Cmp->getPredicate() != P0)
            std::swap(LHS, RHS);
          Left.push_back(LHS);
          Right.push_back(RHS);
        }
      }
      TE->setOperand(0, Left);
      TE->setOperand(1, Right);
      buildTree_rec(Left, Depth + 1, {TE, 0});
      buildTree_rec(Right, Depth + 1, {TE, 1});
      return;
    }
    case Instruction::Select:
    case Instruction::FNeg:
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");

      // Sort operands of the instructions so that each side is more likely to
      // have the same opcode.
      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
        ValueList Left, Right;
        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
        TE->setOperand(0, Left);
        TE->setOperand(1, Right);
        buildTree_rec(Left, Depth + 1, {TE, 0});
        buildTree_rec(Right, Depth + 1, {TE, 1});
        return;
      }

      TE->setOperandsInOrder();
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *j : VL)
          Operands.push_back(cast<Instruction>(j)->getOperand(i));

        buildTree_rec(Operands, Depth + 1, {TE, i});
      }
      return;
    }
    case Instruction::GetElementPtr: {
      // We don't combine GEPs with complicated (nested) indexing.
      for (Value *V : VL) {
        if (cast<Instruction>(V)->getNumOperands() != 2) {
          LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          return;
        }
      }

      // We can't combine several GEPs into one vector if they operate on
      // different types.
      Type *Ty0 = VL0->getOperand(0)->getType();
      for (Value *V : VL) {
        Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
        if (Ty0 != CurTy) {
          LLVM_DEBUG(dbgs()
                     << "SLP: not-vectorizable GEP (different types).\n");
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          return;
        }
      }

      // We don't combine GEPs with non-constant indexes.
      for (Value *V : VL) {
        auto Op = cast<Instruction>(V)->getOperand(1);
        if (!isa<ConstantInt>(Op)) {
          LLVM_DEBUG(dbgs()
                     << "SLP: not-vectorizable GEP (non-constant indexes).\n");
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          return;
        }
      }

      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
      TE->setOperandsInOrder();
      for (unsigned i = 0, e = 2; i < e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *V : VL)
          Operands.push_back(cast<Instruction>(V)->getOperand(i));

        buildTree_rec(Operands, Depth + 1, {TE, i});
      }
      return;
    }
    case Instruction::Store: {
      // Check if the stores are consecutive or if we need to swizzle them.
      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
        if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
          return;
        }

      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");

      ValueList Operands;
      for (Value *V : VL)
        Operands.push_back(cast<Instruction>(V)->getOperand(0));
      TE->setOperandsInOrder();
      buildTree_rec(Operands, Depth + 1, {TE, 0});
      return;
    }
    case Instruction::Call: {
      // Check if the calls are all to the same vectorizable intrinsic.
      CallInst *CI = cast<CallInst>(VL0);
      // Check if this is an Intrinsic call or something that can be
      // represented by an intrinsic call
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
      if (!isTriviallyVectorizable(ID)) {
        BS.cancelScheduling(VL, VL0);
        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                     ReuseShuffleIndicies);
        LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
        return;
      }
      Function *Int = CI->getCalledFunction();
      unsigned NumArgs = CI->getNumArgOperands();
      SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
      for (unsigned j = 0; j != NumArgs; ++j)
        if (hasVectorInstrinsicScalarOpd(ID, j))
          ScalarArgs[j] = CI->getArgOperand(j);
      for (Value *V : VL) {
        CallInst *CI2 = dyn_cast<CallInst>(V);
        if (!CI2 || CI2->getCalledFunction() != Int ||
            getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
            !CI->hasIdenticalOperandBundleSchema(*CI2)) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
                            << "\n");
          return;
        }
        // Some intrinsics have scalar arguments and should be same in order for
        // them to be vectorized.
        for (unsigned j = 0; j != NumArgs; ++j) {
          if (hasVectorInstrinsicScalarOpd(ID, j)) {
            Value *A1J = CI2->getArgOperand(j);
            if (ScalarArgs[j] != A1J) {
              BS.cancelScheduling(VL, VL0);
              newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                           ReuseShuffleIndicies);
              LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
                                << " argument " << ScalarArgs[j] << "!=" << A1J
                                << "\n");
              return;
            }
          }
        }
        // Verify that the bundle operands are identical between the two calls.
        if (CI->hasOperandBundles() &&
            !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
                        CI->op_begin() + CI->getBundleOperandsEndIndex(),
                        CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
                            << *CI << "!=" << *V << '\n');
          return;
        }
      }

      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      TE->setOperandsInOrder();
      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *V : VL) {
          auto *CI2 = cast<CallInst>(V);
          Operands.push_back(CI2->getArgOperand(i));
        }
        buildTree_rec(Operands, Depth + 1, {TE, i});
      }
      return;
    }
    case Instruction::ShuffleVector: {
      // If this is not an alternate sequence of opcode like add-sub
      // then do not vectorize this instruction.
      if (!S.isAltShuffle()) {
        BS.cancelScheduling(VL, VL0);
        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                     ReuseShuffleIndicies);
        LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
        return;
      }
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");

      // Reorder operands if reordering would enable vectorization.
      if (isa<BinaryOperator>(VL0)) {
        ValueList Left, Right;
        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
        TE->setOperand(0, Left);
        TE->setOperand(1, Right);
        buildTree_rec(Left, Depth + 1, {TE, 0});
        buildTree_rec(Right, Depth + 1, {TE, 1});
        return;
      }

      TE->setOperandsInOrder();
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *V : VL)
          Operands.push_back(cast<Instruction>(V)->getOperand(i));

        buildTree_rec(Operands, Depth + 1, {TE, i});
      }
      return;
    }
    default:
      BS.cancelScheduling(VL, VL0);
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
      return;
  }
}

unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
  unsigned N;
  Type *EltTy;
  auto *ST = dyn_cast<StructType>(T);
  if (ST) {
    N = ST->getNumElements();
    EltTy = *ST->element_begin();
  } else {
    N = cast<ArrayType>(T)->getNumElements();
    EltTy = cast<ArrayType>(T)->getElementType();
  }
  if (!isValidElementType(EltTy))
    return 0;
  uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
  if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
    return 0;
  if (ST) {
    // Check that struct is homogeneous.
    for (const auto *Ty : ST->elements())
      if (Ty != EltTy)
        return 0;
  }
  return N;
}

bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
                              SmallVectorImpl<unsigned> &CurrentOrder) const {
  Instruction *E0 = cast<Instruction>(OpValue);
  assert(E0->getOpcode() == Instruction::ExtractElement ||
         E0->getOpcode() == Instruction::ExtractValue);
  assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
  // Check if all of the extracts come from the same vector and from the
  // correct offset.
  Value *Vec = E0->getOperand(0);

  CurrentOrder.clear();

  // We have to extract from a vector/aggregate with the same number of elements.
  unsigned NElts;
  if (E0->getOpcode() == Instruction::ExtractValue) {
    const DataLayout &DL = E0->getModule()->getDataLayout();
    NElts = canMapToVector(Vec->getType(), DL);
    if (!NElts)
      return false;
    // Check if load can be rewritten as load of vector.
    LoadInst *LI = dyn_cast<LoadInst>(Vec);
    if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
      return false;
  } else {
    NElts = Vec->getType()->getVectorNumElements();
  }

  if (NElts != VL.size())
    return false;

  // Check that all of the indices extract from the correct offset.
  bool ShouldKeepOrder = true;
  unsigned E = VL.size();
  // Assign to all items the initial value E + 1 so we can check if the extract
  // instruction index was used already.
  // Also, later we can check that all the indices are used and we have a
  // consecutive access in the extract instructions, by checking that no
  // element of CurrentOrder still has value E + 1.
  CurrentOrder.assign(E, E + 1);
  unsigned I = 0;
  for (; I < E; ++I) {
    auto *Inst = cast<Instruction>(VL[I]);
    if (Inst->getOperand(0) != Vec)
      break;
    Optional<unsigned> Idx = getExtractIndex(Inst);
    if (!Idx)
      break;
    const unsigned ExtIdx = *Idx;
    if (ExtIdx != I) {
      if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
        break;
      ShouldKeepOrder = false;
      CurrentOrder[ExtIdx] = I;
    } else {
      if (CurrentOrder[I] != E + 1)
        break;
      CurrentOrder[I] = I;
    }
  }
  if (I < E) {
    CurrentOrder.clear();
    return false;
  }

  return ShouldKeepOrder;
}

bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
  return I->hasOneUse() ||
         std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
           return ScalarToTreeEntry.count(U) > 0;
         });
}

int BoUpSLP::getEntryCost(TreeEntry *E) {
  ArrayRef<Value*> VL = E->Scalars;

  Type *ScalarTy = VL[0]->getType();
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    ScalarTy = SI->getValueOperand()->getType();
  else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
    ScalarTy = CI->getOperand(0)->getType();
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());

  // If we have computed a smaller type for the expression, update VecTy so
  // that the costs will be accurate.
  if (MinBWs.count(VL[0]))
    VecTy = VectorType::get(
        IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());

  unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
  bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
  int ReuseShuffleCost = 0;
  if (NeedToShuffleReuses) {
    ReuseShuffleCost =
        TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
  }
  if (E->NeedToGather) {
    if (allConstant(VL))
      return 0;
    if (isSplat(VL)) {
      return ReuseShuffleCost +
             TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
    }
    if (E->getOpcode() == Instruction::ExtractElement &&
        allSameType(VL) && allSameBlock(VL)) {
      Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
      if (ShuffleKind.hasValue()) {
        int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
        for (auto *V : VL) {
          // If all users of instruction are going to be vectorized and this
          // instruction itself is not going to be vectorized, consider this
          // instruction as dead and remove its cost from the final cost of the
          // vectorized tree.
          if (areAllUsersVectorized(cast<Instruction>(V)) &&
              !ScalarToTreeEntry.count(V)) {
            auto *IO = cast<ConstantInt>(
                cast<ExtractElementInst>(V)->getIndexOperand());
            Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
                                            IO->getZExtValue());
          }
        }
        return ReuseShuffleCost + Cost;
      }
    }
    return ReuseShuffleCost + getGatherCost(VL);
  }
  assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
  Instruction *VL0 = E->getMainOp();
  unsigned ShuffleOrOp =
      E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
  switch (ShuffleOrOp) {
    case Instruction::PHI:
      return 0;

    case Instruction::ExtractValue:
    case Instruction::ExtractElement:
      if (NeedToShuffleReuses) {
        unsigned Idx = 0;
        for (unsigned I : E->ReuseShuffleIndices) {
          if (ShuffleOrOp == Instruction::ExtractElement) {
            auto *IO = cast<ConstantInt>(
                cast<ExtractElementInst>(VL[I])->getIndexOperand());
            Idx = IO->getZExtValue();
            ReuseShuffleCost -= TTI->getVectorInstrCost(
                Instruction::ExtractElement, VecTy, Idx);
          } else {
            ReuseShuffleCost -= TTI->getVectorInstrCost(
                Instruction::ExtractElement, VecTy, Idx);
            ++Idx;
          }
        }
        Idx = ReuseShuffleNumbers;
        for (Value *V : VL) {
          if (ShuffleOrOp == Instruction::ExtractElement) {
            auto *IO = cast<ConstantInt>(
                cast<ExtractElementInst>(V)->getIndexOperand());
            Idx = IO->getZExtValue();
          } else {
            --Idx;
          }
          ReuseShuffleCost +=
              TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
        }
      }
      if (!E->NeedToGather) {
        int DeadCost = ReuseShuffleCost;
        if (!E->ReorderIndices.empty()) {
          // TODO: Merge this shuffle with the ReuseShuffleCost.
          DeadCost += TTI->getShuffleCost(
              TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
        }
        for (unsigned i = 0, e = VL.size(); i < e; ++i) {
          Instruction *E = cast<Instruction>(VL[i]);
          // If all users are going to be vectorized, instruction can be
          // considered as dead.
          // The same, if have only one user, it will be vectorized for sure.
          if (areAllUsersVectorized(E)) {
            // Take credit for instruction that will become dead.
            if (E->hasOneUse()) {
              Instruction *Ext = E->user_back();
              if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
                  all_of(Ext->users(),
                         [](User *U) { return isa<GetElementPtrInst>(U); })) {
                // Use getExtractWithExtendCost() to calculate the cost of
                // extractelement/ext pair.
                DeadCost -= TTI->getExtractWithExtendCost(
                    Ext->getOpcode(), Ext->getType(), VecTy, i);
                // Add back the cost of s|zext which is subtracted separately.
                DeadCost += TTI->getCastInstrCost(
                    Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
                continue;
              }
            }
            DeadCost -=
                TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
          }
        }
        return DeadCost;
      }
      return ReuseShuffleCost + getGatherCost(VL);

    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::SIToFP:
    case Instruction::UIToFP:
    case Instruction::Trunc:
    case Instruction::FPTrunc:
    case Instruction::BitCast: {
      Type *SrcTy = VL0->getOperand(0)->getType();
      int ScalarEltCost =
          TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }

      // Calculate the cost of this instruction.
      int ScalarCost = VL.size() * ScalarEltCost;

      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
      int VecCost = 0;
      // Check if the values are candidates to demote.
      if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
        VecCost = ReuseShuffleCost +
                  TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0);
      }
      return VecCost - ScalarCost;
    }
    case Instruction::FCmp:
    case Instruction::ICmp:
    case Instruction::Select: {
      // Calculate the cost of this instruction.
      int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
                                                  Builder.getInt1Ty(), VL0);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }
      VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
      int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0);
      return ReuseShuffleCost + VecCost - ScalarCost;
    }
    case Instruction::FNeg:
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      // Certain instructions can be cheaper to vectorize if they have a
      // constant second vector operand.
      TargetTransformInfo::OperandValueKind Op1VK =
          TargetTransformInfo::OK_AnyValue;
      TargetTransformInfo::OperandValueKind Op2VK =
          TargetTransformInfo::OK_UniformConstantValue;
      TargetTransformInfo::OperandValueProperties Op1VP =
          TargetTransformInfo::OP_None;
      TargetTransformInfo::OperandValueProperties Op2VP =
          TargetTransformInfo::OP_PowerOf2;

      // If all operands are exactly the same ConstantInt then set the
      // operand kind to OK_UniformConstantValue.
      // If instead not all operands are constants, then set the operand kind
      // to OK_AnyValue. If all operands are constants but not the same,
      // then set the operand kind to OK_NonUniformConstantValue.
      ConstantInt *CInt0 = nullptr;
      for (unsigned i = 0, e = VL.size(); i < e; ++i) {
        const Instruction *I = cast<Instruction>(VL[i]);
        unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
        ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
        if (!CInt) {
          Op2VK = TargetTransformInfo::OK_AnyValue;
          Op2VP = TargetTransformInfo::OP_None;
          break;
        }
        if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
            !CInt->getValue().isPowerOf2())
          Op2VP = TargetTransformInfo::OP_None;
        if (i == 0) {
          CInt0 = CInt;
          continue;
        }
        if (CInt0 != CInt)
          Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
      }

      SmallVector<const Value *, 4> Operands(VL0->operand_values());
      int ScalarEltCost = TTI->getArithmeticInstrCost(
          E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }
      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
      int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK,
                                                Op2VK, Op1VP, Op2VP, Operands);
      return ReuseShuffleCost + VecCost - ScalarCost;
    }
    case Instruction::GetElementPtr: {
      TargetTransformInfo::OperandValueKind Op1VK =
          TargetTransformInfo::OK_AnyValue;
      TargetTransformInfo::OperandValueKind Op2VK =
          TargetTransformInfo::OK_UniformConstantValue;

      int ScalarEltCost =
          TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }
      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
      int VecCost =
          TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
      return ReuseShuffleCost + VecCost - ScalarCost;
    }
    case Instruction::Load: {
      // Cost of wide load - cost of scalar loads.
      MaybeAlign alignment(cast<LoadInst>(VL0)->getAlignment());
      int ScalarEltCost =
          TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }
      int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
      int VecLdCost =
          TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
      if (!E->ReorderIndices.empty()) {
        // TODO: Merge this shuffle with the ReuseShuffleCost.
        VecLdCost += TTI->getShuffleCost(
            TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
      }
      return ReuseShuffleCost + VecLdCost - ScalarLdCost;
    }
    case Instruction::Store: {
      // We know that we can merge the stores. Calculate the cost.
      MaybeAlign alignment(cast<StoreInst>(VL0)->getAlignment());
      int ScalarEltCost =
          TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }
      int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
      int VecStCost =
          TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0);
      return ReuseShuffleCost + VecStCost - ScalarStCost;
    }
    case Instruction::Call: {
      CallInst *CI = cast<CallInst>(VL0);
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);

