reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>

#define DEBUG_TYPE "cgscc"

using namespace llvm;

// Explicit template instantiations and specialization definitions for core
// template typedefs.
namespace llvm {

// Explicit instantiations for the core proxy templates.
template class AllAnalysesOn<LazyCallGraph::SCC>;
template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
                           LazyCallGraph &, CGSCCUpdateResult &>;
template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
                                         LazyCallGraph::SCC, LazyCallGraph &>;
template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;

/// Explicitly specialize the pass manager run method to handle call graph
/// updates.
template <>
PreservedAnalyses
PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
            CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
                                      CGSCCAnalysisManager &AM,
                                      LazyCallGraph &G, CGSCCUpdateResult &UR) {
  // Request PassInstrumentation from analysis manager, will use it to run
  // instrumenting callbacks for the passes later.
  PassInstrumentation PI =
      AM.getResult<PassInstrumentationAnalysis>(InitialC, G);

  PreservedAnalyses PA = PreservedAnalyses::all();

  if (DebugLogging)
    dbgs() << "Starting CGSCC pass manager run.\n";

  // The SCC may be refined while we are running passes over it, so set up
  // a pointer that we can update.
  LazyCallGraph::SCC *C = &InitialC;

  for (auto &Pass : Passes) {
    if (DebugLogging)
      dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";

    // Check the PassInstrumentation's BeforePass callbacks before running the
    // pass, skip its execution completely if asked to (callback returns false).
    if (!PI.runBeforePass(*Pass, *C))
      continue;

    PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);

    if (UR.InvalidatedSCCs.count(C))
      PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass);
    else
      PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C);

    // Update the SCC if necessary.
    C = UR.UpdatedC ? UR.UpdatedC : C;

    // If the CGSCC pass wasn't able to provide a valid updated SCC, the
    // current SCC may simply need to be skipped if invalid.
    if (UR.InvalidatedSCCs.count(C)) {
      LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
      break;
    }
    // Check that we didn't miss any update scenario.
    assert(C->begin() != C->end() && "Cannot have an empty SCC!");

    // Update the analysis manager as each pass runs and potentially
    // invalidates analyses.
    AM.invalidate(*C, PassPA);

    // Finally, we intersect the final preserved analyses to compute the
    // aggregate preserved set for this pass manager.
    PA.intersect(std::move(PassPA));

    // FIXME: Historically, the pass managers all called the LLVM context's
    // yield function here. We don't have a generic way to acquire the
    // context and it isn't yet clear what the right pattern is for yielding
    // in the new pass manager so it is currently omitted.
    // ...getContext().yield();
  }

  // Before we mark all of *this* SCC's analyses as preserved below, intersect
  // this with the cross-SCC preserved analysis set. This is used to allow
  // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
  // for them.
  UR.CrossSCCPA.intersect(PA);

  // Invalidation was handled after each pass in the above loop for the current
  // SCC. Therefore, the remaining analysis results in the AnalysisManager are
  // preserved. We mark this with a set so that we don't need to inspect each
  // one individually.
  PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();

  if (DebugLogging)
    dbgs() << "Finished CGSCC pass manager run.\n";

  return PA;
}

bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
    Module &M, const PreservedAnalyses &PA,
    ModuleAnalysisManager::Invalidator &Inv) {
  // If literally everything is preserved, we're done.
  if (PA.areAllPreserved())
    return false; // This is still a valid proxy.

  // If this proxy or the call graph is going to be invalidated, we also need
  // to clear all the keys coming from that analysis.
  //
  // We also directly invalidate the FAM's module proxy if necessary, and if
  // that proxy isn't preserved we can't preserve this proxy either. We rely on
  // it to handle module -> function analysis invalidation in the face of
  // structural changes and so if it's unavailable we conservatively clear the
  // entire SCC layer as well rather than trying to do invalidation ourselves.
  auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
  if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
      Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
      Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
    InnerAM->clear();

    // And the proxy itself should be marked as invalid so that we can observe
    // the new call graph. This isn't strictly necessary because we cheat
    // above, but is still useful.
    return true;
  }

  // Directly check if the relevant set is preserved so we can short circuit
  // invalidating SCCs below.
  bool AreSCCAnalysesPreserved =
      PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();

  // Ok, we have a graph, so we can propagate the invalidation down into it.
  G->buildRefSCCs();
  for (auto &RC : G->postorder_ref_sccs())
    for (auto &C : RC) {
      Optional<PreservedAnalyses> InnerPA;

