reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Peephole optimize the CFG.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <map>
#include <set>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "simplifycfg"

// Chosen as 2 so as to be cheap, but still to have enough power to fold
// a select, so the "clamp" idiom (of a min followed by a max) will be caught.
// To catch this, we need to fold a compare and a select, hence '2' being the
// minimum reasonable default.
static cl::opt<unsigned> PHINodeFoldingThreshold(
    "phi-node-folding-threshold", cl::Hidden, cl::init(2),
    cl::desc(
        "Control the amount of phi node folding to perform (default = 2)"));

static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
    "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
    cl::desc("Control the maximal total instruction cost that we are willing "
             "to speculatively execute to fold a 2-entry PHI node into a "
             "select (default = 4)"));

static cl::opt<bool> DupRet(
    "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
    cl::desc("Duplicate return instructions into unconditional branches"));

static cl::opt<bool>
    SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
               cl::desc("Sink common instructions down to the end block"));

static cl::opt<bool> HoistCondStores(
    "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
    cl::desc("Hoist conditional stores if an unconditional store precedes"));

static cl::opt<bool> MergeCondStores(
    "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
    cl::desc("Hoist conditional stores even if an unconditional store does not "
             "precede - hoist multiple conditional stores into a single "
             "predicated store"));

static cl::opt<bool> MergeCondStoresAggressively(
    "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
    cl::desc("When merging conditional stores, do so even if the resultant "
             "basic blocks are unlikely to be if-converted as a result"));

static cl::opt<bool> SpeculateOneExpensiveInst(
    "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
    cl::desc("Allow exactly one expensive instruction to be speculatively "
             "executed"));

static cl::opt<unsigned> MaxSpeculationDepth(
    "max-speculation-depth", cl::Hidden, cl::init(10),
    cl::desc("Limit maximum recursion depth when calculating costs of "
             "speculatively executed instructions"));

STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
STATISTIC(NumLinearMaps,
          "Number of switch instructions turned into linear mapping");
STATISTIC(NumLookupTables,
          "Number of switch instructions turned into lookup tables");
STATISTIC(
    NumLookupTablesHoles,
    "Number of switch instructions turned into lookup tables (holes checked)");
STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
STATISTIC(NumSinkCommons,
          "Number of common instructions sunk down to the end block");
STATISTIC(NumSpeculations, "Number of speculative executed instructions");

namespace {

// The first field contains the value that the switch produces when a certain
// case group is selected, and the second field is a vector containing the
// cases composing the case group.
using SwitchCaseResultVectorTy =
    SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;

// The first field contains the phi node that generates a result of the switch
// and the second field contains the value generated for a certain case in the
// switch for that PHI.
using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;

/// ValueEqualityComparisonCase - Represents a case of a switch.
struct ValueEqualityComparisonCase {
  ConstantInt *Value;
  BasicBlock *Dest;

  ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
      : Value(Value), Dest(Dest) {}

  bool operator<(ValueEqualityComparisonCase RHS) const {
    // Comparing pointers is ok as we only rely on the order for uniquing.
    return Value < RHS.Value;
  }

  bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
};

class SimplifyCFGOpt {
  const TargetTransformInfo &TTI;
  const DataLayout &DL;
  SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
  const SimplifyCFGOptions &Options;
  bool Resimplify;

  Value *isValueEqualityComparison(Instruction *TI);
  BasicBlock *GetValueEqualityComparisonCases(
      Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
  bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
                                                     BasicBlock *Pred,
                                                     IRBuilder<> &Builder);
  bool FoldValueComparisonIntoPredecessors(Instruction *TI,
                                           IRBuilder<> &Builder);

  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
  bool SimplifySingleResume(ResumeInst *RI);
  bool SimplifyCommonResume(ResumeInst *RI);
  bool SimplifyCleanupReturn(CleanupReturnInst *RI);
  bool SimplifyUnreachable(UnreachableInst *UI);
  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
  bool SimplifyIndirectBr(IndirectBrInst *IBI);
  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
  bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);

  bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
                                             IRBuilder<> &Builder);

public:
  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
                 SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
                 const SimplifyCFGOptions &Opts)
      : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}

  bool run(BasicBlock *BB);
  bool simplifyOnce(BasicBlock *BB);

  // Helper to set Resimplify and return change indication.
  bool requestResimplify() {
    Resimplify = true;
    return true;
  }
};

} // end anonymous namespace

/// Return true if it is safe to merge these two
/// terminator instructions together.
static bool
SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
                       SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
  if (SI1 == SI2)
    return false; // Can't merge with self!

  // It is not safe to merge these two switch instructions if they have a common
  // successor, and if that successor has a PHI node, and if *that* PHI node has
  // conflicting incoming values from the two switch blocks.
  BasicBlock *SI1BB = SI1->getParent();
  BasicBlock *SI2BB = SI2->getParent();

  SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
  bool Fail = false;
  for (BasicBlock *Succ : successors(SI2BB))
    if (SI1Succs.count(Succ))
      for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
        PHINode *PN = cast<PHINode>(BBI);
        if (PN->getIncomingValueForBlock(SI1BB) !=
            PN->getIncomingValueForBlock(SI2BB)) {
          if (FailBlocks)
            FailBlocks->insert(Succ);
          Fail = true;
        }
      }

  return !Fail;
}

/// Return true if it is safe and profitable to merge these two terminator
/// instructions together, where SI1 is an unconditional branch. PhiNodes will
/// store all PHI nodes in common successors.
static bool
isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
                                Instruction *Cond,
                                SmallVectorImpl<PHINode *> &PhiNodes) {
  if (SI1 == SI2)
    return false; // Can't merge with self!
  assert(SI1->isUnconditional() && SI2->isConditional());

  // We fold the unconditional branch if we can easily update all PHI nodes in
  // common successors:
  // 1> We have a constant incoming value for the conditional branch;
  // 2> We have "Cond" as the incoming value for the unconditional branch;
  // 3> SI2->getCondition() and Cond have same operands.
  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
  if (!Ci2)
    return false;
  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
        Cond->getOperand(1) == Ci2->getOperand(1)) &&
      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
        Cond->getOperand(1) == Ci2->getOperand(0)))
    return false;

  BasicBlock *SI1BB = SI1->getParent();
  BasicBlock *SI2BB = SI2->getParent();
  SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
  for (BasicBlock *Succ : successors(SI2BB))
    if (SI1Succs.count(Succ))
      for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
        PHINode *PN = cast<PHINode>(BBI);
        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
          return false;
        PhiNodes.push_back(PN);
      }
  return true;
}

/// Update PHI nodes in Succ to indicate that there will now be entries in it
/// from the 'NewPred' block. The values that will be flowing into the PHI nodes
/// will be the same as those coming in from ExistPred, an existing predecessor
/// of Succ.
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
                                  BasicBlock *ExistPred,
                                  MemorySSAUpdater *MSSAU = nullptr) {
  for (PHINode &PN : Succ->phis())
    PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
  if (MSSAU)
    if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
      MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
}

/// Compute an abstract "cost" of speculating the given instruction,
/// which is assumed to be safe to speculate. TCC_Free means cheap,
/// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
/// expensive.
static unsigned ComputeSpeculationCost(const User *I,
                                       const TargetTransformInfo &TTI) {
  assert(isSafeToSpeculativelyExecute(I) &&
         "Instruction is not safe to speculatively execute!");
  return TTI.getUserCost(I);
}

/// If we have a merge point of an "if condition" as accepted above,
/// return true if the specified value dominates the block.  We
/// don't handle the true generality of domination here, just a special case
/// which works well enough for us.
///
/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
/// see if V (which must be an instruction) and its recursive operands
/// that do not dominate BB have a combined cost lower than CostRemaining and
/// are non-trapping.  If both are true, the instruction is inserted into the
/// set and true is returned.
///
/// The cost for most non-trapping instructions is defined as 1 except for
/// Select whose cost is 2.
///
/// After this function returns, CostRemaining is decreased by the cost of
/// V plus its non-dominating operands.  If that cost is greater than
/// CostRemaining, false is returned and CostRemaining is undefined.
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
                                SmallPtrSetImpl<Instruction *> &AggressiveInsts,
                                int &BudgetRemaining,
                                const TargetTransformInfo &TTI,
                                unsigned Depth = 0) {
  // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
  // so limit the recursion depth.
  // TODO: While this recursion limit does prevent pathological behavior, it
  // would be better to track visited instructions to avoid cycles.
  if (Depth == MaxSpeculationDepth)
    return false;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) {
    // Non-instructions all dominate instructions, but not all constantexprs
    // can be executed unconditionally.
    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
      if (C->canTrap())
        return false;
    return true;
  }
  BasicBlock *PBB = I->getParent();

  // We don't want to allow weird loops that might have the "if condition" in
  // the bottom of this block.
  if (PBB == BB)
    return false;

  // If this instruction is defined in a block that contains an unconditional
  // branch to BB, then it must be in the 'conditional' part of the "if
  // statement".  If not, it definitely dominates the region.
  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
  if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
    return true;

  // If we have seen this instruction before, don't count it again.
  if (AggressiveInsts.count(I))
    return true;

  // Okay, it looks like the instruction IS in the "condition".  Check to
  // see if it's a cheap instruction to unconditionally compute, and if it
  // only uses stuff defined outside of the condition.  If so, hoist it out.
  if (!isSafeToSpeculativelyExecute(I))
    return false;

  BudgetRemaining -= ComputeSpeculationCost(I, TTI);

  // Allow exactly one instruction to be speculated regardless of its cost
  // (as long as it is safe to do so).
  // This is intended to flatten the CFG even if the instruction is a division
  // or other expensive operation. The speculation of an expensive instruction
  // is expected to be undone in CodeGenPrepare if the speculation has not
  // enabled further IR optimizations.
  if (BudgetRemaining < 0 &&
      (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
    return false;

  // Okay, we can only really hoist these out if their operands do
  // not take us over the cost threshold.
  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
                             Depth + 1))
      return false;
  // Okay, it's safe to do this!  Remember this instruction.
  AggressiveInsts.insert(I);
  return true;
}

/// Extract ConstantInt from value, looking through IntToPtr
/// and PointerNullValue. Return NULL if value is not a constant int.
static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
  // Normal constant int.
  ConstantInt *CI = dyn_cast<ConstantInt>(V);
  if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
    return CI;

  // This is some kind of pointer constant. Turn it into a pointer-sized
  // ConstantInt if possible.
  IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));

  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
  if (isa<ConstantPointerNull>(V))
    return ConstantInt::get(PtrTy, 0);

  // IntToPtr const int.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    if (CE->getOpcode() == Instruction::IntToPtr)
      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
        // The constant is very likely to have the right type already.
        if (CI->getType() == PtrTy)
          return CI;
        else
          return cast<ConstantInt>(
              ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
      }
  return nullptr;
}

namespace {

/// Given a chain of or (||) or and (&&) comparison of a value against a
/// constant, this will try to recover the information required for a switch
/// structure.
/// It will depth-first traverse the chain of comparison, seeking for patterns
/// like %a == 12 or %a < 4 and combine them to produce a set of integer
/// representing the different cases for the switch.
/// Note that if the chain is composed of '||' it will build the set of elements
/// that matches the comparisons (i.e. any of this value validate the chain)
/// while for a chain of '&&' it will build the set elements that make the test
/// fail.
struct ConstantComparesGatherer {
  const DataLayout &DL;

  /// Value found for the switch comparison
  Value *CompValue = nullptr;

  /// Extra clause to be checked before the switch
  Value *Extra = nullptr;

  /// Set of integers to match in switch
  SmallVector<ConstantInt *, 8> Vals;

  /// Number of comparisons matched in the and/or chain
  unsigned UsedICmps = 0;

  /// Construct and compute the result for the comparison instruction Cond
  ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
    gather(Cond);
  }

  ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
  ConstantComparesGatherer &
  operator=(const ConstantComparesGatherer &) = delete;

private:
  /// Try to set the current value used for the comparison, it succeeds only if
  /// it wasn't set before or if the new value is the same as the old one
  bool setValueOnce(Value *NewVal) {
    if (CompValue && CompValue != NewVal)
      return false;
    CompValue = NewVal;
    return (CompValue != nullptr);
  }

  /// Try to match Instruction "I" as a comparison against a constant and
  /// populates the array Vals with the set of values that match (or do not
  /// match depending on isEQ).
  /// Return false on failure. On success, the Value the comparison matched
  /// against is placed in CompValue.
  /// If CompValue is already set, the function is expected to fail if a match
  /// is found but the value compared to is different.
  bool matchInstruction(Instruction *I, bool isEQ) {
    // If this is an icmp against a constant, handle this as one of the cases.
    ICmpInst *ICI;
    ConstantInt *C;
    if (!((ICI = dyn_cast<ICmpInst>(I)) &&
          (C = GetConstantInt(I->getOperand(1), DL)))) {
      return false;
    }

    Value *RHSVal;
    const APInt *RHSC;

    // Pattern match a special case
    // (x & ~2^z) == y --> x == y || x == y|2^z
    // This undoes a transformation done by instcombine to fuse 2 compares.
    if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
      // It's a little bit hard to see why the following transformations are
      // correct. Here is a CVC3 program to verify them for 64-bit values:

      /*
         ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
         x    : BITVECTOR(64);
         y    : BITVECTOR(64);
         z    : BITVECTOR(64);
         mask : BITVECTOR(64) = BVSHL(ONE, z);
         QUERY( (y & ~mask = y) =>
                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
         );
         QUERY( (y |  mask = y) =>
                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
         );
      */

      // Please note that each pattern must be a dual implication (<--> or
      // iff). One directional implication can create spurious matches. If the
      // implication is only one-way, an unsatisfiable condition on the left
      // side can imply a satisfiable condition on the right side. Dual
      // implication ensures that satisfiable conditions are transformed to
      // other satisfiable conditions and unsatisfiable conditions are
      // transformed to other unsatisfiable conditions.

      // Here is a concrete example of a unsatisfiable condition on the left
      // implying a satisfiable condition on the right:
      //
      // mask = (1 << z)
      // (x & ~mask) == y  --> (x == y || x == (y | mask))
      //
      // Substituting y = 3, z = 0 yields:
      // (x & -2) == 3 --> (x == 3 || x == 2)

      // Pattern match a special case:
      /*
        QUERY( (y & ~mask = y) =>
               ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
        );
      */
      if (match(ICI->getOperand(0),
                m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
        APInt Mask = ~*RHSC;
        if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
          // If we already have a value for the switch, it has to match!
          if (!setValueOnce(RHSVal))
            return false;

          Vals.push_back(C);
          Vals.push_back(
              ConstantInt::get(C->getContext(),
                               C->getValue() | Mask));
          UsedICmps++;
          return true;
        }
      }

      // Pattern match a special case:
      /*
        QUERY( (y |  mask = y) =>
               ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
        );
      */
      if (match(ICI->getOperand(0),
                m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
        APInt Mask = *RHSC;
        if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
          // If we already have a value for the switch, it has to match!
          if (!setValueOnce(RHSVal))
            return false;

          Vals.push_back(C);
          Vals.push_back(ConstantInt::get(C->getContext(),
                                          C->getValue() & ~Mask));
          UsedICmps++;
          return true;
        }
      }

      // If we already have a value for the switch, it has to match!
      if (!setValueOnce(ICI->getOperand(0)))
        return false;

      UsedICmps++;
      Vals.push_back(C);
      return ICI->getOperand(0);
    }

    // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
    ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
        ICI->getPredicate(), C->getValue());

    // Shift the range if the compare is fed by an add. This is the range
    // compare idiom as emitted by instcombine.
    Value *CandidateVal = I->getOperand(0);
    if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
      Span = Span.subtract(*RHSC);
      CandidateVal = RHSVal;
    }

    // If this is an and/!= check, then we are looking to build the set of
    // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
    // x != 0 && x != 1.
    if (!isEQ)
      Span = Span.inverse();

    // If there are a ton of values, we don't want to make a ginormous switch.
    if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
      return false;
    }

    // If we already have a value for the switch, it has to match!
    if (!setValueOnce(CandidateVal))
      return false;

    // Add all values from the range to the set
    for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
      Vals.push_back(ConstantInt::get(I->getContext(), Tmp));

    UsedICmps++;
    return true;
  }

  /// Given a potentially 'or'd or 'and'd together collection of icmp
  /// eq/ne/lt/gt instructions that compare a value against a constant, extract
  /// the value being compared, and stick the list constants into the Vals
  /// vector.
  /// One "Extra" case is allowed to differ from the other.
  void gather(Value *V) {
    bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);

    // Keep a stack (SmallVector for efficiency) for depth-first traversal
    SmallVector<Value *, 8> DFT;
    SmallPtrSet<Value *, 8> Visited;

    // Initialize
    Visited.insert(V);
    DFT.push_back(V);

    while (!DFT.empty()) {
      V = DFT.pop_back_val();

      if (Instruction *I = dyn_cast<Instruction>(V)) {
        // If it is a || (or && depending on isEQ), process the operands.
        if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
          if (Visited.insert(I->getOperand(1)).second)
            DFT.push_back(I->getOperand(1));
          if (Visited.insert(I->getOperand(0)).second)
            DFT.push_back(I->getOperand(0));
          continue;
        }

        // Try to match the current instruction
        if (matchInstruction(I, isEQ))
          // Match succeed, continue the loop
          continue;
      }

      // One element of the sequence of || (or &&) could not be match as a
      // comparison against the same value as the others.
      // We allow only one "Extra" case to be checked before the switch
      if (!Extra) {
        Extra = V;
        continue;
      }
      // Failed to parse a proper sequence, abort now
      CompValue = nullptr;
      break;
    }
  }
};

} // end anonymous namespace

static void EraseTerminatorAndDCECond(Instruction *TI,
                                      MemorySSAUpdater *MSSAU = nullptr) {
  Instruction *Cond = nullptr;
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    Cond = dyn_cast<Instruction>(SI->getCondition());
  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    if (BI->isConditional())
      Cond = dyn_cast<Instruction>(BI->getCondition());
  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    Cond = dyn_cast<Instruction>(IBI->getAddress());
  }

  TI->eraseFromParent();
  if (Cond)
    RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
}

/// Return true if the specified terminator checks
/// to see if a value is equal to constant integer value.
Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
  Value *CV = nullptr;
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    // Do not permit merging of large switch instructions into their
    // predecessors unless there is only one predecessor.
    if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
      CV = SI->getCondition();
  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    if (BI->isConditional() && BI->getCondition()->hasOneUse())
      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
        if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
          CV = ICI->getOperand(0);
      }

  // Unwrap any lossless ptrtoint cast.
  if (CV) {
    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
      Value *Ptr = PTII->getPointerOperand();
      if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
        CV = Ptr;
    }
  }
  return CV;
}

/// Given a value comparison instruction,
/// decode all of the 'cases' that it represents and return the 'default' block.
BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
    Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    Cases.reserve(SI->getNumCases());
    for (auto Case : SI->cases())
      Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
                                                  Case.getCaseSuccessor()));
    return SI->getDefaultDest();
  }

  BranchInst *BI = cast<BranchInst>(TI);
  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
  Cases.push_back(ValueEqualityComparisonCase(
      GetConstantInt(ICI->getOperand(1), DL), Succ));
  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
}

/// Given a vector of bb/value pairs, remove any entries
/// in the list that match the specified block.
static void
EliminateBlockCases(BasicBlock *BB,
                    std::vector<ValueEqualityComparisonCase> &Cases) {
  Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
}

/// Return true if there are any keys in C1 that exist in C2 as well.
static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
                          std::vector<ValueEqualityComparisonCase> &C2) {
  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;

  // Make V1 be smaller than V2.
  if (V1->size() > V2->size())
    std::swap(V1, V2);

  if (V1->empty())
    return false;
  if (V1->size() == 1) {
    // Just scan V2.
    ConstantInt *TheVal = (*V1)[0].Value;
    for (unsigned i = 0, e = V2->size(); i != e; ++i)
      if (TheVal == (*V2)[i].Value)
        return true;
  }

  // Otherwise, just sort both lists and compare element by element.
  array_pod_sort(V1->begin(), V1->end());
  array_pod_sort(V2->begin(), V2->end());
  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
  while (i1 != e1 && i2 != e2) {
    if ((*V1)[i1].Value == (*V2)[i2].Value)
      return true;
    if ((*V1)[i1].Value < (*V2)[i2].Value)
      ++i1;
    else
      ++i2;
  }
  return false;
}

// Set branch weights on SwitchInst. This sets the metadata if there is at
// least one non-zero weight.
static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
  // Check that there is at least one non-zero weight. Otherwise, pass
  // nullptr to setMetadata which will erase the existing metadata.
  MDNode *N = nullptr;
  if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
    N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
  SI->setMetadata(LLVMContext::MD_prof, N);
}

// Similar to the above, but for branch and select instructions that take
// exactly 2 weights.
static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
                             uint32_t FalseWeight) {
  assert(isa<BranchInst>(I) || isa<SelectInst>(I));
  // Check that there is at least one non-zero weight. Otherwise, pass
  // nullptr to setMetadata which will erase the existing metadata.
  MDNode *N = nullptr;
  if (TrueWeight || FalseWeight)
    N = MDBuilder(I->getParent()->getContext())
            .createBranchWeights(TrueWeight, FalseWeight);
  I->setMetadata(LLVMContext::MD_prof, N);
}

/// If TI is known to be a terminator instruction and its block is known to
/// only have a single predecessor block, check to see if that predecessor is
/// also a value comparison with the same value, and if that comparison
/// determines the outcome of this comparison. If so, simplify TI. This does a
/// very limited form of jump threading.
bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
    Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
  if (!PredVal)
    return false; // Not a value comparison in predecessor.

  Value *ThisVal = isValueEqualityComparison(TI);
  assert(ThisVal && "This isn't a value comparison!!");
  if (ThisVal != PredVal)
    return false; // Different predicates.

  // TODO: Preserve branch weight metadata, similarly to how
  // FoldValueComparisonIntoPredecessors preserves it.

  // Find out information about when control will move from Pred to TI's block.
  std::vector<ValueEqualityComparisonCase> PredCases;
  BasicBlock *PredDef =
      GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
  EliminateBlockCases(PredDef, PredCases); // Remove default from cases.

  // Find information about how control leaves this block.
  std::vector<ValueEqualityComparisonCase> ThisCases;
  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
  EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.