      // Calculate the cost of the scalar and vector calls.
      SmallVector<Type *, 4> ScalarTys;
      for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
        ScalarTys.push_back(CI->getArgOperand(op)->getType());

      FastMathFlags FMF;
      if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
        FMF = FPMO->getFastMathFlags();

      int ScalarEltCost =
          TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }
      int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;

      SmallVector<Value *, 4> Args(CI->arg_operands());
      int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
                                                   VecTy->getNumElements());

      LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
                        << " (" << VecCallCost << "-" << ScalarCallCost << ")"
                        << " for " << *CI << "\n");

      return ReuseShuffleCost + VecCallCost - ScalarCallCost;
    }
    case Instruction::ShuffleVector: {
      assert(E->isAltShuffle() &&
             ((Instruction::isBinaryOp(E->getOpcode()) &&
               Instruction::isBinaryOp(E->getAltOpcode())) ||
              (Instruction::isCast(E->getOpcode()) &&
               Instruction::isCast(E->getAltOpcode()))) &&
             "Invalid Shuffle Vector Operand");
      int ScalarCost = 0;
      if (NeedToShuffleReuses) {
        for (unsigned Idx : E->ReuseShuffleIndices) {
          Instruction *I = cast<Instruction>(VL[Idx]);
          ReuseShuffleCost -= TTI->getInstructionCost(
              I, TargetTransformInfo::TCK_RecipThroughput);
        }
        for (Value *V : VL) {
          Instruction *I = cast<Instruction>(V);
          ReuseShuffleCost += TTI->getInstructionCost(
              I, TargetTransformInfo::TCK_RecipThroughput);
        }
      }
      for (Value *V : VL) {
        Instruction *I = cast<Instruction>(V);
        assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
        ScalarCost += TTI->getInstructionCost(
            I, TargetTransformInfo::TCK_RecipThroughput);
      }
      // VecCost is equal to sum of the cost of creating 2 vectors
      // and the cost of creating shuffle.
      int VecCost = 0;
      if (Instruction::isBinaryOp(E->getOpcode())) {
        VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy);
        VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy);
      } else {
        Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
        Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
        VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
        VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
        VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty);
        VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty);
      }
      VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
      return ReuseShuffleCost + VecCost - ScalarCost;
    }
    default:
      llvm_unreachable("Unknown instruction");
  }
}

bool BoUpSLP::isFullyVectorizableTinyTree() const {
  LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
                    << VectorizableTree.size() << " is fully vectorizable .\n");

  // We only handle trees of heights 1 and 2.
  if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather)
    return true;

  if (VectorizableTree.size() != 2)
    return false;

  // Handle splat and all-constants stores.
  if (!VectorizableTree[0]->NeedToGather &&
      (allConstant(VectorizableTree[1]->Scalars) ||
       isSplat(VectorizableTree[1]->Scalars)))
    return true;

  // Gathering cost would be too much for tiny trees.
  if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather)
    return false;

  return true;
}

bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const {
  if (RdxOpcode != Instruction::Or)
    return false;

  unsigned NumElts = VectorizableTree[0]->Scalars.size();
  Value *FirstReduced = VectorizableTree[0]->Scalars[0];

  // Look past the reduction to find a source value. Arbitrarily follow the
  // path through operand 0 of any 'or'. Also, peek through optional
  // shift-left-by-constant.
  Value *ZextLoad = FirstReduced;
  while (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
         match(ZextLoad, m_Shl(m_Value(), m_Constant())))
    ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);

  // Check if the input to the reduction is an extended load.
  Value *LoadPtr;
  if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
    return false;

  // Require that the total load bit width is a legal integer type.
  // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
  // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
  Type *SrcTy = LoadPtr->getType()->getPointerElementType();
  unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
  LLVMContext &Context = FirstReduced->getContext();
  if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth)))
    return false;

  // Everything matched - assume that we can fold the whole sequence using
  // load combining.
  LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of "
             << *(cast<Instruction>(FirstReduced)) << "\n");

  return true;
}

bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
  // We can vectorize the tree if its size is greater than or equal to the
  // minimum size specified by the MinTreeSize command line option.
  if (VectorizableTree.size() >= MinTreeSize)
    return false;

  // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
  // can vectorize it if we can prove it fully vectorizable.
  if (isFullyVectorizableTinyTree())
    return false;

  assert(VectorizableTree.empty()
             ? ExternalUses.empty()
             : true && "We shouldn't have any external users");

  // Otherwise, we can't vectorize the tree. It is both tiny and not fully
  // vectorizable.
  return true;
}

int BoUpSLP::getSpillCost() const {
  // Walk from the bottom of the tree to the top, tracking which values are
  // live. When we see a call instruction that is not part of our tree,
  // query TTI to see if there is a cost to keeping values live over it
  // (for example, if spills and fills are required).
  unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
  int Cost = 0;

  SmallPtrSet<Instruction*, 4> LiveValues;
  Instruction *PrevInst = nullptr;

  for (const auto &TEPtr : VectorizableTree) {
    Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
    if (!Inst)
      continue;

    if (!PrevInst) {
      PrevInst = Inst;
      continue;
    }

    // Update LiveValues.
    LiveValues.erase(PrevInst);
    for (auto &J : PrevInst->operands()) {
      if (isa<Instruction>(&*J) && getTreeEntry(&*J))
        LiveValues.insert(cast<Instruction>(&*J));
    }

    LLVM_DEBUG({
      dbgs() << "SLP: #LV: " << LiveValues.size();
      for (auto *X : LiveValues)
        dbgs() << " " << X->getName();
      dbgs() << ", Looking at ";
      Inst->dump();
    });

    // Now find the sequence of instructions between PrevInst and Inst.
    unsigned NumCalls = 0;
    BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
                                 PrevInstIt =
                                     PrevInst->getIterator().getReverse();
    while (InstIt != PrevInstIt) {
      if (PrevInstIt == PrevInst->getParent()->rend()) {
        PrevInstIt = Inst->getParent()->rbegin();
        continue;
      }

      // Debug information does not impact spill cost.
      if ((isa<CallInst>(&*PrevInstIt) &&
           !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
          &*PrevInstIt != PrevInst)
        NumCalls++;

      ++PrevInstIt;
    }

    if (NumCalls) {
      SmallVector<Type*, 4> V;
      for (auto *II : LiveValues)
        V.push_back(VectorType::get(II->getType(), BundleWidth));
      Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
    }

    PrevInst = Inst;
  }

  return Cost;
}

int BoUpSLP::getTreeCost() {
  int Cost = 0;
  LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
                    << VectorizableTree.size() << ".\n");

  unsigned BundleWidth = VectorizableTree[0]->Scalars.size();

  for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
    TreeEntry &TE = *VectorizableTree[I].get();

    // We create duplicate tree entries for gather sequences that have multiple
    // uses. However, we should not compute the cost of duplicate sequences.
    // For example, if we have a build vector (i.e., insertelement sequence)
    // that is used by more than one vector instruction, we only need to
    // compute the cost of the insertelement instructions once. The redundant
    // instructions will be eliminated by CSE.
    //
    // We should consider not creating duplicate tree entries for gather
    // sequences, and instead add additional edges to the tree representing
    // their uses. Since such an approach results in fewer total entries,
    // existing heuristics based on tree size may yield different results.
    //
    if (TE.NeedToGather &&
        std::any_of(
            std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(),
            [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
              return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars);
            }))
      continue;

    int C = getEntryCost(&TE);
    LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
                      << " for bundle that starts with " << *TE.Scalars[0]
                      << ".\n");
    Cost += C;
  }

  SmallPtrSet<Value *, 16> ExtractCostCalculated;
  int ExtractCost = 0;
  for (ExternalUser &EU : ExternalUses) {
    // We only add extract cost once for the same scalar.
    if (!ExtractCostCalculated.insert(EU.Scalar).second)
      continue;

    // Uses by ephemeral values are free (because the ephemeral value will be
    // removed prior to code generation, and so the extraction will be
    // removed as well).
    if (EphValues.count(EU.User))
      continue;

    // If we plan to rewrite the tree in a smaller type, we will need to sign
    // extend the extracted value back to the original type. Here, we account
    // for the extract and the added cost of the sign extend if needed.
    auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
    auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
    if (MinBWs.count(ScalarRoot)) {
      auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
      auto Extend =
          MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
      VecTy = VectorType::get(MinTy, BundleWidth);
      ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
                                                   VecTy, EU.Lane);
    } else {
      ExtractCost +=
          TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
    }
  }

  int SpillCost = getSpillCost();
  Cost += SpillCost + ExtractCost;

  std::string Str;
  {
    raw_string_ostream OS(Str);
    OS << "SLP: Spill Cost = " << SpillCost << ".\n"
       << "SLP: Extract Cost = " << ExtractCost << ".\n"
       << "SLP: Total Cost = " << Cost << ".\n";
  }
  LLVM_DEBUG(dbgs() << Str);

  if (ViewSLPTree)
    ViewGraph(this, "SLP" + F->getName(), false, Str);

  return Cost;
}

int BoUpSLP::getGatherCost(Type *Ty,
                           const DenseSet<unsigned> &ShuffledIndices) const {
  int Cost = 0;
  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
    if (!ShuffledIndices.count(i))
      Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
  if (!ShuffledIndices.empty())
    Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
  return Cost;
}

int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
  // Find the type of the operands in VL.
  Type *ScalarTy = VL[0]->getType();
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    ScalarTy = SI->getValueOperand()->getType();
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
  // Find the cost of inserting/extracting values from the vector.
  // Check if the same elements are inserted several times and count them as
  // shuffle candidates.
  DenseSet<unsigned> ShuffledElements;
  DenseSet<Value *> UniqueElements;
  // Iterate in reverse order to consider insert elements with the high cost.
  for (unsigned I = VL.size(); I > 0; --I) {
    unsigned Idx = I - 1;
    if (!UniqueElements.insert(VL[Idx]).second)
      ShuffledElements.insert(Idx);
  }
  return getGatherCost(VecTy, ShuffledElements);
}

// Perform operand reordering on the instructions in VL and return the reordered
// operands in Left and Right.
void BoUpSLP::reorderInputsAccordingToOpcode(
    ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
    SmallVectorImpl<Value *> &Right, const DataLayout &DL,
    ScalarEvolution &SE) {
  if (VL.empty())
    return;
  VLOperands Ops(VL, DL, SE);
  // Reorder the operands in place.
  Ops.reorder();
  Left = Ops.getVL(0);
  Right = Ops.getVL(1);
}

void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
  // Get the basic block this bundle is in. All instructions in the bundle
  // should be in this block.
  auto *Front = E->getMainOp();
  auto *BB = Front->getParent();
  assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
                      [=](Value *V) -> bool {
                        auto *I = cast<Instruction>(V);
                        return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
                      }));

  // The last instruction in the bundle in program order.
  Instruction *LastInst = nullptr;

  // Find the last instruction. The common case should be that BB has been
  // scheduled, and the last instruction is VL.back(). So we start with
  // VL.back() and iterate over schedule data until we reach the end of the
  // bundle. The end of the bundle is marked by null ScheduleData.
  if (BlocksSchedules.count(BB)) {
    auto *Bundle =
        BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
    if (Bundle && Bundle->isPartOfBundle())
      for (; Bundle; Bundle = Bundle->NextInBundle)
        if (Bundle->OpValue == Bundle->Inst)
          LastInst = Bundle->Inst;
  }

  // LastInst can still be null at this point if there's either not an entry
  // for BB in BlocksSchedules or there's no ScheduleData available for
  // VL.back(). This can be the case if buildTree_rec aborts for various
  // reasons (e.g., the maximum recursion depth is reached, the maximum region
  // size is reached, etc.). ScheduleData is initialized in the scheduling
  // "dry-run".
  //
  // If this happens, we can still find the last instruction by brute force. We
  // iterate forwards from Front (inclusive) until we either see all
  // instructions in the bundle or reach the end of the block. If Front is the
  // last instruction in program order, LastInst will be set to Front, and we
  // will visit all the remaining instructions in the block.
  //
  // One of the reasons we exit early from buildTree_rec is to place an upper
  // bound on compile-time. Thus, taking an additional compile-time hit here is
  // not ideal. However, this should be exceedingly rare since it requires that
  // we both exit early from buildTree_rec and that the bundle be out-of-order
  // (causing us to iterate all the way to the end of the block).
  if (!LastInst) {
    SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
    for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
      if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
        LastInst = &I;
      if (Bundle.empty())
        break;
    }
  }
  assert(LastInst && "Failed to find last instruction in bundle");

  // Set the insertion point after the last instruction in the bundle. Set the
  // debug location to Front.
  Builder.SetInsertPoint(BB, ++LastInst->getIterator());
  Builder.SetCurrentDebugLocation(Front->getDebugLoc());
}

Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
  Value *Vec = UndefValue::get(Ty);
  // Generate the 'InsertElement' instruction.
  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
    if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) {
      GatherSeq.insert(Insrt);
      CSEBlocks.insert(Insrt->getParent());

      // Add to our 'need-to-extract' list.
      if (TreeEntry *E = getTreeEntry(VL[i])) {
        // Find which lane we need to extract.
        int FoundLane = -1;
        for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
          // Is this the lane of the scalar that we are looking for ?
          if (E->Scalars[Lane] == VL[i]) {
            FoundLane = Lane;
            break;
          }
        }
        assert(FoundLane >= 0 && "Could not find the correct lane");
        if (!E->ReuseShuffleIndices.empty()) {
          FoundLane =
              std::distance(E->ReuseShuffleIndices.begin(),
                            llvm::find(E->ReuseShuffleIndices, FoundLane));
        }
        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
      }
    }
  }

  return Vec;
}

Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
  InstructionsState S = getSameOpcode(VL);
  if (S.getOpcode()) {
    if (TreeEntry *E = getTreeEntry(S.OpValue)) {
      if (E->isSame(VL)) {
        Value *V = vectorizeTree(E);
        if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
          // We need to get the vectorized value but without shuffle.
          if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
            V = SV->getOperand(0);
          } else {
            // Reshuffle to get only unique values.
            SmallVector<unsigned, 4> UniqueIdxs;
            SmallSet<unsigned, 4> UsedIdxs;
            for(unsigned Idx : E->ReuseShuffleIndices)
              if (UsedIdxs.insert(Idx).second)
                UniqueIdxs.emplace_back(Idx);
            V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
                                            UniqueIdxs);
          }
        }
        return V;
      }
    }
  }

  Type *ScalarTy = S.OpValue->getType();
  if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
    ScalarTy = SI->getValueOperand()->getType();

  // Check that every instruction appears once in this bundle.
  SmallVector<unsigned, 4> ReuseShuffleIndicies;
  SmallVector<Value *, 4> UniqueValues;
  if (VL.size() > 2) {
    DenseMap<Value *, unsigned> UniquePositions;
    for (Value *V : VL) {
      auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
      ReuseShuffleIndicies.emplace_back(Res.first->second);
      if (Res.second || isa<Constant>(V))
        UniqueValues.emplace_back(V);
    }
    // Do not shuffle single element or if number of unique values is not power
    // of 2.
    if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
        !llvm::isPowerOf2_32(UniqueValues.size()))
      ReuseShuffleIndicies.clear();
    else
      VL = UniqueValues;
  }
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());

  Value *V = Gather(VL, VecTy);
  if (!ReuseShuffleIndicies.empty()) {
    V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                    ReuseShuffleIndicies, "shuffle");
    if (auto *I = dyn_cast<Instruction>(V)) {
      GatherSeq.insert(I);
      CSEBlocks.insert(I->getParent());
    }
  }
  return V;
}

static void inversePermutation(ArrayRef<unsigned> Indices,
                               SmallVectorImpl<unsigned> &Mask) {
  Mask.clear();
  const unsigned E = Indices.size();
  Mask.resize(E);
  for (unsigned I = 0; I < E; ++I)
    Mask[Indices[I]] = I;
}

Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
  IRBuilder<>::InsertPointGuard Guard(Builder);

  if (E->VectorizedValue) {
    LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
    return E->VectorizedValue;
  }

  Instruction *VL0 = E->getMainOp();
  Type *ScalarTy = VL0->getType();
  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
    ScalarTy = SI->getValueOperand()->getType();
  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());

  bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();

  if (E->NeedToGather) {
    setInsertPointAfterBundle(E);
    auto *V = Gather(E->Scalars, VecTy);
    if (NeedToShuffleReuses) {
      V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                      E->ReuseShuffleIndices, "shuffle");
      if (auto *I = dyn_cast<Instruction>(V)) {
        GatherSeq.insert(I);
        CSEBlocks.insert(I->getParent());
      }
    }
    E->VectorizedValue = V;
    return V;
  }

  unsigned ShuffleOrOp =
      E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
  switch (ShuffleOrOp) {
    case Instruction::PHI: {
      auto *PH = cast<PHINode>(VL0);
      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
      Value *V = NewPhi;
      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;

      // PHINodes may have multiple entries from the same block. We want to
      // visit every block once.
      SmallPtrSet<BasicBlock*, 4> VisitedBBs;

      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
        ValueList Operands;
        BasicBlock *IBB = PH->getIncomingBlock(i);

        if (!VisitedBBs.insert(IBB).second) {
          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
          continue;
        }

        Builder.SetInsertPoint(IBB->getTerminator());
        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
        Value *Vec = vectorizeTree(E->getOperand(i));
        NewPhi->addIncoming(Vec, IBB);
      }

      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
             "Invalid number of incoming values");
      return V;
    }

    case Instruction::ExtractElement: {
      if (!E->NeedToGather) {
        Value *V = E->getSingleOperand(0);
        if (!E->ReorderIndices.empty()) {
          OrdersType Mask;
          inversePermutation(E->ReorderIndices, Mask);
          Builder.SetInsertPoint(VL0);
          V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
                                          "reorder_shuffle");
        }
        if (NeedToShuffleReuses) {
          // TODO: Merge this shuffle with the ReorderShuffleMask.
          if (E->ReorderIndices.empty())
            Builder.SetInsertPoint(VL0);
          V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                          E->ReuseShuffleIndices, "shuffle");
        }
        E->VectorizedValue = V;
        return V;
      }
      setInsertPointAfterBundle(E);
      auto *V = Gather(E->Scalars, VecTy);
      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
        if (auto *I = dyn_cast<Instruction>(V)) {
          GatherSeq.insert(I);
          CSEBlocks.insert(I->getParent());
        }
      }
      E->VectorizedValue = V;
      return V;
    }
    case Instruction::ExtractValue: {
      if (!E->NeedToGather) {
        LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
        Builder.SetInsertPoint(LI);
        PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
        Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
        LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment());
        Value *NewV = propagateMetadata(V, E->Scalars);
        if (!E->ReorderIndices.empty()) {
          OrdersType Mask;
          inversePermutation(E->ReorderIndices, Mask);
          NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
                                             "reorder_shuffle");
        }
        if (NeedToShuffleReuses) {
          // TODO: Merge this shuffle with the ReorderShuffleMask.
          NewV = Builder.CreateShuffleVector(
              NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
        }
        E->VectorizedValue = NewV;
        return NewV;
      }
      setInsertPointAfterBundle(E);
      auto *V = Gather(E->Scalars, VecTy);
      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
        if (auto *I = dyn_cast<Instruction>(V)) {
          GatherSeq.insert(I);
          CSEBlocks.insert(I->getParent());
        }
      }
      E->VectorizedValue = V;
      return V;
    }
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::SIToFP:
    case Instruction::UIToFP:
    case Instruction::Trunc:
    case Instruction::FPTrunc:
    case Instruction::BitCast: {
      setInsertPointAfterBundle(E);

      Value *InVec = vectorizeTree(E->getOperand(0));

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      auto *CI = cast<CastInst>(VL0);
      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::FCmp:
    case Instruction::ICmp: {
      setInsertPointAfterBundle(E);

      Value *L = vectorizeTree(E->getOperand(0));
      Value *R = vectorizeTree(E->getOperand(1));

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
      Value *V;
      if (E->getOpcode() == Instruction::FCmp)
        V = Builder.CreateFCmp(P0, L, R);
      else
        V = Builder.CreateICmp(P0, L, R);

      propagateIRFlags(V, E->Scalars, VL0);
      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::Select: {
      setInsertPointAfterBundle(E);

      Value *Cond = vectorizeTree(E->getOperand(0));
      Value *True = vectorizeTree(E->getOperand(1));
      Value *False = vectorizeTree(E->getOperand(2));

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      Value *V = Builder.CreateSelect(Cond, True, False);
      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::FNeg: {
      setInsertPointAfterBundle(E);

      Value *Op = vectorizeTree(E->getOperand(0));

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      Value *V = Builder.CreateUnOp(
          static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
      propagateIRFlags(V, E->Scalars, VL0);
      if (auto *I = dyn_cast<Instruction>(V))
        V = propagateMetadata(I, E->Scalars);

      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      ++NumVectorInstructions;

      return V;
    }
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      setInsertPointAfterBundle(E);

      Value *LHS = vectorizeTree(E->getOperand(0));
      Value *RHS = vectorizeTree(E->getOperand(1));

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      Value *V = Builder.CreateBinOp(
          static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
          RHS);
      propagateIRFlags(V, E->Scalars, VL0);
      if (auto *I = dyn_cast<Instruction>(V))
        V = propagateMetadata(I, E->Scalars);

      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      ++NumVectorInstructions;

      return V;
    }
    case Instruction::Load: {
      // Loads are inserted at the head of the tree because we don't want to
      // sink them all the way down past store instructions.
      bool IsReorder = E->updateStateIfReorder();
      if (IsReorder)
        VL0 = E->getMainOp();
      setInsertPointAfterBundle(E);

      LoadInst *LI = cast<LoadInst>(VL0);
      Type *ScalarLoadTy = LI->getType();
      unsigned AS = LI->getPointerAddressSpace();

      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
                                            VecTy->getPointerTo(AS));

      // The pointer operand uses an in-tree scalar so we add the new BitCast to
      // ExternalUses list to make sure that an extract will be generated in the
      // future.
      Value *PO = LI->getPointerOperand();
      if (getTreeEntry(PO))
        ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));

      MaybeAlign Alignment = MaybeAlign(LI->getAlignment());
      LI = Builder.CreateLoad(VecTy, VecPtr);
      if (!Alignment)
        Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy));
      LI->setAlignment(Alignment);
      Value *V = propagateMetadata(LI, E->Scalars);
      if (IsReorder) {
        OrdersType Mask;
        inversePermutation(E->ReorderIndices, Mask);
        V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
                                        Mask, "reorder_shuffle");
      }
      if (NeedToShuffleReuses) {
        // TODO: Merge this shuffle with the ReorderShuffleMask.
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::Store: {
      StoreInst *SI = cast<StoreInst>(VL0);
      unsigned Alignment = SI->getAlignment();
      unsigned AS = SI->getPointerAddressSpace();

      setInsertPointAfterBundle(E);

      Value *VecValue = vectorizeTree(E->getOperand(0));
      Value *ScalarPtr = SI->getPointerOperand();
      Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
      StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);

      // The pointer operand uses an in-tree scalar, so add the new BitCast to
      // ExternalUses to make sure that an extract will be generated in the
      // future.
      if (getTreeEntry(ScalarPtr))
        ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));

      if (!Alignment)
        Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());

      ST->setAlignment(Align(Alignment));
      Value *V = propagateMetadata(ST, E->Scalars);
      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::GetElementPtr: {
      setInsertPointAfterBundle(E);

      Value *Op0 = vectorizeTree(E->getOperand(0));

      std::vector<Value *> OpVecs;
      for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
           ++j) {
        Value *OpVec = vectorizeTree(E->getOperand(j));
        OpVecs.push_back(OpVec);
      }

      Value *V = Builder.CreateGEP(
          cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
      if (Instruction *I = dyn_cast<Instruction>(V))
        V = propagateMetadata(I, E->Scalars);

      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      ++NumVectorInstructions;

      return V;
    }
    case Instruction::Call: {
      CallInst *CI = cast<CallInst>(VL0);
      setInsertPointAfterBundle(E);

      Intrinsic::ID IID  = Intrinsic::not_intrinsic;
      if (Function *FI = CI->getCalledFunction())
        IID = FI->getIntrinsicID();

      Value *ScalarArg = nullptr;
      std::vector<Value *> OpVecs;
      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
        ValueList OpVL;
        // Some intrinsics have scalar arguments. This argument should not be
        // vectorized.
        if (hasVectorInstrinsicScalarOpd(IID, j)) {
          CallInst *CEI = cast<CallInst>(VL0);
          ScalarArg = CEI->getArgOperand(j);
          OpVecs.push_back(CEI->getArgOperand(j));
          continue;
        }

        Value *OpVec = vectorizeTree(E->getOperand(j));
        LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
        OpVecs.push_back(OpVec);
      }

      Module *M = F->getParent();
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
      Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
      Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
      SmallVector<OperandBundleDef, 1> OpBundles;
      CI->getOperandBundlesAsDefs(OpBundles);
      Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);

      // The scalar argument uses an in-tree scalar so we add the new vectorized
      // call to ExternalUses list to make sure that an extract will be
      // generated in the future.
      if (ScalarArg && getTreeEntry(ScalarArg))
        ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));

      propagateIRFlags(V, E->Scalars, VL0);
      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::ShuffleVector: {
      assert(E->isAltShuffle() &&
             ((Instruction::isBinaryOp(E->getOpcode()) &&
               Instruction::isBinaryOp(E->getAltOpcode())) ||
              (Instruction::isCast(E->getOpcode()) &&
               Instruction::isCast(E->getAltOpcode()))) &&
             "Invalid Shuffle Vector Operand");

      Value *LHS = nullptr, *RHS = nullptr;
      if (Instruction::isBinaryOp(E->getOpcode())) {
        setInsertPointAfterBundle(E);
        LHS = vectorizeTree(E->getOperand(0));
        RHS = vectorizeTree(E->getOperand(1));
      } else {
        setInsertPointAfterBundle(E);
        LHS = vectorizeTree(E->getOperand(0));
      }

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      Value *V0, *V1;
      if (Instruction::isBinaryOp(E->getOpcode())) {
        V0 = Builder.CreateBinOp(
            static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
        V1 = Builder.CreateBinOp(
            static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
      } else {
        V0 = Builder.CreateCast(
            static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
        V1 = Builder.CreateCast(
            static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
      }

      // Create shuffle to take alternate operations from the vector.
      // Also, gather up main and alt scalar ops to propagate IR flags to
      // each vector operation.
      ValueList OpScalars, AltScalars;
      unsigned e = E->Scalars.size();
      SmallVector<Constant *, 8> Mask(e);
      for (unsigned i = 0; i < e; ++i) {
        auto *OpInst = cast<Instruction>(E->Scalars[i]);
        assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
        if (OpInst->getOpcode() == E->getAltOpcode()) {
          Mask[i] = Builder.getInt32(e + i);
          AltScalars.push_back(E->Scalars[i]);
        } else {
          Mask[i] = Builder.getInt32(i);
          OpScalars.push_back(E->Scalars[i]);
        }
      }

      Value *ShuffleMask = ConstantVector::get(Mask);
      propagateIRFlags(V0, OpScalars);
      propagateIRFlags(V1, AltScalars);

      Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
      if (Instruction *I = dyn_cast<Instruction>(V))
        V = propagateMetadata(I, E->Scalars);
      if (NeedToShuffleReuses) {
        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
                                        E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      ++NumVectorInstructions;

      return V;
    }
    default:
    llvm_unreachable("unknown inst");
  }
  return nullptr;
}

Value *BoUpSLP::vectorizeTree() {
  ExtraValueToDebugLocsMap ExternallyUsedValues;
  return vectorizeTree(ExternallyUsedValues);
}

Value *
BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
  // All blocks must be scheduled before any instructions are inserted.
  for (auto &BSIter : BlocksSchedules) {
    scheduleBlock(BSIter.second.get());
  }

  Builder.SetInsertPoint(&F->getEntryBlock().front());
  auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());

  // If the vectorized tree can be rewritten in a smaller type, we truncate the
  // vectorized root. InstCombine will then rewrite the entire expression. We
  // sign extend the extracted values below.
  auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
  if (MinBWs.count(ScalarRoot)) {
    if (auto *I = dyn_cast<Instruction>(VectorRoot))
      Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
    auto BundleWidth = VectorizableTree[0]->Scalars.size();
    auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
    auto *VecTy = VectorType::get(MinTy, BundleWidth);
    auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
    VectorizableTree[0]->VectorizedValue = Trunc;
  }

  LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
                    << " values .\n");

  // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
  // specified by ScalarType.
  auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
    if (!MinBWs.count(ScalarRoot))
      return Ex;
    if (MinBWs[ScalarRoot].second)
      return Builder.CreateSExt(Ex, ScalarType);
    return Builder.CreateZExt(Ex, ScalarType);
  };

  // Extract all of the elements with the external uses.
  for (const auto &ExternalUse : ExternalUses) {
    Value *Scalar = ExternalUse.Scalar;
    llvm::User *User = ExternalUse.User;

    // Skip users that we already RAUW. This happens when one instruction
    // has multiple uses of the same value.
    if (User && !is_contained(Scalar->users(), User))
      continue;
    TreeEntry *E = getTreeEntry(Scalar);
    assert(E && "Invalid scalar");
    assert(!E->NeedToGather && "Extracting from a gather list");

    Value *Vec = E->VectorizedValue;
    assert(Vec && "Can't find vectorizable value");

    Value *Lane = Builder.getInt32(ExternalUse.Lane);
    // If User == nullptr, the Scalar is used as extra arg. Generate
    // ExtractElement instruction and update the record for this scalar in
    // ExternallyUsedValues.
    if (!User) {
      assert(ExternallyUsedValues.count(Scalar) &&
             "Scalar with nullptr as an external user must be registered in "
             "ExternallyUsedValues map");
      if (auto *VecI = dyn_cast<Instruction>(Vec)) {
        Builder.SetInsertPoint(VecI->getParent(),
                               std::next(VecI->getIterator()));
      } else {
        Builder.SetInsertPoint(&F->getEntryBlock().front());
      }
      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
      Ex = extend(ScalarRoot, Ex, Scalar->getType());
      CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
      auto &Locs = ExternallyUsedValues[Scalar];
      ExternallyUsedValues.insert({Ex, Locs});
      ExternallyUsedValues.erase(Scalar);
      // Required to update internally referenced instructions.
      Scalar->replaceAllUsesWith(Ex);
      continue;
    }

    // Generate extracts for out-of-tree users.
    // Find the insertion point for the extractelement lane.
    if (auto *VecI = dyn_cast<Instruction>(Vec)) {
      if (PHINode *PH = dyn_cast<PHINode>(User)) {
        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
          if (PH->getIncomingValue(i) == Scalar) {
            Instruction *IncomingTerminator =
                PH->getIncomingBlock(i)->getTerminator();
            if (isa<CatchSwitchInst>(IncomingTerminator)) {
              Builder.SetInsertPoint(VecI->getParent(),
                                     std::next(VecI->getIterator()));
            } else {
              Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
            }
            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
            Ex = extend(ScalarRoot, Ex, Scalar->getType());
            CSEBlocks.insert(PH->getIncomingBlock(i));
            PH->setOperand(i, Ex);
          }
        }
      } else {
        Builder.SetInsertPoint(cast<Instruction>(User));
        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
        Ex = extend(ScalarRoot, Ex, Scalar->getType());
        CSEBlocks.insert(cast<Instruction>(User)->getParent());
        User->replaceUsesOfWith(Scalar, Ex);
      }
    } else {
      Builder.SetInsertPoint(&F->getEntryBlock().front());
      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
      Ex = extend(ScalarRoot, Ex, Scalar->getType());
      CSEBlocks.insert(&F->getEntryBlock());
      User->replaceUsesOfWith(Scalar, Ex);
    }

    LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
  }

  // For each vectorized value:
  for (auto &TEPtr : VectorizableTree) {
    TreeEntry *Entry = TEPtr.get();

