reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements inline cost analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/InlineCost.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "inline-cost"

STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");

static cl::opt<int> InlineThreshold(
    "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
    cl::desc("Control the amount of inlining to perform (default = 225)"));

static cl::opt<int> HintThreshold(
    "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 
    cl::desc("Threshold for inlining functions with inline hint"));

static cl::opt<int>
    ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
                          cl::init(45), cl::ZeroOrMore,
                          cl::desc("Threshold for inlining cold callsites"));

// We introduce this threshold to help performance of instrumentation based
// PGO before we actually hook up inliner with analysis passes such as BPI and
// BFI.
static cl::opt<int> ColdThreshold(
    "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 
    cl::desc("Threshold for inlining functions with cold attribute"));

static cl::opt<int>
    HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
                         cl::ZeroOrMore,
                         cl::desc("Threshold for hot callsites "));

static cl::opt<int> LocallyHotCallSiteThreshold(
    "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
    cl::desc("Threshold for locally hot callsites "));

static cl::opt<int> ColdCallSiteRelFreq(
    "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
    cl::desc("Maximum block frequency, expressed as a percentage of caller's "
             "entry frequency, for a callsite to be cold in the absence of "
             "profile information."));

static cl::opt<int> HotCallSiteRelFreq(
    "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
    cl::desc("Minimum block frequency, expressed as a multiple of caller's "
             "entry frequency, for a callsite to be hot in the absence of "
             "profile information."));

static cl::opt<bool> OptComputeFullInlineCost(
    "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
    cl::desc("Compute the full inline cost of a call site even when the cost "
             "exceeds the threshold."));

namespace {

class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
  typedef InstVisitor<CallAnalyzer, bool> Base;
  friend class InstVisitor<CallAnalyzer, bool>;

  /// The TargetTransformInfo available for this compilation.
  const TargetTransformInfo &TTI;

  /// Getter for the cache of @llvm.assume intrinsics.
  std::function<AssumptionCache &(Function &)> &GetAssumptionCache;

  /// Getter for BlockFrequencyInfo
  Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI;

  /// Profile summary information.
  ProfileSummaryInfo *PSI;

  /// The called function.
  Function &F;

  // Cache the DataLayout since we use it a lot.
  const DataLayout &DL;

  /// The OptimizationRemarkEmitter available for this compilation.
  OptimizationRemarkEmitter *ORE;

  /// The candidate callsite being analyzed. Please do not use this to do
  /// analysis in the caller function; we want the inline cost query to be
  /// easily cacheable. Instead, use the cover function paramHasAttr.
  CallBase &CandidateCall;

  /// Tunable parameters that control the analysis.
  const InlineParams &Params;

  /// Upper bound for the inlining cost. Bonuses are being applied to account
  /// for speculative "expected profit" of the inlining decision.
  int Threshold;

  /// Inlining cost measured in abstract units, accounts for all the
  /// instructions expected to be executed for a given function invocation.
  /// Instructions that are statically proven to be dead based on call-site
  /// arguments are not counted here.
  int Cost = 0;

  bool ComputeFullInlineCost;

  bool IsCallerRecursive = false;
  bool IsRecursiveCall = false;
  bool ExposesReturnsTwice = false;
  bool HasDynamicAlloca = false;
  bool ContainsNoDuplicateCall = false;
  bool HasReturn = false;
  bool HasIndirectBr = false;
  bool HasUninlineableIntrinsic = false;
  bool InitsVargArgs = false;

  /// Number of bytes allocated statically by the callee.
  uint64_t AllocatedSize = 0;
  unsigned NumInstructions = 0;
  unsigned NumVectorInstructions = 0;

  /// Bonus to be applied when percentage of vector instructions in callee is
  /// high (see more details in updateThreshold).
  int VectorBonus = 0;
  /// Bonus to be applied when the callee has only one reachable basic block.
  int SingleBBBonus = 0;

  /// While we walk the potentially-inlined instructions, we build up and
  /// maintain a mapping of simplified values specific to this callsite. The
  /// idea is to propagate any special information we have about arguments to
  /// this call through the inlinable section of the function, and account for
  /// likely simplifications post-inlining. The most important aspect we track
  /// is CFG altering simplifications -- when we prove a basic block dead, that
  /// can cause dramatic shifts in the cost of inlining a function.
  DenseMap<Value *, Constant *> SimplifiedValues;

  /// Keep track of the values which map back (through function arguments) to
  /// allocas on the caller stack which could be simplified through SROA.
  DenseMap<Value *, Value *> SROAArgValues;

  /// The mapping of caller Alloca values to their accumulated cost savings. If
  /// we have to disable SROA for one of the allocas, this tells us how much
  /// cost must be added.
  DenseMap<Value *, int> SROAArgCosts;

  /// Keep track of values which map to a pointer base and constant offset.
  DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;

  /// Keep track of dead blocks due to the constant arguments.
  SetVector<BasicBlock *> DeadBlocks;

  /// The mapping of the blocks to their known unique successors due to the
  /// constant arguments.
  DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;

  /// Model the elimination of repeated loads that is expected to happen
  /// whenever we simplify away the stores that would otherwise cause them to be
  /// loads.
  bool EnableLoadElimination;
  SmallPtrSet<Value *, 16> LoadAddrSet;
  int LoadEliminationCost = 0;

  // Custom simplification helper routines.
  bool isAllocaDerivedArg(Value *V);
  bool lookupSROAArgAndCost(Value *V, Value *&Arg,
                            DenseMap<Value *, int>::iterator &CostIt);
  void disableSROA(DenseMap<Value *, int>::iterator CostIt);
  void disableSROA(Value *V);
  void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
  void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
                          int InstructionCost);
  void disableLoadElimination();
  bool isGEPFree(GetElementPtrInst &GEP);
  bool canFoldInboundsGEP(GetElementPtrInst &I);
  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
  bool simplifyCallSite(Function *F, CallBase &Call);
  template <typename Callable>
  bool simplifyInstruction(Instruction &I, Callable Evaluate);
  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);

  /// Return true if the given argument to the function being considered for
  /// inlining has the given attribute set either at the call site or the
  /// function declaration.  Primarily used to inspect call site specific
  /// attributes since these can be more precise than the ones on the callee
  /// itself.
  bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);

  /// Return true if the given value is known non null within the callee if
  /// inlined through this particular callsite.
  bool isKnownNonNullInCallee(Value *V);

  /// Update Threshold based on callsite properties such as callee
  /// attributes and callee hotness for PGO builds. The Callee is explicitly
  /// passed to support analyzing indirect calls whose target is inferred by
  /// analysis.
  void updateThreshold(CallBase &Call, Function &Callee);

  /// Return true if size growth is allowed when inlining the callee at \p Call.
  bool allowSizeGrowth(CallBase &Call);

  /// Return true if \p Call is a cold callsite.
  bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);

  /// Return a higher threshold if \p Call is a hot callsite.
  Optional<int> getHotCallSiteThreshold(CallBase &Call,
                                        BlockFrequencyInfo *CallerBFI);

  // Custom analysis routines.
  InlineResult analyzeBlock(BasicBlock *BB,
                            SmallPtrSetImpl<const Value *> &EphValues);

  /// Handle a capped 'int' increment for Cost.
  void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
    assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
    Cost = (int)std::min(UpperBound, Cost + Inc);
  }

  // Disable several entry points to the visitor so we don't accidentally use
  // them by declaring but not defining them here.
  void visit(Module *);
  void visit(Module &);
  void visit(Function *);
  void visit(Function &);
  void visit(BasicBlock *);
  void visit(BasicBlock &);

  // Provide base case for our instruction visit.
  bool visitInstruction(Instruction &I);

  // Our visit overrides.
  bool visitAlloca(AllocaInst &I);
  bool visitPHI(PHINode &I);
  bool visitGetElementPtr(GetElementPtrInst &I);
  bool visitBitCast(BitCastInst &I);
  bool visitPtrToInt(PtrToIntInst &I);
  bool visitIntToPtr(IntToPtrInst &I);
  bool visitCastInst(CastInst &I);
  bool visitUnaryInstruction(UnaryInstruction &I);
  bool visitCmpInst(CmpInst &I);
  bool visitSub(BinaryOperator &I);
  bool visitBinaryOperator(BinaryOperator &I);
  bool visitFNeg(UnaryOperator &I);
  bool visitLoad(LoadInst &I);
  bool visitStore(StoreInst &I);
  bool visitExtractValue(ExtractValueInst &I);
  bool visitInsertValue(InsertValueInst &I);
  bool visitCallBase(CallBase &Call);
  bool visitReturnInst(ReturnInst &RI);
  bool visitBranchInst(BranchInst &BI);
  bool visitSelectInst(SelectInst &SI);
  bool visitSwitchInst(SwitchInst &SI);
  bool visitIndirectBrInst(IndirectBrInst &IBI);
  bool visitResumeInst(ResumeInst &RI);
  bool visitCleanupReturnInst(CleanupReturnInst &RI);
  bool visitCatchReturnInst(CatchReturnInst &RI);
  bool visitUnreachableInst(UnreachableInst &I);

public:
  CallAnalyzer(const TargetTransformInfo &TTI,
               std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
               Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI,
               ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE,
               Function &Callee, CallBase &Call, const InlineParams &Params)
      : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
        PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
        CandidateCall(Call), Params(Params), Threshold(Params.DefaultThreshold),
        ComputeFullInlineCost(OptComputeFullInlineCost ||
                              Params.ComputeFullInlineCost || ORE),
        EnableLoadElimination(true) {}