      // Check to see whether the preserved set needs to be adjusted based on
      // module-level analysis invalidation triggering deferred invalidation
      // for this SCC.
      if (auto *OuterProxy =
              InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
        for (const auto &OuterInvalidationPair :
             OuterProxy->getOuterInvalidations()) {
          AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
          const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
          if (Inv.invalidate(OuterAnalysisID, M, PA)) {
            if (!InnerPA)
              InnerPA = PA;
            for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
              InnerPA->abandon(InnerAnalysisID);
          }
        }

      // Check if we needed a custom PA set. If so we'll need to run the inner
      // invalidation.
      if (InnerPA) {
        InnerAM->invalidate(C, *InnerPA);
        continue;
      }

      // Otherwise we only need to do invalidation if the original PA set didn't
      // preserve all SCC analyses.
      if (!AreSCCAnalysesPreserved)
        InnerAM->invalidate(C, PA);
    }

  // Return false to indicate that this result is still a valid proxy.
  return false;
}

template <>
CGSCCAnalysisManagerModuleProxy::Result
CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
  // Force the Function analysis manager to also be available so that it can
  // be accessed in an SCC analysis and proxied onward to function passes.
  // FIXME: It is pretty awkward to just drop the result here and assert that
  // we can find it again later.
  (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);

  return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
}

AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;

FunctionAnalysisManagerCGSCCProxy::Result
FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
                                       CGSCCAnalysisManager &AM,
                                       LazyCallGraph &CG) {
  // Collect the FunctionAnalysisManager from the Module layer and use that to
  // build the proxy result.
  //
  // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
  // invalidate the function analyses.
  auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
  Module &M = *C.begin()->getFunction().getParent();
  auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
  assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
                     "proxy is run on the module prior to entering the CGSCC "
                     "walk.");

  // Note that we special-case invalidation handling of this proxy in the CGSCC
  // analysis manager's Module proxy. This avoids the need to do anything
  // special here to recompute all of this if ever the FAM's module proxy goes
  // away.
  return Result(FAMProxy->getManager());
}

bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
    LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
    CGSCCAnalysisManager::Invalidator &Inv) {
  // If literally everything is preserved, we're done.
  if (PA.areAllPreserved())
    return false; // This is still a valid proxy.

  // If this proxy isn't marked as preserved, then even if the result remains
  // valid, the key itself may no longer be valid, so we clear everything.
  //
  // Note that in order to preserve this proxy, a module pass must ensure that
  // the FAM has been completely updated to handle the deletion of functions.
  // Specifically, any FAM-cached results for those functions need to have been
  // forcibly cleared. When preserved, this proxy will only invalidate results
  // cached on functions *still in the module* at the end of the module pass.
  auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
    for (LazyCallGraph::Node &N : C)
      FAM->clear(N.getFunction(), N.getFunction().getName());

    return true;
  }

  // Directly check if the relevant set is preserved.
  bool AreFunctionAnalysesPreserved =
      PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();

  // Now walk all the functions to see if any inner analysis invalidation is
  // necessary.
  for (LazyCallGraph::Node &N : C) {
    Function &F = N.getFunction();
    Optional<PreservedAnalyses> FunctionPA;

    // Check to see whether the preserved set needs to be pruned based on
    // SCC-level analysis invalidation that triggers deferred invalidation
    // registered with the outer analysis manager proxy for this function.
    if (auto *OuterProxy =
            FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
      for (const auto &OuterInvalidationPair :
           OuterProxy->getOuterInvalidations()) {
        AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
        const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
        if (Inv.invalidate(OuterAnalysisID, C, PA)) {
          if (!FunctionPA)
            FunctionPA = PA;
          for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
            FunctionPA->abandon(InnerAnalysisID);
        }
      }

    // Check if we needed a custom PA set, and if so we'll need to run the
    // inner invalidation.
    if (FunctionPA) {
      FAM->invalidate(F, *FunctionPA);
      continue;
    }

    // Otherwise we only need to do invalidation if the original PA set didn't
    // preserve all function analyses.
    if (!AreFunctionAnalysesPreserved)
      FAM->invalidate(F, PA);
  }

  // Return false to indicate that this result is still a valid proxy.
  return false;
}

} // end namespace llvm

/// When a new SCC is created for the graph and there might be function
/// analysis results cached for the functions now in that SCC two forms of
/// updates are required.
///
/// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
/// created so that any subsequent invalidation events to the SCC are
/// propagated to the function analysis results cached for functions within it.
///
/// Second, if any of the functions within the SCC have analysis results with
/// outer analysis dependencies, then those dependencies would point to the
/// *wrong* SCC's analysis result. We forcibly invalidate the necessary
/// function analyses so that they don't retain stale handles.
static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
                                         LazyCallGraph &G,
                                         CGSCCAnalysisManager &AM) {
  // Get the relevant function analysis manager.
  auto &FAM =
      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager();

  // Now walk the functions in this SCC and invalidate any function analysis
  // results that might have outer dependencies on an SCC analysis.
  for (LazyCallGraph::Node &N : C) {
    Function &F = N.getFunction();

    auto *OuterProxy =
        FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
    if (!OuterProxy)
      // No outer analyses were queried, nothing to do.
      continue;

    // Forcibly abandon all the inner analyses with dependencies, but
    // invalidate nothing else.
    auto PA = PreservedAnalyses::all();
    for (const auto &OuterInvalidationPair :
         OuterProxy->getOuterInvalidations()) {
      const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
      for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
        PA.abandon(InnerAnalysisID);
    }

    // Now invalidate anything we found.
    FAM.invalidate(F, PA);
  }
}

/// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
/// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
/// added SCCs.
///
/// The range of new SCCs must be in postorder already. The SCC they were split
/// out of must be provided as \p C. The current node being mutated and
/// triggering updates must be passed as \p N.
///
/// This function returns the SCC containing \p N. This will be either \p C if
/// no new SCCs have been split out, or it will be the new SCC containing \p N.
template <typename SCCRangeT>
static LazyCallGraph::SCC *
incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
                       LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
                       CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
  using SCC = LazyCallGraph::SCC;

  if (NewSCCRange.begin() == NewSCCRange.end())
    return C;

  // Add the current SCC to the worklist as its shape has changed.
  UR.CWorklist.insert(C);
  LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
                    << "\n");

  SCC *OldC = C;

  // Update the current SCC. Note that if we have new SCCs, this must actually
  // change the SCC.
  assert(C != &*NewSCCRange.begin() &&
         "Cannot insert new SCCs without changing current SCC!");
  C = &*NewSCCRange.begin();
  assert(G.lookupSCC(N) == C && "Failed to update current SCC!");

  // If we had a cached FAM proxy originally, we will want to create more of
  // them for each SCC that was split off.
  bool NeedFAMProxy =
      AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr;

  // We need to propagate an invalidation call to all but the newly current SCC
  // because the outer pass manager won't do that for us after splitting them.
  // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
  // there are preserved analysis we can avoid invalidating them here for
  // split-off SCCs.
  // We know however that this will preserve any FAM proxy so go ahead and mark
  // that.
  PreservedAnalyses PA;
  PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
  AM.invalidate(*OldC, PA);

  // Ensure the now-current SCC's function analyses are updated.
  if (NeedFAMProxy)
    updateNewSCCFunctionAnalyses(*C, G, AM);

  for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
                                            NewSCCRange.end()))) {
    assert(C != &NewC && "No need to re-visit the current SCC!");
    assert(OldC != &NewC && "Already handled the original SCC!");
    UR.CWorklist.insert(&NewC);
    LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");

    // Ensure new SCCs' function analyses are updated.
    if (NeedFAMProxy)
      updateNewSCCFunctionAnalyses(NewC, G, AM);

    // Also propagate a normal invalidation to the new SCC as only the current
    // will get one from the pass manager infrastructure.
    AM.invalidate(NewC, PA);
  }
  return C;
}

LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
    LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
    CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
  using Node = LazyCallGraph::Node;
  using Edge = LazyCallGraph::Edge;
  using SCC = LazyCallGraph::SCC;
  using RefSCC = LazyCallGraph::RefSCC;

  RefSCC &InitialRC = InitialC.getOuterRefSCC();
  SCC *C = &InitialC;
  RefSCC *RC = &InitialRC;
  Function &F = N.getFunction();

  // Walk the function body and build up the set of retained, promoted, and
  // demoted edges.
  SmallVector<Constant *, 16> Worklist;
  SmallPtrSet<Constant *, 16> Visited;
  SmallPtrSet<Node *, 16> RetainedEdges;
  SmallSetVector<Node *, 4> PromotedRefTargets;
  SmallSetVector<Node *, 4> DemotedCallTargets;

  // First walk the function and handle all called functions. We do this first
  // because if there is a single call edge, whether there are ref edges is
  // irrelevant.
  for (Instruction &I : instructions(F))
    if (auto CS = CallSite(&I))
      if (Function *Callee = CS.getCalledFunction())
        if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
          Node &CalleeN = *G.lookup(*Callee);
          Edge *E = N->lookup(CalleeN);
          // FIXME: We should really handle adding new calls. While it will
          // make downstream usage more complex, there is no fundamental
          // limitation and it will allow passes within the CGSCC to be a bit
          // more flexible in what transforms they can do. Until then, we
          // verify that new calls haven't been introduced.
          assert(E && "No function transformations should introduce *new* "
                      "call edges! Any new calls should be modeled as "
                      "promoted existing ref edges!");
          bool Inserted = RetainedEdges.insert(&CalleeN).second;
          (void)Inserted;
          assert(Inserted && "We should never visit a function twice.");
          if (!E->isCall())
            PromotedRefTargets.insert(&CalleeN);
        }

  // Now walk all references.
  for (Instruction &I : instructions(F))
    for (Value *Op : I.operand_values())
      if (auto *C = dyn_cast<Constant>(Op))
        if (Visited.insert(C).second)
          Worklist.push_back(C);

  auto VisitRef = [&](Function &Referee) {
    Node &RefereeN = *G.lookup(Referee);
    Edge *E = N->lookup(RefereeN);
    // FIXME: Similarly to new calls, we also currently preclude
    // introducing new references. See above for details.
    assert(E && "No function transformations should introduce *new* ref "
                "edges! Any new ref edges would require IPO which "
                "function passes aren't allowed to do!");
    bool Inserted = RetainedEdges.insert(&RefereeN).second;
    (void)Inserted;
    assert(Inserted && "We should never visit a function twice.");
    if (E->isCall())
      DemotedCallTargets.insert(&RefereeN);
  };
  LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);

  // Include synthetic reference edges to known, defined lib functions.
  for (auto *F : G.getLibFunctions())
    // While the list of lib functions doesn't have repeats, don't re-visit
    // anything handled above.
    if (!Visited.count(F))
      VisitRef(*F);

  // First remove all of the edges that are no longer present in this function.
  // The first step makes these edges uniformly ref edges and accumulates them
  // into a separate data structure so removal doesn't invalidate anything.
  SmallVector<Node *, 4> DeadTargets;
  for (Edge &E : *N) {
    if (RetainedEdges.count(&E.getNode()))
      continue;

    SCC &TargetC = *G.lookupSCC(E.getNode());
    RefSCC &TargetRC = TargetC.getOuterRefSCC();
    if (&TargetRC == RC && E.isCall()) {
      if (C != &TargetC) {
        // For separate SCCs this is trivial.
        RC->switchTrivialInternalEdgeToRef(N, E.getNode());
      } else {
        // Now update the call graph.
        C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
                                   G, N, C, AM, UR);
      }
    }

    // Now that this is ready for actual removal, put it into our list.
    DeadTargets.push_back(&E.getNode());
  }
  // Remove the easy cases quickly and actually pull them out of our list.
  DeadTargets.erase(
      llvm::remove_if(DeadTargets,
                      [&](Node *TargetN) {
                        SCC &TargetC = *G.lookupSCC(*TargetN);
                        RefSCC &TargetRC = TargetC.getOuterRefSCC();

                        // We can't trivially remove internal targets, so skip
                        // those.
                        if (&TargetRC == RC)
                          return false;

                        RC->removeOutgoingEdge(N, *TargetN);
                        LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
                                          << N << "' to '" << TargetN << "'\n");
                        return true;
                      }),
      DeadTargets.end());

  // Now do a batch removal of the internal ref edges left.
  auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
  if (!NewRefSCCs.empty()) {
    // The old RefSCC is dead, mark it as such.
    UR.InvalidatedRefSCCs.insert(RC);

    // Note that we don't bother to invalidate analyses as ref-edge
    // connectivity is not really observable in any way and is intended
    // exclusively to be used for ordering of transforms rather than for
    // analysis conclusions.

    // Update RC to the "bottom".
    assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
    RC = &C->getOuterRefSCC();
    assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");

    // The RC worklist is in reverse postorder, so we enqueue the new ones in
    // RPO except for the one which contains the source node as that is the
    // "bottom" we will continue processing in the bottom-up walk.
    assert(NewRefSCCs.front() == RC &&
           "New current RefSCC not first in the returned list!");
    for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
                                                  NewRefSCCs.end()))) {
      assert(NewRC != RC && "Should not encounter the current RefSCC further "
                            "in the postorder list of new RefSCCs.");
      UR.RCWorklist.insert(NewRC);
      LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
                        << *NewRC << "\n");
    }
  }

  // Next demote all the call edges that are now ref edges. This helps make
  // the SCCs small which should minimize the work below as we don't want to
  // form cycles that this would break.
  for (Node *RefTarget : DemotedCallTargets) {
    SCC &TargetC = *G.lookupSCC(*RefTarget);
    RefSCC &TargetRC = TargetC.getOuterRefSCC();

    // The easy case is when the target RefSCC is not this RefSCC. This is
    // only supported when the target RefSCC is a child of this RefSCC.
    if (&TargetRC != RC) {
      assert(RC->isAncestorOf(TargetRC) &&
             "Cannot potentially form RefSCC cycles here!");
      RC->switchOutgoingEdgeToRef(N, *RefTarget);
      LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
                        << "' to '" << *RefTarget << "'\n");
      continue;
    }

    // We are switching an internal call edge to a ref edge. This may split up
    // some SCCs.
    if (C != &TargetC) {
      // For separate SCCs this is trivial.
      RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
      continue;
    }

    // Now update the call graph.
    C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
                               C, AM, UR);
  }

  // Now promote ref edges into call edges.
  for (Node *CallTarget : PromotedRefTargets) {
    SCC &TargetC = *G.lookupSCC(*CallTarget);
    RefSCC &TargetRC = TargetC.getOuterRefSCC();

    // The easy case is when the target RefSCC is not this RefSCC. This is
    // only supported when the target RefSCC is a child of this RefSCC.
    if (&TargetRC != RC) {
      assert(RC->isAncestorOf(TargetRC) &&
             "Cannot potentially form RefSCC cycles here!");
      RC->switchOutgoingEdgeToCall(N, *CallTarget);
      LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
                        << "' to '" << *CallTarget << "'\n");
      continue;
    }
    LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
                      << N << "' to '" << *CallTarget << "'\n");

    // Otherwise we are switching an internal ref edge to a call edge. This
    // may merge away some SCCs, and we add those to the UpdateResult. We also
    // need to make sure to update the worklist in the event SCCs have moved
    // before the current one in the post-order sequence
    bool HasFunctionAnalysisProxy = false;
    auto InitialSCCIndex = RC->find(*C) - RC->begin();
    bool FormedCycle = RC->switchInternalEdgeToCall(
        N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
          for (SCC *MergedC : MergedSCCs) {
            assert(MergedC != &TargetC && "Cannot merge away the target SCC!");

            HasFunctionAnalysisProxy |=
                AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
                    *MergedC) != nullptr;

            // Mark that this SCC will no longer be valid.
            UR.InvalidatedSCCs.insert(MergedC);

            // FIXME: We should really do a 'clear' here to forcibly release
            // memory, but we don't have a good way of doing that and
            // preserving the function analyses.
            auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
            PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
            AM.invalidate(*MergedC, PA);
          }
        });

    // If we formed a cycle by creating this call, we need to update more data
    // structures.
    if (FormedCycle) {
      C = &TargetC;
      assert(G.lookupSCC(N) == C && "Failed to update current SCC!");

      // If one of the invalidated SCCs had a cached proxy to a function
      // analysis manager, we need to create a proxy in the new current SCC as
      // the invalidated SCCs had their functions moved.
      if (HasFunctionAnalysisProxy)
        AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);

      // Any analyses cached for this SCC are no longer precise as the shape
      // has changed by introducing this cycle. However, we have taken care to
      // update the proxies so it remains valide.
      auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
      PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
      AM.invalidate(*C, PA);
    }
    auto NewSCCIndex = RC->find(*C) - RC->begin();
    // If we have actually moved an SCC to be topologically "below" the current
    // one due to merging, we will need to revisit the current SCC after
    // visiting those moved SCCs.
    //
    // It is critical that we *do not* revisit the current SCC unless we
    // actually move SCCs in the process of merging because otherwise we may
    // form a cycle where an SCC is split apart, merged, split, merged and so
    // on infinitely.
    if (InitialSCCIndex < NewSCCIndex) {
      // Put our current SCC back onto the worklist as we'll visit other SCCs
      // that are now definitively ordered prior to the current one in the
      // post-order sequence, and may end up observing more precise context to
      // optimize the current SCC.
      UR.CWorklist.insert(C);
      LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
                        << "\n");
      // Enqueue in reverse order as we pop off the back of the worklist.
      for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
                                                  RC->begin() + NewSCCIndex))) {
        UR.CWorklist.insert(&MovedC);
        LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
                          << MovedC << "\n");
      }
    }
  }

  assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
  assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
  assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");

  // Record the current RefSCC and SCC for higher layers of the CGSCC pass
  // manager now that all the updates have been applied.
  if (RC != &InitialRC)
    UR.UpdatedRC = RC;
  if (C != &InitialC)
    UR.UpdatedC = C;

  return *C;
}