    // No need to handle users of gathered values.
    if (Entry->NeedToGather)
      continue;

    assert(Entry->VectorizedValue && "Can't find vectorizable value");

    // For each lane:
    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
      Value *Scalar = Entry->Scalars[Lane];

#ifndef NDEBUG
      Type *Ty = Scalar->getType();
      if (!Ty->isVoidTy()) {
        for (User *U : Scalar->users()) {
          LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");

          // It is legal to delete users in the ignorelist.
          assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
                 "Deleting out-of-tree value");
        }
      }
#endif
      LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
      eraseInstruction(cast<Instruction>(Scalar));
    }
  }

  Builder.ClearInsertionPoint();

  return VectorizableTree[0]->VectorizedValue;
}

void BoUpSLP::optimizeGatherSequence() {
  LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
                    << " gather sequences instructions.\n");
  // LICM InsertElementInst sequences.
  for (Instruction *I : GatherSeq) {
    if (isDeleted(I))
      continue;

    // Check if this block is inside a loop.
    Loop *L = LI->getLoopFor(I->getParent());
    if (!L)
      continue;

    // Check if it has a preheader.
    BasicBlock *PreHeader = L->getLoopPreheader();
    if (!PreHeader)
      continue;

    // If the vector or the element that we insert into it are
    // instructions that are defined in this basic block then we can't
    // hoist this instruction.
    auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
    auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
    if (Op0 && L->contains(Op0))
      continue;
    if (Op1 && L->contains(Op1))
      continue;

    // We can hoist this instruction. Move it to the pre-header.
    I->moveBefore(PreHeader->getTerminator());
  }

  // Make a list of all reachable blocks in our CSE queue.
  SmallVector<const DomTreeNode *, 8> CSEWorkList;
  CSEWorkList.reserve(CSEBlocks.size());
  for (BasicBlock *BB : CSEBlocks)
    if (DomTreeNode *N = DT->getNode(BB)) {
      assert(DT->isReachableFromEntry(N));
      CSEWorkList.push_back(N);
    }

  // Sort blocks by domination. This ensures we visit a block after all blocks
  // dominating it are visited.
  llvm::stable_sort(CSEWorkList,
                    [this](const DomTreeNode *A, const DomTreeNode *B) {
                      return DT->properlyDominates(A, B);
                    });

  // Perform O(N^2) search over the gather sequences and merge identical
  // instructions. TODO: We can further optimize this scan if we split the
  // instructions into different buckets based on the insert lane.
  SmallVector<Instruction *, 16> Visited;
  for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
           "Worklist not sorted properly!");
    BasicBlock *BB = (*I)->getBlock();
    // For all instructions in blocks containing gather sequences:
    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
      Instruction *In = &*it++;
      if (isDeleted(In))
        continue;
      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
        continue;

      // Check if we can replace this instruction with any of the
      // visited instructions.
      for (Instruction *v : Visited) {
        if (In->isIdenticalTo(v) &&
            DT->dominates(v->getParent(), In->getParent())) {
          In->replaceAllUsesWith(v);
          eraseInstruction(In);
          In = nullptr;
          break;
        }
      }
      if (In) {
        assert(!is_contained(Visited, In));
        Visited.push_back(In);
      }
    }
  }
  CSEBlocks.clear();
  GatherSeq.clear();
}

// Groups the instructions to a bundle (which is then a single scheduling entity)
// and schedules instructions until the bundle gets ready.
Optional<BoUpSLP::ScheduleData *>
BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
                                            const InstructionsState &S) {
  if (isa<PHINode>(S.OpValue))
    return nullptr;

  // Initialize the instruction bundle.
  Instruction *OldScheduleEnd = ScheduleEnd;
  ScheduleData *PrevInBundle = nullptr;
  ScheduleData *Bundle = nullptr;
  bool ReSchedule = false;
  LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");

  // Make sure that the scheduling region contains all
  // instructions of the bundle.
  for (Value *V : VL) {
    if (!extendSchedulingRegion(V, S))
      return None;
  }

  for (Value *V : VL) {
    ScheduleData *BundleMember = getScheduleData(V);
    assert(BundleMember &&
           "no ScheduleData for bundle member (maybe not in same basic block)");
    if (BundleMember->IsScheduled) {
      // A bundle member was scheduled as single instruction before and now
      // needs to be scheduled as part of the bundle. We just get rid of the
      // existing schedule.
      LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
                        << " was already scheduled\n");
      ReSchedule = true;
    }
    assert(BundleMember->isSchedulingEntity() &&
           "bundle member already part of other bundle");
    if (PrevInBundle) {
      PrevInBundle->NextInBundle = BundleMember;
    } else {
      Bundle = BundleMember;
    }
    BundleMember->UnscheduledDepsInBundle = 0;
    Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;

    // Group the instructions to a bundle.
    BundleMember->FirstInBundle = Bundle;
    PrevInBundle = BundleMember;
  }
  if (ScheduleEnd != OldScheduleEnd) {
    // The scheduling region got new instructions at the lower end (or it is a
    // new region for the first bundle). This makes it necessary to
    // recalculate all dependencies.
    // It is seldom that this needs to be done a second time after adding the
    // initial bundle to the region.
    for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
      doForAllOpcodes(I, [](ScheduleData *SD) {
        SD->clearDependencies();
      });
    }
    ReSchedule = true;
  }
  if (ReSchedule) {
    resetSchedule();
    initialFillReadyList(ReadyInsts);
  }
  assert(Bundle && "Failed to find schedule bundle");

  LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
                    << BB->getName() << "\n");

  calculateDependencies(Bundle, true, SLP);

  // Now try to schedule the new bundle. As soon as the bundle is "ready" it
  // means that there are no cyclic dependencies and we can schedule it.
  // Note that's important that we don't "schedule" the bundle yet (see
  // cancelScheduling).
  while (!Bundle->isReady() && !ReadyInsts.empty()) {

    ScheduleData *pickedSD = ReadyInsts.back();
    ReadyInsts.pop_back();

    if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
      schedule(pickedSD, ReadyInsts);
    }
  }
  if (!Bundle->isReady()) {
    cancelScheduling(VL, S.OpValue);
    return None;
  }
  return Bundle;
}

void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
                                                Value *OpValue) {
  if (isa<PHINode>(OpValue))
    return;

  ScheduleData *Bundle = getScheduleData(OpValue);
  LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
  assert(!Bundle->IsScheduled &&
         "Can't cancel bundle which is already scheduled");
  assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
         "tried to unbundle something which is not a bundle");

  // Un-bundle: make single instructions out of the bundle.
  ScheduleData *BundleMember = Bundle;
  while (BundleMember) {
    assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
    BundleMember->FirstInBundle = BundleMember;
    ScheduleData *Next = BundleMember->NextInBundle;
    BundleMember->NextInBundle = nullptr;
    BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
    if (BundleMember->UnscheduledDepsInBundle == 0) {
      ReadyInsts.insert(BundleMember);
    }
    BundleMember = Next;
  }
}

BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
  // Allocate a new ScheduleData for the instruction.
  if (ChunkPos >= ChunkSize) {
    ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
    ChunkPos = 0;
  }
  return &(ScheduleDataChunks.back()[ChunkPos++]);
}

bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
                                                      const InstructionsState &S) {
  if (getScheduleData(V, isOneOf(S, V)))
    return true;
  Instruction *I = dyn_cast<Instruction>(V);
  assert(I && "bundle member must be an instruction");
  assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
  auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
    ScheduleData *ISD = getScheduleData(I);
    if (!ISD)
      return false;
    assert(isInSchedulingRegion(ISD) &&
           "ScheduleData not in scheduling region");
    ScheduleData *SD = allocateScheduleDataChunks();
    SD->Inst = I;
    SD->init(SchedulingRegionID, S.OpValue);
    ExtraScheduleDataMap[I][S.OpValue] = SD;
    return true;
  };
  if (CheckSheduleForI(I))
    return true;
  if (!ScheduleStart) {
    // It's the first instruction in the new region.
    initScheduleData(I, I->getNextNode(), nullptr, nullptr);
    ScheduleStart = I;
    ScheduleEnd = I->getNextNode();
    if (isOneOf(S, I) != I)
      CheckSheduleForI(I);
    assert(ScheduleEnd && "tried to vectorize a terminator?");
    LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
    return true;
  }
  // Search up and down at the same time, because we don't know if the new
  // instruction is above or below the existing scheduling region.
  BasicBlock::reverse_iterator UpIter =
      ++ScheduleStart->getIterator().getReverse();
  BasicBlock::reverse_iterator UpperEnd = BB->rend();
  BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
  BasicBlock::iterator LowerEnd = BB->end();
  while (true) {
    if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
      LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
      return false;
    }

    if (UpIter != UpperEnd) {
      if (&*UpIter == I) {
        initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
        ScheduleStart = I;
        if (isOneOf(S, I) != I)
          CheckSheduleForI(I);
        LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
                          << "\n");
        return true;
      }
      ++UpIter;
    }
    if (DownIter != LowerEnd) {
      if (&*DownIter == I) {
        initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
                         nullptr);
        ScheduleEnd = I->getNextNode();
        if (isOneOf(S, I) != I)
          CheckSheduleForI(I);
        assert(ScheduleEnd && "tried to vectorize a terminator?");
        LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I
                          << "\n");
        return true;
      }
      ++DownIter;
    }
    assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
           "instruction not found in block");
  }
  return true;
}

void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
                                                Instruction *ToI,
                                                ScheduleData *PrevLoadStore,
                                                ScheduleData *NextLoadStore) {
  ScheduleData *CurrentLoadStore = PrevLoadStore;
  for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
    ScheduleData *SD = ScheduleDataMap[I];
    if (!SD) {
      SD = allocateScheduleDataChunks();
      ScheduleDataMap[I] = SD;
      SD->Inst = I;
    }
    assert(!isInSchedulingRegion(SD) &&
           "new ScheduleData already in scheduling region");
    SD->init(SchedulingRegionID, I);

    if (I->mayReadOrWriteMemory() &&
        (!isa<IntrinsicInst>(I) ||
         cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
      // Update the linked list of memory accessing instructions.
      if (CurrentLoadStore) {
        CurrentLoadStore->NextLoadStore = SD;
      } else {
        FirstLoadStoreInRegion = SD;
      }
      CurrentLoadStore = SD;
    }
  }
  if (NextLoadStore) {
    if (CurrentLoadStore)
      CurrentLoadStore->NextLoadStore = NextLoadStore;
  } else {
    LastLoadStoreInRegion = CurrentLoadStore;
  }
}

void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
                                                     bool InsertInReadyList,
                                                     BoUpSLP *SLP) {
  assert(SD->isSchedulingEntity());

  SmallVector<ScheduleData *, 10> WorkList;
  WorkList.push_back(SD);

  while (!WorkList.empty()) {
    ScheduleData *SD = WorkList.back();
    WorkList.pop_back();

    ScheduleData *BundleMember = SD;
    while (BundleMember) {
      assert(isInSchedulingRegion(BundleMember));
      if (!BundleMember->hasValidDependencies()) {

        LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
                          << "\n");
        BundleMember->Dependencies = 0;
        BundleMember->resetUnscheduledDeps();

        // Handle def-use chain dependencies.
        if (BundleMember->OpValue != BundleMember->Inst) {
          ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
          if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
            BundleMember->Dependencies++;
            ScheduleData *DestBundle = UseSD->FirstInBundle;
            if (!DestBundle->IsScheduled)
              BundleMember->incrementUnscheduledDeps(1);
            if (!DestBundle->hasValidDependencies())
              WorkList.push_back(DestBundle);
          }
        } else {
          for (User *U : BundleMember->Inst->users()) {
            if (isa<Instruction>(U)) {
              ScheduleData *UseSD = getScheduleData(U);
              if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
                BundleMember->Dependencies++;
                ScheduleData *DestBundle = UseSD->FirstInBundle;
                if (!DestBundle->IsScheduled)
                  BundleMember->incrementUnscheduledDeps(1);
                if (!DestBundle->hasValidDependencies())
                  WorkList.push_back(DestBundle);
              }
            } else {
              // I'm not sure if this can ever happen. But we need to be safe.
              // This lets the instruction/bundle never be scheduled and
              // eventually disable vectorization.
              BundleMember->Dependencies++;
              BundleMember->incrementUnscheduledDeps(1);
            }
          }
        }

        // Handle the memory dependencies.
        ScheduleData *DepDest = BundleMember->NextLoadStore;
        if (DepDest) {
          Instruction *SrcInst = BundleMember->Inst;
          MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
          bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
          unsigned numAliased = 0;
          unsigned DistToSrc = 1;

          while (DepDest) {
            assert(isInSchedulingRegion(DepDest));

            // We have two limits to reduce the complexity:
            // 1) AliasedCheckLimit: It's a small limit to reduce calls to
            //    SLP->isAliased (which is the expensive part in this loop).
            // 2) MaxMemDepDistance: It's for very large blocks and it aborts
            //    the whole loop (even if the loop is fast, it's quadratic).
            //    It's important for the loop break condition (see below) to
            //    check this limit even between two read-only instructions.
            if (DistToSrc >= MaxMemDepDistance ||
                    ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
                     (numAliased >= AliasedCheckLimit ||
                      SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {

              // We increment the counter only if the locations are aliased
              // (instead of counting all alias checks). This gives a better
              // balance between reduced runtime and accurate dependencies.
              numAliased++;

              DepDest->MemoryDependencies.push_back(BundleMember);
              BundleMember->Dependencies++;
              ScheduleData *DestBundle = DepDest->FirstInBundle;
              if (!DestBundle->IsScheduled) {
                BundleMember->incrementUnscheduledDeps(1);
              }
              if (!DestBundle->hasValidDependencies()) {
                WorkList.push_back(DestBundle);
              }
            }
            DepDest = DepDest->NextLoadStore;

            // Example, explaining the loop break condition: Let's assume our
            // starting instruction is i0 and MaxMemDepDistance = 3.
            //
            //                      +--------v--v--v
            //             i0,i1,i2,i3,i4,i5,i6,i7,i8
            //             +--------^--^--^
            //
            // MaxMemDepDistance let us stop alias-checking at i3 and we add
            // dependencies from i0 to i3,i4,.. (even if they are not aliased).
            // Previously we already added dependencies from i3 to i6,i7,i8
            // (because of MaxMemDepDistance). As we added a dependency from
            // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
            // and we can abort this loop at i6.
            if (DistToSrc >= 2 * MaxMemDepDistance)
              break;
            DistToSrc++;
          }
        }
      }
      BundleMember = BundleMember->NextInBundle;
    }
    if (InsertInReadyList && SD->isReady()) {
      ReadyInsts.push_back(SD);
      LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
                        << "\n");
    }
  }
}

void BoUpSLP::BlockScheduling::resetSchedule() {
  assert(ScheduleStart &&
         "tried to reset schedule on block which has not been scheduled");
  for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
    doForAllOpcodes(I, [&](ScheduleData *SD) {
      assert(isInSchedulingRegion(SD) &&
             "ScheduleData not in scheduling region");
      SD->IsScheduled = false;
      SD->resetUnscheduledDeps();
    });
  }
  ReadyInsts.clear();
}

void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
  if (!BS->ScheduleStart)
    return;

  LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");

  BS->resetSchedule();

  // For the real scheduling we use a more sophisticated ready-list: it is
  // sorted by the original instruction location. This lets the final schedule
  // be as  close as possible to the original instruction order.
  struct ScheduleDataCompare {
    bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
      return SD2->SchedulingPriority < SD1->SchedulingPriority;
    }
  };
  std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;

  // Ensure that all dependency data is updated and fill the ready-list with
  // initial instructions.
  int Idx = 0;
  int NumToSchedule = 0;
  for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
       I = I->getNextNode()) {
    BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
      assert(SD->isPartOfBundle() ==
                 (getTreeEntry(SD->Inst) != nullptr) &&
             "scheduler and vectorizer bundle mismatch");
      SD->FirstInBundle->SchedulingPriority = Idx++;
      if (SD->isSchedulingEntity()) {
        BS->calculateDependencies(SD, false, this);
        NumToSchedule++;
      }
    });
  }
  BS->initialFillReadyList(ReadyInsts);

  Instruction *LastScheduledInst = BS->ScheduleEnd;

