reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
//===- GetElementPtrTypeIterator.h ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an iterator for walking through the types indexed by
// getelementptr instructions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_GETELEMENTPTRTYPEITERATOR_H
#define LLVM_IR_GETELEMENTPTRTYPEITERATOR_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/User.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>

namespace llvm {

  template<typename ItTy = User::const_op_iterator>
  class generic_gep_type_iterator
    : public std::iterator<std::forward_iterator_tag, Type *, ptrdiff_t> {
    using super = std::iterator<std::forward_iterator_tag, Type *, ptrdiff_t>;

    ItTy OpIt;
    PointerUnion<StructType *, Type *> CurTy;
    enum : uint64_t { Unbounded = -1ull };
    uint64_t NumElements = Unbounded;

    generic_gep_type_iterator() = default;

  public:
    static generic_gep_type_iterator begin(Type *Ty, ItTy It) {
      generic_gep_type_iterator I;
      I.CurTy = Ty;
      I.OpIt = It;
      return I;
    }

    static generic_gep_type_iterator end(ItTy It) {
      generic_gep_type_iterator I;
      I.OpIt = It;
      return I;
    }

    bool operator==(const generic_gep_type_iterator& x) const {
      return OpIt == x.OpIt;
    }

    bool operator!=(const generic_gep_type_iterator& x) const {
      return !operator==(x);
    }

    // FIXME: Make this the iterator's operator*() after the 4.0 release.
    // operator*() had a different meaning in earlier releases, so we're
    // temporarily not giving this iterator an operator*() to avoid a subtle
    // semantics break.
    Type *getIndexedType() const {
      if (auto *T = CurTy.dyn_cast<Type *>())
        return T;
      return CurTy.get<StructType *>()->getTypeAtIndex(getOperand());
    }

    Value *getOperand() const { return const_cast<Value *>(&**OpIt); }

    generic_gep_type_iterator& operator++() {   // Preincrement
      Type *Ty = getIndexedType();
      if (auto *STy = dyn_cast<SequentialType>(Ty)) {
        CurTy = STy->getElementType();
        NumElements = STy->getNumElements();
      } else
        CurTy = dyn_cast<StructType>(Ty);
      ++OpIt;
      return *this;
    }

    generic_gep_type_iterator operator++(int) { // Postincrement
      generic_gep_type_iterator tmp = *this; ++*this; return tmp;
    }

    // All of the below API is for querying properties of the "outer type", i.e.
    // the type that contains the indexed type. Most of the time this is just
    // the type that was visited immediately prior to the indexed type, but for
    // the first element this is an unbounded array of the GEP's source element
    // type, for which there is no clearly corresponding IR type (we've
    // historically used a pointer type as the outer type in this case, but
    // pointers will soon lose their element type).
    //
    // FIXME: Most current users of this class are just interested in byte
    // offsets (a few need to know whether the outer type is a struct because
    // they are trying to replace a constant with a variable, which is only
    // legal for arrays, e.g. canReplaceOperandWithVariable in SimplifyCFG.cpp);
    // we should provide a more minimal API here that exposes not much more than
    // that.

    bool isStruct() const { return CurTy.is<StructType *>(); }
    bool isSequential() const { return CurTy.is<Type *>(); }

    StructType *getStructType() const { return CurTy.get<StructType *>(); }

    StructType *getStructTypeOrNull() const {
      return CurTy.dyn_cast<StructType *>();
    }

    bool isBoundedSequential() const {
      return isSequential() && NumElements != Unbounded;
    }

    uint64_t getSequentialNumElements() const {
      assert(isBoundedSequential());
      return NumElements;
    }
  };

  using gep_type_iterator = generic_gep_type_iterator<>;

  inline gep_type_iterator gep_type_begin(const User *GEP) {
    auto *GEPOp = cast<GEPOperator>(GEP);
    return gep_type_iterator::begin(
        GEPOp->getSourceElementType(),
        GEP->op_begin() + 1);
  }

  inline gep_type_iterator gep_type_end(const User *GEP) {
    return gep_type_iterator::end(GEP->op_end());
  }

  inline gep_type_iterator gep_type_begin(const User &GEP) {
    auto &GEPOp = cast<GEPOperator>(GEP);
    return gep_type_iterator::begin(
        GEPOp.getSourceElementType(),
        GEP.op_begin() + 1);
  }

  inline gep_type_iterator gep_type_end(const User &GEP) {
    return gep_type_iterator::end(GEP.op_end());
  }

  template<typename T>
  inline generic_gep_type_iterator<const T *>
  gep_type_begin(Type *Op0, ArrayRef<T> A) {
    return generic_gep_type_iterator<const T *>::begin(Op0, A.begin());
  }

  template<typename T>
  inline generic_gep_type_iterator<const T *>
  gep_type_end(Type * /*Op0*/, ArrayRef<T> A) {
    return generic_gep_type_iterator<const T *>::end(A.end());
  }

} // end namespace llvm

#endif // LLVM_IR_GETELEMENTPTRTYPEITERATOR_H