  InlineResult analyzeCall(CallBase &Call);

  int getThreshold() { return Threshold; }
  int getCost() { return Cost; }

  // Keep a bunch of stats about the cost savings found so we can print them
  // out when debugging.
  unsigned NumConstantArgs = 0;
  unsigned NumConstantOffsetPtrArgs = 0;
  unsigned NumAllocaArgs = 0;
  unsigned NumConstantPtrCmps = 0;
  unsigned NumConstantPtrDiffs = 0;
  unsigned NumInstructionsSimplified = 0;
  unsigned SROACostSavings = 0;
  unsigned SROACostSavingsLost = 0;

  void dump();
};

} // namespace

/// Test whether the given value is an Alloca-derived function argument.
bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
  return SROAArgValues.count(V);
}

/// Lookup the SROA-candidate argument and cost iterator which V maps to.
/// Returns false if V does not map to a SROA-candidate.
bool CallAnalyzer::lookupSROAArgAndCost(
    Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
  if (SROAArgValues.empty() || SROAArgCosts.empty())
    return false;

  DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
  if (ArgIt == SROAArgValues.end())
    return false;

  Arg = ArgIt->second;
  CostIt = SROAArgCosts.find(Arg);
  return CostIt != SROAArgCosts.end();
}

/// Disable SROA for the candidate marked by this cost iterator.
///
/// This marks the candidate as no longer viable for SROA, and adds the cost
/// savings associated with it back into the inline cost measurement.
void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
  // If we're no longer able to perform SROA we need to undo its cost savings
  // and prevent subsequent analysis.
  addCost(CostIt->second);
  SROACostSavings -= CostIt->second;
  SROACostSavingsLost += CostIt->second;
  SROAArgCosts.erase(CostIt);
  disableLoadElimination();
}

/// If 'V' maps to a SROA candidate, disable SROA for it.
void CallAnalyzer::disableSROA(Value *V) {
  Value *SROAArg;
  DenseMap<Value *, int>::iterator CostIt;
  if (lookupSROAArgAndCost(V, SROAArg, CostIt))
    disableSROA(CostIt);
}

/// Accumulate the given cost for a particular SROA candidate.
void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
                                      int InstructionCost) {
  CostIt->second += InstructionCost;
  SROACostSavings += InstructionCost;
}

void CallAnalyzer::disableLoadElimination() {
  if (EnableLoadElimination) {
    addCost(LoadEliminationCost);
    LoadEliminationCost = 0;
    EnableLoadElimination = false;
  }
}

/// Accumulate a constant GEP offset into an APInt if possible.
///
/// Returns false if unable to compute the offset for any reason. Respects any
/// simplified values known during the analysis of this callsite.
bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
  unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
  assert(IntPtrWidth == Offset.getBitWidth());

  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
       GTI != GTE; ++GTI) {
    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
    if (!OpC)
      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
        OpC = dyn_cast<ConstantInt>(SimpleOp);
    if (!OpC)
      return false;
    if (OpC->isZero())
      continue;

    // Handle a struct index, which adds its field offset to the pointer.
    if (StructType *STy = GTI.getStructTypeOrNull()) {
      unsigned ElementIdx = OpC->getZExtValue();
      const StructLayout *SL = DL.getStructLayout(STy);
      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
      continue;
    }

    APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
  }
  return true;
}

/// Use TTI to check whether a GEP is free.
///
/// Respects any simplified values known during the analysis of this callsite.
bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
  SmallVector<Value *, 4> Operands;
  Operands.push_back(GEP.getOperand(0));
  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
    if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
       Operands.push_back(SimpleOp);
     else
       Operands.push_back(*I);
  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands);
}

bool CallAnalyzer::visitAlloca(AllocaInst &I) {
  // Check whether inlining will turn a dynamic alloca into a static
  // alloca and handle that case.
  if (I.isArrayAllocation()) {
    Constant *Size = SimplifiedValues.lookup(I.getArraySize());
    if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
      Type *Ty = I.getAllocatedType();
      AllocatedSize = SaturatingMultiplyAdd(
          AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(),
          AllocatedSize);
      return Base::visitAlloca(I);
    }
  }

  // Accumulate the allocated size.
  if (I.isStaticAlloca()) {
    Type *Ty = I.getAllocatedType();
    AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(),
                                  AllocatedSize);
  }

  // We will happily inline static alloca instructions.
  if (I.isStaticAlloca())
    return Base::visitAlloca(I);

  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
  // a variety of reasons, and so we would like to not inline them into
  // functions which don't currently have a dynamic alloca. This simply
  // disables inlining altogether in the presence of a dynamic alloca.
  HasDynamicAlloca = true;
  return false;
}

bool CallAnalyzer::visitPHI(PHINode &I) {
  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
  // though we don't want to propagate it's bonuses. The idea is to disable
  // SROA if it *might* be used in an inappropriate manner.

  // Phi nodes are always zero-cost.
  // FIXME: Pointer sizes may differ between different address spaces, so do we
  // need to use correct address space in the call to getPointerSizeInBits here?
  // Or could we skip the getPointerSizeInBits call completely? As far as I can
  // see the ZeroOffset is used as a dummy value, so we can probably use any
  // bit width for the ZeroOffset?
  APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
  bool CheckSROA = I.getType()->isPointerTy();

  // Track the constant or pointer with constant offset we've seen so far.
  Constant *FirstC = nullptr;
  std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
  Value *FirstV = nullptr;

  for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
    BasicBlock *Pred = I.getIncomingBlock(i);
    // If the incoming block is dead, skip the incoming block.
    if (DeadBlocks.count(Pred))
      continue;
    // If the parent block of phi is not the known successor of the incoming
    // block, skip the incoming block.
    BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
    if (KnownSuccessor && KnownSuccessor != I.getParent())
      continue;

    Value *V = I.getIncomingValue(i);
    // If the incoming value is this phi itself, skip the incoming value.
    if (&I == V)
      continue;

    Constant *C = dyn_cast<Constant>(V);
    if (!C)
      C = SimplifiedValues.lookup(V);

    std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
    if (!C && CheckSROA)
      BaseAndOffset = ConstantOffsetPtrs.lookup(V);

    if (!C && !BaseAndOffset.first)
      // The incoming value is neither a constant nor a pointer with constant
      // offset, exit early.
      return true;

    if (FirstC) {
      if (FirstC == C)
        // If we've seen a constant incoming value before and it is the same
        // constant we see this time, continue checking the next incoming value.
        continue;
      // Otherwise early exit because we either see a different constant or saw
      // a constant before but we have a pointer with constant offset this time.
      return true;
    }

    if (FirstV) {
      // The same logic as above, but check pointer with constant offset here.
      if (FirstBaseAndOffset == BaseAndOffset)
        continue;
      return true;
    }

    if (C) {
      // This is the 1st time we've seen a constant, record it.
      FirstC = C;
      continue;
    }

    // The remaining case is that this is the 1st time we've seen a pointer with
    // constant offset, record it.
    FirstV = V;
    FirstBaseAndOffset = BaseAndOffset;
  }

  // Check if we can map phi to a constant.
  if (FirstC) {
    SimplifiedValues[&I] = FirstC;
    return true;
  }

  // Check if we can map phi to a pointer with constant offset.
  if (FirstBaseAndOffset.first) {
    ConstantOffsetPtrs[&I] = FirstBaseAndOffset;

    Value *SROAArg;
    DenseMap<Value *, int>::iterator CostIt;
    if (lookupSROAArgAndCost(FirstV, SROAArg, CostIt))
      SROAArgValues[&I] = SROAArg;
  }

  return true;
}

/// Check we can fold GEPs of constant-offset call site argument pointers.
/// This requires target data and inbounds GEPs.
///
/// \return true if the specified GEP can be folded.
bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
  // Check if we have a base + offset for the pointer.
  std::pair<Value *, APInt> BaseAndOffset =
      ConstantOffsetPtrs.lookup(I.getPointerOperand());
  if (!BaseAndOffset.first)
    return false;

  // Check if the offset of this GEP is constant, and if so accumulate it
  // into Offset.
  if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
    return false;

  // Add the result as a new mapping to Base + Offset.
  ConstantOffsetPtrs[&I] = BaseAndOffset;

  return true;
}

bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
  Value *SROAArg;
  DenseMap<Value *, int>::iterator CostIt;
  bool SROACandidate =
      lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt);

  // Lambda to check whether a GEP's indices are all constant.
  auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
    for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
      if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
        return false;
    return true;
  };

  if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
    if (SROACandidate)
      SROAArgValues[&I] = SROAArg;

    // Constant GEPs are modeled as free.
    return true;
  }

  // Variable GEPs will require math and will disable SROA.
  if (SROACandidate)
    disableSROA(CostIt);
  return isGEPFree(I);
}

/// Simplify \p I if its operands are constants and update SimplifiedValues.
/// \p Evaluate is a callable specific to instruction type that evaluates the
/// instruction when all the operands are constants.
template <typename Callable>
bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
  SmallVector<Constant *, 2> COps;
  for (Value *Op : I.operands()) {
    Constant *COp = dyn_cast<Constant>(Op);
    if (!COp)
      COp = SimplifiedValues.lookup(Op);
    if (!COp)
      return false;
    COps.push_back(COp);
  }
  auto *C = Evaluate(COps);
  if (!C)
    return false;
  SimplifiedValues[&I] = C;
  return true;
}

bool CallAnalyzer::visitBitCast(BitCastInst &I) {
  // Propagate constants through bitcasts.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getBitCast(COps[0], I.getType());
      }))
    return true;

  // Track base/offsets through casts
  std::pair<Value *, APInt> BaseAndOffset =
      ConstantOffsetPtrs.lookup(I.getOperand(0));
  // Casts don't change the offset, just wrap it up.
  if (BaseAndOffset.first)
    ConstantOffsetPtrs[&I] = BaseAndOffset;

  // Also look for SROA candidates here.
  Value *SROAArg;
  DenseMap<Value *, int>::iterator CostIt;
  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
    SROAArgValues[&I] = SROAArg;

  // Bitcasts are always zero cost.
  return true;
}

bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
  // Propagate constants through ptrtoint.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getPtrToInt(COps[0], I.getType());
      }))
    return true;

  // Track base/offset pairs when converted to a plain integer provided the
  // integer is large enough to represent the pointer.
  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
  unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
  if (IntegerSize >= DL.getPointerSizeInBits(AS)) {
    std::pair<Value *, APInt> BaseAndOffset =
        ConstantOffsetPtrs.lookup(I.getOperand(0));
    if (BaseAndOffset.first)
      ConstantOffsetPtrs[&I] = BaseAndOffset;
  }

  // This is really weird. Technically, ptrtoint will disable SROA. However,
  // unless that ptrtoint is *used* somewhere in the live basic blocks after
  // inlining, it will be nuked, and SROA should proceed. All of the uses which
  // would block SROA would also block SROA if applied directly to a pointer,
  // and so we can just add the integer in here. The only places where SROA is
  // preserved either cannot fire on an integer, or won't in-and-of themselves
  // disable SROA (ext) w/o some later use that we would see and disable.
  Value *SROAArg;
  DenseMap<Value *, int>::iterator CostIt;
  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
    SROAArgValues[&I] = SROAArg;

  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
}

bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
  // Propagate constants through ptrtoint.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getIntToPtr(COps[0], I.getType());
      }))
    return true;

  // Track base/offset pairs when round-tripped through a pointer without
  // modifications provided the integer is not too large.
  Value *Op = I.getOperand(0);
  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
  if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
    if (BaseAndOffset.first)
      ConstantOffsetPtrs[&I] = BaseAndOffset;
  }

  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
  Value *SROAArg;
  DenseMap<Value *, int>::iterator CostIt;
  if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
    SROAArgValues[&I] = SROAArg;

  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
}

bool CallAnalyzer::visitCastInst(CastInst &I) {
  // Propagate constants through casts.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
      }))
    return true;

  // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
  disableSROA(I.getOperand(0));

  // If this is a floating-point cast, and the target says this operation
  // is expensive, this may eventually become a library call. Treat the cost
  // as such.
  switch (I.getOpcode()) {
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::UIToFP:
  case Instruction::SIToFP:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
    if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
      addCost(InlineConstants::CallPenalty);
    break;
  default:
    break;
  }

  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
}

bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
  Value *Operand = I.getOperand(0);
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantFoldInstOperands(&I, COps[0], DL);
      }))
    return true;

  // Disable any SROA on the argument to arbitrary unary instructions.
  disableSROA(Operand);

  return false;
}

bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
  return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
}

bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
  // Does the *call site* have the NonNull attribute set on an argument?  We
  // use the attribute on the call site to memoize any analysis done in the
  // caller. This will also trip if the callee function has a non-null
  // parameter attribute, but that's a less interesting case because hopefully
  // the callee would already have been simplified based on that.
  if (Argument *A = dyn_cast<Argument>(V))
    if (paramHasAttr(A, Attribute::NonNull))
      return true;

  // Is this an alloca in the caller?  This is distinct from the attribute case
  // above because attributes aren't updated within the inliner itself and we
  // always want to catch the alloca derived case.
  if (isAllocaDerivedArg(V))
    // We can actually predict the result of comparisons between an
    // alloca-derived value and null. Note that this fires regardless of
    // SROA firing.
    return true;

  return false;
}

bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
  // If the normal destination of the invoke or the parent block of the call
  // site is unreachable-terminated, there is little point in inlining this
  // unless there is literally zero cost.
  // FIXME: Note that it is possible that an unreachable-terminated block has a
  // hot entry. For example, in below scenario inlining hot_call_X() may be
  // beneficial :
  // main() {
  //   hot_call_1();
  //   ...
  //   hot_call_N()
  //   exit(0);
  // }
  // For now, we are not handling this corner case here as it is rare in real
  // code. In future, we should elaborate this based on BPI and BFI in more
  // general threshold adjusting heuristics in updateThreshold().
  if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
    if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
      return false;
  } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
    return false;

  return true;
}

bool CallAnalyzer::isColdCallSite(CallBase &Call,
                                  BlockFrequencyInfo *CallerBFI) {
  // If global profile summary is available, then callsite's coldness is
  // determined based on that.
  if (PSI && PSI->hasProfileSummary())
    return PSI->isColdCallSite(CallSite(&Call), CallerBFI);

  // Otherwise we need BFI to be available.
  if (!CallerBFI)
    return false;

  // Determine if the callsite is cold relative to caller's entry. We could
  // potentially cache the computation of scaled entry frequency, but the added
  // complexity is not worth it unless this scaling shows up high in the
  // profiles.
  const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
  auto CallSiteBB = Call.getParent();
  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
  auto CallerEntryFreq =
      CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
  return CallSiteFreq < CallerEntryFreq * ColdProb;
}

Optional<int>
CallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
                                      BlockFrequencyInfo *CallerBFI) {

  // If global profile summary is available, then callsite's hotness is
  // determined based on that.
  if (PSI && PSI->hasProfileSummary() &&
      PSI->isHotCallSite(CallSite(&Call), CallerBFI))
    return Params.HotCallSiteThreshold;

  // Otherwise we need BFI to be available and to have a locally hot callsite
  // threshold.
  if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
    return None;

  // Determine if the callsite is hot relative to caller's entry. We could
  // potentially cache the computation of scaled entry frequency, but the added
  // complexity is not worth it unless this scaling shows up high in the
  // profiles.
  auto CallSiteBB = Call.getParent();
  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
  auto CallerEntryFreq = CallerBFI->getEntryFreq();
  if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
    return Params.LocallyHotCallSiteThreshold;

  // Otherwise treat it normally.
  return None;
}

void CallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
  // If no size growth is allowed for this inlining, set Threshold to 0.
  if (!allowSizeGrowth(Call)) {
    Threshold = 0;
    return;
  }

  Function *Caller = Call.getCaller();

  // return min(A, B) if B is valid.
  auto MinIfValid = [](int A, Optional<int> B) {
    return B ? std::min(A, B.getValue()) : A;
  };

  // return max(A, B) if B is valid.
  auto MaxIfValid = [](int A, Optional<int> B) {
    return B ? std::max(A, B.getValue()) : A;
  };

  // Various bonus percentages. These are multiplied by Threshold to get the
  // bonus values.
  // SingleBBBonus: This bonus is applied if the callee has a single reachable
  // basic block at the given callsite context. This is speculatively applied
  // and withdrawn if more than one basic block is seen.
  //
  // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
  // of the last call to a static function as inlining such functions is
  // guaranteed to reduce code size.
  //
  // These bonus percentages may be set to 0 based on properties of the caller
  // and the callsite.
  int SingleBBBonusPercent = 50;
  int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
  int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;

  // Lambda to set all the above bonus and bonus percentages to 0.
  auto DisallowAllBonuses = [&]() {
    SingleBBBonusPercent = 0;
    VectorBonusPercent = 0;
    LastCallToStaticBonus = 0;
  };

  // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
  // and reduce the threshold if the caller has the necessary attribute.
  if (Caller->hasMinSize()) {
    Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
    // For minsize, we want to disable the single BB bonus and the vector
    // bonuses, but not the last-call-to-static bonus. Inlining the last call to
    // a static function will, at the minimum, eliminate the parameter setup and
    // call/return instructions.
    SingleBBBonusPercent = 0;
    VectorBonusPercent = 0;
  } else if (Caller->hasOptSize())
    Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);

  // Adjust the threshold based on inlinehint attribute and profile based
  // hotness information if the caller does not have MinSize attribute.
  if (!Caller->hasMinSize()) {
    if (Callee.hasFnAttribute(Attribute::InlineHint))
      Threshold = MaxIfValid(Threshold, Params.HintThreshold);

    // FIXME: After switching to the new passmanager, simplify the logic below
    // by checking only the callsite hotness/coldness as we will reliably
    // have local profile information.
    //
    // Callsite hotness and coldness can be determined if sample profile is
    // used (which adds hotness metadata to calls) or if caller's
    // BlockFrequencyInfo is available.
    BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr;
    auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
    if (!Caller->hasOptSize() && HotCallSiteThreshold) {
      LLVM_DEBUG(dbgs() << "Hot callsite.\n");
      // FIXME: This should update the threshold only if it exceeds the
      // current threshold, but AutoFDO + ThinLTO currently relies on this
      // behavior to prevent inlining of hot callsites during ThinLTO
      // compile phase.
      Threshold = HotCallSiteThreshold.getValue();
    } else if (isColdCallSite(Call, CallerBFI)) {
      LLVM_DEBUG(dbgs() << "Cold callsite.\n");
      // Do not apply bonuses for a cold callsite including the
      // LastCallToStatic bonus. While this bonus might result in code size
      // reduction, it can cause the size of a non-cold caller to increase
      // preventing it from being inlined.
      DisallowAllBonuses();
      Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
    } else if (PSI) {
      // Use callee's global profile information only if we have no way of
      // determining this via callsite information.
      if (PSI->isFunctionEntryHot(&Callee)) {
        LLVM_DEBUG(dbgs() << "Hot callee.\n");
        // If callsite hotness can not be determined, we may still know
        // that the callee is hot and treat it as a weaker hint for threshold
        // increase.
        Threshold = MaxIfValid(Threshold, Params.HintThreshold);
      } else if (PSI->isFunctionEntryCold(&Callee)) {
        LLVM_DEBUG(dbgs() << "Cold callee.\n");
        // Do not apply bonuses for a cold callee including the
        // LastCallToStatic bonus. While this bonus might result in code size
        // reduction, it can cause the size of a non-cold caller to increase
        // preventing it from being inlined.
        DisallowAllBonuses();
        Threshold = MinIfValid(Threshold, Params.ColdThreshold);
      }
    }
  }

  // Finally, take the target-specific inlining threshold multiplier into
  // account.
  Threshold *= TTI.getInliningThresholdMultiplier();

  SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
  VectorBonus = Threshold * VectorBonusPercent / 100;

  bool OnlyOneCallAndLocalLinkage =
      F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
  // If there is only one call of the function, and it has internal linkage,
  // the cost of inlining it drops dramatically. It may seem odd to update
  // Cost in updateThreshold, but the bonus depends on the logic in this method.
  if (OnlyOneCallAndLocalLinkage)
    Cost -= LastCallToStaticBonus;
}

bool CallAnalyzer::visitCmpInst(CmpInst &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  // First try to handle simplified comparisons.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
      }))
    return true;

  if (I.getOpcode() == Instruction::FCmp)
    return false;

  // Otherwise look for a comparison between constant offset pointers with
  // a common base.
  Value *LHSBase, *RHSBase;
  APInt LHSOffset, RHSOffset;
  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
  if (LHSBase) {
    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    if (RHSBase && LHSBase == RHSBase) {
      // We have common bases, fold the icmp to a constant based on the
      // offsets.
      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
        SimplifiedValues[&I] = C;
        ++NumConstantPtrCmps;
        return true;
      }
    }
  }

  // If the comparison is an equality comparison with null, we can simplify it
  // if we know the value (argument) can't be null
  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
      isKnownNonNullInCallee(I.getOperand(0))) {
    bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
    SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
                                      : ConstantInt::getFalse(I.getType());
    return true;
  }
  // Finally check for SROA candidates in comparisons.
  Value *SROAArg;
  DenseMap<Value *, int>::iterator CostIt;
  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    if (isa<ConstantPointerNull>(I.getOperand(1))) {
      accumulateSROACost(CostIt, InlineConstants::InstrCost);
      return true;
    }

    disableSROA(CostIt);
  }

  return false;
}

bool CallAnalyzer::visitSub(BinaryOperator &I) {
  // Try to handle a special case: we can fold computing the difference of two
  // constant-related pointers.
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  Value *LHSBase, *RHSBase;
  APInt LHSOffset, RHSOffset;
  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
  if (LHSBase) {
    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    if (RHSBase && LHSBase == RHSBase) {
      // We have common bases, fold the subtract to a constant based on the
      // offsets.
      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
        SimplifiedValues[&I] = C;
        ++NumConstantPtrDiffs;
        return true;
      }
    }
  }

  // Otherwise, fall back to the generic logic for simplifying and handling
  // instructions.
  return Base::visitSub(I);
}

bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  Constant *CLHS = dyn_cast<Constant>(LHS);
  if (!CLHS)
    CLHS = SimplifiedValues.lookup(LHS);
  Constant *CRHS = dyn_cast<Constant>(RHS);
  if (!CRHS)
    CRHS = SimplifiedValues.lookup(RHS);

  Value *SimpleV = nullptr;
  if (auto FI = dyn_cast<FPMathOperator>(&I))
    SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS,
                            CRHS ? CRHS : RHS, FI->getFastMathFlags(), DL);
  else
    SimpleV =
        SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);

  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
    SimplifiedValues[&I] = C;

  if (SimpleV)
    return true;

  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
  disableSROA(LHS);
  disableSROA(RHS);

  // If the instruction is floating point, and the target says this operation
  // is expensive, this may eventually become a library call. Treat the cost
  // as such. Unless it's fneg which can be implemented with an xor.
  using namespace llvm::PatternMatch;
  if (I.getType()->isFloatingPointTy() &&
      TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
      !match(&I, m_FNeg(m_Value())))
    addCost(InlineConstants::CallPenalty);

  return false;
}

bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
  Value *Op = I.getOperand(0);
  Constant *COp = dyn_cast<Constant>(Op);
  if (!COp)
    COp = SimplifiedValues.lookup(Op);

  Value *SimpleV = SimplifyFNegInst(COp ? COp : Op,
                                    cast<FPMathOperator>(I).getFastMathFlags(),
                                    DL);

  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
    SimplifiedValues[&I] = C;

  if (SimpleV)
    return true;

  // Disable any SROA on arguments to arbitrary, unsimplified fneg.
  disableSROA(Op);

  return false;
}

bool CallAnalyzer::visitLoad(LoadInst &I) {
  Value *SROAArg;
  DenseMap<Value *, int>::iterator CostIt;
  if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
    if (I.isSimple()) {
      accumulateSROACost(CostIt, InlineConstants::InstrCost);
      return true;
    }

    disableSROA(CostIt);
  }

  // If the data is already loaded from this address and hasn't been clobbered
  // by any stores or calls, this load is likely to be redundant and can be
  // eliminated.
  if (EnableLoadElimination &&
      !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
    LoadEliminationCost += InlineConstants::InstrCost;
    return true;
  }

  return false;
}

bool CallAnalyzer::visitStore(StoreInst &I) {
  Value *SROAArg;
  DenseMap<Value *, int>::iterator CostIt;
  if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
    if (I.isSimple()) {
      accumulateSROACost(CostIt, InlineConstants::InstrCost);
      return true;
    }

    disableSROA(CostIt);
  }

  // The store can potentially clobber loads and prevent repeated loads from
  // being eliminated.
  // FIXME:
  // 1. We can probably keep an initial set of eliminatable loads substracted
  // from the cost even when we finally see a store. We just need to disable
  // *further* accumulation of elimination savings.
  // 2. We should probably at some point thread MemorySSA for the callee into
  // this and then use that to actually compute *really* precise savings.
  disableLoadElimination();
  return false;
}

bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
  // Constant folding for extract value is trivial.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getExtractValue(COps[0], I.getIndices());
      }))
    return true;

  // SROA can look through these but give them a cost.
  return false;
}

bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
  // Constant folding for insert value is trivial.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
                                            /*InsertedValueOperand*/ COps[1],
                                            I.getIndices());
      }))
    return true;

  // SROA can look through these but give them a cost.
  return false;
}

/// Try to simplify a call site.
///
/// Takes a concrete function and callsite and tries to actually simplify it by
/// analyzing the arguments and call itself with instsimplify. Returns true if
/// it has simplified the callsite to some other entity (a constant), making it
/// free.
bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
  // FIXME: Using the instsimplify logic directly for this is inefficient
  // because we have to continually rebuild the argument list even when no
  // simplifications can be performed. Until that is fixed with remapping
  // inside of instsimplify, directly constant fold calls here.
  if (!canConstantFoldCallTo(&Call, F))
    return false;

  // Try to re-map the arguments to constants.
  SmallVector<Constant *, 4> ConstantArgs;
  ConstantArgs.reserve(Call.arg_size());
  for (Value *I : Call.args()) {
    Constant *C = dyn_cast<Constant>(I);
    if (!C)
      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
    if (!C)
      return false; // This argument doesn't map to a constant.

    ConstantArgs.push_back(C);
  }
  if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
    SimplifiedValues[&Call] = C;
    return true;
  }

  return false;
}

bool CallAnalyzer::visitCallBase(CallBase &Call) {
  if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
      !F.hasFnAttribute(Attribute::ReturnsTwice)) {
    // This aborts the entire analysis.
    ExposesReturnsTwice = true;
    return false;
  }
  if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
    ContainsNoDuplicateCall = true;

  if (Function *F = Call.getCalledFunction()) {
    // When we have a concrete function, first try to simplify it directly.
    if (simplifyCallSite(F, Call))
      return true;

    // Next check if it is an intrinsic we know about.
    // FIXME: Lift this into part of the InstVisitor.
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
      switch (II->getIntrinsicID()) {
      default:
        if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
          disableLoadElimination();
        return Base::visitCallBase(Call);

      case Intrinsic::load_relative:
        // This is normally lowered to 4 LLVM instructions.
        addCost(3 * InlineConstants::InstrCost);
        return false;

      case Intrinsic::memset:
      case Intrinsic::memcpy:
      case Intrinsic::memmove:
        disableLoadElimination();
        // SROA can usually chew through these intrinsics, but they aren't free.
        return false;
      case Intrinsic::icall_branch_funnel:
      case Intrinsic::localescape:
        HasUninlineableIntrinsic = true;
        return false;
      case Intrinsic::vastart:
        InitsVargArgs = true;
        return false;
      }
    }

    if (F == Call.getFunction()) {
      // This flag will fully abort the analysis, so don't bother with anything
      // else.
      IsRecursiveCall = true;
      return false;
    }

    if (TTI.isLoweredToCall(F)) {
      // We account for the average 1 instruction per call argument setup
      // here.
      addCost(Call.arg_size() * InlineConstants::InstrCost);

      // Everything other than inline ASM will also have a significant cost
      // merely from making the call.
      if (!isa<InlineAsm>(Call.getCalledValue()))
        addCost(InlineConstants::CallPenalty);
    }

    if (!Call.onlyReadsMemory())
      disableLoadElimination();
    return Base::visitCallBase(Call);
  }

  // Otherwise we're in a very special case -- an indirect function call. See
  // if we can be particularly clever about this.
  Value *Callee = Call.getCalledValue();

  // First, pay the price of the argument setup. We account for the average
  // 1 instruction per call argument setup here.
  addCost(Call.arg_size() * InlineConstants::InstrCost);

  // Next, check if this happens to be an indirect function call to a known
  // function in this inline context. If not, we've done all we can.
  Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
  if (!F) {
    if (!Call.onlyReadsMemory())
      disableLoadElimination();
    return Base::visitCallBase(Call);
  }

  // If we have a constant that we are calling as a function, we can peer
  // through it and see the function target. This happens not infrequently
  // during devirtualization and so we want to give it a hefty bonus for
  // inlining, but cap that bonus in the event that inlining wouldn't pan
  // out. Pretend to inline the function, with a custom threshold.
  auto IndirectCallParams = Params;
  IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold;
  CallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, Call,
                  IndirectCallParams);
  if (CA.analyzeCall(Call)) {
    // We were able to inline the indirect call! Subtract the cost from the
    // threshold to get the bonus we want to apply, but don't go below zero.
    Cost -= std::max(0, CA.getThreshold() - CA.getCost());
  }

  if (!F->onlyReadsMemory())
    disableLoadElimination();
  return Base::visitCallBase(Call);
}

bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
  // At least one return instruction will be free after inlining.
  bool Free = !HasReturn;
  HasReturn = true;
  return Free;
}

bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
  // We model unconditional branches as essentially free -- they really
  // shouldn't exist at all, but handling them makes the behavior of the
  // inliner more regular and predictable. Interestingly, conditional branches
  // which will fold away are also free.
  return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
         dyn_cast_or_null<ConstantInt>(
             SimplifiedValues.lookup(BI.getCondition()));
}

bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
  bool CheckSROA = SI.getType()->isPointerTy();
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();

  Constant *TrueC = dyn_cast<Constant>(TrueVal);
  if (!TrueC)
    TrueC = SimplifiedValues.lookup(TrueVal);
  Constant *FalseC = dyn_cast<Constant>(FalseVal);
  if (!FalseC)
    FalseC = SimplifiedValues.lookup(FalseVal);
  Constant *CondC =
      dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));

  if (!CondC) {
    // Select C, X, X => X
    if (TrueC == FalseC && TrueC) {
      SimplifiedValues[&SI] = TrueC;
      return true;
    }

    if (!CheckSROA)
      return Base::visitSelectInst(SI);

    std::pair<Value *, APInt> TrueBaseAndOffset =
        ConstantOffsetPtrs.lookup(TrueVal);
    std::pair<Value *, APInt> FalseBaseAndOffset =
        ConstantOffsetPtrs.lookup(FalseVal);
    if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
      ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;

      Value *SROAArg;
      DenseMap<Value *, int>::iterator CostIt;
      if (lookupSROAArgAndCost(TrueVal, SROAArg, CostIt))
        SROAArgValues[&SI] = SROAArg;
      return true;
    }

    return Base::visitSelectInst(SI);
  }

  // Select condition is a constant.
  Value *SelectedV = CondC->isAllOnesValue()
                         ? TrueVal
                         : (CondC->isNullValue()) ? FalseVal : nullptr;
  if (!SelectedV) {
    // Condition is a vector constant that is not all 1s or all 0s.  If all
    // operands are constants, ConstantExpr::getSelect() can handle the cases
    // such as select vectors.
    if (TrueC && FalseC) {
      if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
        SimplifiedValues[&SI] = C;
        return true;
      }
    }
    return Base::visitSelectInst(SI);
  }

  // Condition is either all 1s or all 0s. SI can be simplified.
  if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
    SimplifiedValues[&SI] = SelectedC;
    return true;
  }

  if (!CheckSROA)
    return true;

  std::pair<Value *, APInt> BaseAndOffset =
      ConstantOffsetPtrs.lookup(SelectedV);
  if (BaseAndOffset.first) {
    ConstantOffsetPtrs[&SI] = BaseAndOffset;

    Value *SROAArg;
    DenseMap<Value *, int>::iterator CostIt;
    if (lookupSROAArgAndCost(SelectedV, SROAArg, CostIt))
      SROAArgValues[&SI] = SROAArg;
  }

  return true;
}

bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
  // We model unconditional switches as free, see the comments on handling
  // branches.
  if (isa<ConstantInt>(SI.getCondition()))
    return true;
  if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
    if (isa<ConstantInt>(V))
      return true;

  // Assume the most general case where the switch is lowered into
  // either a jump table, bit test, or a balanced binary tree consisting of
  // case clusters without merging adjacent clusters with the same
  // destination. We do not consider the switches that are lowered with a mix
  // of jump table/bit test/binary search tree. The cost of the switch is
  // proportional to the size of the tree or the size of jump table range.
  //
  // NB: We convert large switches which are just used to initialize large phi
  // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
  // inlining those. It will prevent inlining in cases where the optimization
  // does not (yet) fire.

  // Maximum valid cost increased in this function.
  int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;

  unsigned JumpTableSize = 0;
  unsigned NumCaseCluster =
      TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize);

  // If suitable for a jump table, consider the cost for the table size and
  // branch to destination.
  if (JumpTableSize) {
    int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
                     4 * InlineConstants::InstrCost;

    addCost(JTCost, (int64_t)CostUpperBound);
    return false;
  }

  // Considering forming a binary search, we should find the number of nodes
  // which is same as the number of comparisons when lowered. For a given
  // number of clusters, n, we can define a recursive function, f(n), to find
  // the number of nodes in the tree. The recursion is :
  // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
  // and f(n) = n, when n <= 3.
  // This will lead a binary tree where the leaf should be either f(2) or f(3)
  // when n > 3.  So, the number of comparisons from leaves should be n, while
  // the number of non-leaf should be :
  //   2^(log2(n) - 1) - 1
  //   = 2^log2(n) * 2^-1 - 1
  //   = n / 2 - 1.
  // Considering comparisons from leaf and non-leaf nodes, we can estimate the
  // number of comparisons in a simple closed form :
  //   n + n / 2 - 1 = n * 3 / 2 - 1
  if (NumCaseCluster <= 3) {
    // Suppose a comparison includes one compare and one conditional branch.
    addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
    return false;
  }

  int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
  int64_t SwitchCost =
      ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;

  addCost(SwitchCost, (int64_t)CostUpperBound);
  return false;
}

bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
  // We never want to inline functions that contain an indirectbr.  This is
  // incorrect because all the blockaddress's (in static global initializers
  // for example) would be referring to the original function, and this
  // indirect jump would jump from the inlined copy of the function into the
  // original function which is extremely undefined behavior.
  // FIXME: This logic isn't really right; we can safely inline functions with
  // indirectbr's as long as no other function or global references the
  // blockaddress of a block within the current function.
  HasIndirectBr = true;
  return false;
}

bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
  // FIXME: It's not clear that a single instruction is an accurate model for
  // the inline cost of a resume instruction.
  return false;
}

bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
  // FIXME: It's not clear that a single instruction is an accurate model for
  // the inline cost of a cleanupret instruction.
  return false;
}

bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
  // FIXME: It's not clear that a single instruction is an accurate model for
  // the inline cost of a catchret instruction.
  return false;
}

bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
  // FIXME: It might be reasonably to discount the cost of instructions leading
  // to unreachable as they have the lowest possible impact on both runtime and
  // code size.
  return true; // No actual code is needed for unreachable.
}

bool CallAnalyzer::visitInstruction(Instruction &I) {
  // Some instructions are free. All of the free intrinsics can also be
  // handled by SROA, etc.
  if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
    return true;

  // We found something we don't understand or can't handle. Mark any SROA-able
  // values in the operand list as no longer viable.
  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
    disableSROA(*OI);

  return false;
}

/// Analyze a basic block for its contribution to the inline cost.
///
/// This method walks the analyzer over every instruction in the given basic
/// block and accounts for their cost during inlining at this callsite. It
/// aborts early if the threshold has been exceeded or an impossible to inline
/// construct has been detected. It returns false if inlining is no longer
/// viable, and true if inlining remains viable.
InlineResult
CallAnalyzer::analyzeBlock(BasicBlock *BB,
                           SmallPtrSetImpl<const Value *> &EphValues) {
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    // FIXME: Currently, the number of instructions in a function regardless of
    // our ability to simplify them during inline to constants or dead code,
    // are actually used by the vector bonus heuristic. As long as that's true,
    // we have to special case debug intrinsics here to prevent differences in
    // inlining due to debug symbols. Eventually, the number of unsimplified
    // instructions shouldn't factor into the cost computation, but until then,
    // hack around it here.
    if (isa<DbgInfoIntrinsic>(I))
      continue;

    // Skip ephemeral values.
    if (EphValues.count(&*I))
      continue;

    ++NumInstructions;
    if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
      ++NumVectorInstructions;

    // If the instruction simplified to a constant, there is no cost to this
    // instruction. Visit the instructions using our InstVisitor to account for
    // all of the per-instruction logic. The visit tree returns true if we
    // consumed the instruction in any way, and false if the instruction's base
    // cost should count against inlining.
    if (Base::visit(&*I))
      ++NumInstructionsSimplified;
    else
      addCost(InlineConstants::InstrCost);

    using namespace ore;
    // If the visit this instruction detected an uninlinable pattern, abort.
    InlineResult IR;
    if (IsRecursiveCall)
      IR = "recursive";
    else if (ExposesReturnsTwice)
      IR = "exposes returns twice";
    else if (HasDynamicAlloca)
      IR = "dynamic alloca";
    else if (HasIndirectBr)
      IR = "indirect branch";
    else if (HasUninlineableIntrinsic)
      IR = "uninlinable intrinsic";
    else if (InitsVargArgs)
      IR = "varargs";
    if (!IR) {
      if (ORE)
        ORE->emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
                                          &CandidateCall)
                 << NV("Callee", &F) << " has uninlinable pattern ("
                 << NV("InlineResult", IR.message)
                 << ") and cost is not fully computed";
        });
      return IR;
    }

    // If the caller is a recursive function then we don't want to inline
    // functions which allocate a lot of stack space because it would increase
    // the caller stack usage dramatically.
    if (IsCallerRecursive &&
        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
      InlineResult IR = "recursive and allocates too much stack space";
      if (ORE)
        ORE->emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
                                          &CandidateCall)
                 << NV("Callee", &F) << " is " << NV("InlineResult", IR.message)
                 << ". Cost is not fully computed";
        });
      return IR;
    }

    // Check if we've passed the maximum possible threshold so we don't spin in
    // huge basic blocks that will never inline.
    if (Cost >= Threshold && !ComputeFullInlineCost)
      return false;
  }

  return true;
}

/// Compute the base pointer and cumulative constant offsets for V.
///
/// This strips all constant offsets off of V, leaving it the base pointer, and
/// accumulates the total constant offset applied in the returned constant. It
/// returns 0 if V is not a pointer, and returns the constant '0' if there are
/// no constant offsets applied.
ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
  if (!V->getType()->isPointerTy())
    return nullptr;

  unsigned AS = V->getType()->getPointerAddressSpace();
  unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
  APInt Offset = APInt::getNullValue(IntPtrWidth);

  // Even though we don't look through PHI nodes, we could be called on an
  // instruction in an unreachable block, which may be on a cycle.
  SmallPtrSet<Value *, 4> Visited;
  Visited.insert(V);
  do {
    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
        return nullptr;
      V = GEP->getPointerOperand();
    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
      V = cast<Operator>(V)->getOperand(0);
    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
      if (GA->isInterposable())
        break;
      V = GA->getAliasee();
    } else {
      break;
    }
    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
  } while (Visited.insert(V).second);

  Type *IntPtrTy = DL.getIntPtrType(V->getContext(), AS);
  return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
}

/// Find dead blocks due to deleted CFG edges during inlining.
///
/// If we know the successor of the current block, \p CurrBB, has to be \p
/// NextBB, the other successors of \p CurrBB are dead if these successors have
/// no live incoming CFG edges.  If one block is found to be dead, we can
/// continue growing the dead block list by checking the successors of the dead
/// blocks to see if all their incoming edges are dead or not.
void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
  auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
    // A CFG edge is dead if the predecessor is dead or the predecessor has a
    // known successor which is not the one under exam.
    return (DeadBlocks.count(Pred) ||
            (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
  };

  auto IsNewlyDead = [&](BasicBlock *BB) {
    // If all the edges to a block are dead, the block is also dead.
    return (!DeadBlocks.count(BB) &&
            llvm::all_of(predecessors(BB),
                         [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
  };

  for (BasicBlock *Succ : successors(CurrBB)) {
    if (Succ == NextBB || !IsNewlyDead(Succ))
      continue;
    SmallVector<BasicBlock *, 4> NewDead;
    NewDead.push_back(Succ);
    while (!NewDead.empty()) {
      BasicBlock *Dead = NewDead.pop_back_val();
      if (DeadBlocks.insert(Dead))
        // Continue growing the dead block lists.
        for (BasicBlock *S : successors(Dead))
          if (IsNewlyDead(S))
            NewDead.push_back(S);
    }
  }
}

/// Analyze a call site for potential inlining.
///
/// Returns true if inlining this call is viable, and false if it is not
/// viable. It computes the cost and adjusts the threshold based on numerous
/// factors and heuristics. If this method returns false but the computed cost
/// is below the computed threshold, then inlining was forcibly disabled by
/// some artifact of the routine.
InlineResult CallAnalyzer::analyzeCall(CallBase &Call) {
  ++NumCallsAnalyzed;

  // Perform some tweaks to the cost and threshold based on the direct
  // callsite information.

  // We want to more aggressively inline vector-dense kernels, so up the
  // threshold, and we'll lower it if the % of vector instructions gets too
  // low. Note that these bonuses are some what arbitrary and evolved over time
  // by accident as much as because they are principled bonuses.
  //
  // FIXME: It would be nice to remove all such bonuses. At least it would be
  // nice to base the bonus values on something more scientific.
  assert(NumInstructions == 0);
  assert(NumVectorInstructions == 0);

  // Update the threshold based on callsite properties
  updateThreshold(Call, F);

  // While Threshold depends on commandline options that can take negative
  // values, we want to enforce the invariant that the computed threshold and
  // bonuses are non-negative.
  assert(Threshold >= 0);
  assert(SingleBBBonus >= 0);
  assert(VectorBonus >= 0);

  // Speculatively apply all possible bonuses to Threshold. If cost exceeds
  // this Threshold any time, and cost cannot decrease, we can stop processing
  // the rest of the function body.
  Threshold += (SingleBBBonus + VectorBonus);

  // Give out bonuses for the callsite, as the instructions setting them up
  // will be gone after inlining.
  addCost(-getCallsiteCost(Call, DL));

  // If this function uses the coldcc calling convention, prefer not to inline
  // it.
  if (F.getCallingConv() == CallingConv::Cold)
    Cost += InlineConstants::ColdccPenalty;

  // Check if we're done. This can happen due to bonuses and penalties.
  if (Cost >= Threshold && !ComputeFullInlineCost)
    return "high cost";

  if (F.empty())
    return true;

  Function *Caller = Call.getFunction();
  // Check if the caller function is recursive itself.
  for (User *U : Caller->users()) {
    CallBase *Call = dyn_cast<CallBase>(U);
    if (Call && Call->getFunction() == Caller) {
      IsCallerRecursive = true;
      break;
    }
  }

  // Populate our simplified values by mapping from function arguments to call
  // arguments with known important simplifications.
  auto CAI = Call.arg_begin();
  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
       FAI != FAE; ++FAI, ++CAI) {
    assert(CAI != Call.arg_end());
    if (Constant *C = dyn_cast<Constant>(CAI))
      SimplifiedValues[&*FAI] = C;

    Value *PtrArg = *CAI;
    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
      ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());

      // We can SROA any pointer arguments derived from alloca instructions.
      if (isa<AllocaInst>(PtrArg)) {
        SROAArgValues[&*FAI] = PtrArg;
        SROAArgCosts[PtrArg] = 0;
      }
    }
  }
  NumConstantArgs = SimplifiedValues.size();
  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
  NumAllocaArgs = SROAArgValues.size();

  // FIXME: If a caller has multiple calls to a callee, we end up recomputing
  // the ephemeral values multiple times (and they're completely determined by
  // the callee, so this is purely duplicate work).
  SmallPtrSet<const Value *, 32> EphValues;
  CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);

  // The worklist of live basic blocks in the callee *after* inlining. We avoid
  // adding basic blocks of the callee which can be proven to be dead for this
  // particular call site in order to get more accurate cost estimates. This
  // requires a somewhat heavyweight iteration pattern: we need to walk the
  // basic blocks in a breadth-first order as we insert live successors. To
  // accomplish this, prioritizing for small iterations because we exit after
  // crossing our threshold, we use a small-size optimized SetVector.
  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
                    SmallPtrSet<BasicBlock *, 16>>
      BBSetVector;
  BBSetVector BBWorklist;
  BBWorklist.insert(&F.getEntryBlock());
  bool SingleBB = true;
  // Note that we *must not* cache the size, this loop grows the worklist.
  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
    // Bail out the moment we cross the threshold. This means we'll under-count
    // the cost, but only when undercounting doesn't matter.
    if (Cost >= Threshold && !ComputeFullInlineCost)
      break;

    BasicBlock *BB = BBWorklist[Idx];
    if (BB->empty())
      continue;

    // Disallow inlining a blockaddress with uses other than strictly callbr.
    // A blockaddress only has defined behavior for an indirect branch in the
    // same function, and we do not currently support inlining indirect
    // branches.  But, the inliner may not see an indirect branch that ends up
    // being dead code at a particular call site. If the blockaddress escapes
    // the function, e.g., via a global variable, inlining may lead to an
    // invalid cross-function reference.
    // FIXME: pr/39560: continue relaxing this overt restriction.
    if (BB->hasAddressTaken())
      for (User *U : BlockAddress::get(&*BB)->users())
        if (!isa<CallBrInst>(*U))
          return "blockaddress used outside of callbr";

    // Analyze the cost of this block. If we blow through the threshold, this
    // returns false, and we can bail on out.
    InlineResult IR = analyzeBlock(BB, EphValues);
    if (!IR)
      return IR;

    Instruction *TI = BB->getTerminator();

    // Add in the live successors by first checking whether we have terminator
    // that may be simplified based on the values simplified by this call.
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      if (BI->isConditional()) {
        Value *Cond = BI->getCondition();
        if (ConstantInt *SimpleCond =
                dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
          BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
          BBWorklist.insert(NextBB);
          KnownSuccessors[BB] = NextBB;
          findDeadBlocks(BB, NextBB);
          continue;
        }
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      Value *Cond = SI->getCondition();
      if (ConstantInt *SimpleCond =
              dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
        BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
        BBWorklist.insert(NextBB);
        KnownSuccessors[BB] = NextBB;
        findDeadBlocks(BB, NextBB);
        continue;
      }
    }

    // If we're unable to select a particular successor, just count all of
    // them.
    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
         ++TIdx)
      BBWorklist.insert(TI->getSuccessor(TIdx));

    // If we had any successors at this point, than post-inlining is likely to
    // have them as well. Note that we assume any basic blocks which existed
    // due to branches or switches which folded above will also fold after
    // inlining.
    if (SingleBB && TI->getNumSuccessors() > 1) {
      // Take off the bonus we applied to the threshold.
      Threshold -= SingleBBBonus;
      SingleBB = false;
    }
  }

  bool OnlyOneCallAndLocalLinkage =
      F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
  // If this is a noduplicate call, we can still inline as long as
  // inlining this would cause the removal of the caller (so the instruction
  // is not actually duplicated, just moved).
  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
    return "noduplicate";

  // Loops generally act a lot like calls in that they act like barriers to
  // movement, require a certain amount of setup, etc. So when optimising for
  // size, we penalise any call sites that perform loops. We do this after all
  // other costs here, so will likely only be dealing with relatively small
  // functions (and hence DT and LI will hopefully be cheap).
  if (Caller->hasMinSize()) {
    DominatorTree DT(F);
    LoopInfo LI(DT);
    int NumLoops = 0;
    for (Loop *L : LI) {
      // Ignore loops that will not be executed
      if (DeadBlocks.count(L->getHeader()))
        continue;
      NumLoops++;
    }
    addCost(NumLoops * InlineConstants::CallPenalty);
  }

  // We applied the maximum possible vector bonus at the beginning. Now,
  // subtract the excess bonus, if any, from the Threshold before
  // comparing against Cost.
  if (NumVectorInstructions <= NumInstructions / 10)
    Threshold -= VectorBonus;
  else if (NumVectorInstructions <= NumInstructions / 2)
    Threshold -= VectorBonus/2;

  return Cost < std::max(1, Threshold);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Dump stats about this call's analysis.
LLVM_DUMP_METHOD void CallAnalyzer::dump() {
#define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
  DEBUG_PRINT_STAT(NumConstantArgs);
  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
  DEBUG_PRINT_STAT(NumAllocaArgs);
  DEBUG_PRINT_STAT(NumConstantPtrCmps);
  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
  DEBUG_PRINT_STAT(NumInstructionsSimplified);
  DEBUG_PRINT_STAT(NumInstructions);
  DEBUG_PRINT_STAT(SROACostSavings);
  DEBUG_PRINT_STAT(SROACostSavingsLost);
  DEBUG_PRINT_STAT(LoadEliminationCost);
  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
  DEBUG_PRINT_STAT(Cost);
  DEBUG_PRINT_STAT(Threshold);
#undef DEBUG_PRINT_STAT
}
#endif