  // Do the "real" scheduling.
  while (!ReadyInsts.empty()) {
    ScheduleData *picked = *ReadyInsts.begin();
    ReadyInsts.erase(ReadyInsts.begin());

    // Move the scheduled instruction(s) to their dedicated places, if not
    // there yet.
    ScheduleData *BundleMember = picked;
    while (BundleMember) {
      Instruction *pickedInst = BundleMember->Inst;
      if (LastScheduledInst->getNextNode() != pickedInst) {
        BS->BB->getInstList().remove(pickedInst);
        BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
                                     pickedInst);
      }
      LastScheduledInst = pickedInst;
      BundleMember = BundleMember->NextInBundle;
    }

    BS->schedule(picked, ReadyInsts);
    NumToSchedule--;
  }
  assert(NumToSchedule == 0 && "could not schedule all instructions");

  // Avoid duplicate scheduling of the block.
  BS->ScheduleStart = nullptr;
}

unsigned BoUpSLP::getVectorElementSize(Value *V) const {
  // If V is a store, just return the width of the stored value without
  // traversing the expression tree. This is the common case.
  if (auto *Store = dyn_cast<StoreInst>(V))
    return DL->getTypeSizeInBits(Store->getValueOperand()->getType());

  // If V is not a store, we can traverse the expression tree to find loads
  // that feed it. The type of the loaded value may indicate a more suitable
  // width than V's type. We want to base the vector element size on the width
  // of memory operations where possible.
  SmallVector<Instruction *, 16> Worklist;
  SmallPtrSet<Instruction *, 16> Visited;
  if (auto *I = dyn_cast<Instruction>(V))
    Worklist.push_back(I);

  // Traverse the expression tree in bottom-up order looking for loads. If we
  // encounter an instruction we don't yet handle, we give up.
  auto MaxWidth = 0u;
  auto FoundUnknownInst = false;
  while (!Worklist.empty() && !FoundUnknownInst) {
    auto *I = Worklist.pop_back_val();
    Visited.insert(I);

    // We should only be looking at scalar instructions here. If the current
    // instruction has a vector type, give up.
    auto *Ty = I->getType();
    if (isa<VectorType>(Ty))
      FoundUnknownInst = true;

    // If the current instruction is a load, update MaxWidth to reflect the
    // width of the loaded value.
    else if (isa<LoadInst>(I))
      MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));

    // Otherwise, we need to visit the operands of the instruction. We only
    // handle the interesting cases from buildTree here. If an operand is an
    // instruction we haven't yet visited, we add it to the worklist.
    else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
             isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
      for (Use &U : I->operands())
        if (auto *J = dyn_cast<Instruction>(U.get()))
          if (!Visited.count(J))
            Worklist.push_back(J);
    }

    // If we don't yet handle the instruction, give up.
    else
      FoundUnknownInst = true;
  }

  // If we didn't encounter a memory access in the expression tree, or if we
  // gave up for some reason, just return the width of V.
  if (!MaxWidth || FoundUnknownInst)
    return DL->getTypeSizeInBits(V->getType());

  // Otherwise, return the maximum width we found.
  return MaxWidth;
}

// Determine if a value V in a vectorizable expression Expr can be demoted to a
// smaller type with a truncation. We collect the values that will be demoted
// in ToDemote and additional roots that require investigating in Roots.
static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
                                  SmallVectorImpl<Value *> &ToDemote,
                                  SmallVectorImpl<Value *> &Roots) {
  // We can always demote constants.
  if (isa<Constant>(V)) {
    ToDemote.push_back(V);
    return true;
  }

  // If the value is not an instruction in the expression with only one use, it
  // cannot be demoted.
  auto *I = dyn_cast<Instruction>(V);
  if (!I || !I->hasOneUse() || !Expr.count(I))
    return false;

  switch (I->getOpcode()) {

  // We can always demote truncations and extensions. Since truncations can
  // seed additional demotion, we save the truncated value.
  case Instruction::Trunc:
    Roots.push_back(I->getOperand(0));
    break;
  case Instruction::ZExt:
  case Instruction::SExt:
    break;

  // We can demote certain binary operations if we can demote both of their
  // operands.
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
        !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
      return false;
    break;

  // We can demote selects if we can demote their true and false values.
  case Instruction::Select: {
    SelectInst *SI = cast<SelectInst>(I);
    if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
        !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
      return false;
    break;
  }

  // We can demote phis if we can demote all their incoming operands. Note that
  // we don't need to worry about cycles since we ensure single use above.
  case Instruction::PHI: {
    PHINode *PN = cast<PHINode>(I);
    for (Value *IncValue : PN->incoming_values())
      if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
        return false;
    break;
  }

  // Otherwise, conservatively give up.
  default:
    return false;
  }

  // Record the value that we can demote.
  ToDemote.push_back(V);
  return true;
}

void BoUpSLP::computeMinimumValueSizes() {
  // If there are no external uses, the expression tree must be rooted by a
  // store. We can't demote in-memory values, so there is nothing to do here.
  if (ExternalUses.empty())
    return;

  // We only attempt to truncate integer expressions.
  auto &TreeRoot = VectorizableTree[0]->Scalars;
  auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
  if (!TreeRootIT)
    return;

  // If the expression is not rooted by a store, these roots should have
  // external uses. We will rely on InstCombine to rewrite the expression in
  // the narrower type. However, InstCombine only rewrites single-use values.
  // This means that if a tree entry other than a root is used externally, it
  // must have multiple uses and InstCombine will not rewrite it. The code
  // below ensures that only the roots are used externally.
  SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
  for (auto &EU : ExternalUses)
    if (!Expr.erase(EU.Scalar))
      return;
  if (!Expr.empty())
    return;

  // Collect the scalar values of the vectorizable expression. We will use this
  // context to determine which values can be demoted. If we see a truncation,
  // we mark it as seeding another demotion.
  for (auto &EntryPtr : VectorizableTree)
    Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());

  // Ensure the roots of the vectorizable tree don't form a cycle. They must
  // have a single external user that is not in the vectorizable tree.
  for (auto *Root : TreeRoot)
    if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
      return;

  // Conservatively determine if we can actually truncate the roots of the
  // expression. Collect the values that can be demoted in ToDemote and
  // additional roots that require investigating in Roots.
  SmallVector<Value *, 32> ToDemote;
  SmallVector<Value *, 4> Roots;
  for (auto *Root : TreeRoot)
    if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
      return;

  // The maximum bit width required to represent all the values that can be
  // demoted without loss of precision. It would be safe to truncate the roots
  // of the expression to this width.
  auto MaxBitWidth = 8u;

  // We first check if all the bits of the roots are demanded. If they're not,
  // we can truncate the roots to this narrower type.
  for (auto *Root : TreeRoot) {
    auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
    MaxBitWidth = std::max<unsigned>(
        Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
  }

  // True if the roots can be zero-extended back to their original type, rather
  // than sign-extended. We know that if the leading bits are not demanded, we
  // can safely zero-extend. So we initialize IsKnownPositive to True.
  bool IsKnownPositive = true;

  // If all the bits of the roots are demanded, we can try a little harder to
  // compute a narrower type. This can happen, for example, if the roots are
  // getelementptr indices. InstCombine promotes these indices to the pointer
  // width. Thus, all their bits are technically demanded even though the
  // address computation might be vectorized in a smaller type.
  //
  // We start by looking at each entry that can be demoted. We compute the
  // maximum bit width required to store the scalar by using ValueTracking to
  // compute the number of high-order bits we can truncate.
  if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
      llvm::all_of(TreeRoot, [](Value *R) {
        assert(R->hasOneUse() && "Root should have only one use!");
        return isa<GetElementPtrInst>(R->user_back());
      })) {
    MaxBitWidth = 8u;

    // Determine if the sign bit of all the roots is known to be zero. If not,
    // IsKnownPositive is set to False.
    IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
      KnownBits Known = computeKnownBits(R, *DL);
      return Known.isNonNegative();
    });

    // Determine the maximum number of bits required to store the scalar
    // values.
    for (auto *Scalar : ToDemote) {
      auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
      auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
      MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
    }

    // If we can't prove that the sign bit is zero, we must add one to the
    // maximum bit width to account for the unknown sign bit. This preserves
    // the existing sign bit so we can safely sign-extend the root back to the
    // original type. Otherwise, if we know the sign bit is zero, we will
    // zero-extend the root instead.
    //
    // FIXME: This is somewhat suboptimal, as there will be cases where adding
    //        one to the maximum bit width will yield a larger-than-necessary
    //        type. In general, we need to add an extra bit only if we can't
    //        prove that the upper bit of the original type is equal to the
    //        upper bit of the proposed smaller type. If these two bits are the
    //        same (either zero or one) we know that sign-extending from the
    //        smaller type will result in the same value. Here, since we can't
    //        yet prove this, we are just making the proposed smaller type
    //        larger to ensure correctness.
    if (!IsKnownPositive)
      ++MaxBitWidth;
  }

  // Round MaxBitWidth up to the next power-of-two.
  if (!isPowerOf2_64(MaxBitWidth))
    MaxBitWidth = NextPowerOf2(MaxBitWidth);

  // If the maximum bit width we compute is less than the with of the roots'
  // type, we can proceed with the narrowing. Otherwise, do nothing.
  if (MaxBitWidth >= TreeRootIT->getBitWidth())
    return;

  // If we can truncate the root, we must collect additional values that might
  // be demoted as a result. That is, those seeded by truncations we will
  // modify.
  while (!Roots.empty())
    collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);

  // Finally, map the values we can demote to the maximum bit with we computed.
  for (auto *Scalar : ToDemote)
    MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
}

namespace {

/// The SLPVectorizer Pass.
struct SLPVectorizer : public FunctionPass {
  SLPVectorizerPass Impl;

  /// Pass identification, replacement for typeid
  static char ID;

  explicit SLPVectorizer() : FunctionPass(ID) {
    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
  }

  bool doInitialization(Module &M) override {
    return false;
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
    auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
    auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

    return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    FunctionPass::getAnalysisUsage(AU);
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<DemandedBitsWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<AAResultsWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.setPreservesCFG();
  }
};

} // end anonymous namespace

PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
  auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
  auto *AA = &AM.getResult<AAManager>(F);
  auto *LI = &AM.getResult<LoopAnalysis>(F);
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
  auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
  auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
  if (!Changed)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<AAManager>();
  PA.preserve<GlobalsAA>();
  return PA;
}

bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
                                TargetTransformInfo *TTI_,
                                TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
                                LoopInfo *LI_, DominatorTree *DT_,
                                AssumptionCache *AC_, DemandedBits *DB_,
                                OptimizationRemarkEmitter *ORE_) {
  SE = SE_;
  TTI = TTI_;
  TLI = TLI_;
  AA = AA_;
  LI = LI_;
  DT = DT_;
  AC = AC_;
  DB = DB_;
  DL = &F.getParent()->getDataLayout();

  Stores.clear();
  GEPs.clear();
  bool Changed = false;

  // If the target claims to have no vector registers don't attempt
  // vectorization.
  if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
    return false;

  // Don't vectorize when the attribute NoImplicitFloat is used.
  if (F.hasFnAttribute(Attribute::NoImplicitFloat))
    return false;

  LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");

  // Use the bottom up slp vectorizer to construct chains that start with
  // store instructions.
  BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);

  // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
  // delete instructions.

  // Scan the blocks in the function in post order.
  for (auto BB : post_order(&F.getEntryBlock())) {
    collectSeedInstructions(BB);

    // Vectorize trees that end at stores.
    if (!Stores.empty()) {
      LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
                        << " underlying objects.\n");
      Changed |= vectorizeStoreChains(R);
    }

    // Vectorize trees that end at reductions.
    Changed |= vectorizeChainsInBlock(BB, R);

    // Vectorize the index computations of getelementptr instructions. This
    // is primarily intended to catch gather-like idioms ending at
    // non-consecutive loads.
    if (!GEPs.empty()) {
      LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
                        << " underlying objects.\n");
      Changed |= vectorizeGEPIndices(BB, R);
    }
  }

  if (Changed) {
    R.optimizeGatherSequence();
    LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
    LLVM_DEBUG(verifyFunction(F));
  }
  return Changed;
}

bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
                                            unsigned VecRegSize) {
  const unsigned ChainLen = Chain.size();
  LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
                    << "\n");
  const unsigned Sz = R.getVectorElementSize(Chain[0]);
  const unsigned VF = VecRegSize / Sz;

  if (!isPowerOf2_32(Sz) || VF < 2)
    return false;

  bool Changed = false;
  // Look for profitable vectorizable trees at all offsets, starting at zero.
  for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) {

    ArrayRef<Value *> Operands = Chain.slice(i, VF);
    // Check that a previous iteration of this loop did not delete the Value.
    if (llvm::any_of(Operands, [&R](Value *V) {
          auto *I = dyn_cast<Instruction>(V);
          return I && R.isDeleted(I);
        }))
      continue;

    LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
                      << "\n");

    R.buildTree(Operands);
    if (R.isTreeTinyAndNotFullyVectorizable())
      continue;

    R.computeMinimumValueSizes();

    int Cost = R.getTreeCost();

    LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF
                      << "\n");
    if (Cost < -SLPCostThreshold) {
      LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");

      using namespace ore;

      R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
                                          cast<StoreInst>(Chain[i]))
                       << "Stores SLP vectorized with cost " << NV("Cost", Cost)
                       << " and with tree size "
                       << NV("TreeSize", R.getTreeSize()));

      R.vectorizeTree();

      // Move to the next bundle.
      i += VF - 1;
      Changed = true;
    }
  }

  return Changed;
}

bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
                                        BoUpSLP &R) {
  SetVector<StoreInst *> Heads;
  SmallDenseSet<StoreInst *> Tails;
  SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;

  // We may run into multiple chains that merge into a single chain. We mark the
  // stores that we vectorized so that we don't visit the same store twice.
  BoUpSLP::ValueSet VectorizedStores;
  bool Changed = false;

  auto &&FindConsecutiveAccess =
      [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) {
        if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
          return false;

        Tails.insert(Stores[Idx]);
        Heads.insert(Stores[K]);
        ConsecutiveChain[Stores[K]] = Stores[Idx];
        return true;
      };

  // Do a quadratic search on all of the given stores in reverse order and find
  // all of the pairs of stores that follow each other.
  int E = Stores.size();
  for (int Idx = E - 1; Idx >= 0; --Idx) {
    // If a store has multiple consecutive store candidates, search according
    // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
    // This is because usually pairing with immediate succeeding or preceding
    // candidate create the best chance to find slp vectorization opportunity.
    for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset)
      if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
          (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
        break;
  }

  // For stores that start but don't end a link in the chain:
  for (auto *SI : llvm::reverse(Heads)) {
    if (Tails.count(SI))
      continue;

    // We found a store instr that starts a chain. Now follow the chain and try
    // to vectorize it.
    BoUpSLP::ValueList Operands;
    StoreInst *I = SI;
    // Collect the chain into a list.
    while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
      Operands.push_back(I);
      // Move to the next value in the chain.
      I = ConsecutiveChain[I];
    }

    // FIXME: Is division-by-2 the correct step? Should we assert that the
    // register size is a power-of-2?
    for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
         Size /= 2) {
      if (vectorizeStoreChain(Operands, R, Size)) {
        // Mark the vectorized stores so that we don't vectorize them again.
        VectorizedStores.insert(Operands.begin(), Operands.end());
        Changed = true;
        break;
      }
    }
  }

  return Changed;
}

void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
  // Initialize the collections. We will make a single pass over the block.
  Stores.clear();
  GEPs.clear();

  // Visit the store and getelementptr instructions in BB and organize them in
  // Stores and GEPs according to the underlying objects of their pointer
  // operands.
  for (Instruction &I : *BB) {
    // Ignore store instructions that are volatile or have a pointer operand
    // that doesn't point to a scalar type.
    if (auto *SI = dyn_cast<StoreInst>(&I)) {
      if (!SI->isSimple())
        continue;
      if (!isValidElementType(SI->getValueOperand()->getType()))
        continue;
      Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
    }