  // If TI's block is the default block from Pred's comparison, potentially
  // simplify TI based on this knowledge.
  if (PredDef == TI->getParent()) {
    // If we are here, we know that the value is none of those cases listed in
    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    // can simplify TI.
    if (!ValuesOverlap(PredCases, ThisCases))
      return false;

    if (isa<BranchInst>(TI)) {
      // Okay, one of the successors of this condbr is dead.  Convert it to a
      // uncond br.
      assert(ThisCases.size() == 1 && "Branch can only have one case!");
      // Insert the new branch.
      Instruction *NI = Builder.CreateBr(ThisDef);
      (void)NI;

      // Remove PHI node entries for the dead edge.
      ThisCases[0].Dest->removePredecessor(TI->getParent());

      LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
                        << "Through successor TI: " << *TI << "Leaving: " << *NI
                        << "\n");

      EraseTerminatorAndDCECond(TI);
      return true;
    }

    SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
    // Okay, TI has cases that are statically dead, prune them away.
    SmallPtrSet<Constant *, 16> DeadCases;
    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
      DeadCases.insert(PredCases[i].Value);

    LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
                      << "Through successor TI: " << *TI);

    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
      --i;
      if (DeadCases.count(i->getCaseValue())) {
        i->getCaseSuccessor()->removePredecessor(TI->getParent());
        SI.removeCase(i);
      }
    }
    LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    return true;
  }

  // Otherwise, TI's block must correspond to some matched value.  Find out
  // which value (or set of values) this is.
  ConstantInt *TIV = nullptr;
  BasicBlock *TIBB = TI->getParent();
  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    if (PredCases[i].Dest == TIBB) {
      if (TIV)
        return false; // Cannot handle multiple values coming to this block.
      TIV = PredCases[i].Value;
    }
  assert(TIV && "No edge from pred to succ?");

  // Okay, we found the one constant that our value can be if we get into TI's
  // BB.  Find out which successor will unconditionally be branched to.
  BasicBlock *TheRealDest = nullptr;
  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    if (ThisCases[i].Value == TIV) {
      TheRealDest = ThisCases[i].Dest;
      break;
    }

  // If not handled by any explicit cases, it is handled by the default case.
  if (!TheRealDest)
    TheRealDest = ThisDef;

  // Remove PHI node entries for dead edges.
  BasicBlock *CheckEdge = TheRealDest;
  for (BasicBlock *Succ : successors(TIBB))
    if (Succ != CheckEdge)
      Succ->removePredecessor(TIBB);
    else
      CheckEdge = nullptr;

  // Insert the new branch.
  Instruction *NI = Builder.CreateBr(TheRealDest);
  (void)NI;

  LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
                    << "Through successor TI: " << *TI << "Leaving: " << *NI
                    << "\n");

  EraseTerminatorAndDCECond(TI);
  return true;
}

namespace {

/// This class implements a stable ordering of constant
/// integers that does not depend on their address.  This is important for
/// applications that sort ConstantInt's to ensure uniqueness.
struct ConstantIntOrdering {
  bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    return LHS->getValue().ult(RHS->getValue());
  }
};

} // end anonymous namespace

static int ConstantIntSortPredicate(ConstantInt *const *P1,
                                    ConstantInt *const *P2) {
  const ConstantInt *LHS = *P1;
  const ConstantInt *RHS = *P2;
  if (LHS == RHS)
    return 0;
  return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
}

static inline bool HasBranchWeights(const Instruction *I) {
  MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
  if (ProfMD && ProfMD->getOperand(0))
    if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
      return MDS->getString().equals("branch_weights");

  return false;
}

/// Get Weights of a given terminator, the default weight is at the front
/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
/// metadata.
static void GetBranchWeights(Instruction *TI,
                             SmallVectorImpl<uint64_t> &Weights) {
  MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
  assert(MD);
  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
    ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
    Weights.push_back(CI->getValue().getZExtValue());
  }

  // If TI is a conditional eq, the default case is the false case,
  // and the corresponding branch-weight data is at index 2. We swap the
  // default weight to be the first entry.
  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    assert(Weights.size() == 2);
    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
      std::swap(Weights.front(), Weights.back());
  }
}

/// Keep halving the weights until all can fit in uint32_t.
static void FitWeights(MutableArrayRef<uint64_t> Weights) {
  uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
  if (Max > UINT_MAX) {
    unsigned Offset = 32 - countLeadingZeros(Max);
    for (uint64_t &I : Weights)
      I >>= Offset;
  }
}

/// The specified terminator is a value equality comparison instruction
/// (either a switch or a branch on "X == c").
/// See if any of the predecessors of the terminator block are value comparisons
/// on the same value.  If so, and if safe to do so, fold them together.
bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
                                                         IRBuilder<> &Builder) {
  BasicBlock *BB = TI->getParent();
  Value *CV = isValueEqualityComparison(TI); // CondVal
  assert(CV && "Not a comparison?");
  bool Changed = false;

  SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
  while (!Preds.empty()) {
    BasicBlock *Pred = Preds.pop_back_val();

    // See if the predecessor is a comparison with the same value.
    Instruction *PTI = Pred->getTerminator();
    Value *PCV = isValueEqualityComparison(PTI); // PredCondVal

    if (PCV == CV && TI != PTI) {
      SmallSetVector<BasicBlock*, 4> FailBlocks;
      if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
        for (auto *Succ : FailBlocks) {
          if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
            return false;
        }
      }

      // Figure out which 'cases' to copy from SI to PSI.
      std::vector<ValueEqualityComparisonCase> BBCases;
      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);

      std::vector<ValueEqualityComparisonCase> PredCases;
      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);

      // Based on whether the default edge from PTI goes to BB or not, fill in
      // PredCases and PredDefault with the new switch cases we would like to
      // build.
      SmallVector<BasicBlock *, 8> NewSuccessors;

      // Update the branch weight metadata along the way
      SmallVector<uint64_t, 8> Weights;
      bool PredHasWeights = HasBranchWeights(PTI);
      bool SuccHasWeights = HasBranchWeights(TI);

      if (PredHasWeights) {
        GetBranchWeights(PTI, Weights);
        // branch-weight metadata is inconsistent here.
        if (Weights.size() != 1 + PredCases.size())
          PredHasWeights = SuccHasWeights = false;
      } else if (SuccHasWeights)
        // If there are no predecessor weights but there are successor weights,
        // populate Weights with 1, which will later be scaled to the sum of
        // successor's weights
        Weights.assign(1 + PredCases.size(), 1);

      SmallVector<uint64_t, 8> SuccWeights;
      if (SuccHasWeights) {
        GetBranchWeights(TI, SuccWeights);
        // branch-weight metadata is inconsistent here.
        if (SuccWeights.size() != 1 + BBCases.size())
          PredHasWeights = SuccHasWeights = false;
      } else if (PredHasWeights)
        SuccWeights.assign(1 + BBCases.size(), 1);

      if (PredDefault == BB) {
        // If this is the default destination from PTI, only the edges in TI
        // that don't occur in PTI, or that branch to BB will be activated.
        std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].Dest != BB)
            PTIHandled.insert(PredCases[i].Value);
          else {
            // The default destination is BB, we don't need explicit targets.
            std::swap(PredCases[i], PredCases.back());

            if (PredHasWeights || SuccHasWeights) {
              // Increase weight for the default case.
              Weights[0] += Weights[i + 1];
              std::swap(Weights[i + 1], Weights.back());
              Weights.pop_back();
            }

            PredCases.pop_back();
            --i;
            --e;
          }

        // Reconstruct the new switch statement we will be building.
        if (PredDefault != BBDefault) {
          PredDefault->removePredecessor(Pred);
          PredDefault = BBDefault;
          NewSuccessors.push_back(BBDefault);
        }

        unsigned CasesFromPred = Weights.size();
        uint64_t ValidTotalSuccWeight = 0;
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (!PTIHandled.count(BBCases[i].Value) &&
              BBCases[i].Dest != BBDefault) {
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].Dest);
            if (SuccHasWeights || PredHasWeights) {
              // The default weight is at index 0, so weight for the ith case
              // should be at index i+1. Scale the cases from successor by
              // PredDefaultWeight (Weights[0]).
              Weights.push_back(Weights[0] * SuccWeights[i + 1]);
              ValidTotalSuccWeight += SuccWeights[i + 1];
            }
          }

        if (SuccHasWeights || PredHasWeights) {
          ValidTotalSuccWeight += SuccWeights[0];
          // Scale the cases from predecessor by ValidTotalSuccWeight.
          for (unsigned i = 1; i < CasesFromPred; ++i)
            Weights[i] *= ValidTotalSuccWeight;
          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
          Weights[0] *= SuccWeights[0];
        }
      } else {
        // If this is not the default destination from PSI, only the edges
        // in SI that occur in PSI with a destination of BB will be
        // activated.
        std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
        std::map<ConstantInt *, uint64_t> WeightsForHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].Dest == BB) {
            PTIHandled.insert(PredCases[i].Value);

            if (PredHasWeights || SuccHasWeights) {
              WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
              std::swap(Weights[i + 1], Weights.back());
              Weights.pop_back();
            }

            std::swap(PredCases[i], PredCases.back());
            PredCases.pop_back();
            --i;
            --e;
          }

        // Okay, now we know which constants were sent to BB from the
        // predecessor.  Figure out where they will all go now.
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (PTIHandled.count(BBCases[i].Value)) {
            // If this is one we are capable of getting...
            if (PredHasWeights || SuccHasWeights)
              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].Dest);
            PTIHandled.erase(
                BBCases[i].Value); // This constant is taken care of
          }

        // If there are any constants vectored to BB that TI doesn't handle,
        // they must go to the default destination of TI.
        for (ConstantInt *I : PTIHandled) {
          if (PredHasWeights || SuccHasWeights)
            Weights.push_back(WeightsForHandled[I]);
          PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
          NewSuccessors.push_back(BBDefault);
        }
      }

      // Okay, at this point, we know which new successor Pred will get.  Make
      // sure we update the number of entries in the PHI nodes for these
      // successors.
      for (BasicBlock *NewSuccessor : NewSuccessors)
        AddPredecessorToBlock(NewSuccessor, Pred, BB);

      Builder.SetInsertPoint(PTI);
      // Convert pointer to int before we switch.
      if (CV->getType()->isPointerTy()) {
        CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
                                    "magicptr");
      }

      // Now that the successors are updated, create the new Switch instruction.
      SwitchInst *NewSI =
          Builder.CreateSwitch(CV, PredDefault, PredCases.size());
      NewSI->setDebugLoc(PTI->getDebugLoc());
      for (ValueEqualityComparisonCase &V : PredCases)
        NewSI->addCase(V.Value, V.Dest);

      if (PredHasWeights || SuccHasWeights) {
        // Halve the weights if any of them cannot fit in an uint32_t
        FitWeights(Weights);

        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());

        setBranchWeights(NewSI, MDWeights);
      }

      EraseTerminatorAndDCECond(PTI);

      // Okay, last check.  If BB is still a successor of PSI, then we must
      // have an infinite loop case.  If so, add an infinitely looping block
      // to handle the case to preserve the behavior of the code.
      BasicBlock *InfLoopBlock = nullptr;
      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
        if (NewSI->getSuccessor(i) == BB) {
          if (!InfLoopBlock) {
            // Insert it at the end of the function, because it's either code,
            // or it won't matter if it's hot. :)
            InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
                                              BB->getParent());
            BranchInst::Create(InfLoopBlock, InfLoopBlock);
          }
          NewSI->setSuccessor(i, InfLoopBlock);
        }

      Changed = true;
    }
  }
  return Changed;
}

// If we would need to insert a select that uses the value of this invoke
// (comments in HoistThenElseCodeToIf explain why we would need to do this), we
// can't hoist the invoke, as there is nowhere to put the select in this case.
static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
                                Instruction *I1, Instruction *I2) {
  for (BasicBlock *Succ : successors(BB1)) {
    for (const PHINode &PN : Succ->phis()) {
      Value *BB1V = PN.getIncomingValueForBlock(BB1);
      Value *BB2V = PN.getIncomingValueForBlock(BB2);
      if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
        return false;
      }
    }
  }
  return true;
}

static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);

/// Given a conditional branch that goes to BB1 and BB2, hoist any common code
/// in the two blocks up into the branch block. The caller of this function
/// guarantees that BI's block dominates BB1 and BB2.
static bool HoistThenElseCodeToIf(BranchInst *BI,
                                  const TargetTransformInfo &TTI) {
  // This does very trivial matching, with limited scanning, to find identical
  // instructions in the two blocks.  In particular, we don't want to get into
  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
  // such, we currently just scan for obviously identical instructions in an
  // identical order.
  BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
  BasicBlock *BB2 = BI->getSuccessor(1); // The false destination

  BasicBlock::iterator BB1_Itr = BB1->begin();
  BasicBlock::iterator BB2_Itr = BB2->begin();

  Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
  // Skip debug info if it is not identical.
  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
    while (isa<DbgInfoIntrinsic>(I1))
      I1 = &*BB1_Itr++;
    while (isa<DbgInfoIntrinsic>(I2))
      I2 = &*BB2_Itr++;
  }
  // FIXME: Can we define a safety predicate for CallBr?
  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
      isa<CallBrInst>(I1))
    return false;

  BasicBlock *BIParent = BI->getParent();

  bool Changed = false;
  do {
    // If we are hoisting the terminator instruction, don't move one (making a
    // broken BB), instead clone it, and remove BI.
    if (I1->isTerminator())
      goto HoistTerminator;

    // If we're going to hoist a call, make sure that the two instructions we're
    // commoning/hoisting are both marked with musttail, or neither of them is
    // marked as such. Otherwise, we might end up in a situation where we hoist
    // from a block where the terminator is a `ret` to a block where the terminator
    // is a `br`, and `musttail` calls expect to be followed by a return.
    auto *C1 = dyn_cast<CallInst>(I1);
    auto *C2 = dyn_cast<CallInst>(I2);
    if (C1 && C2)
      if (C1->isMustTailCall() != C2->isMustTailCall())
        return Changed;

    if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
      return Changed;

    if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
      assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
      // The debug location is an integral part of a debug info intrinsic
      // and can't be separated from it or replaced.  Instead of attempting
      // to merge locations, simply hoist both copies of the intrinsic.
      BIParent->getInstList().splice(BI->getIterator(),
                                     BB1->getInstList(), I1);
      BIParent->getInstList().splice(BI->getIterator(),
                                     BB2->getInstList(), I2);
      Changed = true;
    } else {
      // For a normal instruction, we just move one to right before the branch,
      // then replace all uses of the other with the first.  Finally, we remove
      // the now redundant second instruction.
      BIParent->getInstList().splice(BI->getIterator(),
                                     BB1->getInstList(), I1);
      if (!I2->use_empty())
        I2->replaceAllUsesWith(I1);
      I1->andIRFlags(I2);
      unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
                             LLVMContext::MD_range,
                             LLVMContext::MD_fpmath,
                             LLVMContext::MD_invariant_load,
                             LLVMContext::MD_nonnull,
                             LLVMContext::MD_invariant_group,
                             LLVMContext::MD_align,
                             LLVMContext::MD_dereferenceable,
                             LLVMContext::MD_dereferenceable_or_null,
                             LLVMContext::MD_mem_parallel_loop_access,
                             LLVMContext::MD_access_group,
                             LLVMContext::MD_preserve_access_index};
      combineMetadata(I1, I2, KnownIDs, true);

      // I1 and I2 are being combined into a single instruction.  Its debug
      // location is the merged locations of the original instructions.
      I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());

      I2->eraseFromParent();
      Changed = true;
    }

    I1 = &*BB1_Itr++;
    I2 = &*BB2_Itr++;
    // Skip debug info if it is not identical.
    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
      while (isa<DbgInfoIntrinsic>(I1))
        I1 = &*BB1_Itr++;
      while (isa<DbgInfoIntrinsic>(I2))
        I2 = &*BB2_Itr++;
    }
  } while (I1->isIdenticalToWhenDefined(I2));

  return true;

HoistTerminator:
  // It may not be possible to hoist an invoke.
  // FIXME: Can we define a safety predicate for CallBr?
  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
    return Changed;

  // TODO: callbr hoisting currently disabled pending further study.
  if (isa<CallBrInst>(I1))
    return Changed;

  for (BasicBlock *Succ : successors(BB1)) {
    for (PHINode &PN : Succ->phis()) {
      Value *BB1V = PN.getIncomingValueForBlock(BB1);
      Value *BB2V = PN.getIncomingValueForBlock(BB2);
      if (BB1V == BB2V)
        continue;

      // Check for passingValueIsAlwaysUndefined here because we would rather
      // eliminate undefined control flow then converting it to a select.
      if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
          passingValueIsAlwaysUndefined(BB2V, &PN))
        return Changed;

      if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
        return Changed;
      if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
        return Changed;
    }
  }

  // Okay, it is safe to hoist the terminator.
  Instruction *NT = I1->clone();
  BIParent->getInstList().insert(BI->getIterator(), NT);
  if (!NT->getType()->isVoidTy()) {
    I1->replaceAllUsesWith(NT);
    I2->replaceAllUsesWith(NT);
    NT->takeName(I1);
  }

  // Ensure terminator gets a debug location, even an unknown one, in case
  // it involves inlinable calls.
  NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());

  // PHIs created below will adopt NT's merged DebugLoc.
  IRBuilder<NoFolder> Builder(NT);

  // Hoisting one of the terminators from our successor is a great thing.
  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
  // nodes, so we insert select instruction to compute the final result.
  std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
  for (BasicBlock *Succ : successors(BB1)) {
    for (PHINode &PN : Succ->phis()) {
      Value *BB1V = PN.getIncomingValueForBlock(BB1);
      Value *BB2V = PN.getIncomingValueForBlock(BB2);
      if (BB1V == BB2V)
        continue;

      // These values do not agree.  Insert a select instruction before NT
      // that determines the right value.
      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
      if (!SI)
        SI = cast<SelectInst>(
            Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
                                 BB1V->getName() + "." + BB2V->getName(), BI));

      // Make the PHI node use the select for all incoming values for BB1/BB2
      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
        if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
          PN.setIncomingValue(i, SI);
    }
  }

  // Update any PHI nodes in our new successors.
  for (BasicBlock *Succ : successors(BB1))
    AddPredecessorToBlock(Succ, BIParent, BB1);

  EraseTerminatorAndDCECond(BI);
  return true;
}

// Check lifetime markers.
static bool isLifeTimeMarker(const Instruction *I) {
  if (auto II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    default:
      break;
    case Intrinsic::lifetime_start:
    case Intrinsic::lifetime_end:
      return true;
    }
  }
  return false;
}

// All instructions in Insts belong to different blocks that all unconditionally
// branch to a common successor. Analyze each instruction and return true if it
// would be possible to sink them into their successor, creating one common
// instruction instead. For every value that would be required to be provided by
// PHI node (because an operand varies in each input block), add to PHIOperands.
static bool canSinkInstructions(
    ArrayRef<Instruction *> Insts,
    DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
  // Prune out obviously bad instructions to move. Each instruction must have
  // exactly zero or one use, and we check later that use is by a single, common
  // PHI instruction in the successor.
  bool HasUse = !Insts.front()->user_empty();
  for (auto *I : Insts) {
    // These instructions may change or break semantics if moved.
    if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
        I->getType()->isTokenTy())
      return false;

    // Conservatively return false if I is an inline-asm instruction. Sinking
    // and merging inline-asm instructions can potentially create arguments
    // that cannot satisfy the inline-asm constraints.
    if (const auto *C = dyn_cast<CallBase>(I))
      if (C->isInlineAsm())
        return false;

    // Each instruction must have zero or one use.
    if (HasUse && !I->hasOneUse())
      return false;
    if (!HasUse && !I->user_empty())
      return false;
  }

  const Instruction *I0 = Insts.front();
  for (auto *I : Insts)
    if (!I->isSameOperationAs(I0))
      return false;

  // All instructions in Insts are known to be the same opcode. If they have a
  // use, check that the only user is a PHI or in the same block as the
  // instruction, because if a user is in the same block as an instruction we're
  // contemplating sinking, it must already be determined to be sinkable.
  if (HasUse) {
    auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
    auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
    if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
          auto *U = cast<Instruction>(*I->user_begin());
          return (PNUse &&
                  PNUse->getParent() == Succ &&
                  PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
                 U->getParent() == I->getParent();
        }))
      return false;
  }

  // Because SROA can't handle speculating stores of selects, try not to sink
  // loads, stores or lifetime markers of allocas when we'd have to create a
  // PHI for the address operand. Also, because it is likely that loads or
  // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
  // them.
  // This can cause code churn which can have unintended consequences down
  // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
  // FIXME: This is a workaround for a deficiency in SROA - see
  // https://llvm.org/bugs/show_bug.cgi?id=30188
  if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
        return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
      }))
    return false;
  if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
        return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
      }))
    return false;
  if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
        return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
      }))
    return false;

  for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
    if (I0->getOperand(OI)->getType()->isTokenTy())
      // Don't touch any operand of token type.
      return false;

    auto SameAsI0 = [&I0, OI](const Instruction *I) {
      assert(I->getNumOperands() == I0->getNumOperands());
      return I->getOperand(OI) == I0->getOperand(OI);
    };
    if (!all_of(Insts, SameAsI0)) {
      if (!canReplaceOperandWithVariable(I0, OI))
        // We can't create a PHI from this GEP.
        return false;
      // Don't create indirect calls! The called value is the final operand.
      if (isa<CallBase>(I0) && OI == OE - 1) {
        // FIXME: if the call was *already* indirect, we should do this.
        return false;
      }
      for (auto *I : Insts)
        PHIOperands[I].push_back(I->getOperand(OI));
    }
  }
  return true;
}

// Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
// instruction of every block in Blocks to their common successor, commoning
// into one instruction.
static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
  auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);

  // canSinkLastInstruction returning true guarantees that every block has at
  // least one non-terminator instruction.
  SmallVector<Instruction*,4> Insts;
  for (auto *BB : Blocks) {
    Instruction *I = BB->getTerminator();
    do {
      I = I->getPrevNode();
    } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
    if (!isa<DbgInfoIntrinsic>(I))
      Insts.push_back(I);
  }

  // The only checking we need to do now is that all users of all instructions
  // are the same PHI node. canSinkLastInstruction should have checked this but
  // it is slightly over-aggressive - it gets confused by commutative instructions
  // so double-check it here.
  Instruction *I0 = Insts.front();
  if (!I0->user_empty()) {
    auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
    if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
          auto *U = cast<Instruction>(*I->user_begin());
          return U == PNUse;
        }))
      return false;
  }