/// Test that there are no attribute conflicts between Caller and Callee
///        that prevent inlining.
static bool functionsHaveCompatibleAttributes(Function *Caller,
                                              Function *Callee,
                                              TargetTransformInfo &TTI) {
  return TTI.areInlineCompatible(Caller, Callee) &&
         AttributeFuncs::areInlineCompatible(*Caller, *Callee);
}

int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
  int Cost = 0;
  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
    if (Call.isByValArgument(I)) {
      // We approximate the number of loads and stores needed by dividing the
      // size of the byval type by the target's pointer size.
      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
      unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
      unsigned AS = PTy->getAddressSpace();
      unsigned PointerSize = DL.getPointerSizeInBits(AS);
      // Ceiling division.
      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;

      // If it generates more than 8 stores it is likely to be expanded as an
      // inline memcpy so we take that as an upper bound. Otherwise we assume
      // one load and one store per word copied.
      // FIXME: The maxStoresPerMemcpy setting from the target should be used
      // here instead of a magic number of 8, but it's not available via
      // DataLayout.
      NumStores = std::min(NumStores, 8U);

      Cost += 2 * NumStores * InlineConstants::InstrCost;
    } else {
      // For non-byval arguments subtract off one instruction per call
      // argument.
      Cost += InlineConstants::InstrCost;
    }
  }
  // The call instruction also disappears after inlining.
  Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
  return Cost;
}

InlineCost llvm::getInlineCost(
    CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
    std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
    Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
  return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
                       GetAssumptionCache, GetBFI, PSI, ORE);
}

InlineCost llvm::getInlineCost(
    CallBase &Call, Function *Callee, const InlineParams &Params,
    TargetTransformInfo &CalleeTTI,
    std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
    Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {

  // Cannot inline indirect calls.
  if (!Callee)
    return llvm::InlineCost::getNever("indirect call");

  // Never inline calls with byval arguments that does not have the alloca
  // address space. Since byval arguments can be replaced with a copy to an
  // alloca, the inlined code would need to be adjusted to handle that the
  // argument is in the alloca address space (so it is a little bit complicated
  // to solve).
  unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
    if (Call.isByValArgument(I)) {
      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
      if (PTy->getAddressSpace() != AllocaAS)
        return llvm::InlineCost::getNever("byval arguments without alloca"
                                          " address space");
    }

  // Calls to functions with always-inline attributes should be inlined
  // whenever possible.
  if (Call.hasFnAttr(Attribute::AlwaysInline)) {
    auto IsViable = isInlineViable(*Callee);
    if (IsViable)
      return llvm::InlineCost::getAlways("always inline attribute");
    return llvm::InlineCost::getNever(IsViable.message);
  }

  // Never inline functions with conflicting attributes (unless callee has
  // always-inline attribute).
  Function *Caller = Call.getCaller();
  if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI))
    return llvm::InlineCost::getNever("conflicting attributes");

  // Don't inline this call if the caller has the optnone attribute.
  if (Caller->hasOptNone())
    return llvm::InlineCost::getNever("optnone attribute");

  // Don't inline a function that treats null pointer as valid into a caller
  // that does not have this attribute.
  if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
    return llvm::InlineCost::getNever("nullptr definitions incompatible");

  // Don't inline functions which can be interposed at link-time.
  if (Callee->isInterposable())
    return llvm::InlineCost::getNever("interposable");

  // Don't inline functions marked noinline.
  if (Callee->hasFnAttribute(Attribute::NoInline))
    return llvm::InlineCost::getNever("noinline function attribute");

  // Don't inline call sites marked noinline.
  if (Call.isNoInline())
    return llvm::InlineCost::getNever("noinline call site attribute");

  LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
                          << "... (caller:" << Caller->getName() << ")\n");

  CallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, *Callee,
                  Call, Params);
  InlineResult ShouldInline = CA.analyzeCall(Call);

  LLVM_DEBUG(CA.dump());

  // Check if there was a reason to force inlining or no inlining.
  if (!ShouldInline && CA.getCost() < CA.getThreshold())
    return InlineCost::getNever(ShouldInline.message);
  if (ShouldInline && CA.getCost() >= CA.getThreshold())
    return InlineCost::getAlways("empty function");

  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
}

InlineResult llvm::isInlineViable(Function &F) {
  bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
    // Disallow inlining of functions which contain indirect branches.
    if (isa<IndirectBrInst>(BI->getTerminator()))
      return "contains indirect branches";

    // Disallow inlining of blockaddresses which are used by non-callbr
    // instructions.
    if (BI->hasAddressTaken())
      for (User *U : BlockAddress::get(&*BI)->users())
        if (!isa<CallBrInst>(*U))
          return "blockaddress used outside of callbr";

    for (auto &II : *BI) {
      CallBase *Call = dyn_cast<CallBase>(&II);
      if (!Call)
        continue;

      // Disallow recursive calls.
      if (&F == Call->getCalledFunction())
        return "recursive call";

      // Disallow calls which expose returns-twice to a function not previously
      // attributed as such.
      if (!ReturnsTwice && isa<CallInst>(Call) &&
          cast<CallInst>(Call)->canReturnTwice())
        return "exposes returns-twice attribute";

      if (Call->getCalledFunction())
        switch (Call->getCalledFunction()->getIntrinsicID()) {
        default:
          break;
        // Disallow inlining of @llvm.icall.branch.funnel because current
        // backend can't separate call targets from call arguments.
        case llvm::Intrinsic::icall_branch_funnel:
          return "disallowed inlining of @llvm.icall.branch.funnel";
        // Disallow inlining functions that call @llvm.localescape. Doing this
        // correctly would require major changes to the inliner.
        case llvm::Intrinsic::localescape:
          return "disallowed inlining of @llvm.localescape";
        // Disallow inlining of functions that initialize VarArgs with va_start.
        case llvm::Intrinsic::vastart:
          return "contains VarArgs initialized with va_start";
        }
    }
  }

  return true;
}

// APIs to create InlineParams based on command line flags and/or other
// parameters.

InlineParams llvm::getInlineParams(int Threshold) {
  InlineParams Params;

  // This field is the threshold to use for a callee by default. This is
  // derived from one or more of:
  //  * optimization or size-optimization levels,
  //  * a value passed to createFunctionInliningPass function, or
  //  * the -inline-threshold flag.
  //  If the -inline-threshold flag is explicitly specified, that is used
  //  irrespective of anything else.
  if (InlineThreshold.getNumOccurrences() > 0)
    Params.DefaultThreshold = InlineThreshold;
  else
    Params.DefaultThreshold = Threshold;

  // Set the HintThreshold knob from the -inlinehint-threshold.
  Params.HintThreshold = HintThreshold;

  // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
  Params.HotCallSiteThreshold = HotCallSiteThreshold;

  // If the -locally-hot-callsite-threshold is explicitly specified, use it to
  // populate LocallyHotCallSiteThreshold. Later, we populate
  // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
  // we know that optimization level is O3 (in the getInlineParams variant that
  // takes the opt and size levels).
  // FIXME: Remove this check (and make the assignment unconditional) after
  // addressing size regression issues at O2.
  if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;

  // Set the ColdCallSiteThreshold knob from the -inline-cold-callsite-threshold.
  Params.ColdCallSiteThreshold = ColdCallSiteThreshold;

  // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
  // -inlinehint-threshold commandline option is not explicitly given. If that
  // option is present, then its value applies even for callees with size and
  // minsize attributes.
  // If the -inline-threshold is not specified, set the ColdThreshold from the
  // -inlinecold-threshold even if it is not explicitly passed. If
  // -inline-threshold is specified, then -inlinecold-threshold needs to be
  // explicitly specified to set the ColdThreshold knob
  if (InlineThreshold.getNumOccurrences() == 0) {
    Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
    Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
    Params.ColdThreshold = ColdThreshold;
  } else if (ColdThreshold.getNumOccurrences() > 0) {
    Params.ColdThreshold = ColdThreshold;
  }
  return Params;
}

InlineParams llvm::getInlineParams() {
  return getInlineParams(InlineThreshold);
}

// Compute the default threshold for inlining based on the opt level and the
// size opt level.
static int computeThresholdFromOptLevels(unsigned OptLevel,
                                         unsigned SizeOptLevel) {
  if (OptLevel > 2)
    return InlineConstants::OptAggressiveThreshold;
  if (SizeOptLevel == 1) // -Os
    return InlineConstants::OptSizeThreshold;
  if (SizeOptLevel == 2) // -Oz
    return InlineConstants::OptMinSizeThreshold;
  return InlineThreshold;
}

InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
  auto Params =
      getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
  // At O3, use the value of -locally-hot-callsite-threshold option to populate
  // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
  // when it is specified explicitly.
  if (OptLevel > 2)
    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
  return Params;
}