    // Ignore getelementptr instructions that have more than one index, a
    // constant index, or a pointer operand that doesn't point to a scalar
    // type.
    else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
      auto Idx = GEP->idx_begin()->get();
      if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
        continue;
      if (!isValidElementType(Idx->getType()))
        continue;
      if (GEP->getType()->isVectorTy())
        continue;
      GEPs[GEP->getPointerOperand()].push_back(GEP);
    }
  }
}

bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
  if (!A || !B)
    return false;
  Value *VL[] = { A, B };
  return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
}

bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
                                           int UserCost, bool AllowReorder) {
  if (VL.size() < 2)
    return false;

  LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
                    << VL.size() << ".\n");

  // Check that all of the parts are scalar instructions of the same type,
  // we permit an alternate opcode via InstructionsState.
  InstructionsState S = getSameOpcode(VL);
  if (!S.getOpcode())
    return false;

  Instruction *I0 = cast<Instruction>(S.OpValue);
  unsigned Sz = R.getVectorElementSize(I0);
  unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
  unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
  if (MaxVF < 2) {
    R.getORE()->emit([&]() {
      return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
             << "Cannot SLP vectorize list: vectorization factor "
             << "less than 2 is not supported";
    });
    return false;
  }

  for (Value *V : VL) {
    Type *Ty = V->getType();
    if (!isValidElementType(Ty)) {
      // NOTE: the following will give user internal llvm type name, which may
      // not be useful.
      R.getORE()->emit([&]() {
        std::string type_str;
        llvm::raw_string_ostream rso(type_str);
        Ty->print(rso);
        return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
               << "Cannot SLP vectorize list: type "
               << rso.str() + " is unsupported by vectorizer";
      });
      return false;
    }
  }

  bool Changed = false;
  bool CandidateFound = false;
  int MinCost = SLPCostThreshold;

  unsigned NextInst = 0, MaxInst = VL.size();
  for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
    // No actual vectorization should happen, if number of parts is the same as
    // provided vectorization factor (i.e. the scalar type is used for vector
    // code during codegen).
    auto *VecTy = VectorType::get(VL[0]->getType(), VF);
    if (TTI->getNumberOfParts(VecTy) == VF)
      continue;
    for (unsigned I = NextInst; I < MaxInst; ++I) {
      unsigned OpsWidth = 0;

      if (I + VF > MaxInst)
        OpsWidth = MaxInst - I;
      else
        OpsWidth = VF;

      if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
        break;

      ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
      // Check that a previous iteration of this loop did not delete the Value.
      if (llvm::any_of(Ops, [&R](Value *V) {
            auto *I = dyn_cast<Instruction>(V);
            return I && R.isDeleted(I);
          }))
        continue;

      LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
                        << "\n");

      R.buildTree(Ops);
      Optional<ArrayRef<unsigned>> Order = R.bestOrder();
      // TODO: check if we can allow reordering for more cases.
      if (AllowReorder && Order) {
        // TODO: reorder tree nodes without tree rebuilding.
        // Conceptually, there is nothing actually preventing us from trying to
        // reorder a larger list. In fact, we do exactly this when vectorizing
        // reductions. However, at this point, we only expect to get here when
        // there are exactly two operations.
        assert(Ops.size() == 2);
        Value *ReorderedOps[] = {Ops[1], Ops[0]};
        R.buildTree(ReorderedOps, None);
      }
      if (R.isTreeTinyAndNotFullyVectorizable())
        continue;

      R.computeMinimumValueSizes();
      int Cost = R.getTreeCost() - UserCost;
      CandidateFound = true;
      MinCost = std::min(MinCost, Cost);

      if (Cost < -SLPCostThreshold) {
        LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
        R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
                                                    cast<Instruction>(Ops[0]))
                                 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
                                 << " and with tree size "
                                 << ore::NV("TreeSize", R.getTreeSize()));

        R.vectorizeTree();
        // Move to the next bundle.
        I += VF - 1;
        NextInst = I + 1;
        Changed = true;
      }
    }
  }

  if (!Changed && CandidateFound) {
    R.getORE()->emit([&]() {
      return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
             << "List vectorization was possible but not beneficial with cost "
             << ore::NV("Cost", MinCost) << " >= "
             << ore::NV("Treshold", -SLPCostThreshold);
    });
  } else if (!Changed) {
    R.getORE()->emit([&]() {
      return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
             << "Cannot SLP vectorize list: vectorization was impossible"
             << " with available vectorization factors";
    });
  }
  return Changed;
}

bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
  if (!I)
    return false;

  if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
    return false;

  Value *P = I->getParent();

  // Vectorize in current basic block only.
  auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
  auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
  if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
    return false;

  // Try to vectorize V.
  if (tryToVectorizePair(Op0, Op1, R))
    return true;

  auto *A = dyn_cast<BinaryOperator>(Op0);
  auto *B = dyn_cast<BinaryOperator>(Op1);
  // Try to skip B.
  if (B && B->hasOneUse()) {
    auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
    auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
    if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
      return true;
    if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
      return true;
  }

  // Try to skip A.
  if (A && A->hasOneUse()) {
    auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
    auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
    if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
      return true;
    if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
      return true;
  }
  return false;
}

/// Generate a shuffle mask to be used in a reduction tree.
///
/// \param VecLen The length of the vector to be reduced.
/// \param NumEltsToRdx The number of elements that should be reduced in the
///        vector.
/// \param IsPairwise Whether the reduction is a pairwise or splitting
///        reduction. A pairwise reduction will generate a mask of
///        <0,2,...> or <1,3,..> while a splitting reduction will generate
///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
/// \param IsLeft True will generate a mask of even elements, odd otherwise.
static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
                                   bool IsPairwise, bool IsLeft,
                                   IRBuilder<> &Builder) {
  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");

  SmallVector<Constant *, 32> ShuffleMask(
      VecLen, UndefValue::get(Builder.getInt32Ty()));

  if (IsPairwise)
    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
    for (unsigned i = 0; i != NumEltsToRdx; ++i)
      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
  else
    // Move the upper half of the vector to the lower half.
    for (unsigned i = 0; i != NumEltsToRdx; ++i)
      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);

  return ConstantVector::get(ShuffleMask);
}

namespace {

/// Model horizontal reductions.
///
/// A horizontal reduction is a tree of reduction operations (currently add and
/// fadd) that has operations that can be put into a vector as its leaf.
/// For example, this tree:
///
/// mul mul mul mul
///  \  /    \  /
///   +       +
///    \     /
///       +
/// This tree has "mul" as its reduced values and "+" as its reduction
/// operations. A reduction might be feeding into a store or a binary operation
/// feeding a phi.
///    ...
///    \  /
///     +
///     |
///  phi +=
///
///  Or:
///    ...
///    \  /
///     +
///     |
///   *p =
///
class HorizontalReduction {
  using ReductionOpsType = SmallVector<Value *, 16>;
  using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
  ReductionOpsListType  ReductionOps;
  SmallVector<Value *, 32> ReducedVals;
  // Use map vector to make stable output.
  MapVector<Instruction *, Value *> ExtraArgs;

  /// Kind of the reduction data.
  enum ReductionKind {
    RK_None,       /// Not a reduction.
    RK_Arithmetic, /// Binary reduction data.
    RK_Min,        /// Minimum reduction data.
    RK_UMin,       /// Unsigned minimum reduction data.
    RK_Max,        /// Maximum reduction data.
    RK_UMax,       /// Unsigned maximum reduction data.
  };

  /// Contains info about operation, like its opcode, left and right operands.
  class OperationData {
    /// Opcode of the instruction.
    unsigned Opcode = 0;

    /// Left operand of the reduction operation.
    Value *LHS = nullptr;

    /// Right operand of the reduction operation.
    Value *RHS = nullptr;

    /// Kind of the reduction operation.
    ReductionKind Kind = RK_None;

    /// True if float point min/max reduction has no NaNs.
    bool NoNaN = false;

    /// Checks if the reduction operation can be vectorized.
    bool isVectorizable() const {
      return LHS && RHS &&
             // We currently only support add/mul/logical && min/max reductions.
             ((Kind == RK_Arithmetic &&
               (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
                Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
                Opcode == Instruction::And || Opcode == Instruction::Or ||
                Opcode == Instruction::Xor)) ||
              ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
               (Kind == RK_Min || Kind == RK_Max)) ||
              (Opcode == Instruction::ICmp &&
               (Kind == RK_UMin || Kind == RK_UMax)));
    }

    /// Creates reduction operation with the current opcode.
    Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
      assert(isVectorizable() &&
             "Expected add|fadd or min/max reduction operation.");
      Value *Cmp = nullptr;
      switch (Kind) {
      case RK_Arithmetic:
        return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
                                   Name);
      case RK_Min:
        Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
                                          : Builder.CreateFCmpOLT(LHS, RHS);
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
      case RK_Max:
        Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
                                          : Builder.CreateFCmpOGT(LHS, RHS);
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
      case RK_UMin:
        assert(Opcode == Instruction::ICmp && "Expected integer types.");
        Cmp = Builder.CreateICmpULT(LHS, RHS);
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
      case RK_UMax:
        assert(Opcode == Instruction::ICmp && "Expected integer types.");
        Cmp = Builder.CreateICmpUGT(LHS, RHS);
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
      case RK_None:
        break;
      }
      llvm_unreachable("Unknown reduction operation.");
    }

  public:
    explicit OperationData() = default;

    /// Construction for reduced values. They are identified by opcode only and
    /// don't have associated LHS/RHS values.
    explicit OperationData(Value *V) {
      if (auto *I = dyn_cast<Instruction>(V))
        Opcode = I->getOpcode();
    }

    /// Constructor for reduction operations with opcode and its left and
    /// right operands.
    OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
                  bool NoNaN = false)
        : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
      assert(Kind != RK_None && "One of the reduction operations is expected.");
    }

    explicit operator bool() const { return Opcode; }

    /// Get the index of the first operand.
    unsigned getFirstOperandIndex() const {
      assert(!!*this && "The opcode is not set.");
      switch (Kind) {
      case RK_Min:
      case RK_UMin:
      case RK_Max:
      case RK_UMax:
        return 1;
      case RK_Arithmetic:
      case RK_None:
        break;
      }
      return 0;
    }

    /// Total number of operands in the reduction operation.
    unsigned getNumberOfOperands() const {
      assert(Kind != RK_None && !!*this && LHS && RHS &&
             "Expected reduction operation.");
      switch (Kind) {
      case RK_Arithmetic:
        return 2;
      case RK_Min:
      case RK_UMin:
      case RK_Max:
      case RK_UMax:
        return 3;
      case RK_None:
        break;
      }
      llvm_unreachable("Reduction kind is not set");
    }

    /// Checks if the operation has the same parent as \p P.
    bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
      assert(Kind != RK_None && !!*this && LHS && RHS &&
             "Expected reduction operation.");
      if (!IsRedOp)
        return I->getParent() == P;
      switch (Kind) {
      case RK_Arithmetic:
        // Arithmetic reduction operation must be used once only.
        return I->getParent() == P;
      case RK_Min:
      case RK_UMin:
      case RK_Max:
      case RK_UMax: {
        // SelectInst must be used twice while the condition op must have single
        // use only.
        auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
        return I->getParent() == P && Cmp && Cmp->getParent() == P;
      }
      case RK_None:
        break;
      }
      llvm_unreachable("Reduction kind is not set");
    }
    /// Expected number of uses for reduction operations/reduced values.
    bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
      assert(Kind != RK_None && !!*this && LHS && RHS &&
             "Expected reduction operation.");
      switch (Kind) {
      case RK_Arithmetic:
        return I->hasOneUse();
      case RK_Min:
      case RK_UMin:
      case RK_Max:
      case RK_UMax:
        return I->hasNUses(2) &&
               (!IsReductionOp ||
                cast<SelectInst>(I)->getCondition()->hasOneUse());
      case RK_None:
        break;
      }
      llvm_unreachable("Reduction kind is not set");
    }

    /// Initializes the list of reduction operations.
    void initReductionOps(ReductionOpsListType &ReductionOps) {
      assert(Kind != RK_None && !!*this && LHS && RHS &&
             "Expected reduction operation.");
      switch (Kind) {
      case RK_Arithmetic:
        ReductionOps.assign(1, ReductionOpsType());
        break;
      case RK_Min:
      case RK_UMin:
      case RK_Max:
      case RK_UMax:
        ReductionOps.assign(2, ReductionOpsType());
        break;
      case RK_None:
        llvm_unreachable("Reduction kind is not set");
      }
    }
    /// Add all reduction operations for the reduction instruction \p I.
    void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
      assert(Kind != RK_None && !!*this && LHS && RHS &&
             "Expected reduction operation.");
      switch (Kind) {
      case RK_Arithmetic:
        ReductionOps[0].emplace_back(I);
        break;
      case RK_Min:
      case RK_UMin:
      case RK_Max:
      case RK_UMax:
        ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
        ReductionOps[1].emplace_back(I);
        break;
      case RK_None:
        llvm_unreachable("Reduction kind is not set");
      }
    }

    /// Checks if instruction is associative and can be vectorized.
    bool isAssociative(Instruction *I) const {
      assert(Kind != RK_None && *this && LHS && RHS &&
             "Expected reduction operation.");
      switch (Kind) {
      case RK_Arithmetic:
        return I->isAssociative();
      case RK_Min:
      case RK_Max:
        return Opcode == Instruction::ICmp ||
               cast<Instruction>(I->getOperand(0))->isFast();
      case RK_UMin:
      case RK_UMax:
        assert(Opcode == Instruction::ICmp &&
               "Only integer compare operation is expected.");
        return true;
      case RK_None:
        break;
      }
      llvm_unreachable("Reduction kind is not set");
    }

    /// Checks if the reduction operation can be vectorized.
    bool isVectorizable(Instruction *I) const {
      return isVectorizable() && isAssociative(I);
    }

    /// Checks if two operation data are both a reduction op or both a reduced
    /// value.
    bool operator==(const OperationData &OD) {
      assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
             "One of the comparing operations is incorrect.");
      return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
    }
    bool operator!=(const OperationData &OD) { return !(*this == OD); }
    void clear() {
      Opcode = 0;
      LHS = nullptr;
      RHS = nullptr;
      Kind = RK_None;
      NoNaN = false;
    }

    /// Get the opcode of the reduction operation.
    unsigned getOpcode() const {
      assert(isVectorizable() && "Expected vectorizable operation.");
      return Opcode;
    }

    /// Get kind of reduction data.
    ReductionKind getKind() const { return Kind; }
    Value *getLHS() const { return LHS; }
    Value *getRHS() const { return RHS; }
    Type *getConditionType() const {
      switch (Kind) {
      case RK_Arithmetic:
        return nullptr;
      case RK_Min:
      case RK_Max:
      case RK_UMin:
      case RK_UMax:
        return CmpInst::makeCmpResultType(LHS->getType());
      case RK_None:
        break;
      }
      llvm_unreachable("Reduction kind is not set");
    }

    /// Creates reduction operation with the current opcode with the IR flags
    /// from \p ReductionOps.
    Value *createOp(IRBuilder<> &Builder, const Twine &Name,
                    const ReductionOpsListType &ReductionOps) const {
      assert(isVectorizable() &&
             "Expected add|fadd or min/max reduction operation.");
      auto *Op = createOp(Builder, Name);
      switch (Kind) {
      case RK_Arithmetic:
        propagateIRFlags(Op, ReductionOps[0]);
        return Op;
      case RK_Min:
      case RK_Max:
      case RK_UMin:
      case RK_UMax:
        if (auto *SI = dyn_cast<SelectInst>(Op))
          propagateIRFlags(SI->getCondition(), ReductionOps[0]);
        propagateIRFlags(Op, ReductionOps[1]);
        return Op;
      case RK_None:
        break;
      }
      llvm_unreachable("Unknown reduction operation.");
    }
    /// Creates reduction operation with the current opcode with the IR flags
    /// from \p I.
    Value *createOp(IRBuilder<> &Builder, const Twine &Name,
                    Instruction *I) const {
      assert(isVectorizable() &&
             "Expected add|fadd or min/max reduction operation.");
      auto *Op = createOp(Builder, Name);
      switch (Kind) {
      case RK_Arithmetic:
        propagateIRFlags(Op, I);
        return Op;
      case RK_Min:
      case RK_Max:
      case RK_UMin:
      case RK_UMax:
        if (auto *SI = dyn_cast<SelectInst>(Op)) {
          propagateIRFlags(SI->getCondition(),
                           cast<SelectInst>(I)->getCondition());
        }
        propagateIRFlags(Op, I);
        return Op;
      case RK_None:
        break;
      }
      llvm_unreachable("Unknown reduction operation.");
    }