  // We don't need to do any more checking here; canSinkLastInstruction should
  // have done it all for us.
  SmallVector<Value*, 4> NewOperands;
  for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
    // This check is different to that in canSinkLastInstruction. There, we
    // cared about the global view once simplifycfg (and instcombine) have
    // completed - it takes into account PHIs that become trivially
    // simplifiable.  However here we need a more local view; if an operand
    // differs we create a PHI and rely on instcombine to clean up the very
    // small mess we may make.
    bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
      return I->getOperand(O) != I0->getOperand(O);
    });
    if (!NeedPHI) {
      NewOperands.push_back(I0->getOperand(O));
      continue;
    }

    // Create a new PHI in the successor block and populate it.
    auto *Op = I0->getOperand(O);
    assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
    auto *PN = PHINode::Create(Op->getType(), Insts.size(),
                               Op->getName() + ".sink", &BBEnd->front());
    for (auto *I : Insts)
      PN->addIncoming(I->getOperand(O), I->getParent());
    NewOperands.push_back(PN);
  }

  // Arbitrarily use I0 as the new "common" instruction; remap its operands
  // and move it to the start of the successor block.
  for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
    I0->getOperandUse(O).set(NewOperands[O]);
  I0->moveBefore(&*BBEnd->getFirstInsertionPt());

  // Update metadata and IR flags, and merge debug locations.
  for (auto *I : Insts)
    if (I != I0) {
      // The debug location for the "common" instruction is the merged locations
      // of all the commoned instructions.  We start with the original location
      // of the "common" instruction and iteratively merge each location in the
      // loop below.
      // This is an N-way merge, which will be inefficient if I0 is a CallInst.
      // However, as N-way merge for CallInst is rare, so we use simplified API
      // instead of using complex API for N-way merge.
      I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
      combineMetadataForCSE(I0, I, true);
      I0->andIRFlags(I);
    }

  if (!I0->user_empty()) {
    // canSinkLastInstruction checked that all instructions were used by
    // one and only one PHI node. Find that now, RAUW it to our common
    // instruction and nuke it.
    auto *PN = cast<PHINode>(*I0->user_begin());
    PN->replaceAllUsesWith(I0);
    PN->eraseFromParent();
  }

  // Finally nuke all instructions apart from the common instruction.
  for (auto *I : Insts)
    if (I != I0)
      I->eraseFromParent();

  return true;
}

namespace {

  // LockstepReverseIterator - Iterates through instructions
  // in a set of blocks in reverse order from the first non-terminator.
  // For example (assume all blocks have size n):
  //   LockstepReverseIterator I([B1, B2, B3]);
  //   *I-- = [B1[n], B2[n], B3[n]];
  //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
  //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
  //   ...
  class LockstepReverseIterator {
    ArrayRef<BasicBlock*> Blocks;
    SmallVector<Instruction*,4> Insts;
    bool Fail;

  public:
    LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
      reset();
    }

    void reset() {
      Fail = false;
      Insts.clear();
      for (auto *BB : Blocks) {
        Instruction *Inst = BB->getTerminator();
        for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
          Inst = Inst->getPrevNode();
        if (!Inst) {
          // Block wasn't big enough.
          Fail = true;
          return;
        }
        Insts.push_back(Inst);
      }
    }

    bool isValid() const {
      return !Fail;
    }

    void operator--() {
      if (Fail)
        return;
      for (auto *&Inst : Insts) {
        for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
          Inst = Inst->getPrevNode();
        // Already at beginning of block.
        if (!Inst) {
          Fail = true;
          return;
        }
      }
    }

    ArrayRef<Instruction*> operator * () const {
      return Insts;
    }
  };

} // end anonymous namespace

/// Check whether BB's predecessors end with unconditional branches. If it is
/// true, sink any common code from the predecessors to BB.
/// We also allow one predecessor to end with conditional branch (but no more
/// than one).
static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
  // We support two situations:
  //   (1) all incoming arcs are unconditional
  //   (2) one incoming arc is conditional
  //
  // (2) is very common in switch defaults and
  // else-if patterns;
  //
  //   if (a) f(1);
  //   else if (b) f(2);
  //
  // produces:
  //
  //       [if]
  //      /    \
  //    [f(1)] [if]
  //      |     | \
  //      |     |  |
  //      |  [f(2)]|
  //       \    | /
  //        [ end ]
  //
  // [end] has two unconditional predecessor arcs and one conditional. The
  // conditional refers to the implicit empty 'else' arc. This conditional
  // arc can also be caused by an empty default block in a switch.
  //
  // In this case, we attempt to sink code from all *unconditional* arcs.
  // If we can sink instructions from these arcs (determined during the scan
  // phase below) we insert a common successor for all unconditional arcs and
  // connect that to [end], to enable sinking:
  //
  //       [if]
  //      /    \
  //    [x(1)] [if]
  //      |     | \
  //      |     |  \
  //      |  [x(2)] |
  //       \   /    |
  //   [sink.split] |
  //         \     /
  //         [ end ]
  //
  SmallVector<BasicBlock*,4> UnconditionalPreds;
  Instruction *Cond = nullptr;
  for (auto *B : predecessors(BB)) {
    auto *T = B->getTerminator();
    if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
      UnconditionalPreds.push_back(B);
    else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
      Cond = T;
    else
      return false;
  }
  if (UnconditionalPreds.size() < 2)
    return false;

  bool Changed = false;
  // We take a two-step approach to tail sinking. First we scan from the end of
  // each block upwards in lockstep. If the n'th instruction from the end of each
  // block can be sunk, those instructions are added to ValuesToSink and we
  // carry on. If we can sink an instruction but need to PHI-merge some operands
  // (because they're not identical in each instruction) we add these to
  // PHIOperands.
  unsigned ScanIdx = 0;
  SmallPtrSet<Value*,4> InstructionsToSink;
  DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
  LockstepReverseIterator LRI(UnconditionalPreds);
  while (LRI.isValid() &&
         canSinkInstructions(*LRI, PHIOperands)) {
    LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
                      << "\n");
    InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
    ++ScanIdx;
    --LRI;
  }

  auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
    unsigned NumPHIdValues = 0;
    for (auto *I : *LRI)
      for (auto *V : PHIOperands[I])
        if (InstructionsToSink.count(V) == 0)
          ++NumPHIdValues;
    LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
    unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
    if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
        NumPHIInsts++;

    return NumPHIInsts <= 1;
  };

  if (ScanIdx > 0 && Cond) {
    // Check if we would actually sink anything first! This mutates the CFG and
    // adds an extra block. The goal in doing this is to allow instructions that
    // couldn't be sunk before to be sunk - obviously, speculatable instructions
    // (such as trunc, add) can be sunk and predicated already. So we check that
    // we're going to sink at least one non-speculatable instruction.
    LRI.reset();
    unsigned Idx = 0;
    bool Profitable = false;
    while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
      if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
        Profitable = true;
        break;
      }
      --LRI;
      ++Idx;
    }
    if (!Profitable)
      return false;

    LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
    // We have a conditional edge and we're going to sink some instructions.
    // Insert a new block postdominating all blocks we're going to sink from.
    if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
      // Edges couldn't be split.
      return false;
    Changed = true;
  }

  // Now that we've analyzed all potential sinking candidates, perform the
  // actual sink. We iteratively sink the last non-terminator of the source
  // blocks into their common successor unless doing so would require too
  // many PHI instructions to be generated (currently only one PHI is allowed
  // per sunk instruction).
  //
  // We can use InstructionsToSink to discount values needing PHI-merging that will
  // actually be sunk in a later iteration. This allows us to be more
  // aggressive in what we sink. This does allow a false positive where we
  // sink presuming a later value will also be sunk, but stop half way through
  // and never actually sink it which means we produce more PHIs than intended.
  // This is unlikely in practice though.
  for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
    LLVM_DEBUG(dbgs() << "SINK: Sink: "
                      << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
                      << "\n");

    // Because we've sunk every instruction in turn, the current instruction to
    // sink is always at index 0.
    LRI.reset();
    if (!ProfitableToSinkInstruction(LRI)) {
      // Too many PHIs would be created.
      LLVM_DEBUG(
          dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
      break;
    }

    if (!sinkLastInstruction(UnconditionalPreds))
      return Changed;
    NumSinkCommons++;
    Changed = true;
  }
  return Changed;
}

/// Determine if we can hoist sink a sole store instruction out of a
/// conditional block.
///
/// We are looking for code like the following:
///   BrBB:
///     store i32 %add, i32* %arrayidx2
///     ... // No other stores or function calls (we could be calling a memory
///     ... // function).
///     %cmp = icmp ult %x, %y
///     br i1 %cmp, label %EndBB, label %ThenBB
///   ThenBB:
///     store i32 %add5, i32* %arrayidx2
///     br label EndBB
///   EndBB:
///     ...
///   We are going to transform this into:
///   BrBB:
///     store i32 %add, i32* %arrayidx2
///     ... //
///     %cmp = icmp ult %x, %y
///     %add.add5 = select i1 %cmp, i32 %add, %add5
///     store i32 %add.add5, i32* %arrayidx2
///     ...
///
/// \return The pointer to the value of the previous store if the store can be
///         hoisted into the predecessor block. 0 otherwise.
static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
                                     BasicBlock *StoreBB, BasicBlock *EndBB) {
  StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
  if (!StoreToHoist)
    return nullptr;

  // Volatile or atomic.
  if (!StoreToHoist->isSimple())
    return nullptr;

  Value *StorePtr = StoreToHoist->getPointerOperand();

  // Look for a store to the same pointer in BrBB.
  unsigned MaxNumInstToLookAt = 9;
  for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
    if (!MaxNumInstToLookAt)
      break;
    --MaxNumInstToLookAt;

    // Could be calling an instruction that affects memory like free().
    if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
      return nullptr;

    if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
      // Found the previous store make sure it stores to the same location.
      if (SI->getPointerOperand() == StorePtr)
        // Found the previous store, return its value operand.
        return SI->getValueOperand();
      return nullptr; // Unknown store.
    }
  }

  return nullptr;
}

/// Speculate a conditional basic block flattening the CFG.
///
/// Note that this is a very risky transform currently. Speculating
/// instructions like this is most often not desirable. Instead, there is an MI
/// pass which can do it with full awareness of the resource constraints.
/// However, some cases are "obvious" and we should do directly. An example of
/// this is speculating a single, reasonably cheap instruction.
///
/// There is only one distinct advantage to flattening the CFG at the IR level:
/// it makes very common but simplistic optimizations such as are common in
/// instcombine and the DAG combiner more powerful by removing CFG edges and
/// modeling their effects with easier to reason about SSA value graphs.
///
///
/// An illustration of this transform is turning this IR:
/// \code
///   BB:
///     %cmp = icmp ult %x, %y
///     br i1 %cmp, label %EndBB, label %ThenBB
///   ThenBB:
///     %sub = sub %x, %y
///     br label BB2
///   EndBB:
///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
///     ...
/// \endcode
///
/// Into this IR:
/// \code
///   BB:
///     %cmp = icmp ult %x, %y
///     %sub = sub %x, %y
///     %cond = select i1 %cmp, 0, %sub
///     ...
/// \endcode
///
/// \returns true if the conditional block is removed.
static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
                                   const TargetTransformInfo &TTI) {
  // Be conservative for now. FP select instruction can often be expensive.
  Value *BrCond = BI->getCondition();
  if (isa<FCmpInst>(BrCond))
    return false;

  BasicBlock *BB = BI->getParent();
  BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);

  // If ThenBB is actually on the false edge of the conditional branch, remember
  // to swap the select operands later.
  bool Invert = false;
  if (ThenBB != BI->getSuccessor(0)) {
    assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
    Invert = true;
  }
  assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");

  // Keep a count of how many times instructions are used within ThenBB when
  // they are candidates for sinking into ThenBB. Specifically:
  // - They are defined in BB, and
  // - They have no side effects, and
  // - All of their uses are in ThenBB.
  SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;

  SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;

  unsigned SpeculatedInstructions = 0;
  Value *SpeculatedStoreValue = nullptr;
  StoreInst *SpeculatedStore = nullptr;
  for (BasicBlock::iterator BBI = ThenBB->begin(),
                            BBE = std::prev(ThenBB->end());
       BBI != BBE; ++BBI) {
    Instruction *I = &*BBI;
    // Skip debug info.
    if (isa<DbgInfoIntrinsic>(I)) {
      SpeculatedDbgIntrinsics.push_back(I);
      continue;
    }

    // Only speculatively execute a single instruction (not counting the
    // terminator) for now.
    ++SpeculatedInstructions;
    if (SpeculatedInstructions > 1)
      return false;

    // Don't hoist the instruction if it's unsafe or expensive.
    if (!isSafeToSpeculativelyExecute(I) &&
        !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
                                  I, BB, ThenBB, EndBB))))
      return false;
    if (!SpeculatedStoreValue &&
        ComputeSpeculationCost(I, TTI) >
            PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
      return false;

    // Store the store speculation candidate.
    if (SpeculatedStoreValue)
      SpeculatedStore = cast<StoreInst>(I);

    // Do not hoist the instruction if any of its operands are defined but not
    // used in BB. The transformation will prevent the operand from
    // being sunk into the use block.
    for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
      Instruction *OpI = dyn_cast<Instruction>(*i);
      if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
        continue; // Not a candidate for sinking.

      ++SinkCandidateUseCounts[OpI];
    }
  }

  // Consider any sink candidates which are only used in ThenBB as costs for
  // speculation. Note, while we iterate over a DenseMap here, we are summing
  // and so iteration order isn't significant.
  for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
           I = SinkCandidateUseCounts.begin(),
           E = SinkCandidateUseCounts.end();
       I != E; ++I)
    if (I->first->hasNUses(I->second)) {
      ++SpeculatedInstructions;
      if (SpeculatedInstructions > 1)
        return false;
    }

  // Check that the PHI nodes can be converted to selects.
  bool HaveRewritablePHIs = false;
  for (PHINode &PN : EndBB->phis()) {
    Value *OrigV = PN.getIncomingValueForBlock(BB);
    Value *ThenV = PN.getIncomingValueForBlock(ThenBB);

    // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
    // Skip PHIs which are trivial.
    if (ThenV == OrigV)
      continue;

    // Don't convert to selects if we could remove undefined behavior instead.
    if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
        passingValueIsAlwaysUndefined(ThenV, &PN))
      return false;

    HaveRewritablePHIs = true;
    ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
    ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
    if (!OrigCE && !ThenCE)
      continue; // Known safe and cheap.

    if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
        (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
      return false;
    unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
    unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
    unsigned MaxCost =
        2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
    if (OrigCost + ThenCost > MaxCost)
      return false;

    // Account for the cost of an unfolded ConstantExpr which could end up
    // getting expanded into Instructions.
    // FIXME: This doesn't account for how many operations are combined in the
    // constant expression.
    ++SpeculatedInstructions;
    if (SpeculatedInstructions > 1)
      return false;
  }

  // If there are no PHIs to process, bail early. This helps ensure idempotence
  // as well.
  if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
    return false;

  // If we get here, we can hoist the instruction and if-convert.
  LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);

  // Insert a select of the value of the speculated store.
  if (SpeculatedStoreValue) {
    IRBuilder<NoFolder> Builder(BI);
    Value *TrueV = SpeculatedStore->getValueOperand();
    Value *FalseV = SpeculatedStoreValue;
    if (Invert)
      std::swap(TrueV, FalseV);
    Value *S = Builder.CreateSelect(
        BrCond, TrueV, FalseV, "spec.store.select", BI);
    SpeculatedStore->setOperand(0, S);
    SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
                                         SpeculatedStore->getDebugLoc());
  }

  // Metadata can be dependent on the condition we are hoisting above.
  // Conservatively strip all metadata on the instruction.
  for (auto &I : *ThenBB)
    I.dropUnknownNonDebugMetadata();

  // Hoist the instructions.
  BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
                           ThenBB->begin(), std::prev(ThenBB->end()));

  // Insert selects and rewrite the PHI operands.
  IRBuilder<NoFolder> Builder(BI);
  for (PHINode &PN : EndBB->phis()) {
    unsigned OrigI = PN.getBasicBlockIndex(BB);
    unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
    Value *OrigV = PN.getIncomingValue(OrigI);
    Value *ThenV = PN.getIncomingValue(ThenI);

    // Skip PHIs which are trivial.
    if (OrigV == ThenV)
      continue;

    // Create a select whose true value is the speculatively executed value and
    // false value is the preexisting value. Swap them if the branch
    // destinations were inverted.
    Value *TrueV = ThenV, *FalseV = OrigV;
    if (Invert)
      std::swap(TrueV, FalseV);
    Value *V = Builder.CreateSelect(
        BrCond, TrueV, FalseV, "spec.select", BI);
    PN.setIncomingValue(OrigI, V);
    PN.setIncomingValue(ThenI, V);
  }

  // Remove speculated dbg intrinsics.
  // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
  // dbg value for the different flows and inserting it after the select.
  for (Instruction *I : SpeculatedDbgIntrinsics)
    I->eraseFromParent();

  ++NumSpeculations;
  return true;
}

/// Return true if we can thread a branch across this block.
static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
  unsigned Size = 0;

  for (Instruction &I : BB->instructionsWithoutDebug()) {
    if (Size > 10)
      return false; // Don't clone large BB's.
    ++Size;

    // We can only support instructions that do not define values that are
    // live outside of the current basic block.
    for (User *U : I.users()) {
      Instruction *UI = cast<Instruction>(U);
      if (UI->getParent() != BB || isa<PHINode>(UI))
        return false;
    }

    // Looks ok, continue checking.
  }

  return true;
}

/// If we have a conditional branch on a PHI node value that is defined in the
/// same block as the branch and if any PHI entries are constants, thread edges
/// corresponding to that entry to be branches to their ultimate destination.
static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
                                AssumptionCache *AC) {
  BasicBlock *BB = BI->getParent();
  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
  // NOTE: we currently cannot transform this case if the PHI node is used
  // outside of the block.
  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
    return false;

  // Degenerate case of a single entry PHI.
  if (PN->getNumIncomingValues() == 1) {
    FoldSingleEntryPHINodes(PN->getParent());
    return true;
  }

  // Now we know that this block has multiple preds and two succs.
  if (!BlockIsSimpleEnoughToThreadThrough(BB))
    return false;

  // Can't fold blocks that contain noduplicate or convergent calls.
  if (any_of(*BB, [](const Instruction &I) {
        const CallInst *CI = dyn_cast<CallInst>(&I);
        return CI && (CI->cannotDuplicate() || CI->isConvergent());
      }))
    return false;

  // Okay, this is a simple enough basic block.  See if any phi values are
  // constants.
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
    if (!CB || !CB->getType()->isIntegerTy(1))
      continue;

    // Okay, we now know that all edges from PredBB should be revectored to
    // branch to RealDest.
    BasicBlock *PredBB = PN->getIncomingBlock(i);
    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());

    if (RealDest == BB)
      continue; // Skip self loops.
    // Skip if the predecessor's terminator is an indirect branch.
    if (isa<IndirectBrInst>(PredBB->getTerminator()))
      continue;

    // The dest block might have PHI nodes, other predecessors and other
    // difficult cases.  Instead of being smart about this, just insert a new
    // block that jumps to the destination block, effectively splitting
    // the edge we are about to create.
    BasicBlock *EdgeBB =
        BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
                           RealDest->getParent(), RealDest);
    BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
    CritEdgeBranch->setDebugLoc(BI->getDebugLoc());

    // Update PHI nodes.
    AddPredecessorToBlock(RealDest, EdgeBB, BB);

    // BB may have instructions that are being threaded over.  Clone these
    // instructions into EdgeBB.  We know that there will be no uses of the
    // cloned instructions outside of EdgeBB.
    BasicBlock::iterator InsertPt = EdgeBB->begin();
    DenseMap<Value *, Value *> TranslateMap; // Track translated values.
    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
        continue;
      }
      // Clone the instruction.
      Instruction *N = BBI->clone();
      if (BBI->hasName())
        N->setName(BBI->getName() + ".c");

      // Update operands due to translation.
      for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
        DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
        if (PI != TranslateMap.end())
          *i = PI->second;
      }

      // Check for trivial simplification.
      if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
        if (!BBI->use_empty())
          TranslateMap[&*BBI] = V;
        if (!N->mayHaveSideEffects()) {
          N->deleteValue(); // Instruction folded away, don't need actual inst
          N = nullptr;
        }
      } else {
        if (!BBI->use_empty())
          TranslateMap[&*BBI] = N;
      }
      // Insert the new instruction into its new home.
      if (N)
        EdgeBB->getInstList().insert(InsertPt, N);

      // Register the new instruction with the assumption cache if necessary.
      if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
        if (II->getIntrinsicID() == Intrinsic::assume)
          AC->registerAssumption(II);
    }

    // Loop over all of the edges from PredBB to BB, changing them to branch
    // to EdgeBB instead.
    Instruction *PredBBTI = PredBB->getTerminator();
    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
      if (PredBBTI->getSuccessor(i) == BB) {
        BB->removePredecessor(PredBB);
        PredBBTI->setSuccessor(i, EdgeBB);
      }

    // Recurse, simplifying any other constants.
    return FoldCondBranchOnPHI(BI, DL, AC) || true;
  }

  return false;
}

/// Given a BB that starts with the specified two-entry PHI node,
/// see if we can eliminate it.
static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
                                const DataLayout &DL) {
  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
  // statement", which has a very simple dominance structure.  Basically, we
  // are trying to find the condition that is being branched on, which
  // subsequently causes this merge to happen.  We really want control
  // dependence information for this check, but simplifycfg can't keep it up
  // to date, and this catches most of the cases we care about anyway.
  BasicBlock *BB = PN->getParent();
  const Function *Fn = BB->getParent();
  if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
    return false;

  BasicBlock *IfTrue, *IfFalse;
  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
  if (!IfCond ||
      // Don't bother if the branch will be constant folded trivially.
      isa<ConstantInt>(IfCond))
    return false;

  // Okay, we found that we can merge this two-entry phi node into a select.
  // Doing so would require us to fold *all* two entry phi nodes in this block.
  // At some point this becomes non-profitable (particularly if the target
  // doesn't support cmov's).  Only do this transformation if there are two or
  // fewer PHI nodes in this block.
  unsigned NumPhis = 0;
  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
    if (NumPhis > 2)
      return false;

  // Loop over the PHI's seeing if we can promote them all to select
  // instructions.  While we are at it, keep track of the instructions
  // that need to be moved to the dominating block.
  SmallPtrSet<Instruction *, 4> AggressiveInsts;
  int BudgetRemaining =
      TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;

  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
    PHINode *PN = cast<PHINode>(II++);
    if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
      PN->replaceAllUsesWith(V);
      PN->eraseFromParent();
      continue;
    }

    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
                             BudgetRemaining, TTI) ||
        !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
                             BudgetRemaining, TTI))
      return false;
  }

  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
  // we ran out of PHIs then we simplified them all.
  PN = dyn_cast<PHINode>(BB->begin());
  if (!PN)
    return true;

  // Return true if at least one of these is a 'not', and another is either
  // a 'not' too, or a constant.
  auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
    if (!match(V0, m_Not(m_Value())))
      std::swap(V0, V1);
    auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
    return match(V0, m_Not(m_Value())) && match(V1, Invertible);
  };

  // Don't fold i1 branches on PHIs which contain binary operators, unless one
  // of the incoming values is an 'not' and another one is freely invertible.
  // These can often be turned into switches and other things.
  if (PN->getType()->isIntegerTy(1) &&
      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
       isa<BinaryOperator>(IfCond)) &&
      !CanHoistNotFromBothValues(PN->getIncomingValue(0),
                                 PN->getIncomingValue(1)))
    return false;

  // If all PHI nodes are promotable, check to make sure that all instructions
  // in the predecessor blocks can be promoted as well. If not, we won't be able
  // to get rid of the control flow, so it's not worth promoting to select
  // instructions.
  BasicBlock *DomBlock = nullptr;
  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
    IfBlock1 = nullptr;
  } else {
    DomBlock = *pred_begin(IfBlock1);
    for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
      if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
        // This is not an aggressive instruction that we can promote.
        // Because of this, we won't be able to get rid of the control flow, so
        // the xform is not worth it.
        return false;
      }
  }

  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
    IfBlock2 = nullptr;
  } else {
    DomBlock = *pred_begin(IfBlock2);
    for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
      if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
        // This is not an aggressive instruction that we can promote.
        // Because of this, we won't be able to get rid of the control flow, so
        // the xform is not worth it.
        return false;
      }
  }
  assert(DomBlock && "Failed to find root DomBlock");

  LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
                    << "  T: " << IfTrue->getName()
                    << "  F: " << IfFalse->getName() << "\n");

  // If we can still promote the PHI nodes after this gauntlet of tests,
  // do all of the PHI's now.
  Instruction *InsertPt = DomBlock->getTerminator();
  IRBuilder<NoFolder> Builder(InsertPt);

  // Move all 'aggressive' instructions, which are defined in the
  // conditional parts of the if's up to the dominating block.
  if (IfBlock1)
    hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
  if (IfBlock2)
    hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);

  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
    // Change the PHI node into a select instruction.
    Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);

    Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
    PN->replaceAllUsesWith(Sel);
    Sel->takeName(PN);
    PN->eraseFromParent();
  }

  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
  // has been flattened.  Change DomBlock to jump directly to our new block to
  // avoid other simplifycfg's kicking in on the diamond.
  Instruction *OldTI = DomBlock->getTerminator();
  Builder.SetInsertPoint(OldTI);
  Builder.CreateBr(BB);
  OldTI->eraseFromParent();
  return true;
}

/// If we found a conditional branch that goes to two returning blocks,
/// try to merge them together into one return,
/// introducing a select if the return values disagree.
static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
                                           IRBuilder<> &Builder) {
  assert(BI->isConditional() && "Must be a conditional branch");
  BasicBlock *TrueSucc = BI->getSuccessor(0);
  BasicBlock *FalseSucc = BI->getSuccessor(1);
  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());

  // Check to ensure both blocks are empty (just a return) or optionally empty
  // with PHI nodes.  If there are other instructions, merging would cause extra
  // computation on one path or the other.
  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
    return false;
  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
    return false;

  Builder.SetInsertPoint(BI);
  // Okay, we found a branch that is going to two return nodes.  If
  // there is no return value for this function, just change the
  // branch into a return.
  if (FalseRet->getNumOperands() == 0) {
    TrueSucc->removePredecessor(BI->getParent());
    FalseSucc->removePredecessor(BI->getParent());
    Builder.CreateRetVoid();
    EraseTerminatorAndDCECond(BI);
    return true;
  }

  // Otherwise, figure out what the true and false return values are
  // so we can insert a new select instruction.
  Value *TrueValue = TrueRet->getReturnValue();
  Value *FalseValue = FalseRet->getReturnValue();

  // Unwrap any PHI nodes in the return blocks.
  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
    if (TVPN->getParent() == TrueSucc)
      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
    if (FVPN->getParent() == FalseSucc)
      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());

  // In order for this transformation to be safe, we must be able to
  // unconditionally execute both operands to the return.  This is
  // normally the case, but we could have a potentially-trapping
  // constant expression that prevents this transformation from being
  // safe.
  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
    if (TCV->canTrap())
      return false;
  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
    if (FCV->canTrap())
      return false;

  // Okay, we collected all the mapped values and checked them for sanity, and
  // defined to really do this transformation.  First, update the CFG.
  TrueSucc->removePredecessor(BI->getParent());
  FalseSucc->removePredecessor(BI->getParent());

  // Insert select instructions where needed.
  Value *BrCond = BI->getCondition();
  if (TrueValue) {
    // Insert a select if the results differ.
    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
    } else if (isa<UndefValue>(TrueValue)) {
      TrueValue = FalseValue;
    } else {
      TrueValue =
          Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
    }
  }

  Value *RI =
      !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);

  (void)RI;

  LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
                    << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
                    << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);

  EraseTerminatorAndDCECond(BI);

  return true;
}

/// Return true if the given instruction is available
/// in its predecessor block. If yes, the instruction will be removed.
static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
    return false;
  for (Instruction &I : *PB) {
    Instruction *PBI = &I;
    // Check whether Inst and PBI generate the same value.
    if (Inst->isIdenticalTo(PBI)) {
      Inst->replaceAllUsesWith(PBI);
      Inst->eraseFromParent();
      return true;
    }
  }
  return false;
}

/// Return true if either PBI or BI has branch weight available, and store
/// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
/// not have branch weight, use 1:1 as its weight.
static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
                                   uint64_t &PredTrueWeight,
                                   uint64_t &PredFalseWeight,
                                   uint64_t &SuccTrueWeight,
                                   uint64_t &SuccFalseWeight) {
  bool PredHasWeights =
      PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
  bool SuccHasWeights =
      BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
  if (PredHasWeights || SuccHasWeights) {
    if (!PredHasWeights)
      PredTrueWeight = PredFalseWeight = 1;
    if (!SuccHasWeights)
      SuccTrueWeight = SuccFalseWeight = 1;
    return true;
  } else {
    return false;
  }
}

/// If this basic block is simple enough, and if a predecessor branches to us
/// and one of our successors, fold the block into the predecessor and use
/// logical operations to pick the right destination.
bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
                                  unsigned BonusInstThreshold) {
  BasicBlock *BB = BI->getParent();

  const unsigned PredCount = pred_size(BB);

  Instruction *Cond = nullptr;
  if (BI->isConditional())
    Cond = dyn_cast<Instruction>(BI->getCondition());
  else {
    // For unconditional branch, check for a simple CFG pattern, where
    // BB has a single predecessor and BB's successor is also its predecessor's
    // successor. If such pattern exists, check for CSE between BB and its
    // predecessor.
    if (BasicBlock *PB = BB->getSinglePredecessor())
      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
        if (PBI->isConditional() &&
            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
          for (auto I = BB->instructionsWithoutDebug().begin(),
                    E = BB->instructionsWithoutDebug().end();
               I != E;) {
            Instruction *Curr = &*I++;
            if (isa<CmpInst>(Curr)) {
              Cond = Curr;
              break;
            }
            // Quit if we can't remove this instruction.
            if (!tryCSEWithPredecessor(Curr, PB))
              return false;
          }
        }

    if (!Cond)
      return false;
  }

  if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
      Cond->getParent() != BB || !Cond->hasOneUse())
    return false;

  // Make sure the instruction after the condition is the cond branch.
  BasicBlock::iterator CondIt = ++Cond->getIterator();

  // Ignore dbg intrinsics.
  while (isa<DbgInfoIntrinsic>(CondIt))
    ++CondIt;

  if (&*CondIt != BI)
    return false;

  // Only allow this transformation if computing the condition doesn't involve
  // too many instructions and these involved instructions can be executed
  // unconditionally. We denote all involved instructions except the condition
  // as "bonus instructions", and only allow this transformation when the
  // number of the bonus instructions we'll need to create when cloning into
  // each predecessor does not exceed a certain threshold.
  unsigned NumBonusInsts = 0;
  for (auto I = BB->begin(); Cond != &*I; ++I) {
    // Ignore dbg intrinsics.
    if (isa<DbgInfoIntrinsic>(I))
      continue;
    if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
      return false;
    // I has only one use and can be executed unconditionally.
    Instruction *User = dyn_cast<Instruction>(I->user_back());
    if (User == nullptr || User->getParent() != BB)
      return false;
    // I is used in the same BB. Since BI uses Cond and doesn't have more slots
    // to use any other instruction, User must be an instruction between next(I)
    // and Cond.

    // Account for the cost of duplicating this instruction into each
    // predecessor.
    NumBonusInsts += PredCount;
    // Early exits once we reach the limit.
    if (NumBonusInsts > BonusInstThreshold)
      return false;
  }

  // Cond is known to be a compare or binary operator.  Check to make sure that
  // neither operand is a potentially-trapping constant expression.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
    if (CE->canTrap())
      return false;
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
    if (CE->canTrap())
      return false;

  // Finally, don't infinitely unroll conditional loops.
  BasicBlock *TrueDest = BI->getSuccessor(0);
  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
  if (TrueDest == BB || FalseDest == BB)
    return false;

  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    BasicBlock *PredBlock = *PI;
    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());

    // Check that we have two conditional branches.  If there is a PHI node in
    // the common successor, verify that the same value flows in from both
    // blocks.
    SmallVector<PHINode *, 4> PHIs;
    if (!PBI || PBI->isUnconditional() ||
        (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
        (!BI->isConditional() &&
         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
      continue;

    // Determine if the two branches share a common destination.
    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
    bool InvertPredCond = false;

    if (BI->isConditional()) {
      if (PBI->getSuccessor(0) == TrueDest) {
        Opc = Instruction::Or;
      } else if (PBI->getSuccessor(1) == FalseDest) {
        Opc = Instruction::And;
      } else if (PBI->getSuccessor(0) == FalseDest) {
        Opc = Instruction::And;
        InvertPredCond = true;
      } else if (PBI->getSuccessor(1) == TrueDest) {
        Opc = Instruction::Or;
        InvertPredCond = true;
      } else {
        continue;
      }
    } else {
      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
        continue;
    }

    LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
    IRBuilder<> Builder(PBI);

    // If we need to invert the condition in the pred block to match, do so now.
    if (InvertPredCond) {
      Value *NewCond = PBI->getCondition();

      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
        CmpInst *CI = cast<CmpInst>(NewCond);
        CI->setPredicate(CI->getInversePredicate());
      } else {
        NewCond =
            Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
      }

      PBI->setCondition(NewCond);
      PBI->swapSuccessors();
    }

    // If we have bonus instructions, clone them into the predecessor block.
    // Note that there may be multiple predecessor blocks, so we cannot move
    // bonus instructions to a predecessor block.
    ValueToValueMapTy VMap; // maps original values to cloned values
    // We already make sure Cond is the last instruction before BI. Therefore,
    // all instructions before Cond other than DbgInfoIntrinsic are bonus
    // instructions.
    for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
      if (isa<DbgInfoIntrinsic>(BonusInst))
        continue;
      Instruction *NewBonusInst = BonusInst->clone();
      RemapInstruction(NewBonusInst, VMap,
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
      VMap[&*BonusInst] = NewBonusInst;

      // If we moved a load, we cannot any longer claim any knowledge about
      // its potential value. The previous information might have been valid
      // only given the branch precondition.
      // For an analogous reason, we must also drop all the metadata whose
      // semantics we don't understand.
      NewBonusInst->dropUnknownNonDebugMetadata();

      PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
      NewBonusInst->takeName(&*BonusInst);
      BonusInst->setName(BonusInst->getName() + ".old");
    }

    // Clone Cond into the predecessor basic block, and or/and the
    // two conditions together.
    Instruction *CondInPred = Cond->clone();
    RemapInstruction(CondInPred, VMap,
                     RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
    PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
    CondInPred->takeName(Cond);
    Cond->setName(CondInPred->getName() + ".old");

    if (BI->isConditional()) {
      Instruction *NewCond = cast<Instruction>(
          Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
      PBI->setCondition(NewCond);

      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
      bool HasWeights =
          extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
                                 SuccTrueWeight, SuccFalseWeight);
      SmallVector<uint64_t, 8> NewWeights;

      if (PBI->getSuccessor(0) == BB) {
        if (HasWeights) {
          // PBI: br i1 %x, BB, FalseDest
          // BI:  br i1 %y, TrueDest, FalseDest
          // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
          // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
          //               TrueWeight for PBI * FalseWeight for BI.
          // We assume that total weights of a BranchInst can fit into 32 bits.
          // Therefore, we will not have overflow using 64-bit arithmetic.
          NewWeights.push_back(PredFalseWeight *
                                   (SuccFalseWeight + SuccTrueWeight) +
                               PredTrueWeight * SuccFalseWeight);
        }
        AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
        PBI->setSuccessor(0, TrueDest);
      }
      if (PBI->getSuccessor(1) == BB) {
        if (HasWeights) {
          // PBI: br i1 %x, TrueDest, BB
          // BI:  br i1 %y, TrueDest, FalseDest
          // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
          //              FalseWeight for PBI * TrueWeight for BI.
          NewWeights.push_back(PredTrueWeight *
                                   (SuccFalseWeight + SuccTrueWeight) +
                               PredFalseWeight * SuccTrueWeight);
          // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
        }
        AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
        PBI->setSuccessor(1, FalseDest);
      }
      if (NewWeights.size() == 2) {
        // Halve the weights if any of them cannot fit in an uint32_t
        FitWeights(NewWeights);

        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
                                           NewWeights.end());
        setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
      } else
        PBI->setMetadata(LLVMContext::MD_prof, nullptr);
    } else {
      // Update PHI nodes in the common successors.
      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
        ConstantInt *PBI_C = cast<ConstantInt>(
            PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
        assert(PBI_C->getType()->isIntegerTy(1));
        Instruction *MergedCond = nullptr;
        if (PBI->getSuccessor(0) == TrueDest) {
          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
          //       is false: !PBI_Cond and BI_Value
          Instruction *NotCond = cast<Instruction>(
              Builder.CreateNot(PBI->getCondition(), "not.cond"));
          MergedCond = cast<Instruction>(
               Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
                                   "and.cond"));
          if (PBI_C->isOne())
            MergedCond = cast<Instruction>(Builder.CreateBinOp(
                Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
        } else {
          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
          //       is false: PBI_Cond and BI_Value
          MergedCond = cast<Instruction>(Builder.CreateBinOp(
              Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
          if (PBI_C->isOne()) {
            Instruction *NotCond = cast<Instruction>(
                Builder.CreateNot(PBI->getCondition(), "not.cond"));
            MergedCond = cast<Instruction>(Builder.CreateBinOp(
                Instruction::Or, NotCond, MergedCond, "or.cond"));
          }
        }
        // Update PHI Node.
	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
      }

      // PBI is changed to branch to TrueDest below. Remove itself from
      // potential phis from all other successors.
      if (MSSAU)
        MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);

      // Change PBI from Conditional to Unconditional.
      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
      EraseTerminatorAndDCECond(PBI, MSSAU);
      PBI = New_PBI;
    }

    // If BI was a loop latch, it may have had associated loop metadata.
    // We need to copy it to the new latch, that is, PBI.
    if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
      PBI->setMetadata(LLVMContext::MD_loop, LoopMD);

    // TODO: If BB is reachable from all paths through PredBlock, then we
    // could replace PBI's branch probabilities with BI's.

    // Copy any debug value intrinsics into the end of PredBlock.
    for (Instruction &I : *BB)
      if (isa<DbgInfoIntrinsic>(I))
        I.clone()->insertBefore(PBI);

    return true;
  }
  return false;
}

// If there is only one store in BB1 and BB2, return it, otherwise return
// nullptr.
static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
  StoreInst *S = nullptr;
  for (auto *BB : {BB1, BB2}) {
    if (!BB)
      continue;
    for (auto &I : *BB)
      if (auto *SI = dyn_cast<StoreInst>(&I)) {
        if (S)
          // Multiple stores seen.
          return nullptr;
        else
          S = SI;
      }
  }
  return S;
}

static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
                                              Value *AlternativeV = nullptr) {
  // PHI is going to be a PHI node that allows the value V that is defined in
  // BB to be referenced in BB's only successor.
  //
  // If AlternativeV is nullptr, the only value we care about in PHI is V. It
  // doesn't matter to us what the other operand is (it'll never get used). We
  // could just create a new PHI with an undef incoming value, but that could
  // increase register pressure if EarlyCSE/InstCombine can't fold it with some
  // other PHI. So here we directly look for some PHI in BB's successor with V
  // as an incoming operand. If we find one, we use it, else we create a new
  // one.
  //
  // If AlternativeV is not nullptr, we care about both incoming values in PHI.
  // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
  // where OtherBB is the single other predecessor of BB's only successor.
  PHINode *PHI = nullptr;
  BasicBlock *Succ = BB->getSingleSuccessor();

  for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
    if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
      PHI = cast<PHINode>(I);
      if (!AlternativeV)
        break;

      assert(Succ->hasNPredecessors(2));
      auto PredI = pred_begin(Succ);
      BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
      if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
        break;
      PHI = nullptr;
    }
  if (PHI)
    return PHI;

  // If V is not an instruction defined in BB, just return it.
  if (!AlternativeV &&
      (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
    return V;

  PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
  PHI->addIncoming(V, BB);
  for (BasicBlock *PredBB : predecessors(Succ))
    if (PredBB != BB)
      PHI->addIncoming(
          AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
  return PHI;
}

static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
                                           BasicBlock *QTB, BasicBlock *QFB,
                                           BasicBlock *PostBB, Value *Address,
                                           bool InvertPCond, bool InvertQCond,
                                           const DataLayout &DL,
                                           const TargetTransformInfo &TTI) {
  // For every pointer, there must be exactly two stores, one coming from
  // PTB or PFB, and the other from QTB or QFB. We don't support more than one
  // store (to any address) in PTB,PFB or QTB,QFB.
  // FIXME: We could relax this restriction with a bit more work and performance
  // testing.
  StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
  StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
  if (!PStore || !QStore)
    return false;

  // Now check the stores are compatible.
  if (!QStore->isUnordered() || !PStore->isUnordered())
    return false;

  // Check that sinking the store won't cause program behavior changes. Sinking
  // the store out of the Q blocks won't change any behavior as we're sinking
  // from a block to its unconditional successor. But we're moving a store from
  // the P blocks down through the middle block (QBI) and past both QFB and QTB.
  // So we need to check that there are no aliasing loads or stores in
  // QBI, QTB and QFB. We also need to check there are no conflicting memory
  // operations between PStore and the end of its parent block.
  //
  // The ideal way to do this is to query AliasAnalysis, but we don't
  // preserve AA currently so that is dangerous. Be super safe and just
  // check there are no other memory operations at all.
  for (auto &I : *QFB->getSinglePredecessor())
    if (I.mayReadOrWriteMemory())
      return false;
  for (auto &I : *QFB)
    if (&I != QStore && I.mayReadOrWriteMemory())
      return false;
  if (QTB)
    for (auto &I : *QTB)
      if (&I != QStore && I.mayReadOrWriteMemory())
        return false;
  for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
       I != E; ++I)
    if (&*I != PStore && I->mayReadOrWriteMemory())
      return false;

  // If we're not in aggressive mode, we only optimize if we have some
  // confidence that by optimizing we'll allow P and/or Q to be if-converted.
  auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
    if (!BB)
      return true;
    // Heuristic: if the block can be if-converted/phi-folded and the
    // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
    // thread this store.
    int BudgetRemaining =
        PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
    for (auto &I : BB->instructionsWithoutDebug()) {
      // Consider terminator instruction to be free.
      if (I.isTerminator())
        continue;
      // If this is one the stores that we want to speculate out of this BB,
      // then don't count it's cost, consider it to be free.
      if (auto *S = dyn_cast<StoreInst>(&I))
        if (llvm::find(FreeStores, S))
          continue;
      // Else, we have a white-list of instructions that we are ak speculating.
      if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
        return false; // Not in white-list - not worthwhile folding.
      // And finally, if this is a non-free instruction that we are okay
      // speculating, ensure that we consider the speculation budget.
      BudgetRemaining -= TTI.getUserCost(&I);
      if (BudgetRemaining < 0)
        return false; // Eagerly refuse to fold as soon as we're out of budget.
    }
    assert(BudgetRemaining >= 0 &&
           "When we run out of budget we will eagerly return from within the "
           "per-instruction loop.");
    return true;
  };

  const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore};
  if (!MergeCondStoresAggressively &&
      (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
       !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
    return false;

  // If PostBB has more than two predecessors, we need to split it so we can
  // sink the store.
  if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
    // We know that QFB's only successor is PostBB. And QFB has a single
    // predecessor. If QTB exists, then its only successor is also PostBB.
    // If QTB does not exist, then QFB's only predecessor has a conditional
    // branch to QFB and PostBB.
    BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
    BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
                                               "condstore.split");
    if (!NewBB)
      return false;
    PostBB = NewBB;
  }

  // OK, we're going to sink the stores to PostBB. The store has to be
  // conditional though, so first create the predicate.
  Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
                     ->getCondition();
  Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
                     ->getCondition();

  Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
                                                PStore->getParent());
  Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
                                                QStore->getParent(), PPHI);

  IRBuilder<> QB(&*PostBB->getFirstInsertionPt());

  Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
  Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);

  if (InvertPCond)
    PPred = QB.CreateNot(PPred);
  if (InvertQCond)
    QPred = QB.CreateNot(QPred);
  Value *CombinedPred = QB.CreateOr(PPred, QPred);

  auto *T =
      SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
  QB.SetInsertPoint(T);
  StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
  AAMDNodes AAMD;
  PStore->getAAMetadata(AAMD, /*Merge=*/false);
  PStore->getAAMetadata(AAMD, /*Merge=*/true);
  SI->setAAMetadata(AAMD);
  unsigned PAlignment = PStore->getAlignment();
  unsigned QAlignment = QStore->getAlignment();
  unsigned TypeAlignment =
      DL.getABITypeAlignment(SI->getValueOperand()->getType());
  unsigned MinAlignment;
  unsigned MaxAlignment;
  std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
  // Choose the minimum alignment. If we could prove both stores execute, we
  // could use biggest one.  In this case, though, we only know that one of the
  // stores executes.  And we don't know it's safe to take the alignment from a
  // store that doesn't execute.
  if (MinAlignment != 0) {
    // Choose the minimum of all non-zero alignments.
    SI->setAlignment(Align(MinAlignment));
  } else if (MaxAlignment != 0) {
    // Choose the minimal alignment between the non-zero alignment and the ABI
    // default alignment for the type of the stored value.
    SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment)));
  } else {
    // If both alignments are zero, use ABI default alignment for the type of
    // the stored value.
    SI->setAlignment(Align(TypeAlignment));
  }

  QStore->eraseFromParent();
  PStore->eraseFromParent();

  return true;
}

static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
                                   const DataLayout &DL,
                                   const TargetTransformInfo &TTI) {
  // The intention here is to find diamonds or triangles (see below) where each
  // conditional block contains a store to the same address. Both of these
  // stores are conditional, so they can't be unconditionally sunk. But it may
  // be profitable to speculatively sink the stores into one merged store at the
  // end, and predicate the merged store on the union of the two conditions of
  // PBI and QBI.
  //
  // This can reduce the number of stores executed if both of the conditions are
  // true, and can allow the blocks to become small enough to be if-converted.
  // This optimization will also chain, so that ladders of test-and-set
  // sequences can be if-converted away.
  //
  // We only deal with simple diamonds or triangles:
  //
  //     PBI       or      PBI        or a combination of the two
  //    /   \               | \
  //   PTB  PFB             |  PFB
  //    \   /               | /
  //     QBI                QBI
  //    /  \                | \
  //   QTB  QFB             |  QFB
  //    \  /                | /
  //    PostBB            PostBB
  //
  // We model triangles as a type of diamond with a nullptr "true" block.
  // Triangles are canonicalized so that the fallthrough edge is represented by
  // a true condition, as in the diagram above.
  BasicBlock *PTB = PBI->getSuccessor(0);
  BasicBlock *PFB = PBI->getSuccessor(1);
  BasicBlock *QTB = QBI->getSuccessor(0);
  BasicBlock *QFB = QBI->getSuccessor(1);
  BasicBlock *PostBB = QFB->getSingleSuccessor();

  // Make sure we have a good guess for PostBB. If QTB's only successor is
  // QFB, then QFB is a better PostBB.
  if (QTB->getSingleSuccessor() == QFB)
    PostBB = QFB;

  // If we couldn't find a good PostBB, stop.
  if (!PostBB)
    return false;

  bool InvertPCond = false, InvertQCond = false;
  // Canonicalize fallthroughs to the true branches.
  if (PFB == QBI->getParent()) {
    std::swap(PFB, PTB);
    InvertPCond = true;
  }
  if (QFB == PostBB) {
    std::swap(QFB, QTB);
    InvertQCond = true;
  }

  // From this point on we can assume PTB or QTB may be fallthroughs but PFB
  // and QFB may not. Model fallthroughs as a nullptr block.
  if (PTB == QBI->getParent())
    PTB = nullptr;
  if (QTB == PostBB)
    QTB = nullptr;

  // Legality bailouts. We must have at least the non-fallthrough blocks and
  // the post-dominating block, and the non-fallthroughs must only have one
  // predecessor.
  auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
    return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
  };
  if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
      !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
    return false;
  if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
      (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
    return false;
  if (!QBI->getParent()->hasNUses(2))
    return false;

  // OK, this is a sequence of two diamonds or triangles.
  // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
  SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
  for (auto *BB : {PTB, PFB}) {
    if (!BB)
      continue;
    for (auto &I : *BB)
      if (StoreInst *SI = dyn_cast<StoreInst>(&I))
        PStoreAddresses.insert(SI->getPointerOperand());
  }
  for (auto *BB : {QTB, QFB}) {
    if (!BB)
      continue;
    for (auto &I : *BB)
      if (StoreInst *SI = dyn_cast<StoreInst>(&I))
        QStoreAddresses.insert(SI->getPointerOperand());
  }

  set_intersect(PStoreAddresses, QStoreAddresses);
  // set_intersect mutates PStoreAddresses in place. Rename it here to make it
  // clear what it contains.
  auto &CommonAddresses = PStoreAddresses;

  bool Changed = false;
  for (auto *Address : CommonAddresses)
    Changed |= mergeConditionalStoreToAddress(
        PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
  return Changed;
}

/// If we have a conditional branch as a predecessor of another block,
/// this function tries to simplify it.  We know
/// that PBI and BI are both conditional branches, and BI is in one of the
/// successor blocks of PBI - PBI branches to BI.
static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
                                           const DataLayout &DL,
                                           const TargetTransformInfo &TTI) {
  assert(PBI->isConditional() && BI->isConditional());
  BasicBlock *BB = BI->getParent();

  // If this block ends with a branch instruction, and if there is a
  // predecessor that ends on a branch of the same condition, make
  // this conditional branch redundant.
  if (PBI->getCondition() == BI->getCondition() &&
      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
    // Okay, the outcome of this conditional branch is statically
    // knowable.  If this block had a single pred, handle specially.
    if (BB->getSinglePredecessor()) {
      // Turn this into a branch on constant.
      bool CondIsTrue = PBI->getSuccessor(0) == BB;
      BI->setCondition(
          ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
      return true; // Nuke the branch on constant.
    }

    // Otherwise, if there are multiple predecessors, insert a PHI that merges
    // in the constant and simplify the block result.  Subsequent passes of
    // simplifycfg will thread the block.
    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
      PHINode *NewPN = PHINode::Create(
          Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
          BI->getCondition()->getName() + ".pr", &BB->front());
      // Okay, we're going to insert the PHI node.  Since PBI is not the only
      // predecessor, compute the PHI'd conditional value for all of the preds.
      // Any predecessor where the condition is not computable we keep symbolic.
      for (pred_iterator PI = PB; PI != PE; ++PI) {
        BasicBlock *P = *PI;
        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
            PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
          bool CondIsTrue = PBI->getSuccessor(0) == BB;
          NewPN->addIncoming(
              ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
              P);
        } else {
          NewPN->addIncoming(BI->getCondition(), P);
        }
      }

      BI->setCondition(NewPN);
      return true;
    }
  }

  if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
    if (CE->canTrap())
      return false;

  // If both branches are conditional and both contain stores to the same
  // address, remove the stores from the conditionals and create a conditional
  // merged store at the end.
  if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
    return true;

  // If this is a conditional branch in an empty block, and if any
  // predecessors are a conditional branch to one of our destinations,
  // fold the conditions into logical ops and one cond br.

  // Ignore dbg intrinsics.
  if (&*BB->instructionsWithoutDebug().begin() != BI)
    return false;

  int PBIOp, BIOp;
  if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
    PBIOp = 0;
    BIOp = 0;
  } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
    PBIOp = 0;
    BIOp = 1;
  } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
    PBIOp = 1;
    BIOp = 0;
  } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
    PBIOp = 1;
    BIOp = 1;
  } else {
    return false;
  }

  // Check to make sure that the other destination of this branch
  // isn't BB itself.  If so, this is an infinite loop that will
  // keep getting unwound.
  if (PBI->getSuccessor(PBIOp) == BB)
    return false;

  // Do not perform this transformation if it would require
  // insertion of a large number of select instructions. For targets
  // without predication/cmovs, this is a big pessimization.

  // Also do not perform this transformation if any phi node in the common
  // destination block can trap when reached by BB or PBB (PR17073). In that
  // case, it would be unsafe to hoist the operation into a select instruction.

  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
  unsigned NumPhis = 0;
  for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
       ++II, ++NumPhis) {
    if (NumPhis > 2) // Disable this xform.
      return false;

    PHINode *PN = cast<PHINode>(II);
    Value *BIV = PN->getIncomingValueForBlock(BB);
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
      if (CE->canTrap())
        return false;

    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
    Value *PBIV = PN->getIncomingValue(PBBIdx);
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
      if (CE->canTrap())
        return false;
  }

  // Finally, if everything is ok, fold the branches to logical ops.
  BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);

  LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
                    << "AND: " << *BI->getParent());

  // If OtherDest *is* BB, then BB is a basic block with a single conditional
  // branch in it, where one edge (OtherDest) goes back to itself but the other
  // exits.  We don't *know* that the program avoids the infinite loop
  // (even though that seems likely).  If we do this xform naively, we'll end up
  // recursively unpeeling the loop.  Since we know that (after the xform is
  // done) that the block *is* infinite if reached, we just make it an obviously
  // infinite loop with no cond branch.
  if (OtherDest == BB) {
    // Insert it at the end of the function, because it's either code,
    // or it won't matter if it's hot. :)
    BasicBlock *InfLoopBlock =
        BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
    BranchInst::Create(InfLoopBlock, InfLoopBlock);
    OtherDest = InfLoopBlock;
  }

  LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());

  // BI may have other predecessors.  Because of this, we leave
  // it alone, but modify PBI.

  // Make sure we get to CommonDest on True&True directions.
  Value *PBICond = PBI->getCondition();
  IRBuilder<NoFolder> Builder(PBI);
  if (PBIOp)
    PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");

  Value *BICond = BI->getCondition();
  if (BIOp)
    BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");

  // Merge the conditions.
  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");

  // Modify PBI to branch on the new condition to the new dests.
  PBI->setCondition(Cond);
  PBI->setSuccessor(0, CommonDest);
  PBI->setSuccessor(1, OtherDest);

  // Update branch weight for PBI.
  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
  uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
  bool HasWeights =
      extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
                             SuccTrueWeight, SuccFalseWeight);
  if (HasWeights) {
    PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
    PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
    SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
    SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
    // The weight to CommonDest should be PredCommon * SuccTotal +
    //                                    PredOther * SuccCommon.
    // The weight to OtherDest should be PredOther * SuccOther.
    uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
                                  PredOther * SuccCommon,
                              PredOther * SuccOther};
    // Halve the weights if any of them cannot fit in an uint32_t
    FitWeights(NewWeights);

    setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
  }

  // OtherDest may have phi nodes.  If so, add an entry from PBI's
  // block that are identical to the entries for BI's block.
  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);

  // We know that the CommonDest already had an edge from PBI to
  // it.  If it has PHIs though, the PHIs may have different
  // entries for BB and PBI's BB.  If so, insert a select to make
  // them agree.
  for (PHINode &PN : CommonDest->phis()) {
    Value *BIV = PN.getIncomingValueForBlock(BB);
    unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
    Value *PBIV = PN.getIncomingValue(PBBIdx);
    if (BIV != PBIV) {
      // Insert a select in PBI to pick the right value.
      SelectInst *NV = cast<SelectInst>(
          Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
      PN.setIncomingValue(PBBIdx, NV);
      // Although the select has the same condition as PBI, the original branch
      // weights for PBI do not apply to the new select because the select's
      // 'logical' edges are incoming edges of the phi that is eliminated, not
      // the outgoing edges of PBI.
      if (HasWeights) {
        uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
        uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
        uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
        uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
        // The weight to PredCommonDest should be PredCommon * SuccTotal.
        // The weight to PredOtherDest should be PredOther * SuccCommon.
        uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
                                  PredOther * SuccCommon};

        FitWeights(NewWeights);

        setBranchWeights(NV, NewWeights[0], NewWeights[1]);
      }
    }
  }

  LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
  LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());

  // This basic block is probably dead.  We know it has at least
  // one fewer predecessor.
  return true;
}

// Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
// true or to FalseBB if Cond is false.
// Takes care of updating the successors and removing the old terminator.
// Also makes sure not to introduce new successors by assuming that edges to
// non-successor TrueBBs and FalseBBs aren't reachable.
static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
                                       uint32_t TrueWeight,
                                       uint32_t FalseWeight) {
  // Remove any superfluous successor edges from the CFG.
  // First, figure out which successors to preserve.
  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
  // successor.
  BasicBlock *KeepEdge1 = TrueBB;
  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;

  // Then remove the rest.
  for (BasicBlock *Succ : successors(OldTerm)) {
    // Make sure only to keep exactly one copy of each edge.
    if (Succ == KeepEdge1)
      KeepEdge1 = nullptr;
    else if (Succ == KeepEdge2)
      KeepEdge2 = nullptr;
    else
      Succ->removePredecessor(OldTerm->getParent(),
                              /*KeepOneInputPHIs=*/true);
  }

  IRBuilder<> Builder(OldTerm);
  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());

  // Insert an appropriate new terminator.
  if (!KeepEdge1 && !KeepEdge2) {
    if (TrueBB == FalseBB)
      // We were only looking for one successor, and it was present.
      // Create an unconditional branch to it.
      Builder.CreateBr(TrueBB);
    else {
      // We found both of the successors we were looking for.
      // Create a conditional branch sharing the condition of the select.
      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
      if (TrueWeight != FalseWeight)
        setBranchWeights(NewBI, TrueWeight, FalseWeight);
    }
  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
    // Neither of the selected blocks were successors, so this
    // terminator must be unreachable.
    new UnreachableInst(OldTerm->getContext(), OldTerm);
  } else {
    // One of the selected values was a successor, but the other wasn't.
    // Insert an unconditional branch to the one that was found;
    // the edge to the one that wasn't must be unreachable.
    if (!KeepEdge1)
      // Only TrueBB was found.
      Builder.CreateBr(TrueBB);
    else
      // Only FalseBB was found.
      Builder.CreateBr(FalseBB);
  }

  EraseTerminatorAndDCECond(OldTerm);
  return true;
}

// Replaces
//   (switch (select cond, X, Y)) on constant X, Y
// with a branch - conditional if X and Y lead to distinct BBs,
// unconditional otherwise.
static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
  // Check for constant integer values in the select.
  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
  if (!TrueVal || !FalseVal)
    return false;

  // Find the relevant condition and destinations.
  Value *Condition = Select->getCondition();
  BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
  BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();

  // Get weight for TrueBB and FalseBB.
  uint32_t TrueWeight = 0, FalseWeight = 0;
  SmallVector<uint64_t, 8> Weights;
  bool HasWeights = HasBranchWeights(SI);
  if (HasWeights) {
    GetBranchWeights(SI, Weights);
    if (Weights.size() == 1 + SI->getNumCases()) {
      TrueWeight =
          (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
      FalseWeight =
          (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
    }
  }

  // Perform the actual simplification.
  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
                                    FalseWeight);
}

// Replaces
//   (indirectbr (select cond, blockaddress(@fn, BlockA),
//                             blockaddress(@fn, BlockB)))
// with
//   (br cond, BlockA, BlockB).
static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
  // Check that both operands of the select are block addresses.
  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
  if (!TBA || !FBA)
    return false;

  // Extract the actual blocks.
  BasicBlock *TrueBB = TBA->getBasicBlock();
  BasicBlock *FalseBB = FBA->getBasicBlock();

  // Perform the actual simplification.
  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
                                    0);
}

/// This is called when we find an icmp instruction
/// (a seteq/setne with a constant) as the only instruction in a
/// block that ends with an uncond branch.  We are looking for a very specific
/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
/// this case, we merge the first two "or's of icmp" into a switch, but then the
/// default value goes to an uncond block with a seteq in it, we get something
/// like:
///
///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
/// DEFAULT:
///   %tmp = icmp eq i8 %A, 92
///   br label %end
/// end:
///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
///
/// We prefer to split the edge to 'end' so that there is a true/false entry to
/// the PHI, merging the third icmp into the switch.
bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
    ICmpInst *ICI, IRBuilder<> &Builder) {
  BasicBlock *BB = ICI->getParent();

  // If the block has any PHIs in it or the icmp has multiple uses, it is too
  // complex.
  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
    return false;

  Value *V = ICI->getOperand(0);
  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));

  // The pattern we're looking for is where our only predecessor is a switch on
  // 'V' and this block is the default case for the switch.  In this case we can
  // fold the compared value into the switch to simplify things.
  BasicBlock *Pred = BB->getSinglePredecessor();
  if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
    return false;

  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
  if (SI->getCondition() != V)
    return false;

  // If BB is reachable on a non-default case, then we simply know the value of
  // V in this block.  Substitute it and constant fold the icmp instruction
  // away.
  if (SI->getDefaultDest() != BB) {
    ConstantInt *VVal = SI->findCaseDest(BB);
    assert(VVal && "Should have a unique destination value");
    ICI->setOperand(0, VVal);

    if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
      ICI->replaceAllUsesWith(V);
      ICI->eraseFromParent();
    }
    // BB is now empty, so it is likely to simplify away.
    return requestResimplify();
  }

  // Ok, the block is reachable from the default dest.  If the constant we're
  // comparing exists in one of the other edges, then we can constant fold ICI
  // and zap it.
  if (SI->findCaseValue(Cst) != SI->case_default()) {
    Value *V;
    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
      V = ConstantInt::getFalse(BB->getContext());
    else
      V = ConstantInt::getTrue(BB->getContext());

    ICI->replaceAllUsesWith(V);
    ICI->eraseFromParent();
    // BB is now empty, so it is likely to simplify away.
    return requestResimplify();
  }

  // The use of the icmp has to be in the 'end' block, by the only PHI node in
  // the block.
  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
  PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
  if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
    return false;

  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
  // true in the PHI.
  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
  Constant *NewCst = ConstantInt::getFalse(BB->getContext());

  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    std::swap(DefaultCst, NewCst);

  // Replace ICI (which is used by the PHI for the default value) with true or
  // false depending on if it is EQ or NE.
  ICI->replaceAllUsesWith(DefaultCst);
  ICI->eraseFromParent();

  // Okay, the switch goes to this block on a default value.  Add an edge from
  // the switch to the merge point on the compared value.
  BasicBlock *NewBB =
      BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
  {
    SwitchInstProfUpdateWrapper SIW(*SI);
    auto W0 = SIW.getSuccessorWeight(0);
    SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
    if (W0) {
      NewW = ((uint64_t(*W0) + 1) >> 1);
      SIW.setSuccessorWeight(0, *NewW);
    }
    SIW.addCase(Cst, NewBB, NewW);
  }

  // NewBB branches to the phi block, add the uncond branch and the phi entry.
  Builder.SetInsertPoint(NewBB);
  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
  Builder.CreateBr(SuccBlock);
  PHIUse->addIncoming(NewCst, NewBB);
  return true;
}

/// The specified branch is a conditional branch.
/// Check to see if it is branching on an or/and chain of icmp instructions, and
/// fold it into a switch instruction if so.
static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
                                      const DataLayout &DL) {
  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
  if (!Cond)
    return false;

  // Change br (X == 0 | X == 1), T, F into a switch instruction.
  // If this is a bunch of seteq's or'd together, or if it's a bunch of
  // 'setne's and'ed together, collect them.

  // Try to gather values from a chain of and/or to be turned into a switch
  ConstantComparesGatherer ConstantCompare(Cond, DL);
  // Unpack the result
  SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
  Value *CompVal = ConstantCompare.CompValue;
  unsigned UsedICmps = ConstantCompare.UsedICmps;
  Value *ExtraCase = ConstantCompare.Extra;

  // If we didn't have a multiply compared value, fail.
  if (!CompVal)
    return false;

  // Avoid turning single icmps into a switch.
  if (UsedICmps <= 1)
    return false;

  bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);

  // There might be duplicate constants in the list, which the switch
  // instruction can't handle, remove them now.
  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());

  // If Extra was used, we require at least two switch values to do the
  // transformation.  A switch with one value is just a conditional branch.
  if (ExtraCase && Values.size() < 2)
    return false;

  // TODO: Preserve branch weight metadata, similarly to how
  // FoldValueComparisonIntoPredecessors preserves it.

  // Figure out which block is which destination.
  BasicBlock *DefaultBB = BI->getSuccessor(1);
  BasicBlock *EdgeBB = BI->getSuccessor(0);
  if (!TrueWhenEqual)
    std::swap(DefaultBB, EdgeBB);

  BasicBlock *BB = BI->getParent();

  // MSAN does not like undefs as branch condition which can be introduced
  // with "explicit branch".
  if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
    return false;

  LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
                    << " cases into SWITCH.  BB is:\n"
                    << *BB);

  // If there are any extra values that couldn't be folded into the switch
  // then we evaluate them with an explicit branch first. Split the block
  // right before the condbr to handle it.
  if (ExtraCase) {
    BasicBlock *NewBB =
        BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
    // Remove the uncond branch added to the old block.
    Instruction *OldTI = BB->getTerminator();
    Builder.SetInsertPoint(OldTI);

    if (TrueWhenEqual)
      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
    else
      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);

    OldTI->eraseFromParent();

    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
    // for the edge we just added.
    AddPredecessorToBlock(EdgeBB, BB, NewBB);

    LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
                      << "\nEXTRABB = " << *BB);
    BB = NewBB;
  }

  Builder.SetInsertPoint(BI);
  // Convert pointer to int before we switch.
  if (CompVal->getType()->isPointerTy()) {
    CompVal = Builder.CreatePtrToInt(
        CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
  }

  // Create the new switch instruction now.
  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());

  // Add all of the 'cases' to the switch instruction.
  for (unsigned i = 0, e = Values.size(); i != e; ++i)
    New->addCase(Values[i], EdgeBB);

  // We added edges from PI to the EdgeBB.  As such, if there were any
  // PHI nodes in EdgeBB, they need entries to be added corresponding to
  // the number of edges added.
  for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
    PHINode *PN = cast<PHINode>(BBI);
    Value *InVal = PN->getIncomingValueForBlock(BB);
    for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
      PN->addIncoming(InVal, BB);
  }

  // Erase the old branch instruction.
  EraseTerminatorAndDCECond(BI);

  LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
  return true;
}

bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
  if (isa<PHINode>(RI->getValue()))
    return SimplifyCommonResume(RI);
  else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
           RI->getValue() == RI->getParent()->getFirstNonPHI())
    // The resume must unwind the exception that caused control to branch here.
    return SimplifySingleResume(RI);

  return false;
}

// Simplify resume that is shared by several landing pads (phi of landing pad).
bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
  BasicBlock *BB = RI->getParent();

  // Check that there are no other instructions except for debug intrinsics
  // between the phi of landing pads (RI->getValue()) and resume instruction.
  BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
                       E = RI->getIterator();
  while (++I != E)
    if (!isa<DbgInfoIntrinsic>(I))
      return false;

  SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
  auto *PhiLPInst = cast<PHINode>(RI->getValue());

  // Check incoming blocks to see if any of them are trivial.
  for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
       Idx++) {
    auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
    auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);

    // If the block has other successors, we can not delete it because
    // it has other dependents.
    if (IncomingBB->getUniqueSuccessor() != BB)
      continue;

    auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
    // Not the landing pad that caused the control to branch here.
    if (IncomingValue != LandingPad)
      continue;

    bool isTrivial = true;

    I = IncomingBB->getFirstNonPHI()->getIterator();
    E = IncomingBB->getTerminator()->getIterator();
    while (++I != E)
      if (!isa<DbgInfoIntrinsic>(I)) {
        isTrivial = false;
        break;
      }

    if (isTrivial)
      TrivialUnwindBlocks.insert(IncomingBB);
  }

  // If no trivial unwind blocks, don't do any simplifications.
  if (TrivialUnwindBlocks.empty())
    return false;

  // Turn all invokes that unwind here into calls.
  for (auto *TrivialBB : TrivialUnwindBlocks) {
    // Blocks that will be simplified should be removed from the phi node.
    // Note there could be multiple edges to the resume block, and we need
    // to remove them all.
    while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
      BB->removePredecessor(TrivialBB, true);

    for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
         PI != PE;) {
      BasicBlock *Pred = *PI++;
      removeUnwindEdge(Pred);
    }

    // In each SimplifyCFG run, only the current processed block can be erased.
    // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
    // of erasing TrivialBB, we only remove the branch to the common resume
    // block so that we can later erase the resume block since it has no
    // predecessors.
    TrivialBB->getTerminator()->eraseFromParent();
    new UnreachableInst(RI->getContext(), TrivialBB);
  }

  // Delete the resume block if all its predecessors have been removed.
  if (pred_empty(BB))
    BB->eraseFromParent();

  return !TrivialUnwindBlocks.empty();
}

// Simplify resume that is only used by a single (non-phi) landing pad.
bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
  BasicBlock *BB = RI->getParent();
  auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
  assert(RI->getValue() == LPInst &&
         "Resume must unwind the exception that caused control to here");

  // Check that there are no other instructions except for debug intrinsics.
  BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
  while (++I != E)
    if (!isa<DbgInfoIntrinsic>(I))
      return false;

  // Turn all invokes that unwind here into calls and delete the basic block.
  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
    BasicBlock *Pred = *PI++;
    removeUnwindEdge(Pred);
  }

  // The landingpad is now unreachable.  Zap it.
  if (LoopHeaders)
    LoopHeaders->erase(BB);
  BB->eraseFromParent();
  return true;
}

static bool removeEmptyCleanup(CleanupReturnInst *RI) {
  // If this is a trivial cleanup pad that executes no instructions, it can be
  // eliminated.  If the cleanup pad continues to the caller, any predecessor
  // that is an EH pad will be updated to continue to the caller and any
  // predecessor that terminates with an invoke instruction will have its invoke
  // instruction converted to a call instruction.  If the cleanup pad being
  // simplified does not continue to the caller, each predecessor will be
  // updated to continue to the unwind destination of the cleanup pad being
  // simplified.
  BasicBlock *BB = RI->getParent();
  CleanupPadInst *CPInst = RI->getCleanupPad();
  if (CPInst->getParent() != BB)
    // This isn't an empty cleanup.
    return false;

  // We cannot kill the pad if it has multiple uses.  This typically arises
  // from unreachable basic blocks.
  if (!CPInst->hasOneUse())
    return false;

  // Check that there are no other instructions except for benign intrinsics.
  BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
  while (++I != E) {
    auto *II = dyn_cast<IntrinsicInst>(I);
    if (!II)
      return false;

    Intrinsic::ID IntrinsicID = II->getIntrinsicID();
    switch (IntrinsicID) {
    case Intrinsic::dbg_declare:
    case Intrinsic::dbg_value:
    case Intrinsic::dbg_label:
    case Intrinsic::lifetime_end:
      break;
    default:
      return false;
    }
  }

  // If the cleanup return we are simplifying unwinds to the caller, this will
  // set UnwindDest to nullptr.
  BasicBlock *UnwindDest = RI->getUnwindDest();
  Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;

  // We're about to remove BB from the control flow.  Before we do, sink any
  // PHINodes into the unwind destination.  Doing this before changing the
  // control flow avoids some potentially slow checks, since we can currently
  // be certain that UnwindDest and BB have no common predecessors (since they
  // are both EH pads).
  if (UnwindDest) {
    // First, go through the PHI nodes in UnwindDest and update any nodes that
    // reference the block we are removing
    for (BasicBlock::iterator I = UnwindDest->begin(),
                              IE = DestEHPad->getIterator();
         I != IE; ++I) {
      PHINode *DestPN = cast<PHINode>(I);

      int Idx = DestPN->getBasicBlockIndex(BB);
      // Since BB unwinds to UnwindDest, it has to be in the PHI node.
      assert(Idx != -1);
      // This PHI node has an incoming value that corresponds to a control
      // path through the cleanup pad we are removing.  If the incoming
      // value is in the cleanup pad, it must be a PHINode (because we
      // verified above that the block is otherwise empty).  Otherwise, the
      // value is either a constant or a value that dominates the cleanup
      // pad being removed.
      //
      // Because BB and UnwindDest are both EH pads, all of their
      // predecessors must unwind to these blocks, and since no instruction
      // can have multiple unwind destinations, there will be no overlap in
      // incoming blocks between SrcPN and DestPN.
      Value *SrcVal = DestPN->getIncomingValue(Idx);
      PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);

      // Remove the entry for the block we are deleting.
      DestPN->removeIncomingValue(Idx, false);

      if (SrcPN && SrcPN->getParent() == BB) {
        // If the incoming value was a PHI node in the cleanup pad we are
        // removing, we need to merge that PHI node's incoming values into
        // DestPN.
        for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
             SrcIdx != SrcE; ++SrcIdx) {
          DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
                              SrcPN->getIncomingBlock(SrcIdx));
        }
      } else {
        // Otherwise, the incoming value came from above BB and
        // so we can just reuse it.  We must associate all of BB's
        // predecessors with this value.
        for (auto *pred : predecessors(BB)) {
          DestPN->addIncoming(SrcVal, pred);
        }
      }
    }

    // Sink any remaining PHI nodes directly into UnwindDest.
    Instruction *InsertPt = DestEHPad;
    for (BasicBlock::iterator I = BB->begin(),
                              IE = BB->getFirstNonPHI()->getIterator();
         I != IE;) {
      // The iterator must be incremented here because the instructions are
      // being moved to another block.
      PHINode *PN = cast<PHINode>(I++);
      if (PN->use_empty())
        // If the PHI node has no uses, just leave it.  It will be erased
        // when we erase BB below.
        continue;

      // Otherwise, sink this PHI node into UnwindDest.
      // Any predecessors to UnwindDest which are not already represented
      // must be back edges which inherit the value from the path through
      // BB.  In this case, the PHI value must reference itself.
      for (auto *pred : predecessors(UnwindDest))
        if (pred != BB)
          PN->addIncoming(PN, pred);
      PN->moveBefore(InsertPt);
    }
  }

  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
    // The iterator must be updated here because we are removing this pred.
    BasicBlock *PredBB = *PI++;
    if (UnwindDest == nullptr) {
      removeUnwindEdge(PredBB);
    } else {
      Instruction *TI = PredBB->getTerminator();
      TI->replaceUsesOfWith(BB, UnwindDest);
    }
  }

  // The cleanup pad is now unreachable.  Zap it.
  BB->eraseFromParent();
  return true;
}

// Try to merge two cleanuppads together.
static bool mergeCleanupPad(CleanupReturnInst *RI) {
  // Skip any cleanuprets which unwind to caller, there is nothing to merge
  // with.
  BasicBlock *UnwindDest = RI->getUnwindDest();
  if (!UnwindDest)
    return false;

  // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
  // be safe to merge without code duplication.
  if (UnwindDest->getSinglePredecessor() != RI->getParent())
    return false;

  // Verify that our cleanuppad's unwind destination is another cleanuppad.
  auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
  if (!SuccessorCleanupPad)
    return false;

  CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
  // Replace any uses of the successor cleanupad with the predecessor pad
  // The only cleanuppad uses should be this cleanupret, it's cleanupret and
  // funclet bundle operands.
  SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
  // Remove the old cleanuppad.
  SuccessorCleanupPad->eraseFromParent();
  // Now, we simply replace the cleanupret with a branch to the unwind
  // destination.
  BranchInst::Create(UnwindDest, RI->getParent());
  RI->eraseFromParent();

  return true;
}

bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
  // It is possible to transiantly have an undef cleanuppad operand because we
  // have deleted some, but not all, dead blocks.
  // Eventually, this block will be deleted.
  if (isa<UndefValue>(RI->getOperand(0)))
    return false;

  if (mergeCleanupPad(RI))
    return true;

  if (removeEmptyCleanup(RI))
    return true;

  return false;
}

bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
  BasicBlock *BB = RI->getParent();
  if (!BB->getFirstNonPHIOrDbg()->isTerminator())
    return false;

  // Find predecessors that end with branches.
  SmallVector<BasicBlock *, 8> UncondBranchPreds;
  SmallVector<BranchInst *, 8> CondBranchPreds;
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    BasicBlock *P = *PI;
    Instruction *PTI = P->getTerminator();
    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
      if (BI->isUnconditional())
        UncondBranchPreds.push_back(P);
      else
        CondBranchPreds.push_back(BI);
    }
  }

  // If we found some, do the transformation!
  if (!UncondBranchPreds.empty() && DupRet) {
    while (!UncondBranchPreds.empty()) {
      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
      LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
                        << "INTO UNCOND BRANCH PRED: " << *Pred);
      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
    }

    // If we eliminated all predecessors of the block, delete the block now.
    if (pred_empty(BB)) {
      // We know there are no successors, so just nuke the block.
      if (LoopHeaders)
        LoopHeaders->erase(BB);
      BB->eraseFromParent();
    }

    return true;
  }

  // Check out all of the conditional branches going to this return
  // instruction.  If any of them just select between returns, change the
  // branch itself into a select/return pair.
  while (!CondBranchPreds.empty()) {
    BranchInst *BI = CondBranchPreds.pop_back_val();

    // Check to see if the non-BB successor is also a return block.
    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
        SimplifyCondBranchToTwoReturns(BI, Builder))
      return true;
  }
  return false;
}

bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
  BasicBlock *BB = UI->getParent();

  bool Changed = false;

  // If there are any instructions immediately before the unreachable that can
  // be removed, do so.
  while (UI->getIterator() != BB->begin()) {
    BasicBlock::iterator BBI = UI->getIterator();
    --BBI;
    // Do not delete instructions that can have side effects which might cause
    // the unreachable to not be reachable; specifically, calls and volatile
    // operations may have this effect.
    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
      break;

    if (BBI->mayHaveSideEffects()) {
      if (auto *SI = dyn_cast<StoreInst>(BBI)) {
        if (SI->isVolatile())
          break;
      } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
        if (LI->isVolatile())
          break;
      } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
        if (RMWI->isVolatile())
          break;
      } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
        if (CXI->isVolatile())
          break;
      } else if (isa<CatchPadInst>(BBI)) {
        // A catchpad may invoke exception object constructors and such, which
        // in some languages can be arbitrary code, so be conservative by
        // default.
        // For CoreCLR, it just involves a type test, so can be removed.
        if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
            EHPersonality::CoreCLR)
          break;
      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
                 !isa<LandingPadInst>(BBI)) {
        break;
      }
      // Note that deleting LandingPad's here is in fact okay, although it
      // involves a bit of subtle reasoning. If this inst is a LandingPad,
      // all the predecessors of this block will be the unwind edges of Invokes,
      // and we can therefore guarantee this block will be erased.
    }

    // Delete this instruction (any uses are guaranteed to be dead)
    if (!BBI->use_empty())
      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
    BBI->eraseFromParent();
    Changed = true;
  }

  // If the unreachable instruction is the first in the block, take a gander
  // at all of the predecessors of this instruction, and simplify them.
  if (&BB->front() != UI)
    return Changed;

  SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    Instruction *TI = Preds[i]->getTerminator();
    IRBuilder<> Builder(TI);
    if (auto *BI = dyn_cast<BranchInst>(TI)) {
      if (BI->isUnconditional()) {
        assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
        new UnreachableInst(TI->getContext(), TI);
        TI->eraseFromParent();
        Changed = true;
      } else {
        Value* Cond = BI->getCondition();
        if (BI->getSuccessor(0) == BB) {
          Builder.CreateAssumption(Builder.CreateNot(Cond));
          Builder.CreateBr(BI->getSuccessor(1));
        } else {
          assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
          Builder.CreateAssumption(Cond);
          Builder.CreateBr(BI->getSuccessor(0));
        }
        EraseTerminatorAndDCECond(BI);
        Changed = true;
      }
    } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
      SwitchInstProfUpdateWrapper SU(*SI);
      for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
        if (i->getCaseSuccessor() != BB) {
          ++i;
          continue;
        }
        BB->removePredecessor(SU->getParent());
        i = SU.removeCase(i);
        e = SU->case_end();
        Changed = true;
      }
    } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
      if (II->getUnwindDest() == BB) {
        removeUnwindEdge(TI->getParent());
        Changed = true;
      }
    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
      if (CSI->getUnwindDest() == BB) {
        removeUnwindEdge(TI->getParent());
        Changed = true;
        continue;
      }

      for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
                                             E = CSI->handler_end();
           I != E; ++I) {
        if (*I == BB) {
          CSI->removeHandler(I);
          --I;
          --E;
          Changed = true;
        }
      }
      if (CSI->getNumHandlers() == 0) {
        BasicBlock *CatchSwitchBB = CSI->getParent();
        if (CSI->hasUnwindDest()) {
          // Redirect preds to the unwind dest
          CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
        } else {
          // Rewrite all preds to unwind to caller (or from invoke to call).
          SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
          for (BasicBlock *EHPred : EHPreds)
            removeUnwindEdge(EHPred);
        }
        // The catchswitch is no longer reachable.
        new UnreachableInst(CSI->getContext(), CSI);
        CSI->eraseFromParent();
        Changed = true;
      }
    } else if (isa<CleanupReturnInst>(TI)) {
      new UnreachableInst(TI->getContext(), TI);
      TI->eraseFromParent();
      Changed = true;
    }
  }

  // If this block is now dead, remove it.
  if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
    // We know there are no successors, so just nuke the block.
    if (LoopHeaders)
      LoopHeaders->erase(BB);
    BB->eraseFromParent();
    return true;
  }

  return Changed;
}

static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
  assert(Cases.size() >= 1);

  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
  for (size_t I = 1, E = Cases.size(); I != E; ++I) {
    if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
      return false;
  }
  return true;
}

static void createUnreachableSwitchDefault(SwitchInst *Switch) {
  LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
  BasicBlock *NewDefaultBlock =
     SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
  Switch->setDefaultDest(&*NewDefaultBlock);
  SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
  auto *NewTerminator = NewDefaultBlock->getTerminator();
  new UnreachableInst(Switch->getContext(), NewTerminator);
  EraseTerminatorAndDCECond(NewTerminator);
}

/// Turn a switch with two reachable destinations into an integer range
/// comparison and branch.
static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
  assert(SI->getNumCases() > 1 && "Degenerate switch?");

  bool HasDefault =
      !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());

  // Partition the cases into two sets with different destinations.
  BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
  BasicBlock *DestB = nullptr;
  SmallVector<ConstantInt *, 16> CasesA;
  SmallVector<ConstantInt *, 16> CasesB;

  for (auto Case : SI->cases()) {
    BasicBlock *Dest = Case.getCaseSuccessor();
    if (!DestA)
      DestA = Dest;
    if (Dest == DestA) {
      CasesA.push_back(Case.getCaseValue());
      continue;
    }
    if (!DestB)
      DestB = Dest;
    if (Dest == DestB) {
      CasesB.push_back(Case.getCaseValue());
      continue;
    }
    return false; // More than two destinations.
  }

  assert(DestA && DestB &&
         "Single-destination switch should have been folded.");
  assert(DestA != DestB);
  assert(DestB != SI->getDefaultDest());
  assert(!CasesB.empty() && "There must be non-default cases.");
  assert(!CasesA.empty() || HasDefault);

  // Figure out if one of the sets of cases form a contiguous range.
  SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
  BasicBlock *ContiguousDest = nullptr;
  BasicBlock *OtherDest = nullptr;
  if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
    ContiguousCases = &CasesA;
    ContiguousDest = DestA;
    OtherDest = DestB;
  } else if (CasesAreContiguous(CasesB)) {
    ContiguousCases = &CasesB;
    ContiguousDest = DestB;
    OtherDest = DestA;
  } else
    return false;

  // Start building the compare and branch.

  Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
  Constant *NumCases =
      ConstantInt::get(Offset->getType(), ContiguousCases->size());

  Value *Sub = SI->getCondition();
  if (!Offset->isNullValue())
    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");

  Value *Cmp;
  // If NumCases overflowed, then all possible values jump to the successor.
  if (NumCases->isNullValue() && !ContiguousCases->empty())
    Cmp = ConstantInt::getTrue(SI->getContext());
  else
    Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
  BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);

  // Update weight for the newly-created conditional branch.
  if (HasBranchWeights(SI)) {
    SmallVector<uint64_t, 8> Weights;
    GetBranchWeights(SI, Weights);
    if (Weights.size() == 1 + SI->getNumCases()) {
      uint64_t TrueWeight = 0;
      uint64_t FalseWeight = 0;
      for (size_t I = 0, E = Weights.size(); I != E; ++I) {
        if (SI->getSuccessor(I) == ContiguousDest)
          TrueWeight += Weights[I];
        else
          FalseWeight += Weights[I];
      }
      while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
        TrueWeight /= 2;
        FalseWeight /= 2;
      }
      setBranchWeights(NewBI, TrueWeight, FalseWeight);
    }
  }

  // Prune obsolete incoming values off the successors' PHI nodes.
  for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
    unsigned PreviousEdges = ContiguousCases->size();
    if (ContiguousDest == SI->getDefaultDest())
      ++PreviousEdges;
    for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
  }
  for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
    unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
    if (OtherDest == SI->getDefaultDest())
      ++PreviousEdges;
    for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
  }

  // Clean up the default block - it may have phis or other instructions before
  // the unreachable terminator.
  if (!HasDefault)
    createUnreachableSwitchDefault(SI);

  // Drop the switch.
  SI->eraseFromParent();

  return true;
}

/// Compute masked bits for the condition of a switch
/// and use it to remove dead cases.
static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
                                     const DataLayout &DL) {
  Value *Cond = SI->getCondition();
  unsigned Bits = Cond->getType()->getIntegerBitWidth();
  KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);

  // We can also eliminate cases by determining that their values are outside of
  // the limited range of the condition based on how many significant (non-sign)
  // bits are in the condition value.
  unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
  unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;

  // Gather dead cases.
  SmallVector<ConstantInt *, 8> DeadCases;
  for (auto &Case : SI->cases()) {
    const APInt &CaseVal = Case.getCaseValue()->getValue();
    if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
        (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
      DeadCases.push_back(Case.getCaseValue());
      LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
                        << " is dead.\n");
    }
  }

  // If we can prove that the cases must cover all possible values, the
  // default destination becomes dead and we can remove it.  If we know some
  // of the bits in the value, we can use that to more precisely compute the
  // number of possible unique case values.
  bool HasDefault =
      !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
  const unsigned NumUnknownBits =
      Bits - (Known.Zero | Known.One).countPopulation();
  assert(NumUnknownBits <= Bits);
  if (HasDefault && DeadCases.empty() &&
      NumUnknownBits < 64 /* avoid overflow */ &&
      SI->getNumCases() == (1ULL << NumUnknownBits)) {
    createUnreachableSwitchDefault(SI);
    return true;
  }

  if (DeadCases.empty())
    return false;

  SwitchInstProfUpdateWrapper SIW(*SI);
  for (ConstantInt *DeadCase : DeadCases) {
    SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
    assert(CaseI != SI->case_default() &&
           "Case was not found. Probably mistake in DeadCases forming.");
    // Prune unused values from PHI nodes.
    CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
    SIW.removeCase(CaseI);
  }

  return true;
}

/// If BB would be eligible for simplification by
/// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
/// by an unconditional branch), look at the phi node for BB in the successor
/// block and see if the incoming value is equal to CaseValue. If so, return
/// the phi node, and set PhiIndex to BB's index in the phi node.
static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
                                              BasicBlock *BB, int *PhiIndex) {
  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
    return nullptr; // BB must be empty to be a candidate for simplification.
  if (!BB->getSinglePredecessor())
    return nullptr; // BB must be dominated by the switch.

  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
  if (!Branch || !Branch->isUnconditional())
    return nullptr; // Terminator must be unconditional branch.

  BasicBlock *Succ = Branch->getSuccessor(0);

  for (PHINode &PHI : Succ->phis()) {
    int Idx = PHI.getBasicBlockIndex(BB);
    assert(Idx >= 0 && "PHI has no entry for predecessor?");

    Value *InValue = PHI.getIncomingValue(Idx);
    if (InValue != CaseValue)
      continue;

    *PhiIndex = Idx;
    return &PHI;
  }

  return nullptr;
}

/// Try to forward the condition of a switch instruction to a phi node
/// dominated by the switch, if that would mean that some of the destination
/// blocks of the switch can be folded away. Return true if a change is made.
static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
  using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;

  ForwardingNodesMap ForwardingNodes;
  BasicBlock *SwitchBlock = SI->getParent();
  bool Changed = false;
  for (auto &Case : SI->cases()) {
    ConstantInt *CaseValue = Case.getCaseValue();
    BasicBlock *CaseDest = Case.getCaseSuccessor();

    // Replace phi operands in successor blocks that are using the constant case
    // value rather than the switch condition variable:
    //   switchbb:
    //   switch i32 %x, label %default [
    //     i32 17, label %succ
    //   ...
    //   succ:
    //     %r = phi i32 ... [ 17, %switchbb ] ...
    // -->
    //     %r = phi i32 ... [ %x, %switchbb ] ...

    for (PHINode &Phi : CaseDest->phis()) {
      // This only works if there is exactly 1 incoming edge from the switch to
      // a phi. If there is >1, that means multiple cases of the switch map to 1
      // value in the phi, and that phi value is not the switch condition. Thus,
      // this transform would not make sense (the phi would be invalid because
      // a phi can't have different incoming values from the same block).
      int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
      if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
          count(Phi.blocks(), SwitchBlock) == 1) {
        Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
        Changed = true;
      }
    }

    // Collect phi nodes that are indirectly using this switch's case constants.
    int PhiIdx;
    if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
      ForwardingNodes[Phi].push_back(PhiIdx);
  }

  for (auto &ForwardingNode : ForwardingNodes) {
    PHINode *Phi = ForwardingNode.first;
    SmallVectorImpl<int> &Indexes = ForwardingNode.second;
    if (Indexes.size() < 2)
      continue;

    for (int Index : Indexes)
      Phi->setIncomingValue(Index, SI->getCondition());
    Changed = true;
  }

  return Changed;
}

/// Return true if the backend will be able to handle
/// initializing an array of constants like C.
static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
  if (C->isThreadDependent())
    return false;
  if (C->isDLLImportDependent())
    return false;

  if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
      !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
      !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
    return false;

  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    if (!CE->isGEPWithNoNotionalOverIndexing())
      return false;
    if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
      return false;
  }

  if (!TTI.shouldBuildLookupTablesForConstant(C))
    return false;

  return true;
}

/// If V is a Constant, return it. Otherwise, try to look up
/// its constant value in ConstantPool, returning 0 if it's not there.
static Constant *
LookupConstant(Value *V,
               const SmallDenseMap<Value *, Constant *> &ConstantPool) {
  if (Constant *C = dyn_cast<Constant>(V))
    return C;
  return ConstantPool.lookup(V);
}

/// Try to fold instruction I into a constant. This works for
/// simple instructions such as binary operations where both operands are
/// constant or can be replaced by constants from the ConstantPool. Returns the
/// resulting constant on success, 0 otherwise.
static Constant *
ConstantFold(Instruction *I, const DataLayout &DL,
             const SmallDenseMap<Value *, Constant *> &ConstantPool) {
  if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
    Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
    if (!A)
      return nullptr;
    if (A->isAllOnesValue())
      return LookupConstant(Select->getTrueValue(), ConstantPool);
    if (A->isNullValue())
      return LookupConstant(Select->getFalseValue(), ConstantPool);
    return nullptr;
  }

  SmallVector<Constant *, 4> COps;
  for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
    if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
      COps.push_back(A);
    else
      return nullptr;
  }

  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
    return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
                                           COps[1], DL);
  }

  return ConstantFoldInstOperands(I, COps, DL);
}

/// Try to determine the resulting constant values in phi nodes
/// at the common destination basic block, *CommonDest, for one of the case
/// destionations CaseDest corresponding to value CaseVal (0 for the default
/// case), of a switch instruction SI.
static bool
GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
               BasicBlock **CommonDest,
               SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
               const DataLayout &DL, const TargetTransformInfo &TTI) {
  // The block from which we enter the common destination.
  BasicBlock *Pred = SI->getParent();

  // If CaseDest is empty except for some side-effect free instructions through
  // which we can constant-propagate the CaseVal, continue to its successor.
  SmallDenseMap<Value *, Constant *> ConstantPool;
  ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
  for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
    if (I.isTerminator()) {
      // If the terminator is a simple branch, continue to the next block.
      if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
        return false;
      Pred = CaseDest;
      CaseDest = I.getSuccessor(0);
    } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
      // Instruction is side-effect free and constant.

      // If the instruction has uses outside this block or a phi node slot for
      // the block, it is not safe to bypass the instruction since it would then
      // no longer dominate all its uses.
      for (auto &Use : I.uses()) {
        User *User = Use.getUser();
        if (Instruction *I = dyn_cast<Instruction>(User))
          if (I->getParent() == CaseDest)
            continue;
        if (PHINode *Phi = dyn_cast<PHINode>(User))
          if (Phi->getIncomingBlock(Use) == CaseDest)
            continue;
        return false;
      }

      ConstantPool.insert(std::make_pair(&I, C));
    } else {
      break;
    }
  }

  // If we did not have a CommonDest before, use the current one.
  if (!*CommonDest)
    *CommonDest = CaseDest;
  // If the destination isn't the common one, abort.
  if (CaseDest != *CommonDest)
    return false;

  // Get the values for this case from phi nodes in the destination block.
  for (PHINode &PHI : (*CommonDest)->phis()) {
    int Idx = PHI.getBasicBlockIndex(Pred);
    if (Idx == -1)
      continue;

    Constant *ConstVal =
        LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
    if (!ConstVal)
      return false;

    // Be conservative about which kinds of constants we support.
    if (!ValidLookupTableConstant(ConstVal, TTI))
      return false;

    Res.push_back(std::make_pair(&PHI, ConstVal));
  }

  return Res.size() > 0;
}

// Helper function used to add CaseVal to the list of cases that generate
// Result. Returns the updated number of cases that generate this result.
static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
                                 SwitchCaseResultVectorTy &UniqueResults,
                                 Constant *Result) {
  for (auto &I : UniqueResults) {
    if (I.first == Result) {
      I.second.push_back(CaseVal);
      return I.second.size();
    }
  }
  UniqueResults.push_back(
      std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
  return 1;
}

// Helper function that initializes a map containing
// results for the PHI node of the common destination block for a switch
// instruction. Returns false if multiple PHI nodes have been found or if
// there is not a common destination block for the switch.
static bool
InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
                      SwitchCaseResultVectorTy &UniqueResults,
                      Constant *&DefaultResult, const DataLayout &DL,
                      const TargetTransformInfo &TTI,
                      uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
  for (auto &I : SI->cases()) {
    ConstantInt *CaseVal = I.getCaseValue();

    // Resulting value at phi nodes for this case value.
    SwitchCaseResultsTy Results;
    if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
                        DL, TTI))
      return false;

    // Only one value per case is permitted.
    if (Results.size() > 1)
      return false;

    // Add the case->result mapping to UniqueResults.
    const uintptr_t NumCasesForResult =
        MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);

    // Early out if there are too many cases for this result.
    if (NumCasesForResult > MaxCasesPerResult)
      return false;

    // Early out if there are too many unique results.
    if (UniqueResults.size() > MaxUniqueResults)
      return false;

    // Check the PHI consistency.
    if (!PHI)
      PHI = Results[0].first;
    else if (PHI != Results[0].first)
      return false;
  }
  // Find the default result value.
  SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
  BasicBlock *DefaultDest = SI->getDefaultDest();
  GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
                 DL, TTI);
  // If the default value is not found abort unless the default destination
  // is unreachable.
  DefaultResult =
      DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
  if ((!DefaultResult &&
       !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
    return false;

  return true;
}

// Helper function that checks if it is possible to transform a switch with only
// two cases (or two cases + default) that produces a result into a select.
// Example:
// switch (a) {
//   case 10:                %0 = icmp eq i32 %a, 10
//     return 10;            %1 = select i1 %0, i32 10, i32 4
//   case 20:        ---->   %2 = icmp eq i32 %a, 20
//     return 2;             %3 = select i1 %2, i32 2, i32 %1
//   default:
//     return 4;
// }
static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
                                   Constant *DefaultResult, Value *Condition,
                                   IRBuilder<> &Builder) {
  assert(ResultVector.size() == 2 &&
         "We should have exactly two unique results at this point");
  // If we are selecting between only two cases transform into a simple
  // select or a two-way select if default is possible.
  if (ResultVector[0].second.size() == 1 &&
      ResultVector[1].second.size() == 1) {
    ConstantInt *const FirstCase = ResultVector[0].second[0];
    ConstantInt *const SecondCase = ResultVector[1].second[0];

    bool DefaultCanTrigger = DefaultResult;
    Value *SelectValue = ResultVector[1].first;
    if (DefaultCanTrigger) {
      Value *const ValueCompare =
          Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
      SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
                                         DefaultResult, "switch.select");
    }
    Value *const ValueCompare =
        Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
    return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
                                SelectValue, "switch.select");
  }

  return nullptr;
}

// Helper function to cleanup a switch instruction that has been converted into
// a select, fixing up PHI nodes and basic blocks.
static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
                                              Value *SelectValue,
                                              IRBuilder<> &Builder) {
  BasicBlock *SelectBB = SI->getParent();
  while (PHI->getBasicBlockIndex(SelectBB) >= 0)
    PHI->removeIncomingValue(SelectBB);
  PHI->addIncoming(SelectValue, SelectBB);

  Builder.CreateBr(PHI->getParent());

  // Remove the switch.
  for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
    BasicBlock *Succ = SI->getSuccessor(i);

    if (Succ == PHI->getParent())
      continue;
    Succ->removePredecessor(SelectBB);
  }
  SI->eraseFromParent();
}

/// If the switch is only used to initialize one or more
/// phi nodes in a common successor block with only two different
/// constant values, replace the switch with select.
static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
                           const DataLayout &DL,
                           const TargetTransformInfo &TTI) {
  Value *const Cond = SI->getCondition();
  PHINode *PHI = nullptr;
  BasicBlock *CommonDest = nullptr;
  Constant *DefaultResult;
  SwitchCaseResultVectorTy UniqueResults;
  // Collect all the cases that will deliver the same value from the switch.
  if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
                             DL, TTI, 2, 1))
    return false;
  // Selects choose between maximum two values.
  if (UniqueResults.size() != 2)
    return false;
  assert(PHI != nullptr && "PHI for value select not found");

  Builder.SetInsertPoint(SI);
  Value *SelectValue =
      ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
  if (SelectValue) {
    RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
    return true;
  }
  // The switch couldn't be converted into a select.
  return false;
}

namespace {

/// This class represents a lookup table that can be used to replace a switch.
class SwitchLookupTable {
public:
  /// Create a lookup table to use as a switch replacement with the contents
  /// of Values, using DefaultValue to fill any holes in the table.
  SwitchLookupTable(
      Module &M, uint64_t TableSize, ConstantInt *Offset,
      const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
      Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);

  /// Build instructions with Builder to retrieve the value at
  /// the position given by Index in the lookup table.
  Value *BuildLookup(Value *Index, IRBuilder<> &Builder);

  /// Return true if a table with TableSize elements of
  /// type ElementType would fit in a target-legal register.
  static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
                                 Type *ElementType);

private:
  // Depending on the contents of the table, it can be represented in
  // different ways.
  enum {
    // For tables where each element contains the same value, we just have to
    // store that single value and return it for each lookup.
    SingleValueKind,

    // For tables where there is a linear relationship between table index
    // and values. We calculate the result with a simple multiplication
    // and addition instead of a table lookup.
    LinearMapKind,

    // For small tables with integer elements, we can pack them into a bitmap
    // that fits into a target-legal register. Values are retrieved by
    // shift and mask operations.
    BitMapKind,

    // The table is stored as an array of values. Values are retrieved by load
    // instructions from the table.
    ArrayKind
  } Kind;

  // For SingleValueKind, this is the single value.
  Constant *SingleValue = nullptr;

  // For BitMapKind, this is the bitmap.
  ConstantInt *BitMap = nullptr;
  IntegerType *BitMapElementTy = nullptr;

  // For LinearMapKind, these are the constants used to derive the value.
  ConstantInt *LinearOffset = nullptr;
  ConstantInt *LinearMultiplier = nullptr;

  // For ArrayKind, this is the array.
  GlobalVariable *Array = nullptr;
};

} // end anonymous namespace

SwitchLookupTable::SwitchLookupTable(
    Module &M, uint64_t TableSize, ConstantInt *Offset,
    const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
    Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
  assert(Values.size() && "Can't build lookup table without values!");
  assert(TableSize >= Values.size() && "Can't fit values in table!");

  // If all values in the table are equal, this is that value.
  SingleValue = Values.begin()->second;

  Type *ValueType = Values.begin()->second->getType();

  // Build up the table contents.
  SmallVector<Constant *, 64> TableContents(TableSize);
  for (size_t I = 0, E = Values.size(); I != E; ++I) {
    ConstantInt *CaseVal = Values[I].first;
    Constant *CaseRes = Values[I].second;
    assert(CaseRes->getType() == ValueType);

    uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
    TableContents[Idx] = CaseRes;

    if (CaseRes != SingleValue)
      SingleValue = nullptr;
  }

  // Fill in any holes in the table with the default result.
  if (Values.size() < TableSize) {
    assert(DefaultValue &&
           "Need a default value to fill the lookup table holes.");
    assert(DefaultValue->getType() == ValueType);
    for (uint64_t I = 0; I < TableSize; ++I) {
      if (!TableContents[I])
        TableContents[I] = DefaultValue;
    }

    if (DefaultValue != SingleValue)
      SingleValue = nullptr;
  }

  // If each element in the table contains the same value, we only need to store
  // that single value.
  if (SingleValue) {
    Kind = SingleValueKind;
    return;
  }

  // Check if we can derive the value with a linear transformation from the
  // table index.
  if (isa<IntegerType>(ValueType)) {
    bool LinearMappingPossible = true;
    APInt PrevVal;
    APInt DistToPrev;
    assert(TableSize >= 2 && "Should be a SingleValue table.");
    // Check if there is the same distance between two consecutive values.
    for (uint64_t I = 0; I < TableSize; ++I) {
      ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
      if (!ConstVal) {
        // This is an undef. We could deal with it, but undefs in lookup tables
        // are very seldom. It's probably not worth the additional complexity.
        LinearMappingPossible = false;
        break;
      }
      const APInt &Val = ConstVal->getValue();
      if (I != 0) {
        APInt Dist = Val - PrevVal;
        if (I == 1) {
          DistToPrev = Dist;
        } else if (Dist != DistToPrev) {
          LinearMappingPossible = false;
          break;
        }
      }
      PrevVal = Val;
    }
    if (LinearMappingPossible) {
      LinearOffset = cast<ConstantInt>(TableContents[0]);
      LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
      Kind = LinearMapKind;
      ++NumLinearMaps;
      return;
    }
  }

  // If the type is integer and the table fits in a register, build a bitmap.
  if (WouldFitInRegister(DL, TableSize, ValueType)) {
    IntegerType *IT = cast<IntegerType>(ValueType);
    APInt TableInt(TableSize * IT->getBitWidth(), 0);
    for (uint64_t I = TableSize; I > 0; --I) {
      TableInt <<= IT->getBitWidth();
      // Insert values into the bitmap. Undef values are set to zero.
      if (!isa<UndefValue>(TableContents[I - 1])) {
        ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
        TableInt |= Val->getValue().zext(TableInt.getBitWidth());
      }
    }
    BitMap = ConstantInt::get(M.getContext(), TableInt);
    BitMapElementTy = IT;
    Kind = BitMapKind;
    ++NumBitMaps;
    return;
  }

  // Store the table in an array.
  ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);

  Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
                             GlobalVariable::PrivateLinkage, Initializer,
                             "switch.table." + FuncName);
  Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
  // Set the alignment to that of an array items. We will be only loading one
  // value out of it.
  Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
  Kind = ArrayKind;
}

Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
  switch (Kind) {
  case SingleValueKind:
    return SingleValue;
  case LinearMapKind: {
    // Derive the result value from the input value.
    Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
                                          false, "switch.idx.cast");
    if (!LinearMultiplier->isOne())
      Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
    if (!LinearOffset->isZero())
      Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
    return Result;
  }
  case BitMapKind: {
    // Type of the bitmap (e.g. i59).
    IntegerType *MapTy = BitMap->getType();

    // Cast Index to the same type as the bitmap.
    // Note: The Index is <= the number of elements in the table, so
    // truncating it to the width of the bitmask is safe.
    Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");

    // Multiply the shift amount by the element width.
    ShiftAmt = Builder.CreateMul(
        ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
        "switch.shiftamt");

    // Shift down.
    Value *DownShifted =
        Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
    // Mask off.
    return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
  }
  case ArrayKind: {
    // Make sure the table index will not overflow when treated as signed.
    IntegerType *IT = cast<IntegerType>(Index->getType());
    uint64_t TableSize =
        Array->getInitializer()->getType()->getArrayNumElements();
    if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
      Index = Builder.CreateZExt(
          Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
          "switch.tableidx.zext");

    Value *GEPIndices[] = {Builder.getInt32(0), Index};
    Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
                                           GEPIndices, "switch.gep");
    return Builder.CreateLoad(
        cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
        "switch.load");
  }
  }
  llvm_unreachable("Unknown lookup table kind!");
}

bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
                                           uint64_t TableSize,
                                           Type *ElementType) {
  auto *IT = dyn_cast<IntegerType>(ElementType);
  if (!IT)
    return false;
  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
  // are <= 15, we could try to narrow the type.

  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
  if (TableSize >= UINT_MAX / IT->getBitWidth())
    return false;
  return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
}

/// Determine whether a lookup table should be built for this switch, based on
/// the number of cases, size of the table, and the types of the results.
static bool
ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
                       const TargetTransformInfo &TTI, const DataLayout &DL,
                       const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
    return false; // TableSize overflowed, or mul below might overflow.

  bool AllTablesFitInRegister = true;
  bool HasIllegalType = false;
  for (const auto &I : ResultTypes) {
    Type *Ty = I.second;

    // Saturate this flag to true.
    HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);

    // Saturate this flag to false.
    AllTablesFitInRegister =
        AllTablesFitInRegister &&
        SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);

    // If both flags saturate, we're done. NOTE: This *only* works with
    // saturating flags, and all flags have to saturate first due to the
    // non-deterministic behavior of iterating over a dense map.
    if (HasIllegalType && !AllTablesFitInRegister)
      break;
  }

  // If each table would fit in a register, we should build it anyway.
  if (AllTablesFitInRegister)
    return true;

  // Don't build a table that doesn't fit in-register if it has illegal types.
  if (HasIllegalType)
    return false;

  // The table density should be at least 40%. This is the same criterion as for
  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
  // FIXME: Find the best cut-off.
  return SI->getNumCases() * 10 >= TableSize * 4;
}

/// Try to reuse the switch table index compare. Following pattern:
/// \code
///     if (idx < tablesize)
///        r = table[idx]; // table does not contain default_value
///     else
///        r = default_value;
///     if (r != default_value)
///        ...
/// \endcode
/// Is optimized to:
/// \code
///     cond = idx < tablesize;
///     if (cond)
///        r = table[idx];
///     else
///        r = default_value;
///     if (cond)
///        ...
/// \endcode
/// Jump threading will then eliminate the second if(cond).
static void reuseTableCompare(
    User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
    Constant *DefaultValue,
    const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
  ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
  if (!CmpInst)
    return;

  // We require that the compare is in the same block as the phi so that jump
  // threading can do its work afterwards.
  if (CmpInst->getParent() != PhiBlock)
    return;

  Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
  if (!CmpOp1)
    return;

  Value *RangeCmp = RangeCheckBranch->getCondition();
  Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
  Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());

  // Check if the compare with the default value is constant true or false.
  Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
                                                 DefaultValue, CmpOp1, true);
  if (DefaultConst != TrueConst && DefaultConst != FalseConst)
    return;

  // Check if the compare with the case values is distinct from the default
  // compare result.
  for (auto ValuePair : Values) {
    Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
                                                ValuePair.second, CmpOp1, true);
    if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
      return;
    assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
           "Expect true or false as compare result.");
  }

  // Check if the branch instruction dominates the phi node. It's a simple
  // dominance check, but sufficient for our needs.
  // Although this check is invariant in the calling loops, it's better to do it
  // at this late stage. Practically we do it at most once for a switch.
  BasicBlock *BranchBlock = RangeCheckBranch->getParent();
  for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
    BasicBlock *Pred = *PI;
    if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
      return;
  }

  if (DefaultConst == FalseConst) {
    // The compare yields the same result. We can replace it.
    CmpInst->replaceAllUsesWith(RangeCmp);
    ++NumTableCmpReuses;
  } else {
    // The compare yields the same result, just inverted. We can replace it.
    Value *InvertedTableCmp = BinaryOperator::CreateXor(
        RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
        RangeCheckBranch);
    CmpInst->replaceAllUsesWith(InvertedTableCmp);
    ++NumTableCmpReuses;
  }
}

/// If the switch is only used to initialize one or more phi nodes in a common
/// successor block with different constant values, replace the switch with
/// lookup tables.
static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
                                const DataLayout &DL,
                                const TargetTransformInfo &TTI) {
  assert(SI->getNumCases() > 1 && "Degenerate switch?");

  Function *Fn = SI->getParent()->getParent();
  // Only build lookup table when we have a target that supports it or the
  // attribute is not set.
  if (!TTI.shouldBuildLookupTables() ||
      (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
    return false;

  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
  // split off a dense part and build a lookup table for that.

  // FIXME: This creates arrays of GEPs to constant strings, which means each
  // GEP needs a runtime relocation in PIC code. We should just build one big
  // string and lookup indices into that.

  // Ignore switches with less than three cases. Lookup tables will not make
  // them faster, so we don't analyze them.
  if (SI->getNumCases() < 3)
    return false;

  // Figure out the corresponding result for each case value and phi node in the
  // common destination, as well as the min and max case values.
  assert(!SI->cases().empty());
  SwitchInst::CaseIt CI = SI->case_begin();
  ConstantInt *MinCaseVal = CI->getCaseValue();
  ConstantInt *MaxCaseVal = CI->getCaseValue();

  BasicBlock *CommonDest = nullptr;

  using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
  SmallDenseMap<PHINode *, ResultListTy> ResultLists;

  SmallDenseMap<PHINode *, Constant *> DefaultResults;
  SmallDenseMap<PHINode *, Type *> ResultTypes;
  SmallVector<PHINode *, 4> PHIs;

  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
    ConstantInt *CaseVal = CI->getCaseValue();
    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
      MinCaseVal = CaseVal;
    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
      MaxCaseVal = CaseVal;

    // Resulting value at phi nodes for this case value.
    using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
    ResultsTy Results;
    if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
                        Results, DL, TTI))
      return false;

    // Append the result from this case to the list for each phi.
    for (const auto &I : Results) {
      PHINode *PHI = I.first;
      Constant *Value = I.second;
      if (!ResultLists.count(PHI))
        PHIs.push_back(PHI);
      ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
    }
  }

  // Keep track of the result types.
  for (PHINode *PHI : PHIs) {
    ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
  }

  uint64_t NumResults = ResultLists[PHIs[0]].size();
  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
  bool TableHasHoles = (NumResults < TableSize);

  // If the table has holes, we need a constant result for the default case
  // or a bitmask that fits in a register.
  SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
  bool HasDefaultResults =
      GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
                     DefaultResultsList, DL, TTI);

  bool NeedMask = (TableHasHoles && !HasDefaultResults);
  if (NeedMask) {
    // As an extra penalty for the validity test we require more cases.
    if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
      return false;
    if (!DL.fitsInLegalInteger(TableSize))
      return false;
  }

  for (const auto &I : DefaultResultsList) {
    PHINode *PHI = I.first;
    Constant *Result = I.second;
    DefaultResults[PHI] = Result;
  }

  if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
    return false;

  // Create the BB that does the lookups.
  Module &Mod = *CommonDest->getParent()->getParent();
  BasicBlock *LookupBB = BasicBlock::Create(
      Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);

  // Compute the table index value.
  Builder.SetInsertPoint(SI);
  Value *TableIndex;
  if (MinCaseVal->isNullValue())
    TableIndex = SI->getCondition();
  else
    TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
                                   "switch.tableidx");

  // Compute the maximum table size representable by the integer type we are
  // switching upon.
  unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
  uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
  assert(MaxTableSize >= TableSize &&
         "It is impossible for a switch to have more entries than the max "
         "representable value of its input integer type's size.");

  // If the default destination is unreachable, or if the lookup table covers
  // all values of the conditional variable, branch directly to the lookup table
  // BB. Otherwise, check that the condition is within the case range.
  const bool DefaultIsReachable =
      !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
  const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
  BranchInst *RangeCheckBranch = nullptr;

  if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
    Builder.CreateBr(LookupBB);
    // Note: We call removeProdecessor later since we need to be able to get the
    // PHI value for the default case in case we're using a bit mask.
  } else {
    Value *Cmp = Builder.CreateICmpULT(
        TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
    RangeCheckBranch =
        Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
  }

  // Populate the BB that does the lookups.
  Builder.SetInsertPoint(LookupBB);

  if (NeedMask) {
    // Before doing the lookup, we do the hole check. The LookupBB is therefore
    // re-purposed to do the hole check, and we create a new LookupBB.
    BasicBlock *MaskBB = LookupBB;
    MaskBB->setName("switch.hole_check");
    LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
                                  CommonDest->getParent(), CommonDest);

    // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
    // unnecessary illegal types.
    uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
    APInt MaskInt(TableSizePowOf2, 0);
    APInt One(TableSizePowOf2, 1);
    // Build bitmask; fill in a 1 bit for every case.
    const ResultListTy &ResultList = ResultLists[PHIs[0]];
    for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
      uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
                         .getLimitedValue();
      MaskInt |= One << Idx;
    }
    ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);

    // Get the TableIndex'th bit of the bitmask.
    // If this bit is 0 (meaning hole) jump to the default destination,
    // else continue with table lookup.
    IntegerType *MapTy = TableMask->getType();
    Value *MaskIndex =
        Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
    Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
    Value *LoBit = Builder.CreateTrunc(
        Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
    Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());

    Builder.SetInsertPoint(LookupBB);
    AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
  }

  if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
    // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
    // do not delete PHINodes here.
    SI->getDefaultDest()->removePredecessor(SI->getParent(),
                                            /*KeepOneInputPHIs=*/true);
  }

  bool ReturnedEarly = false;
  for (PHINode *PHI : PHIs) {
    const ResultListTy &ResultList = ResultLists[PHI];

    // If using a bitmask, use any value to fill the lookup table holes.
    Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
    StringRef FuncName = Fn->getName();
    SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
                            FuncName);

    Value *Result = Table.BuildLookup(TableIndex, Builder);

    // If the result is used to return immediately from the function, we want to
    // do that right here.
    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
        PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
      Builder.CreateRet(Result);
      ReturnedEarly = true;
      break;
    }

    // Do a small peephole optimization: re-use the switch table compare if
    // possible.
    if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
      BasicBlock *PhiBlock = PHI->getParent();
      // Search for compare instructions which use the phi.
      for (auto *User : PHI->users()) {
        reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
      }
    }

    PHI->addIncoming(Result, LookupBB);
  }

  if (!ReturnedEarly)
    Builder.CreateBr(CommonDest);

  // Remove the switch.
  for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
    BasicBlock *Succ = SI->getSuccessor(i);

    if (Succ == SI->getDefaultDest())
      continue;
    Succ->removePredecessor(SI->getParent());
  }
  SI->eraseFromParent();

  ++NumLookupTables;
  if (NeedMask)
    ++NumLookupTablesHoles;
  return true;
}

static bool isSwitchDense(ArrayRef<int64_t> Values) {
  // See also SelectionDAGBuilder::isDense(), which this function was based on.
  uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
  uint64_t Range = Diff + 1;
  uint64_t NumCases = Values.size();
  // 40% is the default density for building a jump table in optsize/minsize mode.
  uint64_t MinDensity = 40;

  return NumCases * 100 >= Range * MinDensity;
}

/// Try to transform a switch that has "holes" in it to a contiguous sequence
/// of cases.
///
/// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
/// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
///
/// This converts a sparse switch into a dense switch which allows better
/// lowering and could also allow transforming into a lookup table.
static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
                              const DataLayout &DL,
                              const TargetTransformInfo &TTI) {
  auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
  if (CondTy->getIntegerBitWidth() > 64 ||
      !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
    return false;
  // Only bother with this optimization if there are more than 3 switch cases;
  // SDAG will only bother creating jump tables for 4 or more cases.
  if (SI->getNumCases() < 4)
    return false;

  // This transform is agnostic to the signedness of the input or case values. We
  // can treat the case values as signed or unsigned. We can optimize more common
  // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
  // as signed.
  SmallVector<int64_t,4> Values;
  for (auto &C : SI->cases())
    Values.push_back(C.getCaseValue()->getValue().getSExtValue());
  llvm::sort(Values);

  // If the switch is already dense, there's nothing useful to do here.
  if (isSwitchDense(Values))
    return false;

  // First, transform the values such that they start at zero and ascend.
  int64_t Base = Values[0];
  for (auto &V : Values)
    V -= (uint64_t)(Base);

  // Now we have signed numbers that have been shifted so that, given enough
  // precision, there are no negative values. Since the rest of the transform
  // is bitwise only, we switch now to an unsigned representation.

  // This transform can be done speculatively because it is so cheap - it
  // results in a single rotate operation being inserted.
  // FIXME: It's possible that optimizing a switch on powers of two might also
  // be beneficial - flag values are often powers of two and we could use a CLZ
  // as the key function.

  // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
  // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
  // less than 64.
  unsigned Shift = 64;
  for (auto &V : Values)
    Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
  assert(Shift < 64);
  if (Shift > 0)
    for (auto &V : Values)
      V = (int64_t)((uint64_t)V >> Shift);

  if (!isSwitchDense(Values))
    // Transform didn't create a dense switch.
    return false;

  // The obvious transform is to shift the switch condition right and emit a
  // check that the condition actually cleanly divided by GCD, i.e.
  //   C & (1 << Shift - 1) == 0
  // inserting a new CFG edge to handle the case where it didn't divide cleanly.
  //
  // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
  // shift and puts the shifted-off bits in the uppermost bits. If any of these
  // are nonzero then the switch condition will be very large and will hit the
  // default case.

  auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
  Builder.SetInsertPoint(SI);
  auto *ShiftC = ConstantInt::get(Ty, Shift);
  auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
  auto *LShr = Builder.CreateLShr(Sub, ShiftC);
  auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
  auto *Rot = Builder.CreateOr(LShr, Shl);
  SI->replaceUsesOfWith(SI->getCondition(), Rot);

  for (auto Case : SI->cases()) {
    auto *Orig = Case.getCaseValue();
    auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
    Case.setValue(
        cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
  }
  return true;
}

bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
  BasicBlock *BB = SI->getParent();

  if (isValueEqualityComparison(SI)) {
    // If we only have one predecessor, and if it is a branch on this value,
    // see if that predecessor totally determines the outcome of this switch.
    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
      if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
        return requestResimplify();

    Value *Cond = SI->getCondition();
    if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
      if (SimplifySwitchOnSelect(SI, Select))
        return requestResimplify();

    // If the block only contains the switch, see if we can fold the block
    // away into any preds.
    if (SI == &*BB->instructionsWithoutDebug().begin())
      if (FoldValueComparisonIntoPredecessors(SI, Builder))
        return requestResimplify();
  }

  // Try to transform the switch into an icmp and a branch.
  if (TurnSwitchRangeIntoICmp(SI, Builder))
    return requestResimplify();

  // Remove unreachable cases.
  if (eliminateDeadSwitchCases(SI, Options.AC, DL))
    return requestResimplify();

  if (switchToSelect(SI, Builder, DL, TTI))
    return requestResimplify();

  if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
    return requestResimplify();

  // The conversion from switch to lookup tables results in difficult-to-analyze
  // code and makes pruning branches much harder. This is a problem if the
  // switch expression itself can still be restricted as a result of inlining or
  // CVP. Therefore, only apply this transformation during late stages of the
  // optimisation pipeline.
  if (Options.ConvertSwitchToLookupTable &&
      SwitchToLookupTable(SI, Builder, DL, TTI))
    return requestResimplify();

  if (ReduceSwitchRange(SI, Builder, DL, TTI))
    return requestResimplify();

  return false;
}

bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
  BasicBlock *BB = IBI->getParent();
  bool Changed = false;

  // Eliminate redundant destinations.
  SmallPtrSet<Value *, 8> Succs;
  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
    BasicBlock *Dest = IBI->getDestination(i);
    if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
      Dest->removePredecessor(BB);
      IBI->removeDestination(i);
      --i;
      --e;
      Changed = true;
    }
  }

  if (IBI->getNumDestinations() == 0) {
    // If the indirectbr has no successors, change it to unreachable.
    new UnreachableInst(IBI->getContext(), IBI);
    EraseTerminatorAndDCECond(IBI);
    return true;
  }

  if (IBI->getNumDestinations() == 1) {
    // If the indirectbr has one successor, change it to a direct branch.
    BranchInst::Create(IBI->getDestination(0), IBI);
    EraseTerminatorAndDCECond(IBI);
    return true;
  }

  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
    if (SimplifyIndirectBrOnSelect(IBI, SI))
      return requestResimplify();
  }
  return Changed;
}

/// Given an block with only a single landing pad and a unconditional branch
/// try to find another basic block which this one can be merged with.  This
/// handles cases where we have multiple invokes with unique landing pads, but
/// a shared handler.
///
/// We specifically choose to not worry about merging non-empty blocks
/// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
/// practice, the optimizer produces empty landing pad blocks quite frequently
/// when dealing with exception dense code.  (see: instcombine, gvn, if-else
/// sinking in this file)
///
/// This is primarily a code size optimization.  We need to avoid performing
/// any transform which might inhibit optimization (such as our ability to
/// specialize a particular handler via tail commoning).  We do this by not
/// merging any blocks which require us to introduce a phi.  Since the same
/// values are flowing through both blocks, we don't lose any ability to
/// specialize.  If anything, we make such specialization more likely.
///
/// TODO - This transformation could remove entries from a phi in the target
/// block when the inputs in the phi are the same for the two blocks being
/// merged.  In some cases, this could result in removal of the PHI entirely.
static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
                                 BasicBlock *BB) {
  auto Succ = BB->getUniqueSuccessor();
  assert(Succ);
  // If there's a phi in the successor block, we'd likely have to introduce
  // a phi into the merged landing pad block.
  if (isa<PHINode>(*Succ->begin()))
    return false;

  for (BasicBlock *OtherPred : predecessors(Succ)) {
    if (BB == OtherPred)
      continue;
    BasicBlock::iterator I = OtherPred->begin();
    LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
    if (!LPad2 || !LPad2->isIdenticalTo(LPad))
      continue;
    for (++I; isa<DbgInfoIntrinsic>(I); ++I)
      ;
    BranchInst *BI2 = dyn_cast<BranchInst>(I);
    if (!BI2 || !BI2->isIdenticalTo(BI))
      continue;

    // We've found an identical block.  Update our predecessors to take that
    // path instead and make ourselves dead.
    SmallPtrSet<BasicBlock *, 16> Preds;
    Preds.insert(pred_begin(BB), pred_end(BB));
    for (BasicBlock *Pred : Preds) {
      InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
      assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
             "unexpected successor");
      II->setUnwindDest(OtherPred);
    }

    // The debug info in OtherPred doesn't cover the merged control flow that
    // used to go through BB.  We need to delete it or update it.
    for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
      Instruction &Inst = *I;
      I++;
      if (isa<DbgInfoIntrinsic>(Inst))
        Inst.eraseFromParent();
    }

    SmallPtrSet<BasicBlock *, 16> Succs;
    Succs.insert(succ_begin(BB), succ_end(BB));
    for (BasicBlock *Succ : Succs) {
      Succ->removePredecessor(BB);
    }

    IRBuilder<> Builder(BI);
    Builder.CreateUnreachable();
    BI->eraseFromParent();
    return true;
  }
  return false;
}

bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
                                          IRBuilder<> &Builder) {
  BasicBlock *BB = BI->getParent();
  BasicBlock *Succ = BI->getSuccessor(0);

  // If the Terminator is the only non-phi instruction, simplify the block.
  // If LoopHeader is provided, check if the block or its successor is a loop
  // header. (This is for early invocations before loop simplify and
  // vectorization to keep canonical loop forms for nested loops. These blocks
  // can be eliminated when the pass is invoked later in the back-end.)
  // Note that if BB has only one predecessor then we do not introduce new
  // backedge, so we can eliminate BB.
  bool NeedCanonicalLoop =
      Options.NeedCanonicalLoop &&
      (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
       (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
  BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
      !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
    return true;

  // If the only instruction in the block is a seteq/setne comparison against a
  // constant, try to simplify the block.
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
        ;
      if (I->isTerminator() &&
          tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
        return true;
    }

  // See if we can merge an empty landing pad block with another which is
  // equivalent.
  if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
    for (++I; isa<DbgInfoIntrinsic>(I); ++I)
      ;
    if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
      return true;
  }

  // If this basic block is ONLY a compare and a branch, and if a predecessor
  // branches to us and our successor, fold the comparison into the
  // predecessor and use logical operations to update the incoming value
  // for PHI nodes in common successor.
  if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
    return requestResimplify();
  return false;
}

static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
  BasicBlock *PredPred = nullptr;
  for (auto *P : predecessors(BB)) {
    BasicBlock *PPred = P->getSinglePredecessor();
    if (!PPred || (PredPred && PredPred != PPred))
      return nullptr;
    PredPred = PPred;
  }
  return PredPred;
}

bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
  BasicBlock *BB = BI->getParent();
  const Function *Fn = BB->getParent();
  if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
    return false;

  // Conditional branch
  if (isValueEqualityComparison(BI)) {
    // If we only have one predecessor, and if it is a branch on this value,
    // see if that predecessor totally determines the outcome of this
    // switch.
    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
        return requestResimplify();

    // This block must be empty, except for the setcond inst, if it exists.
    // Ignore dbg intrinsics.
    auto I = BB->instructionsWithoutDebug().begin();
    if (&*I == BI) {
      if (FoldValueComparisonIntoPredecessors(BI, Builder))
        return requestResimplify();
    } else if (&*I == cast<Instruction>(BI->getCondition())) {
      ++I;
      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
        return requestResimplify();
    }
  }

  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
  if (SimplifyBranchOnICmpChain(BI, Builder, DL))
    return true;

  // If this basic block has dominating predecessor blocks and the dominating
  // blocks' conditions imply BI's condition, we know the direction of BI.
  Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
  if (Imp) {
    // Turn this into a branch on constant.
    auto *OldCond = BI->getCondition();
    ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
                             : ConstantInt::getFalse(BB->getContext());
    BI->setCondition(TorF);
    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
    return requestResimplify();
  }

  // If this basic block is ONLY a compare and a branch, and if a predecessor
  // branches to us and one of our successors, fold the comparison into the
  // predecessor and use logical operations to pick the right destination.
  if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
    return requestResimplify();

  // We have a conditional branch to two blocks that are only reachable
  // from BI.  We know that the condbr dominates the two blocks, so see if
  // there is any identical code in the "then" and "else" blocks.  If so, we
  // can hoist it up to the branching block.
  if (BI->getSuccessor(0)->getSinglePredecessor()) {
    if (BI->getSuccessor(1)->getSinglePredecessor()) {
      if (HoistThenElseCodeToIf(BI, TTI))
        return requestResimplify();
    } else {
      // If Successor #1 has multiple preds, we may be able to conditionally
      // execute Successor #0 if it branches to Successor #1.
      Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
      if (Succ0TI->getNumSuccessors() == 1 &&
          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
          return requestResimplify();
    }
  } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
    // If Successor #0 has multiple preds, we may be able to conditionally
    // execute Successor #1 if it branches to Successor #0.
    Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
    if (Succ1TI->getNumSuccessors() == 1 &&
        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
        return requestResimplify();
  }

  // If this is a branch on a phi node in the current block, thread control
  // through this block if any PHI node entries are constants.
  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
    if (PN->getParent() == BI->getParent())
      if (FoldCondBranchOnPHI(BI, DL, Options.AC))
        return requestResimplify();

  // Scan predecessor blocks for conditional branches.
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
      if (PBI != BI && PBI->isConditional())
        if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
          return requestResimplify();

  // Look for diamond patterns.
  if (MergeCondStores)
    if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
      if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
        if (PBI != BI && PBI->isConditional())
          if (mergeConditionalStores(PBI, BI, DL, TTI))
            return requestResimplify();

  return false;
}

/// Check if passing a value to an instruction will cause undefined behavior.
static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
  Constant *C = dyn_cast<Constant>(V);
  if (!C)
    return false;

  if (I->use_empty())
    return false;

  if (C->isNullValue() || isa<UndefValue>(C)) {
    // Only look at the first use, avoid hurting compile time with long uselists
    User *Use = *I->user_begin();

    // Now make sure that there are no instructions in between that can alter
    // control flow (eg. calls)
    for (BasicBlock::iterator
             i = ++BasicBlock::iterator(I),
             UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
         i != UI; ++i)
      if (i == I->getParent()->end() || i->mayHaveSideEffects())
        return false;

    // Look through GEPs. A load from a GEP derived from NULL is still undefined
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
      if (GEP->getPointerOperand() == I)
        return passingValueIsAlwaysUndefined(V, GEP);

    // Look through bitcasts.
    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
      return passingValueIsAlwaysUndefined(V, BC);

    // Load from null is undefined.
    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
      if (!LI->isVolatile())
        return !NullPointerIsDefined(LI->getFunction(),
                                     LI->getPointerAddressSpace());

    // Store to null is undefined.
    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
      if (!SI->isVolatile())
        return (!NullPointerIsDefined(SI->getFunction(),
                                      SI->getPointerAddressSpace())) &&
               SI->getPointerOperand() == I;

    // A call to null is undefined.
    if (auto CS = CallSite(Use))
      return !NullPointerIsDefined(CS->getFunction()) &&
             CS.getCalledValue() == I;
  }
  return false;
}

/// If BB has an incoming value that will always trigger undefined behavior
/// (eg. null pointer dereference), remove the branch leading here.
static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
  for (PHINode &PHI : BB->phis())
    for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
      if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
        Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
        IRBuilder<> Builder(T);
        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
          BB->removePredecessor(PHI.getIncomingBlock(i));
          // Turn uncoditional branches into unreachables and remove the dead
          // destination from conditional branches.
          if (BI->isUnconditional())
            Builder.CreateUnreachable();
          else
            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
                                                       : BI->getSuccessor(0));
          BI->eraseFromParent();
          return true;
        }
        // TODO: SwitchInst.
      }

  return false;
}

bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
  bool Changed = false;

  assert(BB && BB->getParent() && "Block not embedded in function!");
  assert(BB->getTerminator() && "Degenerate basic block encountered!");

  // Remove basic blocks that have no predecessors (except the entry block)...
  // or that just have themself as a predecessor.  These are unreachable.
  if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
      BB->getSinglePredecessor() == BB) {
    LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
    DeleteDeadBlock(BB);
    return true;
  }

  // Check to see if we can constant propagate this terminator instruction
  // away...
  Changed |= ConstantFoldTerminator(BB, true);

  // Check for and eliminate duplicate PHI nodes in this block.
  Changed |= EliminateDuplicatePHINodes(BB);

  // Check for and remove branches that will always cause undefined behavior.
  Changed |= removeUndefIntroducingPredecessor(BB);

  // Merge basic blocks into their predecessor if there is only one distinct
  // pred, and if there is only one distinct successor of the predecessor, and
  // if there are no PHI nodes.
  if (MergeBlockIntoPredecessor(BB))
    return true;

  if (SinkCommon && Options.SinkCommonInsts)
    Changed |= SinkCommonCodeFromPredecessors(BB);

  IRBuilder<> Builder(BB);

  // If there is a trivial two-entry PHI node in this basic block, and we can
  // eliminate it, do so now.
  if (auto *PN = dyn_cast<PHINode>(BB->begin()))
    if (PN->getNumIncomingValues() == 2)
      Changed |= FoldTwoEntryPHINode(PN, TTI, DL);

  Builder.SetInsertPoint(BB->getTerminator());
  if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
    if (BI->isUnconditional()) {
      if (SimplifyUncondBranch(BI, Builder))
        return true;
    } else {
      if (SimplifyCondBranch(BI, Builder))
        return true;
    }
  } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    if (SimplifyReturn(RI, Builder))
      return true;
  } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
    if (SimplifyResume(RI, Builder))
      return true;
  } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
    if (SimplifyCleanupReturn(RI))
      return true;
  } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
    if (SimplifySwitch(SI, Builder))
      return true;
  } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
    if (SimplifyUnreachable(UI))
      return true;
  } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
    if (SimplifyIndirectBr(IBI))
      return true;
  }

  return Changed;
}

bool SimplifyCFGOpt::run(BasicBlock *BB) {
  bool Changed = false;

  // Repeated simplify BB as long as resimplification is requested.
  do {
    Resimplify = false;

    // Perform one round of simplifcation. Resimplify flag will be set if
    // another iteration is requested.
    Changed |= simplifyOnce(BB);
  } while (Resimplify);

  return Changed;
}

bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
                       const SimplifyCFGOptions &Options,
                       SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
  return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
                        Options)
      .run(BB);
}