reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
//===- Inliner.cpp - Code common to all inliners --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the mechanics required to implement inlining without
// missing any calls and updating the call graph.  The decisions of which calls
// are profitable to inline are implemented elsewhere.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/Inliner.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <sstream>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "inline"

STATISTIC(NumInlined, "Number of functions inlined");
STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
STATISTIC(NumMergedAllocas, "Number of allocas merged together");

// This weirdly named statistic tracks the number of times that, when attempting
// to inline a function A into B, we analyze the callers of B in order to see
// if those would be more profitable and blocked inline steps.
STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");

/// Flag to disable manual alloca merging.
///
/// Merging of allocas was originally done as a stack-size saving technique
/// prior to LLVM's code generator having support for stack coloring based on
/// lifetime markers. It is now in the process of being removed. To experiment
/// with disabling it and relying fully on lifetime marker based stack
/// coloring, you can pass this flag to LLVM.
static cl::opt<bool>
    DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
                                cl::init(false), cl::Hidden);

namespace {

enum class InlinerFunctionImportStatsOpts {
  No = 0,
  Basic = 1,
  Verbose = 2,
};

} // end anonymous namespace

static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
    "inliner-function-import-stats",
    cl::init(InlinerFunctionImportStatsOpts::No),
    cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
                          "basic statistics"),
               clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
                          "printing of statistics for each inlined function")),
    cl::Hidden, cl::desc("Enable inliner stats for imported functions"));

/// Flag to add inline messages as callsite attributes 'inline-remark'.
static cl::opt<bool>
    InlineRemarkAttribute("inline-remark-attribute", cl::init(false),
                          cl::Hidden,
                          cl::desc("Enable adding inline-remark attribute to"
                                   " callsites processed by inliner but decided"
                                   " to be not inlined"));

LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}

LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
    : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}

/// For this class, we declare that we require and preserve the call graph.
/// If the derived class implements this method, it should
/// always explicitly call the implementation here.
void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<ProfileSummaryInfoWrapperPass>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  getAAResultsAnalysisUsage(AU);
  CallGraphSCCPass::getAnalysisUsage(AU);
}

using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;

/// Look at all of the allocas that we inlined through this call site.  If we
/// have already inlined other allocas through other calls into this function,
/// then we know that they have disjoint lifetimes and that we can merge them.
///
/// There are many heuristics possible for merging these allocas, and the
/// different options have different tradeoffs.  One thing that we *really*
/// don't want to hurt is SRoA: once inlining happens, often allocas are no
/// longer address taken and so they can be promoted.
///
/// Our "solution" for that is to only merge allocas whose outermost type is an
/// array type.  These are usually not promoted because someone is using a
/// variable index into them.  These are also often the most important ones to
/// merge.
///
/// A better solution would be to have real memory lifetime markers in the IR
/// and not have the inliner do any merging of allocas at all.  This would
/// allow the backend to do proper stack slot coloring of all allocas that
/// *actually make it to the backend*, which is really what we want.
///
/// Because we don't have this information, we do this simple and useful hack.
static void mergeInlinedArrayAllocas(
    Function *Caller, InlineFunctionInfo &IFI,
    InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
  SmallPtrSet<AllocaInst *, 16> UsedAllocas;

  // When processing our SCC, check to see if CS was inlined from some other
  // call site.  For example, if we're processing "A" in this code:
  //   A() { B() }
  //   B() { x = alloca ... C() }
  //   C() { y = alloca ... }
  // Assume that C was not inlined into B initially, and so we're processing A
  // and decide to inline B into A.  Doing this makes an alloca available for
  // reuse and makes a callsite (C) available for inlining.  When we process
  // the C call site we don't want to do any alloca merging between X and Y
  // because their scopes are not disjoint.  We could make this smarter by
  // keeping track of the inline history for each alloca in the
  // InlinedArrayAllocas but this isn't likely to be a significant win.
  if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
    return;

  // Loop over all the allocas we have so far and see if they can be merged with
  // a previously inlined alloca.  If not, remember that we had it.
  for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e;
       ++AllocaNo) {
    AllocaInst *AI = IFI.StaticAllocas[AllocaNo];

    // Don't bother trying to merge array allocations (they will usually be
    // canonicalized to be an allocation *of* an array), or allocations whose
    // type is not itself an array (because we're afraid of pessimizing SRoA).
    ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
    if (!ATy || AI->isArrayAllocation())
      continue;

    // Get the list of all available allocas for this array type.
    std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];

    // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
    // that we have to be careful not to reuse the same "available" alloca for
    // multiple different allocas that we just inlined, we use the 'UsedAllocas'
    // set to keep track of which "available" allocas are being used by this
    // function.  Also, AllocasForType can be empty of course!
    bool MergedAwayAlloca = false;
    for (AllocaInst *AvailableAlloca : AllocasForType) {
      unsigned Align1 = AI->getAlignment(),
               Align2 = AvailableAlloca->getAlignment();

      // The available alloca has to be in the right function, not in some other
      // function in this SCC.
      if (AvailableAlloca->getParent() != AI->getParent())
        continue;

      // If the inlined function already uses this alloca then we can't reuse
      // it.
      if (!UsedAllocas.insert(AvailableAlloca).second)
        continue;

      // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
      // success!
      LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
                        << "\n\t\tINTO: " << *AvailableAlloca << '\n');

      // Move affected dbg.declare calls immediately after the new alloca to
      // avoid the situation when a dbg.declare precedes its alloca.
      if (auto *L = LocalAsMetadata::getIfExists(AI))
        if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
          for (User *U : MDV->users())
            if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
              DDI->moveBefore(AvailableAlloca->getNextNode());

      AI->replaceAllUsesWith(AvailableAlloca);

      if (Align1 != Align2) {
        if (!Align1 || !Align2) {
          const DataLayout &DL = Caller->getParent()->getDataLayout();
          unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());

          Align1 = Align1 ? Align1 : TypeAlign;
          Align2 = Align2 ? Align2 : TypeAlign;
        }

        if (Align1 > Align2)
          AvailableAlloca->setAlignment(MaybeAlign(AI->getAlignment()));
      }

      AI->eraseFromParent();
      MergedAwayAlloca = true;
      ++NumMergedAllocas;
      IFI.StaticAllocas[AllocaNo] = nullptr;
      break;
    }

    // If we already nuked the alloca, we're done with it.
    if (MergedAwayAlloca)
      continue;

    // If we were unable to merge away the alloca either because there are no
    // allocas of the right type available or because we reused them all
    // already, remember that this alloca came from an inlined function and mark
    // it used so we don't reuse it for other allocas from this inline
    // operation.
    AllocasForType.push_back(AI);
    UsedAllocas.insert(AI);
  }
}

/// If it is possible to inline the specified call site,
/// do so and update the CallGraph for this operation.
///
/// This function also does some basic book-keeping to update the IR.  The
/// InlinedArrayAllocas map keeps track of any allocas that are already
/// available from other functions inlined into the caller.  If we are able to
/// inline this call site we attempt to reuse already available allocas or add
/// any new allocas to the set if not possible.
static InlineResult InlineCallIfPossible(
    CallSite CS, InlineFunctionInfo &IFI,
    InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
    bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
    ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
  Function *Callee = CS.getCalledFunction();
  Function *Caller = CS.getCaller();

  AAResults &AAR = AARGetter(*Callee);

  // Try to inline the function.  Get the list of static allocas that were
  // inlined.
  InlineResult IR = InlineFunction(CS, IFI, &AAR, InsertLifetime);
  if (!IR)
    return IR;

  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
    ImportedFunctionsStats.recordInline(*Caller, *Callee);

  AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);

  if (!DisableInlinedAllocaMerging)
    mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);

  return IR; // success
}

/// Return true if inlining of CS can block the caller from being
/// inlined which is proved to be more beneficial. \p IC is the
/// estimated inline cost associated with callsite \p CS.
/// \p TotalSecondaryCost will be set to the estimated cost of inlining the
/// caller if \p CS is suppressed for inlining.
static bool
shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
                 int &TotalSecondaryCost,
                 function_ref<InlineCost(CallSite CS)> GetInlineCost) {
  // For now we only handle local or inline functions.
  if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
    return false;
  // If the cost of inlining CS is non-positive, it is not going to prevent the
  // caller from being inlined into its callers and hence we don't need to
  // defer.
  if (IC.getCost() <= 0)
    return false;
  // Try to detect the case where the current inlining candidate caller (call
  // it B) is a static or linkonce-ODR function and is an inlining candidate
  // elsewhere, and the current candidate callee (call it C) is large enough
  // that inlining it into B would make B too big to inline later. In these
  // circumstances it may be best not to inline C into B, but to inline B into
  // its callers.
  //
  // This only applies to static and linkonce-ODR functions because those are
  // expected to be available for inlining in the translation units where they
  // are used. Thus we will always have the opportunity to make local inlining
  // decisions. Importantly the linkonce-ODR linkage covers inline functions
  // and templates in C++.
  //
  // FIXME: All of this logic should be sunk into getInlineCost. It relies on
  // the internal implementation of the inline cost metrics rather than
  // treating them as truly abstract units etc.
  TotalSecondaryCost = 0;
  // The candidate cost to be imposed upon the current function.
  int CandidateCost = IC.getCost() - 1;
  // If the caller has local linkage and can be inlined to all its callers, we
  // can apply a huge negative bonus to TotalSecondaryCost.
  bool ApplyLastCallBonus = Caller->hasLocalLinkage() && !Caller->hasOneUse();
  // This bool tracks what happens if we DO inline C into B.
  bool inliningPreventsSomeOuterInline = false;
  for (User *U : Caller->users()) {
    // If the caller will not be removed (either because it does not have a
    // local linkage or because the LastCallToStaticBonus has been already
    // applied), then we can exit the loop early.
    if (!ApplyLastCallBonus && TotalSecondaryCost >= IC.getCost())
      return false;
    CallSite CS2(U);

    // If this isn't a call to Caller (it could be some other sort
    // of reference) skip it.  Such references will prevent the caller
    // from being removed.
    if (!CS2 || CS2.getCalledFunction() != Caller) {
      ApplyLastCallBonus = false;
      continue;
    }

    InlineCost IC2 = GetInlineCost(CS2);
    ++NumCallerCallersAnalyzed;
    if (!IC2) {
      ApplyLastCallBonus = false;
      continue;
    }
    if (IC2.isAlways())
      continue;

    // See if inlining of the original callsite would erase the cost delta of
    // this callsite. We subtract off the penalty for the call instruction,
    // which we would be deleting.
    if (IC2.getCostDelta() <= CandidateCost) {
      inliningPreventsSomeOuterInline = true;
      TotalSecondaryCost += IC2.getCost();
    }
  }
  // If all outer calls to Caller would get inlined, the cost for the last
  // one is set very low by getInlineCost, in anticipation that Caller will
  // be removed entirely.  We did not account for this above unless there
  // is only one caller of Caller.
  if (ApplyLastCallBonus)
    TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;

  if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
    return true;

  return false;
}

static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R,
                                            const ore::NV &Arg) {
  return R << Arg.Val;
}

template <class RemarkT>
RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) {
  using namespace ore;
  if (IC.isAlways()) {
    R << "(cost=always)";
  } else if (IC.isNever()) {
    R << "(cost=never)";
  } else {
    R << "(cost=" << ore::NV("Cost", IC.getCost())
      << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")";
  }
  if (const char *Reason = IC.getReason())
    R << ": " << ore::NV("Reason", Reason);
  return R;
}

static std::string inlineCostStr(const InlineCost &IC) {
  std::stringstream Remark;
  Remark << IC;
  return Remark.str();
}

/// Return the cost only if the inliner should attempt to inline at the given
/// CallSite. If we return the cost, we will emit an optimisation remark later
/// using that cost, so we won't do so from this function.
static Optional<InlineCost>
shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost,
             OptimizationRemarkEmitter &ORE) {
  using namespace ore;

  InlineCost IC = GetInlineCost(CS);
  Instruction *Call = CS.getInstruction();
  Function *Callee = CS.getCalledFunction();
  Function *Caller = CS.getCaller();

  if (IC.isAlways()) {
    LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC)
                      << ", Call: " << *CS.getInstruction() << "\n");
    return IC;
  }

  if (IC.isNever()) {
    LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
                      << ", Call: " << *CS.getInstruction() << "\n");
    ORE.emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
             << NV("Callee", Callee) << " not inlined into "
             << NV("Caller", Caller) << " because it should never be inlined "
             << IC;
    });
    return IC;
  }

  if (!IC) {
    LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
                      << ", Call: " << *CS.getInstruction() << "\n");
    ORE.emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
             << NV("Callee", Callee) << " not inlined into "
             << NV("Caller", Caller) << " because too costly to inline " << IC;
    });
    return IC;
  }

  int TotalSecondaryCost = 0;
  if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
    LLVM_DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction()
                      << " Cost = " << IC.getCost()
                      << ", outer Cost = " << TotalSecondaryCost << '\n');
    ORE.emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
                                      Call)
             << "Not inlining. Cost of inlining " << NV("Callee", Callee)
             << " increases the cost of inlining " << NV("Caller", Caller)
             << " in other contexts";
    });

    // IC does not bool() to false, so get an InlineCost that will.
    // This will not be inspected to make an error message.
    return None;
  }

  LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC)
                    << ", Call: " << *CS.getInstruction() << '\n');
  return IC;
}

/// Return true if the specified inline history ID
/// indicates an inline history that includes the specified function.
static bool InlineHistoryIncludes(
    Function *F, int InlineHistoryID,
    const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
  while (InlineHistoryID != -1) {
    assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
           "Invalid inline history ID");
    if (InlineHistory[InlineHistoryID].first == F)
      return true;
    InlineHistoryID = InlineHistory[InlineHistoryID].second;
  }
  return false;
}

bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
    ImportedFunctionsStats.setModuleInfo(CG.getModule());
  return false; // No changes to CallGraph.
}

bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
  if (skipSCC(SCC))
    return false;
  return inlineCalls(SCC);
}

static void emit_inlined_into(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc,
                              const BasicBlock *Block, const Function &Callee,
                              const Function &Caller, const InlineCost &IC) {
  ORE.emit([&]() {
    bool AlwaysInline = IC.isAlways();
    StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
    return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block)
           << ore::NV("Callee", &Callee) << " inlined into "
           << ore::NV("Caller", &Caller) << " with " << IC;
  });
}

static void setInlineRemark(CallSite &CS, StringRef message) {
  if (!InlineRemarkAttribute)
    return;

  Attribute attr = Attribute::get(CS->getContext(), "inline-remark", message);
  CS.addAttribute(AttributeList::FunctionIndex, attr);
}

static bool
inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
                std::function<AssumptionCache &(Function &)> GetAssumptionCache,
                ProfileSummaryInfo *PSI,
                std::function<TargetLibraryInfo &(Function &)> GetTLI,
                bool InsertLifetime,
                function_ref<InlineCost(CallSite CS)> GetInlineCost,
                function_ref<AAResults &(Function &)> AARGetter,
                ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
  SmallPtrSet<Function *, 8> SCCFunctions;
  LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
  for (CallGraphNode *Node : SCC) {
    Function *F = Node->getFunction();
    if (F)
      SCCFunctions.insert(F);
    LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
  }

  // Scan through and identify all call sites ahead of time so that we only
  // inline call sites in the original functions, not call sites that result
  // from inlining other functions.
  SmallVector<std::pair<CallSite, int>, 16> CallSites;

  // When inlining a callee produces new call sites, we want to keep track of
  // the fact that they were inlined from the callee.  This allows us to avoid
  // infinite inlining in some obscure cases.  To represent this, we use an
  // index into the InlineHistory vector.
  SmallVector<std::pair<Function *, int>, 8> InlineHistory;

  for (CallGraphNode *Node : SCC) {
    Function *F = Node->getFunction();
    if (!F || F->isDeclaration())
      continue;

    OptimizationRemarkEmitter ORE(F);
    for (BasicBlock &BB : *F)
      for (Instruction &I : BB) {
        CallSite CS(cast<Value>(&I));
        // If this isn't a call, or it is a call to an intrinsic, it can
        // never be inlined.
        if (!CS || isa<IntrinsicInst>(I))
          continue;

        // If this is a direct call to an external function, we can never inline
        // it.  If it is an indirect call, inlining may resolve it to be a
        // direct call, so we keep it.
        if (Function *Callee = CS.getCalledFunction())
          if (Callee->isDeclaration()) {
            using namespace ore;

            setInlineRemark(CS, "unavailable definition");
            ORE.emit([&]() {
              return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
                     << NV("Callee", Callee) << " will not be inlined into "
                     << NV("Caller", CS.getCaller())
                     << " because its definition is unavailable"
                     << setIsVerbose();
            });
            continue;
          }

        CallSites.push_back(std::make_pair(CS, -1));
      }
  }

  LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");

  // If there are no calls in this function, exit early.
  if (CallSites.empty())
    return false;

  // Now that we have all of the call sites, move the ones to functions in the
  // current SCC to the end of the list.
  unsigned FirstCallInSCC = CallSites.size();
  for (unsigned i = 0; i < FirstCallInSCC; ++i)
    if (Function *F = CallSites[i].first.getCalledFunction())
      if (SCCFunctions.count(F))
        std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);

  InlinedArrayAllocasTy InlinedArrayAllocas;
  InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI);

  // Now that we have all of the call sites, loop over them and inline them if
  // it looks profitable to do so.
  bool Changed = false;
  bool LocalChange;
  do {
    LocalChange = false;
    // Iterate over the outer loop because inlining functions can cause indirect
    // calls to become direct calls.
    // CallSites may be modified inside so ranged for loop can not be used.
    for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
      CallSite CS = CallSites[CSi].first;

      Function *Caller = CS.getCaller();
      Function *Callee = CS.getCalledFunction();

      // We can only inline direct calls to non-declarations.
      if (!Callee || Callee->isDeclaration())
        continue;

      Instruction *Instr = CS.getInstruction();

      bool IsTriviallyDead =
          isInstructionTriviallyDead(Instr, &GetTLI(*Caller));

      int InlineHistoryID;
      if (!IsTriviallyDead) {
        // If this call site was obtained by inlining another function, verify
        // that the include path for the function did not include the callee
        // itself.  If so, we'd be recursively inlining the same function,
        // which would provide the same callsites, which would cause us to
        // infinitely inline.
        InlineHistoryID = CallSites[CSi].second;
        if (InlineHistoryID != -1 &&
            InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
          setInlineRemark(CS, "recursive");
          continue;
        }
      }

      // FIXME for new PM: because of the old PM we currently generate ORE and
      // in turn BFI on demand.  With the new PM, the ORE dependency should
      // just become a regular analysis dependency.
      OptimizationRemarkEmitter ORE(Caller);

      Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
      // If the policy determines that we should inline this function,
      // delete the call instead.
      if (!OIC.hasValue()) {
        setInlineRemark(CS, "deferred");
        continue;
      }

      if (!OIC.getValue()) {
        // shouldInline() call returned a negative inline cost that explains
        // why this callsite should not be inlined.
        setInlineRemark(CS, inlineCostStr(*OIC));
        continue;
      }

      // If this call site is dead and it is to a readonly function, we should
      // just delete the call instead of trying to inline it, regardless of
      // size.  This happens because IPSCCP propagates the result out of the
      // call and then we're left with the dead call.
      if (IsTriviallyDead) {
        LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << *Instr << "\n");
        // Update the call graph by deleting the edge from Callee to Caller.
        setInlineRemark(CS, "trivially dead");
        CG[Caller]->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction()));
        Instr->eraseFromParent();
        ++NumCallsDeleted;
      } else {
        // Get DebugLoc to report. CS will be invalid after Inliner.
        DebugLoc DLoc = CS->getDebugLoc();
        BasicBlock *Block = CS.getParent();

        // Attempt to inline the function.
        using namespace ore;

        InlineResult IR = InlineCallIfPossible(
            CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
            InsertLifetime, AARGetter, ImportedFunctionsStats);
        if (!IR) {
          setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
          ORE.emit([&]() {
            return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
                                            Block)
                   << NV("Callee", Callee) << " will not be inlined into "
                   << NV("Caller", Caller) << ": " << NV("Reason", IR.message);
          });
          continue;
        }
        ++NumInlined;

        emit_inlined_into(ORE, DLoc, Block, *Callee, *Caller, *OIC);

        // If inlining this function gave us any new call sites, throw them
        // onto our worklist to process.  They are useful inline candidates.
        if (!InlineInfo.InlinedCalls.empty()) {
          // Create a new inline history entry for this, so that we remember
          // that these new callsites came about due to inlining Callee.
          int NewHistoryID = InlineHistory.size();
          InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));

          for (Value *Ptr : InlineInfo.InlinedCalls)
            CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
        }
      }

      // If we inlined or deleted the last possible call site to the function,
      // delete the function body now.
      if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
          // TODO: Can remove if in SCC now.
          !SCCFunctions.count(Callee) &&
          // The function may be apparently dead, but if there are indirect
          // callgraph references to the node, we cannot delete it yet, this
          // could invalidate the CGSCC iterator.
          CG[Callee]->getNumReferences() == 0) {
        LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
                          << Callee->getName() << "\n");
        CallGraphNode *CalleeNode = CG[Callee];

        // Remove any call graph edges from the callee to its callees.
        CalleeNode->removeAllCalledFunctions();

        // Removing the node for callee from the call graph and delete it.
        delete CG.removeFunctionFromModule(CalleeNode);
        ++NumDeleted;
      }

      // Remove this call site from the list.  If possible, use
      // swap/pop_back for efficiency, but do not use it if doing so would
      // move a call site to a function in this SCC before the
      // 'FirstCallInSCC' barrier.
      if (SCC.isSingular()) {
        CallSites[CSi] = CallSites.back();
        CallSites.pop_back();
      } else {
        CallSites.erase(CallSites.begin() + CSi);
      }
      --CSi;

      Changed = true;
      LocalChange = true;
    }
  } while (LocalChange);

  return Changed;
}

bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
  ACT = &getAnalysis<AssumptionCacheTracker>();
  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  auto GetTLI = [&](Function &F) -> TargetLibraryInfo & {
    return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  };
  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
    return ACT->getAssumptionCache(F);
  };
  return inlineCallsImpl(
      SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
      [this](CallSite CS) { return getInlineCost(CS); }, LegacyAARGetter(*this),
      ImportedFunctionsStats);
}

/// Remove now-dead linkonce functions at the end of
/// processing to avoid breaking the SCC traversal.
bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
    ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
                                InlinerFunctionImportStatsOpts::Verbose);
  return removeDeadFunctions(CG);
}

/// Remove dead functions that are not included in DNR (Do Not Remove) list.
bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
                                            bool AlwaysInlineOnly) {
  SmallVector<CallGraphNode *, 16> FunctionsToRemove;
  SmallVector<Function *, 16> DeadFunctionsInComdats;

  auto RemoveCGN = [&](CallGraphNode *CGN) {
    // Remove any call graph edges from the function to its callees.
    CGN->removeAllCalledFunctions();

    // Remove any edges from the external node to the function's call graph
    // node.  These edges might have been made irrelegant due to
    // optimization of the program.
    CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);

    // Removing the node for callee from the call graph and delete it.
    FunctionsToRemove.push_back(CGN);
  };

  // Scan for all of the functions, looking for ones that should now be removed
  // from the program.  Insert the dead ones in the FunctionsToRemove set.
  for (const auto &I : CG) {
    CallGraphNode *CGN = I.second.get();
    Function *F = CGN->getFunction();
    if (!F || F->isDeclaration())
      continue;

    // Handle the case when this function is called and we only want to care
    // about always-inline functions. This is a bit of a hack to share code
    // between here and the InlineAlways pass.
    if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
      continue;

    // If the only remaining users of the function are dead constants, remove
    // them.
    F->removeDeadConstantUsers();

    if (!F->isDefTriviallyDead())
      continue;

    // It is unsafe to drop a function with discardable linkage from a COMDAT
    // without also dropping the other members of the COMDAT.
    // The inliner doesn't visit non-function entities which are in COMDAT
    // groups so it is unsafe to do so *unless* the linkage is local.
    if (!F->hasLocalLinkage()) {
      if (F->hasComdat()) {
        DeadFunctionsInComdats.push_back(F);
        continue;
      }
    }

    RemoveCGN(CGN);
  }
  if (!DeadFunctionsInComdats.empty()) {
    // Filter out the functions whose comdats remain alive.
    filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
    // Remove the rest.
    for (Function *F : DeadFunctionsInComdats)
      RemoveCGN(CG[F]);
  }

  if (FunctionsToRemove.empty())
    return false;

  // Now that we know which functions to delete, do so.  We didn't want to do
  // this inline, because that would invalidate our CallGraph::iterator
  // objects. :(
  //
  // Note that it doesn't matter that we are iterating over a non-stable order
  // here to do this, it doesn't matter which order the functions are deleted
  // in.
  array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
  FunctionsToRemove.erase(
      std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
      FunctionsToRemove.end());
  for (CallGraphNode *CGN : FunctionsToRemove) {
    delete CG.removeFunctionFromModule(CGN);
    ++NumDeleted;
  }
  return true;
}

InlinerPass::~InlinerPass() {
  if (ImportedFunctionsStats) {
    assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
    ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
                                 InlinerFunctionImportStatsOpts::Verbose);
  }
}

PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
                                   CGSCCAnalysisManager &AM, LazyCallGraph &CG,
                                   CGSCCUpdateResult &UR) {
  const ModuleAnalysisManager &MAM =
      AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
  bool Changed = false;

  assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
  Module &M = *InitialC.begin()->getFunction().getParent();
  ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);

  if (!ImportedFunctionsStats &&
      InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
    ImportedFunctionsStats =
        std::make_unique<ImportedFunctionsInliningStatistics>();
    ImportedFunctionsStats->setModuleInfo(M);
  }

  // We use a single common worklist for calls across the entire SCC. We
  // process these in-order and append new calls introduced during inlining to
  // the end.
  //
  // Note that this particular order of processing is actually critical to
  // avoid very bad behaviors. Consider *highly connected* call graphs where
  // each function contains a small amonut of code and a couple of calls to
  // other functions. Because the LLVM inliner is fundamentally a bottom-up
  // inliner, it can handle gracefully the fact that these all appear to be
  // reasonable inlining candidates as it will flatten things until they become
  // too big to inline, and then move on and flatten another batch.
  //
  // However, when processing call edges *within* an SCC we cannot rely on this
  // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
  // functions we can end up incrementally inlining N calls into each of
  // N functions because each incremental inlining decision looks good and we
  // don't have a topological ordering to prevent explosions.
  //
  // To compensate for this, we don't process transitive edges made immediate
  // by inlining until we've done one pass of inlining across the entire SCC.
  // Large, highly connected SCCs still lead to some amount of code bloat in
  // this model, but it is uniformly spread across all the functions in the SCC
  // and eventually they all become too large to inline, rather than
  // incrementally maknig a single function grow in a super linear fashion.
  SmallVector<std::pair<CallSite, int>, 16> Calls;

  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
          .getManager();

  // Populate the initial list of calls in this SCC.
  for (auto &N : InitialC) {
    auto &ORE =
        FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
    // We want to generally process call sites top-down in order for
    // simplifications stemming from replacing the call with the returned value
    // after inlining to be visible to subsequent inlining decisions.
    // FIXME: Using instructions sequence is a really bad way to do this.
    // Instead we should do an actual RPO walk of the function body.
    for (Instruction &I : instructions(N.getFunction()))
      if (auto CS = CallSite(&I))
        if (Function *Callee = CS.getCalledFunction()) {
          if (!Callee->isDeclaration())
            Calls.push_back({CS, -1});
          else if (!isa<IntrinsicInst>(I)) {
            using namespace ore;
            setInlineRemark(CS, "unavailable definition");
            ORE.emit([&]() {
              return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
                     << NV("Callee", Callee) << " will not be inlined into "
                     << NV("Caller", CS.getCaller())
                     << " because its definition is unavailable"
                     << setIsVerbose();
            });
          }
        }
  }
  if (Calls.empty())
    return PreservedAnalyses::all();

  // Capture updatable variables for the current SCC and RefSCC.
  auto *C = &InitialC;
  auto *RC = &C->getOuterRefSCC();

  // When inlining a callee produces new call sites, we want to keep track of
  // the fact that they were inlined from the callee.  This allows us to avoid
  // infinite inlining in some obscure cases.  To represent this, we use an
  // index into the InlineHistory vector.
  SmallVector<std::pair<Function *, int>, 16> InlineHistory;

  // Track a set vector of inlined callees so that we can augment the caller
  // with all of their edges in the call graph before pruning out the ones that
  // got simplified away.
  SmallSetVector<Function *, 4> InlinedCallees;

  // Track the dead functions to delete once finished with inlining calls. We
  // defer deleting these to make it easier to handle the call graph updates.
  SmallVector<Function *, 4> DeadFunctions;

  // Loop forward over all of the calls. Note that we cannot cache the size as
  // inlining can introduce new calls that need to be processed.
  for (int i = 0; i < (int)Calls.size(); ++i) {
    // We expect the calls to typically be batched with sequences of calls that
    // have the same caller, so we first set up some shared infrastructure for
    // this caller. We also do any pruning we can at this layer on the caller
    // alone.
    Function &F = *Calls[i].first.getCaller();
    LazyCallGraph::Node &N = *CG.lookup(F);
    if (CG.lookupSCC(N) != C)
      continue;
    if (F.hasOptNone()) {
      setInlineRemark(Calls[i].first, "optnone attribute");
      continue;
    }

    LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");

    // Get a FunctionAnalysisManager via a proxy for this particular node. We
    // do this each time we visit a node as the SCC may have changed and as
    // we're going to mutate this particular function we want to make sure the
    // proxy is in place to forward any invalidation events. We can use the
    // manager we get here for looking up results for functions other than this
    // node however because those functions aren't going to be mutated by this
    // pass.
    FunctionAnalysisManager &FAM =
        AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
            .getManager();

    // Get the remarks emission analysis for the caller.
    auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);

    std::function<AssumptionCache &(Function &)> GetAssumptionCache =
        [&](Function &F) -> AssumptionCache & {
      return FAM.getResult<AssumptionAnalysis>(F);
    };
    auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
      return FAM.getResult<BlockFrequencyAnalysis>(F);
    };

    auto GetInlineCost = [&](CallSite CS) {
      Function &Callee = *CS.getCalledFunction();
      auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
      bool RemarksEnabled =
          Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
              DEBUG_TYPE);
      return getInlineCost(cast<CallBase>(*CS.getInstruction()), Params,
                           CalleeTTI, GetAssumptionCache, {GetBFI}, PSI,
                           RemarksEnabled ? &ORE : nullptr);
    };

    // Now process as many calls as we have within this caller in the sequnece.
    // We bail out as soon as the caller has to change so we can update the
    // call graph and prepare the context of that new caller.
    bool DidInline = false;
    for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) {
      int InlineHistoryID;
      CallSite CS;
      std::tie(CS, InlineHistoryID) = Calls[i];
      Function &Callee = *CS.getCalledFunction();

      if (InlineHistoryID != -1 &&
          InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
        setInlineRemark(CS, "recursive");
        continue;
      }

      // Check if this inlining may repeat breaking an SCC apart that has
      // already been split once before. In that case, inlining here may
      // trigger infinite inlining, much like is prevented within the inliner
      // itself by the InlineHistory above, but spread across CGSCC iterations
      // and thus hidden from the full inline history.
      if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
          UR.InlinedInternalEdges.count({&N, C})) {
        LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
                             "previously split out of this SCC by inlining: "
                          << F.getName() << " -> " << Callee.getName() << "\n");
        setInlineRemark(CS, "recursive SCC split");
        continue;
      }

      Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
      // Check whether we want to inline this callsite.
      if (!OIC.hasValue()) {
        setInlineRemark(CS, "deferred");
        continue;
      }

      if (!OIC.getValue()) {
        // shouldInline() call returned a negative inline cost that explains
        // why this callsite should not be inlined.
        setInlineRemark(CS, inlineCostStr(*OIC));
        continue;
      }

      // Setup the data structure used to plumb customization into the
      // `InlineFunction` routine.
      InlineFunctionInfo IFI(
          /*cg=*/nullptr, &GetAssumptionCache, PSI,
          &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())),
          &FAM.getResult<BlockFrequencyAnalysis>(Callee));

      // Get DebugLoc to report. CS will be invalid after Inliner.
      DebugLoc DLoc = CS->getDebugLoc();
      BasicBlock *Block = CS.getParent();

      using namespace ore;

      InlineResult IR = InlineFunction(CS, IFI);
      if (!IR) {
        setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
        ORE.emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
                 << NV("Callee", &Callee) << " will not be inlined into "
                 << NV("Caller", &F) << ": " << NV("Reason", IR.message);
        });
        continue;
      }
      DidInline = true;
      InlinedCallees.insert(&Callee);

      ++NumInlined;

      emit_inlined_into(ORE, DLoc, Block, Callee, F, *OIC);

      // Add any new callsites to defined functions to the worklist.
      if (!IFI.InlinedCallSites.empty()) {
        int NewHistoryID = InlineHistory.size();
        InlineHistory.push_back({&Callee, InlineHistoryID});
        for (CallSite &CS : reverse(IFI.InlinedCallSites))
          if (Function *NewCallee = CS.getCalledFunction())
            if (!NewCallee->isDeclaration())
              Calls.push_back({CS, NewHistoryID});
      }

      if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
        ImportedFunctionsStats->recordInline(F, Callee);

      // Merge the attributes based on the inlining.
      AttributeFuncs::mergeAttributesForInlining(F, Callee);

      // For local functions, check whether this makes the callee trivially
      // dead. In that case, we can drop the body of the function eagerly
      // which may reduce the number of callers of other functions to one,
      // changing inline cost thresholds.
      if (Callee.hasLocalLinkage()) {
        // To check this we also need to nuke any dead constant uses (perhaps
        // made dead by this operation on other functions).
        Callee.removeDeadConstantUsers();
        if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
          Calls.erase(
              std::remove_if(Calls.begin() + i + 1, Calls.end(),
                             [&Callee](const std::pair<CallSite, int> &Call) {
                               return Call.first.getCaller() == &Callee;
                             }),
              Calls.end());
          // Clear the body and queue the function itself for deletion when we
          // finish inlining and call graph updates.
          // Note that after this point, it is an error to do anything other
          // than use the callee's address or delete it.
          Callee.dropAllReferences();
          assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
                 "Cannot put cause a function to become dead twice!");
          DeadFunctions.push_back(&Callee);
        }
      }
    }

    // Back the call index up by one to put us in a good position to go around
    // the outer loop.
    --i;

    if (!DidInline)
      continue;
    Changed = true;

    // Add all the inlined callees' edges as ref edges to the caller. These are
    // by definition trivial edges as we always have *some* transitive ref edge
    // chain. While in some cases these edges are direct calls inside the
    // callee, they have to be modeled in the inliner as reference edges as
    // there may be a reference edge anywhere along the chain from the current
    // caller to the callee that causes the whole thing to appear like
    // a (transitive) reference edge that will require promotion to a call edge
    // below.
    for (Function *InlinedCallee : InlinedCallees) {
      LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
      for (LazyCallGraph::Edge &E : *CalleeN)
        RC->insertTrivialRefEdge(N, E.getNode());
    }

    // At this point, since we have made changes we have at least removed
    // a call instruction. However, in the process we do some incremental
    // simplification of the surrounding code. This simplification can
    // essentially do all of the same things as a function pass and we can
    // re-use the exact same logic for updating the call graph to reflect the
    // change.
    LazyCallGraph::SCC *OldC = C;
    C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
    LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
    RC = &C->getOuterRefSCC();

    // If this causes an SCC to split apart into multiple smaller SCCs, there
    // is a subtle risk we need to prepare for. Other transformations may
    // expose an "infinite inlining" opportunity later, and because of the SCC
    // mutation, we will revisit this function and potentially re-inline. If we
    // do, and that re-inlining also has the potentially to mutate the SCC
    // structure, the infinite inlining problem can manifest through infinite
    // SCC splits and merges. To avoid this, we capture the originating caller
    // node and the SCC containing the call edge. This is a slight over
    // approximation of the possible inlining decisions that must be avoided,
    // but is relatively efficient to store. We use C != OldC to know when
    // a new SCC is generated and the original SCC may be generated via merge
    // in later iterations.
    //
    // It is also possible that even if no new SCC is generated
    // (i.e., C == OldC), the original SCC could be split and then merged
    // into the same one as itself. and the original SCC will be added into
    // UR.CWorklist again, we want to catch such cases too.
    //
    // FIXME: This seems like a very heavyweight way of retaining the inline
    // history, we should look for a more efficient way of tracking it.
    if ((C != OldC || UR.CWorklist.count(OldC)) &&
        llvm::any_of(InlinedCallees, [&](Function *Callee) {
          return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
        })) {
      LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
                           "retaining this to avoid infinite inlining.\n");
      UR.InlinedInternalEdges.insert({&N, OldC});
    }
    InlinedCallees.clear();
  }

  // Now that we've finished inlining all of the calls across this SCC, delete
  // all of the trivially dead functions, updating the call graph and the CGSCC
  // pass manager in the process.
  //
  // Note that this walks a pointer set which has non-deterministic order but
  // that is OK as all we do is delete things and add pointers to unordered
  // sets.
  for (Function *DeadF : DeadFunctions) {
    // Get the necessary information out of the call graph and nuke the
    // function there. Also, cclear out any cached analyses.
    auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
    FunctionAnalysisManager &FAM =
        AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
            .getManager();
    FAM.clear(*DeadF, DeadF->getName());
    AM.clear(DeadC, DeadC.getName());
    auto &DeadRC = DeadC.getOuterRefSCC();
    CG.removeDeadFunction(*DeadF);

    // Mark the relevant parts of the call graph as invalid so we don't visit
    // them.
    UR.InvalidatedSCCs.insert(&DeadC);
    UR.InvalidatedRefSCCs.insert(&DeadRC);

    // And delete the actual function from the module.
    M.getFunctionList().erase(DeadF);
    ++NumDeleted;
  }

  if (!Changed)
    return PreservedAnalyses::all();

  // Even if we change the IR, we update the core CGSCC data structures and so
  // can preserve the proxy to the function analysis manager.
  PreservedAnalyses PA;
  PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
  return PA;
}