    TargetTransformInfo::ReductionFlags getFlags() const {
      TargetTransformInfo::ReductionFlags Flags;
      Flags.NoNaN = NoNaN;
      switch (Kind) {
      case RK_Arithmetic:
        break;
      case RK_Min:
        Flags.IsSigned = Opcode == Instruction::ICmp;
        Flags.IsMaxOp = false;
        break;
      case RK_Max:
        Flags.IsSigned = Opcode == Instruction::ICmp;
        Flags.IsMaxOp = true;
        break;
      case RK_UMin:
        Flags.IsSigned = false;
        Flags.IsMaxOp = false;
        break;
      case RK_UMax:
        Flags.IsSigned = false;
        Flags.IsMaxOp = true;
        break;
      case RK_None:
        llvm_unreachable("Reduction kind is not set");
      }
      return Flags;
    }
  };

  WeakTrackingVH ReductionRoot;

  /// The operation data of the reduction operation.
  OperationData ReductionData;

  /// The operation data of the values we perform a reduction on.
  OperationData ReducedValueData;

  /// Should we model this reduction as a pairwise reduction tree or a tree that
  /// splits the vector in halves and adds those halves.
  bool IsPairwiseReduction = false;

  /// Checks if the ParentStackElem.first should be marked as a reduction
  /// operation with an extra argument or as extra argument itself.
  void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
                    Value *ExtraArg) {
    if (ExtraArgs.count(ParentStackElem.first)) {
      ExtraArgs[ParentStackElem.first] = nullptr;
      // We ran into something like:
      // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
      // The whole ParentStackElem.first should be considered as an extra value
      // in this case.
      // Do not perform analysis of remaining operands of ParentStackElem.first
      // instruction, this whole instruction is an extra argument.
      ParentStackElem.second = ParentStackElem.first->getNumOperands();
    } else {
      // We ran into something like:
      // ParentStackElem.first += ... + ExtraArg + ...
      ExtraArgs[ParentStackElem.first] = ExtraArg;
    }
  }

  static OperationData getOperationData(Value *V) {
    if (!V)
      return OperationData();

    Value *LHS;
    Value *RHS;
    if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
      return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
                           RK_Arithmetic);
    }
    if (auto *Select = dyn_cast<SelectInst>(V)) {
      // Look for a min/max pattern.
      if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
        return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
      } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
        return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
      } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
                 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
        return OperationData(
            Instruction::FCmp, LHS, RHS, RK_Min,
            cast<Instruction>(Select->getCondition())->hasNoNaNs());
      } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
        return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
      } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
        return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
      } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
                 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
        return OperationData(
            Instruction::FCmp, LHS, RHS, RK_Max,
            cast<Instruction>(Select->getCondition())->hasNoNaNs());
      } else {
        // Try harder: look for min/max pattern based on instructions producing
        // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
        // During the intermediate stages of SLP, it's very common to have
        // pattern like this (since optimizeGatherSequence is run only once
        // at the end):
        // %1 = extractelement <2 x i32> %a, i32 0
        // %2 = extractelement <2 x i32> %a, i32 1
        // %cond = icmp sgt i32 %1, %2
        // %3 = extractelement <2 x i32> %a, i32 0
        // %4 = extractelement <2 x i32> %a, i32 1
        // %select = select i1 %cond, i32 %3, i32 %4
        CmpInst::Predicate Pred;
        Instruction *L1;
        Instruction *L2;

        LHS = Select->getTrueValue();
        RHS = Select->getFalseValue();
        Value *Cond = Select->getCondition();

        // TODO: Support inverse predicates.
        if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
          if (!isa<ExtractElementInst>(RHS) ||
              !L2->isIdenticalTo(cast<Instruction>(RHS)))
            return OperationData(V);
        } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
          if (!isa<ExtractElementInst>(LHS) ||
              !L1->isIdenticalTo(cast<Instruction>(LHS)))
            return OperationData(V);
        } else {
          if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
            return OperationData(V);
          if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
              !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
              !L2->isIdenticalTo(cast<Instruction>(RHS)))
            return OperationData(V);
        }
        switch (Pred) {
        default:
          return OperationData(V);

        case CmpInst::ICMP_ULT:
        case CmpInst::ICMP_ULE:
          return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);

        case CmpInst::ICMP_SLT:
        case CmpInst::ICMP_SLE:
          return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);

        case CmpInst::FCMP_OLT:
        case CmpInst::FCMP_OLE:
        case CmpInst::FCMP_ULT:
        case CmpInst::FCMP_ULE:
          return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
                               cast<Instruction>(Cond)->hasNoNaNs());

        case CmpInst::ICMP_UGT:
        case CmpInst::ICMP_UGE:
          return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);

        case CmpInst::ICMP_SGT:
        case CmpInst::ICMP_SGE:
          return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);

        case CmpInst::FCMP_OGT:
        case CmpInst::FCMP_OGE:
        case CmpInst::FCMP_UGT:
        case CmpInst::FCMP_UGE:
          return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
                               cast<Instruction>(Cond)->hasNoNaNs());
        }
      }
    }
    return OperationData(V);
  }

public:
  HorizontalReduction() = default;

  /// Try to find a reduction tree.
  bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
    assert((!Phi || is_contained(Phi->operands(), B)) &&
           "Thi phi needs to use the binary operator");

    ReductionData = getOperationData(B);

    // We could have a initial reductions that is not an add.
    //  r *= v1 + v2 + v3 + v4
    // In such a case start looking for a tree rooted in the first '+'.
    if (Phi) {
      if (ReductionData.getLHS() == Phi) {
        Phi = nullptr;
        B = dyn_cast<Instruction>(ReductionData.getRHS());
        ReductionData = getOperationData(B);
      } else if (ReductionData.getRHS() == Phi) {
        Phi = nullptr;
        B = dyn_cast<Instruction>(ReductionData.getLHS());
        ReductionData = getOperationData(B);
      }
    }

    if (!ReductionData.isVectorizable(B))
      return false;

    Type *Ty = B->getType();
    if (!isValidElementType(Ty))
      return false;
    if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
      return false;

    ReducedValueData.clear();
    ReductionRoot = B;

    // Post order traverse the reduction tree starting at B. We only handle true
    // trees containing only binary operators.
    SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
    Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
    ReductionData.initReductionOps(ReductionOps);
    while (!Stack.empty()) {
      Instruction *TreeN = Stack.back().first;
      unsigned EdgeToVist = Stack.back().second++;
      OperationData OpData = getOperationData(TreeN);
      bool IsReducedValue = OpData != ReductionData;

      // Postorder vist.
      if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
        if (IsReducedValue)
          ReducedVals.push_back(TreeN);
        else {
          auto I = ExtraArgs.find(TreeN);
          if (I != ExtraArgs.end() && !I->second) {
            // Check if TreeN is an extra argument of its parent operation.
            if (Stack.size() <= 1) {
              // TreeN can't be an extra argument as it is a root reduction
              // operation.
              return false;
            }
            // Yes, TreeN is an extra argument, do not add it to a list of
            // reduction operations.
            // Stack[Stack.size() - 2] always points to the parent operation.
            markExtraArg(Stack[Stack.size() - 2], TreeN);
            ExtraArgs.erase(TreeN);
          } else
            ReductionData.addReductionOps(TreeN, ReductionOps);
        }
        // Retract.
        Stack.pop_back();
        continue;
      }

      // Visit left or right.
      Value *NextV = TreeN->getOperand(EdgeToVist);
      if (NextV != Phi) {
        auto *I = dyn_cast<Instruction>(NextV);
        OpData = getOperationData(I);
        // Continue analysis if the next operand is a reduction operation or
        // (possibly) a reduced value. If the reduced value opcode is not set,
        // the first met operation != reduction operation is considered as the
        // reduced value class.
        if (I && (!ReducedValueData || OpData == ReducedValueData ||
                  OpData == ReductionData)) {
          const bool IsReductionOperation = OpData == ReductionData;
          // Only handle trees in the current basic block.
          if (!ReductionData.hasSameParent(I, B->getParent(),
                                           IsReductionOperation)) {
            // I is an extra argument for TreeN (its parent operation).
            markExtraArg(Stack.back(), I);
            continue;
          }

          // Each tree node needs to have minimal number of users except for the
          // ultimate reduction.
          if (!ReductionData.hasRequiredNumberOfUses(I,
                                                     OpData == ReductionData) &&
              I != B) {
            // I is an extra argument for TreeN (its parent operation).
            markExtraArg(Stack.back(), I);
            continue;
          }

          if (IsReductionOperation) {
            // We need to be able to reassociate the reduction operations.
            if (!OpData.isAssociative(I)) {
              // I is an extra argument for TreeN (its parent operation).
              markExtraArg(Stack.back(), I);
              continue;
            }
          } else if (ReducedValueData &&
                     ReducedValueData != OpData) {
            // Make sure that the opcodes of the operations that we are going to
            // reduce match.
            // I is an extra argument for TreeN (its parent operation).
            markExtraArg(Stack.back(), I);
            continue;
          } else if (!ReducedValueData)
            ReducedValueData = OpData;

          Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
          continue;
        }
      }
      // NextV is an extra argument for TreeN (its parent operation).
      markExtraArg(Stack.back(), NextV);
    }
    return true;
  }

  /// Attempt to vectorize the tree found by
  /// matchAssociativeReduction.
  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
    if (ReducedVals.empty())
      return false;

    // If there is a sufficient number of reduction values, reduce
    // to a nearby power-of-2. Can safely generate oversized
    // vectors and rely on the backend to split them to legal sizes.
    unsigned NumReducedVals = ReducedVals.size();
    if (NumReducedVals < 4)
      return false;

    unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);

    Value *VectorizedTree = nullptr;

    // FIXME: Fast-math-flags should be set based on the instructions in the
    //        reduction (not all of 'fast' are required).
    IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
    FastMathFlags Unsafe;
    Unsafe.setFast();
    Builder.setFastMathFlags(Unsafe);
    unsigned i = 0;

    BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
    // The same extra argument may be used several time, so log each attempt
    // to use it.
    for (auto &Pair : ExtraArgs) {
      assert(Pair.first && "DebugLoc must be set.");
      ExternallyUsedValues[Pair.second].push_back(Pair.first);
    }
    // The reduction root is used as the insertion point for new instructions,
    // so set it as externally used to prevent it from being deleted.
    ExternallyUsedValues[ReductionRoot];
    SmallVector<Value *, 16> IgnoreList;
    for (auto &V : ReductionOps)
      IgnoreList.append(V.begin(), V.end());
    while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
      auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
      V.buildTree(VL, ExternallyUsedValues, IgnoreList);
      Optional<ArrayRef<unsigned>> Order = V.bestOrder();
      // TODO: Handle orders of size less than number of elements in the vector.
      if (Order && Order->size() == VL.size()) {
        // TODO: reorder tree nodes without tree rebuilding.
        SmallVector<Value *, 4> ReorderedOps(VL.size());
        llvm::transform(*Order, ReorderedOps.begin(),
                        [VL](const unsigned Idx) { return VL[Idx]; });
        V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
      }
      if (V.isTreeTinyAndNotFullyVectorizable())
        break;
      if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode()))
        break;

      V.computeMinimumValueSizes();

      // Estimate cost.
      int TreeCost = V.getTreeCost();
      int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
      int Cost = TreeCost + ReductionCost;
      if (Cost >= -SLPCostThreshold) {
          V.getORE()->emit([&]() {
              return OptimizationRemarkMissed(
                         SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
                     << "Vectorizing horizontal reduction is possible"
                     << "but not beneficial with cost "
                     << ore::NV("Cost", Cost) << " and threshold "
                     << ore::NV("Threshold", -SLPCostThreshold);
          });
          break;
      }

      LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
                        << Cost << ". (HorRdx)\n");
      V.getORE()->emit([&]() {
          return OptimizationRemark(
                     SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
          << "Vectorized horizontal reduction with cost "
          << ore::NV("Cost", Cost) << " and with tree size "
          << ore::NV("TreeSize", V.getTreeSize());
      });

      // Vectorize a tree.
      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
      Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);

      // Emit a reduction.
      Builder.SetInsertPoint(cast<Instruction>(ReductionRoot));
      Value *ReducedSubTree =
          emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
      if (VectorizedTree) {
        Builder.SetCurrentDebugLocation(Loc);
        OperationData VectReductionData(ReductionData.getOpcode(),
                                        VectorizedTree, ReducedSubTree,
                                        ReductionData.getKind());
        VectorizedTree =
            VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
      } else
        VectorizedTree = ReducedSubTree;
      i += ReduxWidth;
      ReduxWidth = PowerOf2Floor(NumReducedVals - i);
    }

    if (VectorizedTree) {
      // Finish the reduction.
      for (; i < NumReducedVals; ++i) {
        auto *I = cast<Instruction>(ReducedVals[i]);
        Builder.SetCurrentDebugLocation(I->getDebugLoc());
        OperationData VectReductionData(ReductionData.getOpcode(),
                                        VectorizedTree, I,
                                        ReductionData.getKind());
        VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
      }
      for (auto &Pair : ExternallyUsedValues) {
        // Add each externally used value to the final reduction.
        for (auto *I : Pair.second) {
          Builder.SetCurrentDebugLocation(I->getDebugLoc());
          OperationData VectReductionData(ReductionData.getOpcode(),
                                          VectorizedTree, Pair.first,
                                          ReductionData.getKind());
          VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
        }
      }
      // Update users.
      ReductionRoot->replaceAllUsesWith(VectorizedTree);
      // Mark all scalar reduction ops for deletion, they are replaced by the
      // vector reductions.
      V.eraseInstructions(IgnoreList);
    }
    return VectorizedTree != nullptr;
  }

  unsigned numReductionValues() const {
    return ReducedVals.size();
  }

private:
  /// Calculate the cost of a reduction.
  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
                       unsigned ReduxWidth) {
    Type *ScalarTy = FirstReducedVal->getType();
    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);

    int PairwiseRdxCost;
    int SplittingRdxCost;
    switch (ReductionData.getKind()) {
    case RK_Arithmetic:
      PairwiseRdxCost =
          TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
                                          /*IsPairwiseForm=*/true);
      SplittingRdxCost =
          TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
                                          /*IsPairwiseForm=*/false);
      break;
    case RK_Min:
    case RK_Max:
    case RK_UMin:
    case RK_UMax: {
      Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
      bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
                        ReductionData.getKind() == RK_UMax;
      PairwiseRdxCost =
          TTI->getMinMaxReductionCost(VecTy, VecCondTy,
                                      /*IsPairwiseForm=*/true, IsUnsigned);
      SplittingRdxCost =
          TTI->getMinMaxReductionCost(VecTy, VecCondTy,
                                      /*IsPairwiseForm=*/false, IsUnsigned);
      break;
    }
    case RK_None:
      llvm_unreachable("Expected arithmetic or min/max reduction operation");
    }

    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;

    int ScalarReduxCost = 0;
    switch (ReductionData.getKind()) {
    case RK_Arithmetic:
      ScalarReduxCost =
          TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
      break;
    case RK_Min:
    case RK_Max:
    case RK_UMin:
    case RK_UMax:
      ScalarReduxCost =
          TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
          TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
                                  CmpInst::makeCmpResultType(ScalarTy));
      break;
    case RK_None:
      llvm_unreachable("Expected arithmetic or min/max reduction operation");
    }
    ScalarReduxCost *= (ReduxWidth - 1);

    LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
                      << " for reduction that starts with " << *FirstReducedVal
                      << " (It is a "
                      << (IsPairwiseReduction ? "pairwise" : "splitting")
                      << " reduction)\n");

    return VecReduxCost - ScalarReduxCost;
  }

  /// Emit a horizontal reduction of the vectorized value.
  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
                       unsigned ReduxWidth, const TargetTransformInfo *TTI) {
    assert(VectorizedValue && "Need to have a vectorized tree node");
    assert(isPowerOf2_32(ReduxWidth) &&
           "We only handle power-of-two reductions for now");

    if (!IsPairwiseReduction) {
      // FIXME: The builder should use an FMF guard. It should not be hard-coded
      //        to 'fast'.
      assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
      return createSimpleTargetReduction(
          Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
          ReductionData.getFlags(), ReductionOps.back());
    }

    Value *TmpVec = VectorizedValue;
    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
      Value *LeftMask =
          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
      Value *RightMask =
          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);

      Value *LeftShuf = Builder.CreateShuffleVector(
          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
      Value *RightShuf = Builder.CreateShuffleVector(
          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
          "rdx.shuf.r");
      OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
                                      RightShuf, ReductionData.getKind());
      TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
    }

    // The result is in the first element of the vector.
    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
  }
};

} // end anonymous namespace

/// Recognize construction of vectors like
///  %ra = insertelement <4 x float> undef, float %s0, i32 0
///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
///  starting from the last insertelement instruction.
///
/// Returns true if it matches
static bool findBuildVector(InsertElementInst *LastInsertElem,
                            TargetTransformInfo *TTI,
                            SmallVectorImpl<Value *> &BuildVectorOpds,
                            int &UserCost) {
  UserCost = 0;
  Value *V = nullptr;
  do {
    if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) {
      UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
                                          LastInsertElem->getType(),
                                          CI->getZExtValue());
    }
    BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
    V = LastInsertElem->getOperand(0);
    if (isa<UndefValue>(V))
      break;
    LastInsertElem = dyn_cast<InsertElementInst>(V);
    if (!LastInsertElem || !LastInsertElem->hasOneUse())
      return false;
  } while (true);
  std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
  return true;
}

/// Like findBuildVector, but looks for construction of aggregate.
///
/// \return true if it matches.
static bool findBuildAggregate(InsertValueInst *IV,
                               SmallVectorImpl<Value *> &BuildVectorOpds) {
  do {
    BuildVectorOpds.push_back(IV->getInsertedValueOperand());
    Value *V = IV->getAggregateOperand();
    if (isa<UndefValue>(V))
      break;
    IV = dyn_cast<InsertValueInst>(V);
    if (!IV || !IV->hasOneUse())
      return false;
  } while (true);
  std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
  return true;
}

static bool PhiTypeSorterFunc(Value *V, Value *V2) {
  return V->getType() < V2->getType();
}

/// Try and get a reduction value from a phi node.
///
/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
/// if they come from either \p ParentBB or a containing loop latch.
///
/// \returns A candidate reduction value if possible, or \code nullptr \endcode
/// if not possible.
static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
                                BasicBlock *ParentBB, LoopInfo *LI) {
  // There are situations where the reduction value is not dominated by the
  // reduction phi. Vectorizing such cases has been reported to cause
  // miscompiles. See PR25787.
  auto DominatedReduxValue = [&](Value *R) {
    return isa<Instruction>(R) &&
           DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
  };

  Value *Rdx = nullptr;

  // Return the incoming value if it comes from the same BB as the phi node.
  if (P->getIncomingBlock(0) == ParentBB) {
    Rdx = P->getIncomingValue(0);
  } else if (P->getIncomingBlock(1) == ParentBB) {
    Rdx = P->getIncomingValue(1);
  }

  if (Rdx && DominatedReduxValue(Rdx))
    return Rdx;

  // Otherwise, check whether we have a loop latch to look at.
  Loop *BBL = LI->getLoopFor(ParentBB);
  if (!BBL)
    return nullptr;
  BasicBlock *BBLatch = BBL->getLoopLatch();
  if (!BBLatch)
    return nullptr;

  // There is a loop latch, return the incoming value if it comes from
  // that. This reduction pattern occasionally turns up.
  if (P->getIncomingBlock(0) == BBLatch) {
    Rdx = P->getIncomingValue(0);
  } else if (P->getIncomingBlock(1) == BBLatch) {
    Rdx = P->getIncomingValue(1);
  }

  if (Rdx && DominatedReduxValue(Rdx))
    return Rdx;

  return nullptr;
}

/// Attempt to reduce a horizontal reduction.
/// If it is legal to match a horizontal reduction feeding the phi node \a P
/// with reduction operators \a Root (or one of its operands) in a basic block
/// \a BB, then check if it can be done. If horizontal reduction is not found
/// and root instruction is a binary operation, vectorization of the operands is
/// attempted.
/// \returns true if a horizontal reduction was matched and reduced or operands
/// of one of the binary instruction were vectorized.
/// \returns false if a horizontal reduction was not matched (or not possible)
/// or no vectorization of any binary operation feeding \a Root instruction was
/// performed.
static bool tryToVectorizeHorReductionOrInstOperands(
    PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
    TargetTransformInfo *TTI,
    const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
  if (!ShouldVectorizeHor)
    return false;

  if (!Root)
    return false;

  if (Root->getParent() != BB || isa<PHINode>(Root))
    return false;
  // Start analysis starting from Root instruction. If horizontal reduction is
  // found, try to vectorize it. If it is not a horizontal reduction or
  // vectorization is not possible or not effective, and currently analyzed
  // instruction is a binary operation, try to vectorize the operands, using
  // pre-order DFS traversal order. If the operands were not vectorized, repeat
  // the same procedure considering each operand as a possible root of the
  // horizontal reduction.
  // Interrupt the process if the Root instruction itself was vectorized or all
  // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
  SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
  SmallPtrSet<Value *, 8> VisitedInstrs;
  bool Res = false;
  while (!Stack.empty()) {
    Instruction *Inst;
    unsigned Level;
    std::tie(Inst, Level) = Stack.pop_back_val();
    auto *BI = dyn_cast<BinaryOperator>(Inst);
    auto *SI = dyn_cast<SelectInst>(Inst);
    if (BI || SI) {
      HorizontalReduction HorRdx;
      if (HorRdx.matchAssociativeReduction(P, Inst)) {
        if (HorRdx.tryToReduce(R, TTI)) {
          Res = true;
          // Set P to nullptr to avoid re-analysis of phi node in
          // matchAssociativeReduction function unless this is the root node.
          P = nullptr;
          continue;
        }
      }
      if (P && BI) {
        Inst = dyn_cast<Instruction>(BI->getOperand(0));
        if (Inst == P)
          Inst = dyn_cast<Instruction>(BI->getOperand(1));
        if (!Inst) {
          // Set P to nullptr to avoid re-analysis of phi node in
          // matchAssociativeReduction function unless this is the root node.
          P = nullptr;
          continue;
        }
      }
    }
    // Set P to nullptr to avoid re-analysis of phi node in
    // matchAssociativeReduction function unless this is the root node.
    P = nullptr;
    if (Vectorize(Inst, R)) {
      Res = true;
      continue;
    }

    // Try to vectorize operands.
    // Continue analysis for the instruction from the same basic block only to
    // save compile time.
    if (++Level < RecursionMaxDepth)
      for (auto *Op : Inst->operand_values())
        if (VisitedInstrs.insert(Op).second)
          if (auto *I = dyn_cast<Instruction>(Op))
            if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
              Stack.emplace_back(I, Level);
  }
  return Res;
}

bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
                                                 BasicBlock *BB, BoUpSLP &R,
                                                 TargetTransformInfo *TTI) {
  if (!V)
    return false;
  auto *I = dyn_cast<Instruction>(V);
  if (!I)
    return false;

  if (!isa<BinaryOperator>(I))
    P = nullptr;
  // Try to match and vectorize a horizontal reduction.
  auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
    return tryToVectorize(I, R);
  };
  return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
                                                  ExtraVectorization);
}

bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
                                                 BasicBlock *BB, BoUpSLP &R) {
  const DataLayout &DL = BB->getModule()->getDataLayout();
  if (!R.canMapToVector(IVI->getType(), DL))
    return false;

  SmallVector<Value *, 16> BuildVectorOpds;
  if (!findBuildAggregate(IVI, BuildVectorOpds))
    return false;

  LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
  // Aggregate value is unlikely to be processed in vector register, we need to
  // extract scalars into scalar registers, so NeedExtraction is set true.
  return tryToVectorizeList(BuildVectorOpds, R);
}

bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
                                                   BasicBlock *BB, BoUpSLP &R) {
  int UserCost;
  SmallVector<Value *, 16> BuildVectorOpds;
  if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) ||
      (llvm::all_of(BuildVectorOpds,
                    [](Value *V) { return isa<ExtractElementInst>(V); }) &&
       isShuffle(BuildVectorOpds)))
    return false;

  // Vectorize starting with the build vector operands ignoring the BuildVector
  // instructions for the purpose of scheduling and user extraction.
  return tryToVectorizeList(BuildVectorOpds, R, UserCost);
}

bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
                                         BoUpSLP &R) {
  if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
    return true;

  bool OpsChanged = false;
  for (int Idx = 0; Idx < 2; ++Idx) {
    OpsChanged |=
        vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
  }
  return OpsChanged;
}

bool SLPVectorizerPass::vectorizeSimpleInstructions(
    SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
  bool OpsChanged = false;
  for (auto *I : reverse(Instructions)) {
    if (R.isDeleted(I))
      continue;
    if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
      OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
    else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
      OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
    else if (auto *CI = dyn_cast<CmpInst>(I))
      OpsChanged |= vectorizeCmpInst(CI, BB, R);
  }
  Instructions.clear();
  return OpsChanged;
}

bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
  bool Changed = false;
  SmallVector<Value *, 4> Incoming;
  SmallPtrSet<Value *, 16> VisitedInstrs;

  bool HaveVectorizedPhiNodes = true;
  while (HaveVectorizedPhiNodes) {
    HaveVectorizedPhiNodes = false;

    // Collect the incoming values from the PHIs.
    Incoming.clear();
    for (Instruction &I : *BB) {
      PHINode *P = dyn_cast<PHINode>(&I);
      if (!P)
        break;

      if (!VisitedInstrs.count(P) && !R.isDeleted(P))
        Incoming.push_back(P);
    }

    // Sort by type.
    llvm::stable_sort(Incoming, PhiTypeSorterFunc);

    // Try to vectorize elements base on their type.
    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
                                           E = Incoming.end();
         IncIt != E;) {

      // Look for the next elements with the same type.
      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
      while (SameTypeIt != E &&
             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
        VisitedInstrs.insert(*SameTypeIt);
        ++SameTypeIt;
      }

      // Try to vectorize them.
      unsigned NumElts = (SameTypeIt - IncIt);
      LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
                        << NumElts << ")\n");
      // The order in which the phi nodes appear in the program does not matter.
      // So allow tryToVectorizeList to reorder them if it is beneficial. This
      // is done when there are exactly two elements since tryToVectorizeList
      // asserts that there are only two values when AllowReorder is true.
      bool AllowReorder = NumElts == 2;
      if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
                                            /*UserCost=*/0, AllowReorder)) {
        // Success start over because instructions might have been changed.
        HaveVectorizedPhiNodes = true;
        Changed = true;
        break;
      }

      // Start over at the next instruction of a different type (or the end).
      IncIt = SameTypeIt;
    }
  }

  VisitedInstrs.clear();

  SmallVector<Instruction *, 8> PostProcessInstructions;
  SmallDenseSet<Instruction *, 4> KeyNodes;
  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
    // Skip instructions marked for the deletion.
    if (R.isDeleted(&*it))
      continue;
    // We may go through BB multiple times so skip the one we have checked.
    if (!VisitedInstrs.insert(&*it).second) {
      if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
          vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
        // We would like to start over since some instructions are deleted
        // and the iterator may become invalid value.
        Changed = true;
        it = BB->begin();
        e = BB->end();
      }
      continue;
    }

    if (isa<DbgInfoIntrinsic>(it))
      continue;

    // Try to vectorize reductions that use PHINodes.
    if (PHINode *P = dyn_cast<PHINode>(it)) {
      // Check that the PHI is a reduction PHI.
      if (P->getNumIncomingValues() != 2)
        return Changed;

      // Try to match and vectorize a horizontal reduction.
      if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
                                   TTI)) {
        Changed = true;
        it = BB->begin();
        e = BB->end();
        continue;
      }
      continue;
    }

    // Ran into an instruction without users, like terminator, or function call
    // with ignored return value, store. Ignore unused instructions (basing on
    // instruction type, except for CallInst and InvokeInst).
    if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
                            isa<InvokeInst>(it))) {
      KeyNodes.insert(&*it);
      bool OpsChanged = false;
      if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
        for (auto *V : it->operand_values()) {
          // Try to match and vectorize a horizontal reduction.
          OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
        }
      }
      // Start vectorization of post-process list of instructions from the
      // top-tree instructions to try to vectorize as many instructions as
      // possible.
      OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
      if (OpsChanged) {
        // We would like to start over since some instructions are deleted
        // and the iterator may become invalid value.
        Changed = true;
        it = BB->begin();
        e = BB->end();
        continue;
      }
    }

    if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
        isa<InsertValueInst>(it))
      PostProcessInstructions.push_back(&*it);
  }

  return Changed;
}

bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
  auto Changed = false;
  for (auto &Entry : GEPs) {
    // If the getelementptr list has fewer than two elements, there's nothing
    // to do.
    if (Entry.second.size() < 2)
      continue;

    LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
                      << Entry.second.size() << ".\n");

    // Process the GEP list in chunks suitable for the target's supported
    // vector size. If a vector register can't hold 1 element, we are done.
    unsigned MaxVecRegSize = R.getMaxVecRegSize();
    unsigned EltSize = R.getVectorElementSize(Entry.second[0]);
    if (MaxVecRegSize < EltSize)
      continue;

    unsigned MaxElts = MaxVecRegSize / EltSize;
    for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
      auto Len = std::min<unsigned>(BE - BI, MaxElts);
      auto GEPList = makeArrayRef(&Entry.second[BI], Len);

      // Initialize a set a candidate getelementptrs. Note that we use a
      // SetVector here to preserve program order. If the index computations
      // are vectorizable and begin with loads, we want to minimize the chance
      // of having to reorder them later.
      SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());

      // Some of the candidates may have already been vectorized after we
      // initially collected them. If so, they are marked as deleted, so remove
      // them from the set of candidates.
      Candidates.remove_if(
          [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });

      // Remove from the set of candidates all pairs of getelementptrs with
      // constant differences. Such getelementptrs are likely not good
      // candidates for vectorization in a bottom-up phase since one can be
      // computed from the other. We also ensure all candidate getelementptr
      // indices are unique.
      for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
        auto *GEPI = GEPList[I];
        if (!Candidates.count(GEPI))
          continue;
        auto *SCEVI = SE->getSCEV(GEPList[I]);
        for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
          auto *GEPJ = GEPList[J];
          auto *SCEVJ = SE->getSCEV(GEPList[J]);
          if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
            Candidates.remove(GEPI);
            Candidates.remove(GEPJ);
          } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
            Candidates.remove(GEPJ);
          }
        }
      }

      // We break out of the above computation as soon as we know there are
      // fewer than two candidates remaining.
      if (Candidates.size() < 2)
        continue;

      // Add the single, non-constant index of each candidate to the bundle. We
      // ensured the indices met these constraints when we originally collected
      // the getelementptrs.
      SmallVector<Value *, 16> Bundle(Candidates.size());
      auto BundleIndex = 0u;
      for (auto *V : Candidates) {
        auto *GEP = cast<GetElementPtrInst>(V);
        auto *GEPIdx = GEP->idx_begin()->get();
        assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
        Bundle[BundleIndex++] = GEPIdx;
      }

      // Try and vectorize the indices. We are currently only interested in
      // gather-like cases of the form:
      //
      // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
      //
      // where the loads of "a", the loads of "b", and the subtractions can be
      // performed in parallel. It's likely that detecting this pattern in a
      // bottom-up phase will be simpler and less costly than building a
      // full-blown top-down phase beginning at the consecutive loads.
      Changed |= tryToVectorizeList(Bundle, R);
    }
  }
  return Changed;
}

bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
  bool Changed = false;
  // Attempt to sort and vectorize each of the store-groups.
  for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
       ++it) {
    if (it->second.size() < 2)
      continue;

    LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
                      << it->second.size() << ".\n");

    // Process the stores in chunks of 16.
    // TODO: The limit of 16 inhibits greater vectorization factors.
    //       For example, AVX2 supports v32i8. Increasing this limit, however,
    //       may cause a significant compile-time increase.
    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) {
      unsigned Len = std::min<unsigned>(CE - CI, 16);
      Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
    }
  }
  return Changed;
}

char SLPVectorizer::ID = 0;

static const char lv_name[] = "SLP Vectorizer";

INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)

Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }