reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
//===- ScopInfo.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the Scop
// detection derived from their LLVM-IR code.
//
// This representation is shared among several tools in the polyhedral
// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
//
//===----------------------------------------------------------------------===//

#include "polly/ScopInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopBuilder.h"
#include "polly/ScopDetection.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/SCEVAffinator.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/aff.h"
#include "isl/local_space.h"
#include "isl/map.h"
#include "isl/options.h"
#include "isl/set.h"
#include <cassert>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-scops"

STATISTIC(AssumptionsAliasing, "Number of aliasing assumptions taken.");
STATISTIC(AssumptionsInbounds, "Number of inbounds assumptions taken.");
STATISTIC(AssumptionsWrapping, "Number of wrapping assumptions taken.");
STATISTIC(AssumptionsUnsigned, "Number of unsigned assumptions taken.");
STATISTIC(AssumptionsComplexity, "Number of too complex SCoPs.");
STATISTIC(AssumptionsUnprofitable, "Number of unprofitable SCoPs.");
STATISTIC(AssumptionsErrorBlock, "Number of error block assumptions taken.");
STATISTIC(AssumptionsInfiniteLoop, "Number of bounded loop assumptions taken.");
STATISTIC(AssumptionsInvariantLoad,
          "Number of invariant loads assumptions taken.");
STATISTIC(AssumptionsDelinearization,
          "Number of delinearization assumptions taken.");

STATISTIC(NumScops, "Number of feasible SCoPs after ScopInfo");
STATISTIC(NumLoopsInScop, "Number of loops in scops");
STATISTIC(NumBoxedLoops, "Number of boxed loops in SCoPs after ScopInfo");
STATISTIC(NumAffineLoops, "Number of affine loops in SCoPs after ScopInfo");

STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0");
STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
STATISTIC(NumScopsDepthLarger,
          "Number of scops with maximal loop depth 6 and larger");
STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");

STATISTIC(NumValueWrites, "Number of scalar value writes after ScopInfo");
STATISTIC(
    NumValueWritesInLoops,
    "Number of scalar value writes nested in affine loops after ScopInfo");
STATISTIC(NumPHIWrites, "Number of scalar phi writes after ScopInfo");
STATISTIC(NumPHIWritesInLoops,
          "Number of scalar phi writes nested in affine loops after ScopInfo");
STATISTIC(NumSingletonWrites, "Number of singleton writes after ScopInfo");
STATISTIC(NumSingletonWritesInLoops,
          "Number of singleton writes nested in affine loops after ScopInfo");

int const polly::MaxDisjunctsInDomain = 20;

// The number of disjunct in the context after which we stop to add more
// disjuncts. This parameter is there to avoid exponential growth in the
// number of disjunct when adding non-convex sets to the context.
static int const MaxDisjunctsInContext = 4;

static cl::opt<bool> PollyRemarksMinimal(
    "polly-remarks-minimal",
    cl::desc("Do not emit remarks about assumptions that are known"),
    cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));

static cl::opt<bool>
    IslOnErrorAbort("polly-on-isl-error-abort",
                    cl::desc("Abort if an isl error is encountered"),
                    cl::init(true), cl::cat(PollyCategory));

static cl::opt<bool> PollyPreciseInbounds(
    "polly-precise-inbounds",
    cl::desc("Take more precise inbounds assumptions (do not scale well)"),
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));

static cl::opt<bool>
    PollyIgnoreInbounds("polly-ignore-inbounds",
                        cl::desc("Do not take inbounds assumptions at all"),
                        cl::Hidden, cl::init(false), cl::cat(PollyCategory));

static cl::opt<bool> PollyIgnoreParamBounds(
    "polly-ignore-parameter-bounds",
    cl::desc(
        "Do not add parameter bounds and do no gist simplify sets accordingly"),
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));

static cl::opt<bool> PollyPreciseFoldAccesses(
    "polly-precise-fold-accesses",
    cl::desc("Fold memory accesses to model more possible delinearizations "
             "(does not scale well)"),
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));

bool polly::UseInstructionNames;

static cl::opt<bool, true> XUseInstructionNames(
    "polly-use-llvm-names",
    cl::desc("Use LLVM-IR names when deriving statement names"),
    cl::location(UseInstructionNames), cl::Hidden, cl::init(false),
    cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> PollyPrintInstructions(
    "polly-print-instructions", cl::desc("Output instructions per ScopStmt"),
    cl::Hidden, cl::Optional, cl::init(false), cl::cat(PollyCategory));

//===----------------------------------------------------------------------===//

static isl::set addRangeBoundsToSet(isl::set S, const ConstantRange &Range,
                                    int dim, isl::dim type) {
  isl::val V;
  isl::ctx Ctx = S.get_ctx();

  // The upper and lower bound for a parameter value is derived either from
  // the data type of the parameter or from the - possibly more restrictive -
  // range metadata.
  V = valFromAPInt(Ctx.get(), Range.getSignedMin(), true);
  S = S.lower_bound_val(type, dim, V);
  V = valFromAPInt(Ctx.get(), Range.getSignedMax(), true);
  S = S.upper_bound_val(type, dim, V);

  if (Range.isFullSet())
    return S;

  if (S.n_basic_set() > MaxDisjunctsInContext)
    return S;

  // In case of signed wrapping, we can refine the set of valid values by
  // excluding the part not covered by the wrapping range.
  if (Range.isSignWrappedSet()) {
    V = valFromAPInt(Ctx.get(), Range.getLower(), true);
    isl::set SLB = S.lower_bound_val(type, dim, V);

    V = valFromAPInt(Ctx.get(), Range.getUpper(), true);
    V = V.sub_ui(1);
    isl::set SUB = S.upper_bound_val(type, dim, V);
    S = SLB.unite(SUB);
  }

  return S;
}

static const ScopArrayInfo *identifyBasePtrOriginSAI(Scop *S, Value *BasePtr) {
  LoadInst *BasePtrLI = dyn_cast<LoadInst>(BasePtr);
  if (!BasePtrLI)
    return nullptr;

  if (!S->contains(BasePtrLI))
    return nullptr;

  ScalarEvolution &SE = *S->getSE();

  auto *OriginBaseSCEV =
      SE.getPointerBase(SE.getSCEV(BasePtrLI->getPointerOperand()));
  if (!OriginBaseSCEV)
    return nullptr;

  auto *OriginBaseSCEVUnknown = dyn_cast<SCEVUnknown>(OriginBaseSCEV);
  if (!OriginBaseSCEVUnknown)
    return nullptr;

  return S->getScopArrayInfo(OriginBaseSCEVUnknown->getValue(),
                             MemoryKind::Array);
}

ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx Ctx,
                             ArrayRef<const SCEV *> Sizes, MemoryKind Kind,
                             const DataLayout &DL, Scop *S,
                             const char *BaseName)
    : BasePtr(BasePtr), ElementType(ElementType), Kind(Kind), DL(DL), S(*S) {
  std::string BasePtrName =
      BaseName ? BaseName
               : getIslCompatibleName("MemRef", BasePtr, S->getNextArrayIdx(),
                                      Kind == MemoryKind::PHI ? "__phi" : "",
                                      UseInstructionNames);
  Id = isl::id::alloc(Ctx, BasePtrName, this);

  updateSizes(Sizes);

  if (!BasePtr || Kind != MemoryKind::Array) {
    BasePtrOriginSAI = nullptr;
    return;
  }

  BasePtrOriginSAI = identifyBasePtrOriginSAI(S, BasePtr);
  if (BasePtrOriginSAI)
    const_cast<ScopArrayInfo *>(BasePtrOriginSAI)->addDerivedSAI(this);
}

ScopArrayInfo::~ScopArrayInfo() = default;

isl::space ScopArrayInfo::getSpace() const {
  auto Space = isl::space(Id.get_ctx(), 0, getNumberOfDimensions());
  Space = Space.set_tuple_id(isl::dim::set, Id);
  return Space;
}

bool ScopArrayInfo::isReadOnly() {
  isl::union_set WriteSet = S.getWrites().range();
  isl::space Space = getSpace();
  WriteSet = WriteSet.extract_set(Space);

  return bool(WriteSet.is_empty());
}

bool ScopArrayInfo::isCompatibleWith(const ScopArrayInfo *Array) const {
  if (Array->getElementType() != getElementType())
    return false;

  if (Array->getNumberOfDimensions() != getNumberOfDimensions())
    return false;

  for (unsigned i = 0; i < getNumberOfDimensions(); i++)
    if (Array->getDimensionSize(i) != getDimensionSize(i))
      return false;

  return true;
}

void ScopArrayInfo::updateElementType(Type *NewElementType) {
  if (NewElementType == ElementType)
    return;

  auto OldElementSize = DL.getTypeAllocSizeInBits(ElementType);
  auto NewElementSize = DL.getTypeAllocSizeInBits(NewElementType);

  if (NewElementSize == OldElementSize || NewElementSize == 0)
    return;

  if (NewElementSize % OldElementSize == 0 && NewElementSize < OldElementSize) {
    ElementType = NewElementType;
  } else {
    auto GCD = GreatestCommonDivisor64(NewElementSize, OldElementSize);
    ElementType = IntegerType::get(ElementType->getContext(), GCD);
  }
}

/// Make the ScopArrayInfo model a Fortran Array
void ScopArrayInfo::applyAndSetFAD(Value *FAD) {
  assert(FAD && "got invalid Fortran array descriptor");
  if (this->FAD) {
    assert(this->FAD == FAD &&
           "receiving different array descriptors for same array");
    return;
  }

  assert(DimensionSizesPw.size() > 0 && !DimensionSizesPw[0]);
  assert(!this->FAD);
  this->FAD = FAD;

  isl::space Space(S.getIslCtx(), 1, 0);

  std::string param_name = getName();
  param_name += "_fortranarr_size";
  isl::id IdPwAff = isl::id::alloc(S.getIslCtx(), param_name, this);

  Space = Space.set_dim_id(isl::dim::param, 0, IdPwAff);
  isl::pw_aff PwAff =
      isl::aff::var_on_domain(isl::local_space(Space), isl::dim::param, 0);

  DimensionSizesPw[0] = PwAff;
}

bool ScopArrayInfo::updateSizes(ArrayRef<const SCEV *> NewSizes,
                                bool CheckConsistency) {
  int SharedDims = std::min(NewSizes.size(), DimensionSizes.size());
  int ExtraDimsNew = NewSizes.size() - SharedDims;
  int ExtraDimsOld = DimensionSizes.size() - SharedDims;

  if (CheckConsistency) {
    for (int i = 0; i < SharedDims; i++) {
      auto *NewSize = NewSizes[i + ExtraDimsNew];
      auto *KnownSize = DimensionSizes[i + ExtraDimsOld];
      if (NewSize && KnownSize && NewSize != KnownSize)
        return false;
    }

    if (DimensionSizes.size() >= NewSizes.size())
      return true;
  }

  DimensionSizes.clear();
  DimensionSizes.insert(DimensionSizes.begin(), NewSizes.begin(),
                        NewSizes.end());
  DimensionSizesPw.clear();
  for (const SCEV *Expr : DimensionSizes) {
    if (!Expr) {
      DimensionSizesPw.push_back(nullptr);
      continue;
    }
    isl::pw_aff Size = S.getPwAffOnly(Expr);
    DimensionSizesPw.push_back(Size);
  }
  return true;
}

std::string ScopArrayInfo::getName() const { return Id.get_name(); }

int ScopArrayInfo::getElemSizeInBytes() const {
  return DL.getTypeAllocSize(ElementType);
}

isl::id ScopArrayInfo::getBasePtrId() const { return Id; }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ScopArrayInfo::dump() const { print(errs()); }
#endif

void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const {
  OS.indent(8) << *getElementType() << " " << getName();
  unsigned u = 0;
  // If this is a Fortran array, then we can print the outermost dimension
  // as a isl_pw_aff even though there is no SCEV information.
  bool IsOutermostSizeKnown = SizeAsPwAff && FAD;

  if (!IsOutermostSizeKnown && getNumberOfDimensions() > 0 &&
      !getDimensionSize(0)) {
    OS << "[*]";
    u++;
  }
  for (; u < getNumberOfDimensions(); u++) {
    OS << "[";

    if (SizeAsPwAff) {
      isl::pw_aff Size = getDimensionSizePw(u);
      OS << " " << Size << " ";
    } else {
      OS << *getDimensionSize(u);
    }

    OS << "]";
  }

  OS << ";";

  if (BasePtrOriginSAI)
    OS << " [BasePtrOrigin: " << BasePtrOriginSAI->getName() << "]";

  OS << " // Element size " << getElemSizeInBytes() << "\n";
}

const ScopArrayInfo *
ScopArrayInfo::getFromAccessFunction(isl::pw_multi_aff PMA) {
  isl::id Id = PMA.get_tuple_id(isl::dim::out);
  assert(!Id.is_null() && "Output dimension didn't have an ID");
  return getFromId(Id);
}

const ScopArrayInfo *ScopArrayInfo::getFromId(isl::id Id) {
  void *User = Id.get_user();
  const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
  return SAI;
}

void MemoryAccess::wrapConstantDimensions() {
  auto *SAI = getScopArrayInfo();
  isl::space ArraySpace = SAI->getSpace();
  isl::ctx Ctx = ArraySpace.get_ctx();
  unsigned DimsArray = SAI->getNumberOfDimensions();

  isl::multi_aff DivModAff = isl::multi_aff::identity(
      ArraySpace.map_from_domain_and_range(ArraySpace));
  isl::local_space LArraySpace = isl::local_space(ArraySpace);

  // Begin with last dimension, to iteratively carry into higher dimensions.
  for (int i = DimsArray - 1; i > 0; i--) {
    auto *DimSize = SAI->getDimensionSize(i);
    auto *DimSizeCst = dyn_cast<SCEVConstant>(DimSize);

    // This transformation is not applicable to dimensions with dynamic size.
    if (!DimSizeCst)
      continue;

    // This transformation is not applicable to dimensions of size zero.
    if (DimSize->isZero())
      continue;

    isl::val DimSizeVal =
        valFromAPInt(Ctx.get(), DimSizeCst->getAPInt(), false);
    isl::aff Var = isl::aff::var_on_domain(LArraySpace, isl::dim::set, i);
    isl::aff PrevVar =
        isl::aff::var_on_domain(LArraySpace, isl::dim::set, i - 1);

    // Compute: index % size
    // Modulo must apply in the divide of the previous iteration, if any.
    isl::aff Modulo = Var.mod(DimSizeVal);
    Modulo = Modulo.pullback(DivModAff);

    // Compute: floor(index / size)
    isl::aff Divide = Var.div(isl::aff(LArraySpace, DimSizeVal));
    Divide = Divide.floor();
    Divide = Divide.add(PrevVar);
    Divide = Divide.pullback(DivModAff);

    // Apply Modulo and Divide.
    DivModAff = DivModAff.set_aff(i, Modulo);
    DivModAff = DivModAff.set_aff(i - 1, Divide);
  }

  // Apply all modulo/divides on the accesses.
  isl::map Relation = AccessRelation;
  Relation = Relation.apply_range(isl::map::from_multi_aff(DivModAff));
  Relation = Relation.detect_equalities();
  AccessRelation = Relation;
}

void MemoryAccess::updateDimensionality() {
  auto *SAI = getScopArrayInfo();
  isl::space ArraySpace = SAI->getSpace();
  isl::space AccessSpace = AccessRelation.get_space().range();
  isl::ctx Ctx = ArraySpace.get_ctx();

  auto DimsArray = ArraySpace.dim(isl::dim::set);
  auto DimsAccess = AccessSpace.dim(isl::dim::set);
  auto DimsMissing = DimsArray - DimsAccess;

  auto *BB = getStatement()->getEntryBlock();
  auto &DL = BB->getModule()->getDataLayout();
  unsigned ArrayElemSize = SAI->getElemSizeInBytes();
  unsigned ElemBytes = DL.getTypeAllocSize(getElementType());

  isl::map Map = isl::map::from_domain_and_range(
      isl::set::universe(AccessSpace), isl::set::universe(ArraySpace));

  for (unsigned i = 0; i < DimsMissing; i++)
    Map = Map.fix_si(isl::dim::out, i, 0);

  for (unsigned i = DimsMissing; i < DimsArray; i++)
    Map = Map.equate(isl::dim::in, i - DimsMissing, isl::dim::out, i);

  AccessRelation = AccessRelation.apply_range(Map);

  // For the non delinearized arrays, divide the access function of the last
  // subscript by the size of the elements in the array.
  //
  // A stride one array access in C expressed as A[i] is expressed in
  // LLVM-IR as something like A[i * elementsize]. This hides the fact that
  // two subsequent values of 'i' index two values that are stored next to
  // each other in memory. By this division we make this characteristic
  // obvious again. If the base pointer was accessed with offsets not divisible
  // by the accesses element size, we will have chosen a smaller ArrayElemSize
  // that divides the offsets of all accesses to this base pointer.
  if (DimsAccess == 1) {
    isl::val V = isl::val(Ctx, ArrayElemSize);
    AccessRelation = AccessRelation.floordiv_val(V);
  }

  // We currently do this only if we added at least one dimension, which means
  // some dimension's indices have not been specified, an indicator that some
  // index values have been added together.
  // TODO: Investigate general usefulness; Effect on unit tests is to make index
  // expressions more complicated.
  if (DimsMissing)
    wrapConstantDimensions();

  if (!isAffine())
    computeBoundsOnAccessRelation(ArrayElemSize);

  // Introduce multi-element accesses in case the type loaded by this memory
  // access is larger than the canonical element type of the array.
  //
  // An access ((float *)A)[i] to an array char *A is modeled as
  // {[i] -> A[o] : 4 i <= o <= 4 i + 3
  if (ElemBytes > ArrayElemSize) {
    assert(ElemBytes % ArrayElemSize == 0 &&
           "Loaded element size should be multiple of canonical element size");
    isl::map Map = isl::map::from_domain_and_range(
        isl::set::universe(ArraySpace), isl::set::universe(ArraySpace));
    for (unsigned i = 0; i < DimsArray - 1; i++)
      Map = Map.equate(isl::dim::in, i, isl::dim::out, i);

    isl::constraint C;
    isl::local_space LS;

    LS = isl::local_space(Map.get_space());
    int Num = ElemBytes / getScopArrayInfo()->getElemSizeInBytes();

    C = isl::constraint::alloc_inequality(LS);
    C = C.set_constant_val(isl::val(Ctx, Num - 1));
    C = C.set_coefficient_si(isl::dim::in, DimsArray - 1, 1);
    C = C.set_coefficient_si(isl::dim::out, DimsArray - 1, -1);
    Map = Map.add_constraint(C);

    C = isl::constraint::alloc_inequality(LS);
    C = C.set_coefficient_si(isl::dim::in, DimsArray - 1, -1);
    C = C.set_coefficient_si(isl::dim::out, DimsArray - 1, 1);
    C = C.set_constant_val(isl::val(Ctx, 0));
    Map = Map.add_constraint(C);
    AccessRelation = AccessRelation.apply_range(Map);
  }
}

const std::string
MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) {
  switch (RT) {
  case MemoryAccess::RT_NONE:
    llvm_unreachable("Requested a reduction operator string for a memory "
                     "access which isn't a reduction");
  case MemoryAccess::RT_ADD:
    return "+";
  case MemoryAccess::RT_MUL:
    return "*";
  case MemoryAccess::RT_BOR:
    return "|";
  case MemoryAccess::RT_BXOR:
    return "^";
  case MemoryAccess::RT_BAND:
    return "&";
  }
  llvm_unreachable("Unknown reduction type");
}

const ScopArrayInfo *MemoryAccess::getOriginalScopArrayInfo() const {
  isl::id ArrayId = getArrayId();
  void *User = ArrayId.get_user();
  const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
  return SAI;
}

const ScopArrayInfo *MemoryAccess::getLatestScopArrayInfo() const {
  isl::id ArrayId = getLatestArrayId();
  void *User = ArrayId.get_user();
  const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
  return SAI;
}

isl::id MemoryAccess::getOriginalArrayId() const {
  return AccessRelation.get_tuple_id(isl::dim::out);
}

isl::id MemoryAccess::getLatestArrayId() const {
  if (!hasNewAccessRelation())
    return getOriginalArrayId();
  return NewAccessRelation.get_tuple_id(isl::dim::out);
}

isl::map MemoryAccess::getAddressFunction() const {
  return getAccessRelation().lexmin();
}

isl::pw_multi_aff
MemoryAccess::applyScheduleToAccessRelation(isl::union_map USchedule) const {
  isl::map Schedule, ScheduledAccRel;
  isl::union_set UDomain;

  UDomain = getStatement()->getDomain();
  USchedule = USchedule.intersect_domain(UDomain);
  Schedule = isl::map::from_union_map(USchedule);
  ScheduledAccRel = getAddressFunction().apply_domain(Schedule);
  return isl::pw_multi_aff::from_map(ScheduledAccRel);
}

isl::map MemoryAccess::getOriginalAccessRelation() const {
  return AccessRelation;
}

std::string MemoryAccess::getOriginalAccessRelationStr() const {
  return AccessRelation.to_str();
}

isl::space MemoryAccess::getOriginalAccessRelationSpace() const {
  return AccessRelation.get_space();
}

isl::map MemoryAccess::getNewAccessRelation() const {
  return NewAccessRelation;
}

std::string MemoryAccess::getNewAccessRelationStr() const {
  return NewAccessRelation.to_str();
}

std::string MemoryAccess::getAccessRelationStr() const {
  return getAccessRelation().to_str();
}

isl::basic_map MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
  isl::space Space = isl::space(Statement->getIslCtx(), 0, 1);
  Space = Space.align_params(Statement->getDomainSpace());

  return isl::basic_map::from_domain_and_range(
      isl::basic_set::universe(Statement->getDomainSpace()),
      isl::basic_set::universe(Space));
}

// Formalize no out-of-bound access assumption
//
// When delinearizing array accesses we optimistically assume that the
// delinearized accesses do not access out of bound locations (the subscript
// expression of each array evaluates for each statement instance that is
// executed to a value that is larger than zero and strictly smaller than the
// size of the corresponding dimension). The only exception is the outermost
// dimension for which we do not need to assume any upper bound.  At this point
// we formalize this assumption to ensure that at code generation time the
// relevant run-time checks can be generated.
//
// To find the set of constraints necessary to avoid out of bound accesses, we
// first build the set of data locations that are not within array bounds. We
// then apply the reverse access relation to obtain the set of iterations that
// may contain invalid accesses and reduce this set of iterations to the ones
// that are actually executed by intersecting them with the domain of the
// statement. If we now project out all loop dimensions, we obtain a set of
// parameters that may cause statement instances to be executed that may
// possibly yield out of bound memory accesses. The complement of these
// constraints is the set of constraints that needs to be assumed to ensure such
// statement instances are never executed.
void MemoryAccess::assumeNoOutOfBound() {
  if (PollyIgnoreInbounds)
    return;
  auto *SAI = getScopArrayInfo();
  isl::space Space = getOriginalAccessRelationSpace().range();
  isl::set Outside = isl::set::empty(Space);
  for (int i = 1, Size = Space.dim(isl::dim::set); i < Size; ++i) {
    isl::local_space LS(Space);
    isl::pw_aff Var = isl::pw_aff::var_on_domain(LS, isl::dim::set, i);
    isl::pw_aff Zero = isl::pw_aff(LS);

    isl::set DimOutside = Var.lt_set(Zero);
    isl::pw_aff SizeE = SAI->getDimensionSizePw(i);
    SizeE = SizeE.add_dims(isl::dim::in, Space.dim(isl::dim::set));
    SizeE = SizeE.set_tuple_id(isl::dim::in, Space.get_tuple_id(isl::dim::set));
    DimOutside = DimOutside.unite(SizeE.le_set(Var));

    Outside = Outside.unite(DimOutside);
  }

  Outside = Outside.apply(getAccessRelation().reverse());
  Outside = Outside.intersect(Statement->getDomain());
  Outside = Outside.params();

  // Remove divs to avoid the construction of overly complicated assumptions.
  // Doing so increases the set of parameter combinations that are assumed to
  // not appear. This is always save, but may make the resulting run-time check
  // bail out more often than strictly necessary.
  Outside = Outside.remove_divs();
  Outside = Outside.complement();
  const auto &Loc = getAccessInstruction()
                        ? getAccessInstruction()->getDebugLoc()
                        : DebugLoc();
  if (!PollyPreciseInbounds)
    Outside = Outside.gist_params(Statement->getDomain().params());
  Statement->getParent()->recordAssumption(INBOUNDS, Outside, Loc,
                                           AS_ASSUMPTION);
}

void MemoryAccess::buildMemIntrinsicAccessRelation() {
  assert(isMemoryIntrinsic());
  assert(Subscripts.size() == 2 && Sizes.size() == 1);

  isl::pw_aff SubscriptPWA = getPwAff(Subscripts[0]);
  isl::map SubscriptMap = isl::map::from_pw_aff(SubscriptPWA);

  isl::map LengthMap;
  if (Subscripts[1] == nullptr) {
    LengthMap = isl::map::universe(SubscriptMap.get_space());
  } else {
    isl::pw_aff LengthPWA = getPwAff(Subscripts[1]);
    LengthMap = isl::map::from_pw_aff(LengthPWA);
    isl::space RangeSpace = LengthMap.get_space().range();
    LengthMap = LengthMap.apply_range(isl::map::lex_gt(RangeSpace));
  }
  LengthMap = LengthMap.lower_bound_si(isl::dim::out, 0, 0);
  LengthMap = LengthMap.align_params(SubscriptMap.get_space());
  SubscriptMap = SubscriptMap.align_params(LengthMap.get_space());
  LengthMap = LengthMap.sum(SubscriptMap);
  AccessRelation =
      LengthMap.set_tuple_id(isl::dim::in, getStatement()->getDomainId());
}

void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) {
  ScalarEvolution *SE = Statement->getParent()->getSE();

  auto MAI = MemAccInst(getAccessInstruction());
  if (isa<MemIntrinsic>(MAI))
    return;

  Value *Ptr = MAI.getPointerOperand();
  if (!Ptr || !SE->isSCEVable(Ptr->getType()))
    return;

  auto *PtrSCEV = SE->getSCEV(Ptr);
  if (isa<SCEVCouldNotCompute>(PtrSCEV))
    return;

  auto *BasePtrSCEV = SE->getPointerBase(PtrSCEV);
  if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(BasePtrSCEV))
    PtrSCEV = SE->getMinusSCEV(PtrSCEV, BasePtrSCEV);

  const ConstantRange &Range = SE->getSignedRange(PtrSCEV);
  if (Range.isFullSet())
    return;

  if (Range.isUpperWrapped() || Range.isSignWrappedSet())
    return;

  bool isWrapping = Range.isSignWrappedSet();

  unsigned BW = Range.getBitWidth();
  const auto One = APInt(BW, 1);
  const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin();
  const auto UB = isWrapping ? (Range.getUpper() - One) : Range.getSignedMax();

  auto Min = LB.sdiv(APInt(BW, ElementSize));
  auto Max = UB.sdiv(APInt(BW, ElementSize)) + One;

  assert(Min.sle(Max) && "Minimum expected to be less or equal than max");

  isl::map Relation = AccessRelation;
  isl::set AccessRange = Relation.range();
  AccessRange = addRangeBoundsToSet(AccessRange, ConstantRange(Min, Max), 0,
                                    isl::dim::set);
  AccessRelation = Relation.intersect_range(AccessRange);
}

void MemoryAccess::foldAccessRelation() {
  if (Sizes.size() < 2 || isa<SCEVConstant>(Sizes[1]))
    return;

  int Size = Subscripts.size();

  isl::map NewAccessRelation = AccessRelation;

  for (int i = Size - 2; i >= 0; --i) {
    isl::space Space;
    isl::map MapOne, MapTwo;
    isl::pw_aff DimSize = getPwAff(Sizes[i + 1]);

    isl::space SpaceSize = DimSize.get_space();
    isl::id ParamId = SpaceSize.get_dim_id(isl::dim::param, 0);

    Space = AccessRelation.get_space();
    Space = Space.range().map_from_set();
    Space = Space.align_params(SpaceSize);

    int ParamLocation = Space.find_dim_by_id(isl::dim::param, ParamId);

    MapOne = isl::map::universe(Space);
    for (int j = 0; j < Size; ++j)
      MapOne = MapOne.equate(isl::dim::in, j, isl::dim::out, j);
    MapOne = MapOne.lower_bound_si(isl::dim::in, i + 1, 0);

    MapTwo = isl::map::universe(Space);
    for (int j = 0; j < Size; ++j)
      if (j < i || j > i + 1)
        MapTwo = MapTwo.equate(isl::dim::in, j, isl::dim::out, j);

    isl::local_space LS(Space);
    isl::constraint C;
    C = isl::constraint::alloc_equality(LS);
    C = C.set_constant_si(-1);
    C = C.set_coefficient_si(isl::dim::in, i, 1);
    C = C.set_coefficient_si(isl::dim::out, i, -1);
    MapTwo = MapTwo.add_constraint(C);
    C = isl::constraint::alloc_equality(LS);
    C = C.set_coefficient_si(isl::dim::in, i + 1, 1);
    C = C.set_coefficient_si(isl::dim::out, i + 1, -1);
    C = C.set_coefficient_si(isl::dim::param, ParamLocation, 1);
    MapTwo = MapTwo.add_constraint(C);
    MapTwo = MapTwo.upper_bound_si(isl::dim::in, i + 1, -1);

    MapOne = MapOne.unite(MapTwo);
    NewAccessRelation = NewAccessRelation.apply_range(MapOne);
  }

  isl::id BaseAddrId = getScopArrayInfo()->getBasePtrId();
  isl::space Space = Statement->getDomainSpace();
  NewAccessRelation = NewAccessRelation.set_tuple_id(
      isl::dim::in, Space.get_tuple_id(isl::dim::set));
  NewAccessRelation = NewAccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
  NewAccessRelation = NewAccessRelation.gist_domain(Statement->getDomain());

  // Access dimension folding might in certain cases increase the number of
  // disjuncts in the memory access, which can possibly complicate the generated
  // run-time checks and can lead to costly compilation.
  if (!PollyPreciseFoldAccesses &&
      NewAccessRelation.n_basic_map() > AccessRelation.n_basic_map()) {
  } else {
    AccessRelation = NewAccessRelation;
  }
}

void MemoryAccess::buildAccessRelation(const ScopArrayInfo *SAI) {
  assert(AccessRelation.is_null() && "AccessRelation already built");

  // Initialize the invalid domain which describes all iterations for which the
  // access relation is not modeled correctly.
  isl::set StmtInvalidDomain = getStatement()->getInvalidDomain();
  InvalidDomain = isl::set::empty(StmtInvalidDomain.get_space());

  isl::ctx Ctx = Id.get_ctx();
  isl::id BaseAddrId = SAI->getBasePtrId();

  if (getAccessInstruction() && isa<MemIntrinsic>(getAccessInstruction())) {
    buildMemIntrinsicAccessRelation();
    AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
    return;
  }

  if (!isAffine()) {
    // We overapproximate non-affine accesses with a possible access to the
    // whole array. For read accesses it does not make a difference, if an
    // access must or may happen. However, for write accesses it is important to
    // differentiate between writes that must happen and writes that may happen.
    if (AccessRelation.is_null())
      AccessRelation = createBasicAccessMap(Statement);

    AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
    return;
  }

  isl::space Space = isl::space(Ctx, 0, Statement->getNumIterators(), 0);
  AccessRelation = isl::map::universe(Space);

  for (int i = 0, Size = Subscripts.size(); i < Size; ++i) {
    isl::pw_aff Affine = getPwAff(Subscripts[i]);
    isl::map SubscriptMap = isl::map::from_pw_aff(Affine);
    AccessRelation = AccessRelation.flat_range_product(SubscriptMap);
  }

  Space = Statement->getDomainSpace();
  AccessRelation = AccessRelation.set_tuple_id(
      isl::dim::in, Space.get_tuple_id(isl::dim::set));
  AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);

  AccessRelation = AccessRelation.gist_domain(Statement->getDomain());
}

MemoryAccess::MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst,
                           AccessType AccType, Value *BaseAddress,
                           Type *ElementType, bool Affine,
                           ArrayRef<const SCEV *> Subscripts,
                           ArrayRef<const SCEV *> Sizes, Value *AccessValue,
                           MemoryKind Kind)
    : Kind(Kind), AccType(AccType), Statement(Stmt), InvalidDomain(nullptr),
      BaseAddr(BaseAddress), ElementType(ElementType),
      Sizes(Sizes.begin(), Sizes.end()), AccessInstruction(AccessInst),
      AccessValue(AccessValue), IsAffine(Affine),
      Subscripts(Subscripts.begin(), Subscripts.end()), AccessRelation(nullptr),
      NewAccessRelation(nullptr), FAD(nullptr) {
  static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"};
  const std::string Access = TypeStrings[AccType] + utostr(Stmt->size());

  std::string IdName = Stmt->getBaseName() + Access;
  Id = isl::id::alloc(Stmt->getParent()->getIslCtx(), IdName, this);
}

MemoryAccess::MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel)
    : Kind(MemoryKind::Array), AccType(AccType), Statement(Stmt),
      InvalidDomain(nullptr), AccessRelation(nullptr),
      NewAccessRelation(AccRel), FAD(nullptr) {
  isl::id ArrayInfoId = NewAccessRelation.get_tuple_id(isl::dim::out);
  auto *SAI = ScopArrayInfo::getFromId(ArrayInfoId);
  Sizes.push_back(nullptr);
  for (unsigned i = 1; i < SAI->getNumberOfDimensions(); i++)
    Sizes.push_back(SAI->getDimensionSize(i));
  ElementType = SAI->getElementType();
  BaseAddr = SAI->getBasePtr();
  static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"};
  const std::string Access = TypeStrings[AccType] + utostr(Stmt->size());

  std::string IdName = Stmt->getBaseName() + Access;
  Id = isl::id::alloc(Stmt->getParent()->getIslCtx(), IdName, this);
}

MemoryAccess::~MemoryAccess() = default;

void MemoryAccess::realignParams() {
  isl::set Ctx = Statement->getParent()->getContext();
  InvalidDomain = InvalidDomain.gist_params(Ctx);
  AccessRelation = AccessRelation.gist_params(Ctx);
}

const std::string MemoryAccess::getReductionOperatorStr() const {
  return MemoryAccess::getReductionOperatorStr(getReductionType());
}

isl::id MemoryAccess::getId() const { return Id; }

raw_ostream &polly::operator<<(raw_ostream &OS,
                               MemoryAccess::ReductionType RT) {
  if (RT == MemoryAccess::RT_NONE)
    OS << "NONE";
  else
    OS << MemoryAccess::getReductionOperatorStr(RT);
  return OS;
}

void MemoryAccess::setFortranArrayDescriptor(Value *FAD) { this->FAD = FAD; }

void MemoryAccess::print(raw_ostream &OS) const {
  switch (AccType) {
  case READ:
    OS.indent(12) << "ReadAccess :=\t";
    break;
  case MUST_WRITE:
    OS.indent(12) << "MustWriteAccess :=\t";
    break;
  case MAY_WRITE:
    OS.indent(12) << "MayWriteAccess :=\t";
    break;
  }

  OS << "[Reduction Type: " << getReductionType() << "] ";

  if (FAD) {
    OS << "[Fortran array descriptor: " << FAD->getName();
    OS << "] ";
  };

  OS << "[Scalar: " << isScalarKind() << "]\n";
  OS.indent(16) << getOriginalAccessRelationStr() << ";\n";
  if (hasNewAccessRelation())
    OS.indent(11) << "new: " << getNewAccessRelationStr() << ";\n";
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MemoryAccess::dump() const { print(errs()); }
#endif

isl::pw_aff MemoryAccess::getPwAff(const SCEV *E) {
  auto *Stmt = getStatement();
  PWACtx PWAC = Stmt->getParent()->getPwAff(E, Stmt->getEntryBlock());
  isl::set StmtDom = getStatement()->getDomain();
  StmtDom = StmtDom.reset_tuple_id();
  isl::set NewInvalidDom = StmtDom.intersect(PWAC.second);
  InvalidDomain = InvalidDomain.unite(NewInvalidDom);
  return PWAC.first;
}

// Create a map in the size of the provided set domain, that maps from the
// one element of the provided set domain to another element of the provided
// set domain.
// The mapping is limited to all points that are equal in all but the last
// dimension and for which the last dimension of the input is strict smaller
// than the last dimension of the output.
//
//   getEqualAndLarger(set[i0, i1, ..., iX]):
//
//   set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
//     : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
//
static isl::map getEqualAndLarger(isl::space SetDomain) {
  isl::space Space = SetDomain.map_from_set();
  isl::map Map = isl::map::universe(Space);
  unsigned lastDimension = Map.dim(isl::dim::in) - 1;

  // Set all but the last dimension to be equal for the input and output
  //
  //   input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
  //     : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
  for (unsigned i = 0; i < lastDimension; ++i)
    Map = Map.equate(isl::dim::in, i, isl::dim::out, i);

  // Set the last dimension of the input to be strict smaller than the
  // last dimension of the output.
  //
  //   input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
  Map = Map.order_lt(isl::dim::in, lastDimension, isl::dim::out, lastDimension);
  return Map;
}

isl::set MemoryAccess::getStride(isl::map Schedule) const {
  isl::map AccessRelation = getAccessRelation();
  isl::space Space = Schedule.get_space().range();
  isl::map NextScatt = getEqualAndLarger(Space);

  Schedule = Schedule.reverse();
  NextScatt = NextScatt.lexmin();

  NextScatt = NextScatt.apply_range(Schedule);
  NextScatt = NextScatt.apply_range(AccessRelation);
  NextScatt = NextScatt.apply_domain(Schedule);
  NextScatt = NextScatt.apply_domain(AccessRelation);

  isl::set Deltas = NextScatt.deltas();
  return Deltas;
}

bool MemoryAccess::isStrideX(isl::map Schedule, int StrideWidth) const {
  isl::set Stride, StrideX;
  bool IsStrideX;

  Stride = getStride(Schedule);
  StrideX = isl::set::universe(Stride.get_space());
  for (unsigned i = 0; i < StrideX.dim(isl::dim::set) - 1; i++)
    StrideX = StrideX.fix_si(isl::dim::set, i, 0);
  StrideX = StrideX.fix_si(isl::dim::set, StrideX.dim(isl::dim::set) - 1,
                           StrideWidth);
  IsStrideX = Stride.is_subset(StrideX);

  return IsStrideX;
}

bool MemoryAccess::isStrideZero(isl::map Schedule) const {
  return isStrideX(Schedule, 0);
}

bool MemoryAccess::isStrideOne(isl::map Schedule) const {
  return isStrideX(Schedule, 1);
}

void MemoryAccess::setAccessRelation(isl::map NewAccess) {
  AccessRelation = NewAccess;
}

void MemoryAccess::setNewAccessRelation(isl::map NewAccess) {
  assert(NewAccess);

#ifndef NDEBUG
  // Check domain space compatibility.
  isl::space NewSpace = NewAccess.get_space();
  isl::space NewDomainSpace = NewSpace.domain();
  isl::space OriginalDomainSpace = getStatement()->getDomainSpace();
  assert(OriginalDomainSpace.has_equal_tuples(NewDomainSpace));

  // Reads must be executed unconditionally. Writes might be executed in a
  // subdomain only.
  if (isRead()) {
    // Check whether there is an access for every statement instance.
    isl::set StmtDomain = getStatement()->getDomain();
    StmtDomain =
        StmtDomain.intersect_params(getStatement()->getParent()->getContext());
    isl::set NewDomain = NewAccess.domain();
    assert(StmtDomain.is_subset(NewDomain) &&
           "Partial READ accesses not supported");
  }

  isl::space NewAccessSpace = NewAccess.get_space();
  assert(NewAccessSpace.has_tuple_id(isl::dim::set) &&
         "Must specify the array that is accessed");
  isl::id NewArrayId = NewAccessSpace.get_tuple_id(isl::dim::set);
  auto *SAI = static_cast<ScopArrayInfo *>(NewArrayId.get_user());
  assert(SAI && "Must set a ScopArrayInfo");

  if (SAI->isArrayKind() && SAI->getBasePtrOriginSAI()) {
    InvariantEquivClassTy *EqClass =
        getStatement()->getParent()->lookupInvariantEquivClass(
            SAI->getBasePtr());
    assert(EqClass &&
           "Access functions to indirect arrays must have an invariant and "
           "hoisted base pointer");
  }

  // Check whether access dimensions correspond to number of dimensions of the
  // accesses array.
  auto Dims = SAI->getNumberOfDimensions();
  assert(NewAccessSpace.dim(isl::dim::set) == Dims &&
         "Access dims must match array dims");
#endif

  NewAccess = NewAccess.gist_domain(getStatement()->getDomain());
  NewAccessRelation = NewAccess;
}

bool MemoryAccess::isLatestPartialAccess() const {
  isl::set StmtDom = getStatement()->getDomain();
  isl::set AccDom = getLatestAccessRelation().domain();

  return !StmtDom.is_subset(AccDom);
}

//===----------------------------------------------------------------------===//

isl::map ScopStmt::getSchedule() const {
  isl::set Domain = getDomain();
  if (Domain.is_empty())
    return isl::map::from_aff(isl::aff(isl::local_space(getDomainSpace())));
  auto Schedule = getParent()->getSchedule();
  if (!Schedule)
    return nullptr;
  Schedule = Schedule.intersect_domain(isl::union_set(Domain));
  if (Schedule.is_empty())
    return isl::map::from_aff(isl::aff(isl::local_space(getDomainSpace())));
  isl::map M = M.from_union_map(Schedule);
  M = M.coalesce();
  M = M.gist_domain(Domain);
  M = M.coalesce();
  return M;
}

void ScopStmt::restrictDomain(isl::set NewDomain) {
  assert(NewDomain.is_subset(Domain) &&
         "New domain is not a subset of old domain!");
  Domain = NewDomain;
}

void ScopStmt::addAccess(MemoryAccess *Access, bool Prepend) {
  Instruction *AccessInst = Access->getAccessInstruction();

  if (Access->isArrayKind()) {
    MemoryAccessList &MAL = InstructionToAccess[AccessInst];
    MAL.emplace_front(Access);
  } else if (Access->isValueKind() && Access->isWrite()) {
    Instruction *AccessVal = cast<Instruction>(Access->getAccessValue());
    assert(!ValueWrites.lookup(AccessVal));

    ValueWrites[AccessVal] = Access;
  } else if (Access->isValueKind() && Access->isRead()) {
    Value *AccessVal = Access->getAccessValue();
    assert(!ValueReads.lookup(AccessVal));

    ValueReads[AccessVal] = Access;
  } else if (Access->isAnyPHIKind() && Access->isWrite()) {
    PHINode *PHI = cast<PHINode>(Access->getAccessValue());
    assert(!PHIWrites.lookup(PHI));

    PHIWrites[PHI] = Access;
  } else if (Access->isAnyPHIKind() && Access->isRead()) {
    PHINode *PHI = cast<PHINode>(Access->getAccessValue());
    assert(!PHIReads.lookup(PHI));

    PHIReads[PHI] = Access;
  }

  if (Prepend) {
    MemAccs.insert(MemAccs.begin(), Access);
    return;
  }
  MemAccs.push_back(Access);
}

void ScopStmt::realignParams() {
  for (MemoryAccess *MA : *this)
    MA->realignParams();

  isl::set Ctx = Parent.getContext();
  InvalidDomain = InvalidDomain.gist_params(Ctx);
  Domain = Domain.gist_params(Ctx);
}

ScopStmt::ScopStmt(Scop &parent, Region &R, StringRef Name,
                   Loop *SurroundingLoop,
                   std::vector<Instruction *> EntryBlockInstructions)
    : Parent(parent), InvalidDomain(nullptr), Domain(nullptr), R(&R),
      Build(nullptr), BaseName(Name), SurroundingLoop(SurroundingLoop),
      Instructions(EntryBlockInstructions) {}

ScopStmt::ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name,
                   Loop *SurroundingLoop,
                   std::vector<Instruction *> Instructions)
    : Parent(parent), InvalidDomain(nullptr), Domain(nullptr), BB(&bb),
      Build(nullptr), BaseName(Name), SurroundingLoop(SurroundingLoop),
      Instructions(Instructions) {}

ScopStmt::ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel,
                   isl::set NewDomain)
    : Parent(parent), InvalidDomain(nullptr), Domain(NewDomain),
      Build(nullptr) {
  BaseName = getIslCompatibleName("CopyStmt_", "",
                                  std::to_string(parent.getCopyStmtsNum()));
  isl::id Id = isl::id::alloc(getIslCtx(), getBaseName(), this);
  Domain = Domain.set_tuple_id(Id);
  TargetRel = TargetRel.set_tuple_id(isl::dim::in, Id);
  auto *Access =
      new MemoryAccess(this, MemoryAccess::AccessType::MUST_WRITE, TargetRel);
  parent.addAccessFunction(Access);
  addAccess(Access);
  SourceRel = SourceRel.set_tuple_id(isl::dim::in, Id);
  Access = new MemoryAccess(this, MemoryAccess::AccessType::READ, SourceRel);
  parent.addAccessFunction(Access);
  addAccess(Access);
}

ScopStmt::~ScopStmt() = default;

std::string ScopStmt::getDomainStr() const { return Domain.to_str(); }

std::string ScopStmt::getScheduleStr() const {
  auto *S = getSchedule().release();
  if (!S)
    return {};
  auto Str = stringFromIslObj(S);
  isl_map_free(S);
  return Str;
}

void ScopStmt::setInvalidDomain(isl::set ID) { InvalidDomain = ID; }

BasicBlock *ScopStmt::getEntryBlock() const {
  if (isBlockStmt())
    return getBasicBlock();
  return getRegion()->getEntry();
}

unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); }

const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }

Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
  return NestLoops[Dimension];
}

isl::ctx ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }

isl::set ScopStmt::getDomain() const { return Domain; }

isl::space ScopStmt::getDomainSpace() const { return Domain.get_space(); }

isl::id ScopStmt::getDomainId() const { return Domain.get_tuple_id(); }

void ScopStmt::printInstructions(raw_ostream &OS) const {
  OS << "Instructions {\n";

  for (Instruction *Inst : Instructions)
    OS.indent(16) << *Inst << "\n";

  OS.indent(12) << "}\n";
}

void ScopStmt::print(raw_ostream &OS, bool PrintInstructions) const {
  OS << "\t" << getBaseName() << "\n";
  OS.indent(12) << "Domain :=\n";

  if (Domain) {
    OS.indent(16) << getDomainStr() << ";\n";
  } else
    OS.indent(16) << "n/a\n";

  OS.indent(12) << "Schedule :=\n";

  if (Domain) {
    OS.indent(16) << getScheduleStr() << ";\n";
  } else
    OS.indent(16) << "n/a\n";

  for (MemoryAccess *Access : MemAccs)
    Access->print(OS);

  if (PrintInstructions)
    printInstructions(OS.indent(12));
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ScopStmt::dump() const { print(dbgs(), true); }
#endif

void ScopStmt::removeAccessData(MemoryAccess *MA) {
  if (MA->isRead() && MA->isOriginalValueKind()) {
    bool Found = ValueReads.erase(MA->getAccessValue());
    (void)Found;
    assert(Found && "Expected access data not found");
  }
  if (MA->isWrite() && MA->isOriginalValueKind()) {
    bool Found = ValueWrites.erase(cast<Instruction>(MA->getAccessValue()));
    (void)Found;
    assert(Found && "Expected access data not found");
  }
  if (MA->isWrite() && MA->isOriginalAnyPHIKind()) {
    bool Found = PHIWrites.erase(cast<PHINode>(MA->getAccessInstruction()));
    (void)Found;
    assert(Found && "Expected access data not found");
  }
  if (MA->isRead() && MA->isOriginalAnyPHIKind()) {
    bool Found = PHIReads.erase(cast<PHINode>(MA->getAccessInstruction()));
    (void)Found;
    assert(Found && "Expected access data not found");
  }
}

void ScopStmt::removeMemoryAccess(MemoryAccess *MA) {
  // Remove the memory accesses from this statement together with all scalar
  // accesses that were caused by it. MemoryKind::Value READs have no access
  // instruction, hence would not be removed by this function. However, it is
  // only used for invariant LoadInst accesses, its arguments are always affine,
  // hence synthesizable, and therefore there are no MemoryKind::Value READ
  // accesses to be removed.
  auto Predicate = [&](MemoryAccess *Acc) {
    return Acc->getAccessInstruction() == MA->getAccessInstruction();
  };
  for (auto *MA : MemAccs) {
    if (Predicate(MA)) {
      removeAccessData(MA);
      Parent.removeAccessData(MA);
    }
  }
  MemAccs.erase(std::remove_if(MemAccs.begin(), MemAccs.end(), Predicate),
                MemAccs.end());
  InstructionToAccess.erase(MA->getAccessInstruction());
}

void ScopStmt::removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting) {
  if (AfterHoisting) {
    auto MAIt = std::find(MemAccs.begin(), MemAccs.end(), MA);
    assert(MAIt != MemAccs.end());
    MemAccs.erase(MAIt);

    removeAccessData(MA);
    Parent.removeAccessData(MA);
  }

  auto It = InstructionToAccess.find(MA->getAccessInstruction());
  if (It != InstructionToAccess.end()) {
    It->second.remove(MA);
    if (It->second.empty())
      InstructionToAccess.erase(MA->getAccessInstruction());
  }
}

MemoryAccess *ScopStmt::ensureValueRead(Value *V) {
  MemoryAccess *Access = lookupInputAccessOf(V);
  if (Access)
    return Access;

  ScopArrayInfo *SAI =
      Parent.getOrCreateScopArrayInfo(V, V->getType(), {}, MemoryKind::Value);
  Access = new MemoryAccess(this, nullptr, MemoryAccess::READ, V, V->getType(),
                            true, {}, {}, V, MemoryKind::Value);
  Parent.addAccessFunction(Access);
  Access->buildAccessRelation(SAI);
  addAccess(Access);
  Parent.addAccessData(Access);
  return Access;
}

raw_ostream &polly::operator<<(raw_ostream &OS, const ScopStmt &S) {
  S.print(OS, PollyPrintInstructions);
  return OS;
}

//===----------------------------------------------------------------------===//
/// Scop class implement

void Scop::setContext(isl::set NewContext) {
  Context = NewContext.align_params(Context.get_space());
}

namespace {

/// Remap parameter values but keep AddRecs valid wrt. invariant loads.
struct SCEVSensitiveParameterRewriter
    : public SCEVRewriteVisitor<SCEVSensitiveParameterRewriter> {
  const ValueToValueMap &VMap;

public:
  SCEVSensitiveParameterRewriter(const ValueToValueMap &VMap,
                                 ScalarEvolution &SE)
      : SCEVRewriteVisitor(SE), VMap(VMap) {}

  static const SCEV *rewrite(const SCEV *E, ScalarEvolution &SE,
                             const ValueToValueMap &VMap) {
    SCEVSensitiveParameterRewriter SSPR(VMap, SE);
    return SSPR.visit(E);
  }

  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
    auto *Start = visit(E->getStart());
    auto *AddRec = SE.getAddRecExpr(SE.getConstant(E->getType(), 0),
                                    visit(E->getStepRecurrence(SE)),
                                    E->getLoop(), SCEV::FlagAnyWrap);
    return SE.getAddExpr(Start, AddRec);
  }

  const SCEV *visitUnknown(const SCEVUnknown *E) {
    if (auto *NewValue = VMap.lookup(E->getValue()))
      return SE.getUnknown(NewValue);
    return E;
  }
};

/// Check whether we should remap a SCEV expression.
struct SCEVFindInsideScop : public SCEVTraversal<SCEVFindInsideScop> {
  const ValueToValueMap &VMap;
  bool FoundInside = false;
  const Scop *S;

public:
  SCEVFindInsideScop(const ValueToValueMap &VMap, ScalarEvolution &SE,
                     const Scop *S)
      : SCEVTraversal(*this), VMap(VMap), S(S) {}

  static bool hasVariant(const SCEV *E, ScalarEvolution &SE,
                         const ValueToValueMap &VMap, const Scop *S) {
    SCEVFindInsideScop SFIS(VMap, SE, S);
    SFIS.visitAll(E);
    return SFIS.FoundInside;
  }

  bool follow(const SCEV *E) {
    if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(E)) {
      FoundInside |= S->getRegion().contains(AddRec->getLoop());
    } else if (auto *Unknown = dyn_cast<SCEVUnknown>(E)) {
      if (Instruction *I = dyn_cast<Instruction>(Unknown->getValue()))
        FoundInside |= S->getRegion().contains(I) && !VMap.count(I);
    }
    return !FoundInside;
  }

  bool isDone() { return FoundInside; }
};
} // end anonymous namespace

const SCEV *Scop::getRepresentingInvariantLoadSCEV(const SCEV *E) const {
  // Check whether it makes sense to rewrite the SCEV.  (ScalarEvolution
  // doesn't like addition between an AddRec and an expression that
  // doesn't have a dominance relationship with it.)
  if (SCEVFindInsideScop::hasVariant(E, *SE, InvEquivClassVMap, this))
    return E;

  // Rewrite SCEV.
  return SCEVSensitiveParameterRewriter::rewrite(E, *SE, InvEquivClassVMap);
}

// This table of function names is used to translate parameter names in more
// human-readable names. This makes it easier to interpret Polly analysis
// results.
StringMap<std::string> KnownNames = {
    {"_Z13get_global_idj", "global_id"},
    {"_Z12get_local_idj", "local_id"},
    {"_Z15get_global_sizej", "global_size"},
    {"_Z14get_local_sizej", "local_size"},
    {"_Z12get_work_dimv", "work_dim"},
    {"_Z17get_global_offsetj", "global_offset"},
    {"_Z12get_group_idj", "group_id"},
    {"_Z14get_num_groupsj", "num_groups"},
};

static std::string getCallParamName(CallInst *Call) {
  std::string Result;
  raw_string_ostream OS(Result);
  std::string Name = Call->getCalledFunction()->getName();

  auto Iterator = KnownNames.find(Name);
  if (Iterator != KnownNames.end())
    Name = "__" + Iterator->getValue();
  OS << Name;
  for (auto &Operand : Call->arg_operands()) {
    ConstantInt *Op = cast<ConstantInt>(&Operand);
    OS << "_" << Op->getValue();
  }
  OS.flush();
  return Result;
}

void Scop::createParameterId(const SCEV *Parameter) {
  assert(Parameters.count(Parameter));
  assert(!ParameterIds.count(Parameter));

  std::string ParameterName = "p_" + std::to_string(getNumParams() - 1);

  if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
    Value *Val = ValueParameter->getValue();
    CallInst *Call = dyn_cast<CallInst>(Val);

    if (Call && isConstCall(Call)) {
      ParameterName = getCallParamName(Call);
    } else if (UseInstructionNames) {
      // If this parameter references a specific Value and this value has a name
      // we use this name as it is likely to be unique and more useful than just
      // a number.
      if (Val->hasName())
        ParameterName = Val->getName();
      else if (LoadInst *LI = dyn_cast<LoadInst>(Val)) {
        auto *LoadOrigin = LI->getPointerOperand()->stripInBoundsOffsets();
        if (LoadOrigin->hasName()) {
          ParameterName += "_loaded_from_";
          ParameterName +=
              LI->getPointerOperand()->stripInBoundsOffsets()->getName();
        }
      }
    }

    ParameterName = getIslCompatibleName("", ParameterName, "");
  }

  isl::id Id = isl::id::alloc(getIslCtx(), ParameterName,
                              const_cast<void *>((const void *)Parameter));
  ParameterIds[Parameter] = Id;
}

void Scop::addParams(const ParameterSetTy &NewParameters) {
  for (const SCEV *Parameter : NewParameters) {
    // Normalize the SCEV to get the representing element for an invariant load.
    Parameter = extractConstantFactor(Parameter, *SE).second;
    Parameter = getRepresentingInvariantLoadSCEV(Parameter);

    if (Parameters.insert(Parameter))
      createParameterId(Parameter);
  }
}

isl::id Scop::getIdForParam(const SCEV *Parameter) const {
  // Normalize the SCEV to get the representing element for an invariant load.
  Parameter = getRepresentingInvariantLoadSCEV(Parameter);
  return ParameterIds.lookup(Parameter);
}

bool Scop::isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const {
  return DT.dominates(BB, getEntry());
}

void Scop::buildContext() {
  isl::space Space = isl::space::params_alloc(getIslCtx(), 0);
  Context = isl::set::universe(Space);
  InvalidContext = isl::set::empty(Space);
  AssumedContext = isl::set::universe(Space);
}

void Scop::addParameterBounds() {
  unsigned PDim = 0;
  for (auto *Parameter : Parameters) {
    ConstantRange SRange = SE->getSignedRange(Parameter);
    Context = addRangeBoundsToSet(Context, SRange, PDim++, isl::dim::param);
  }
}

static std::vector<isl::id> getFortranArrayIds(Scop::array_range Arrays) {
  std::vector<isl::id> OutermostSizeIds;
  for (auto Array : Arrays) {
    // To check if an array is a Fortran array, we check if it has a isl_pw_aff
    // for its outermost dimension. Fortran arrays will have this since the
    // outermost dimension size can be picked up from their runtime description.
    // TODO: actually need to check if it has a FAD, but for now this works.
    if (Array->getNumberOfDimensions() > 0) {
      isl::pw_aff PwAff = Array->getDimensionSizePw(0);
      if (!PwAff)
        continue;

      isl::id Id = PwAff.get_dim_id(isl::dim::param, 0);
      assert(!Id.is_null() &&
             "Invalid Id for PwAff expression in Fortran array");
      OutermostSizeIds.push_back(Id);
    }
  }
  return OutermostSizeIds;
}

// The FORTRAN array size parameters are known to be non-negative.
static isl::set boundFortranArrayParams(isl::set Context,
                                        Scop::array_range Arrays) {
  std::vector<isl::id> OutermostSizeIds;
  OutermostSizeIds = getFortranArrayIds(Arrays);

  for (isl::id Id : OutermostSizeIds) {
    int dim = Context.find_dim_by_id(isl::dim::param, Id);
    Context = Context.lower_bound_si(isl::dim::param, dim, 0);
  }

  return Context;
}

void Scop::realignParams() {
  if (PollyIgnoreParamBounds)
    return;

  // Add all parameters into a common model.
  isl::space Space = getFullParamSpace();

  // Align the parameters of all data structures to the model.
  Context = Context.align_params(Space);

  // Bound the size of the fortran array dimensions.
  Context = boundFortranArrayParams(Context, arrays());

  // As all parameters are known add bounds to them.
  addParameterBounds();

  for (ScopStmt &Stmt : *this)
    Stmt.realignParams();
  // Simplify the schedule according to the context too.
  Schedule = Schedule.gist_domain_params(getContext());
}

static isl::set simplifyAssumptionContext(isl::set AssumptionContext,
                                          const Scop &S) {
  // If we have modeled all blocks in the SCoP that have side effects we can
  // simplify the context with the constraints that are needed for anything to
  // be executed at all. However, if we have error blocks in the SCoP we already
  // assumed some parameter combinations cannot occur and removed them from the
  // domains, thus we cannot use the remaining domain to simplify the
  // assumptions.
  if (!S.hasErrorBlock()) {
    auto DomainParameters = S.getDomains().params();
    AssumptionContext = AssumptionContext.gist_params(DomainParameters);
  }

  AssumptionContext = AssumptionContext.gist_params(S.getContext());
  return AssumptionContext;
}

void Scop::simplifyContexts() {
  // The parameter constraints of the iteration domains give us a set of
  // constraints that need to hold for all cases where at least a single
  // statement iteration is executed in the whole scop. We now simplify the
  // assumed context under the assumption that such constraints hold and at
  // least a single statement iteration is executed. For cases where no
  // statement instances are executed, the assumptions we have taken about
  // the executed code do not matter and can be changed.
  //
  // WARNING: This only holds if the assumptions we have taken do not reduce
  //          the set of statement instances that are executed. Otherwise we
  //          may run into a case where the iteration domains suggest that
  //          for a certain set of parameter constraints no code is executed,
  //          but in the original program some computation would have been
  //          performed. In such a case, modifying the run-time conditions and
  //          possibly influencing the run-time check may cause certain scops
  //          to not be executed.
  //
  // Example:
  //
  //   When delinearizing the following code:
  //
  //     for (long i = 0; i < 100; i++)
  //       for (long j = 0; j < m; j++)
  //         A[i+p][j] = 1.0;
  //
  //   we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as
  //   otherwise we would access out of bound data. Now, knowing that code is
  //   only executed for the case m >= 0, it is sufficient to assume p >= 0.
  AssumedContext = simplifyAssumptionContext(AssumedContext, *this);
  InvalidContext = InvalidContext.align_params(getParamSpace());
}

isl::set Scop::getDomainConditions(const ScopStmt *Stmt) const {
  return getDomainConditions(Stmt->getEntryBlock());
}

isl::set Scop::getDomainConditions(BasicBlock *BB) const {
  auto DIt = DomainMap.find(BB);
  if (DIt != DomainMap.end())
    return DIt->getSecond();

  auto &RI = *R.getRegionInfo();
  auto *BBR = RI.getRegionFor(BB);
  while (BBR->getEntry() == BB)
    BBR = BBR->getParent();
  return getDomainConditions(BBR->getEntry());
}

int Scop::NextScopID = 0;

std::string Scop::CurrentFunc;

int Scop::getNextID(std::string ParentFunc) {
  if (ParentFunc != CurrentFunc) {
    CurrentFunc = ParentFunc;
    NextScopID = 0;
  }
  return NextScopID++;
}

Scop::Scop(Region &R, ScalarEvolution &ScalarEvolution, LoopInfo &LI,
           DominatorTree &DT, ScopDetection::DetectionContext &DC,
           OptimizationRemarkEmitter &ORE)
    : IslCtx(isl_ctx_alloc(), isl_ctx_free), SE(&ScalarEvolution), DT(&DT),
      R(R), name(None), HasSingleExitEdge(R.getExitingBlock()), DC(DC),
      ORE(ORE), Affinator(this, LI),
      ID(getNextID((*R.getEntry()->getParent()).getName().str())) {
  if (IslOnErrorAbort)
    isl_options_set_on_error(getIslCtx().get(), ISL_ON_ERROR_ABORT);
  buildContext();
}

Scop::~Scop() = default;

void Scop::removeFromStmtMap(ScopStmt &Stmt) {
  for (Instruction *Inst : Stmt.getInstructions())
    InstStmtMap.erase(Inst);

  if (Stmt.isRegionStmt()) {
    for (BasicBlock *BB : Stmt.getRegion()->blocks()) {
      StmtMap.erase(BB);
      // Skip entry basic block, as its instructions are already deleted as
      // part of the statement's instruction list.
      if (BB == Stmt.getEntryBlock())
        continue;
      for (Instruction &Inst : *BB)
        InstStmtMap.erase(&Inst);
    }
  } else {
    auto StmtMapIt = StmtMap.find(Stmt.getBasicBlock());
    if (StmtMapIt != StmtMap.end())
      StmtMapIt->second.erase(std::remove(StmtMapIt->second.begin(),
                                          StmtMapIt->second.end(), &Stmt),
                              StmtMapIt->second.end());
    for (Instruction *Inst : Stmt.getInstructions())
      InstStmtMap.erase(Inst);
  }
}

void Scop::removeStmts(std::function<bool(ScopStmt &)> ShouldDelete,
                       bool AfterHoisting) {
  for (auto StmtIt = Stmts.begin(), StmtEnd = Stmts.end(); StmtIt != StmtEnd;) {
    if (!ShouldDelete(*StmtIt)) {
      StmtIt++;
      continue;
    }

    // Start with removing all of the statement's accesses including erasing it
    // from all maps that are pointing to them.
    // Make a temporary copy because removing MAs invalidates the iterator.
    SmallVector<MemoryAccess *, 16> MAList(StmtIt->begin(), StmtIt->end());
    for (MemoryAccess *MA : MAList)
      StmtIt->removeSingleMemoryAccess(MA, AfterHoisting);

    removeFromStmtMap(*StmtIt);
    StmtIt = Stmts.erase(StmtIt);
  }
}

void Scop::removeStmtNotInDomainMap() {
  auto ShouldDelete = [this](ScopStmt &Stmt) -> bool {
    isl::set Domain = DomainMap.lookup(Stmt.getEntryBlock());
    if (!Domain)
      return true;
    return Domain.is_empty();
  };
  removeStmts(ShouldDelete, false);
}

void Scop::simplifySCoP(bool AfterHoisting) {
  auto ShouldDelete = [AfterHoisting](ScopStmt &Stmt) -> bool {
    // Never delete statements that contain calls to debug functions.
    if (hasDebugCall(&Stmt))
      return false;

    bool RemoveStmt = Stmt.isEmpty();

    // Remove read only statements only after invariant load hoisting.
    if (!RemoveStmt && AfterHoisting) {
      bool OnlyRead = true;
      for (MemoryAccess *MA : Stmt) {
        if (MA->isRead())
          continue;

        OnlyRead = false;
        break;
      }

      RemoveStmt = OnlyRead;
    }
    return RemoveStmt;
  };

  removeStmts(ShouldDelete, AfterHoisting);
}

InvariantEquivClassTy *Scop::lookupInvariantEquivClass(Value *Val) {
  LoadInst *LInst = dyn_cast<LoadInst>(Val);
  if (!LInst)
    return nullptr;

  if (Value *Rep = InvEquivClassVMap.lookup(LInst))
    LInst = cast<LoadInst>(Rep);

  Type *Ty = LInst->getType();
  const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
  for (auto &IAClass : InvariantEquivClasses) {
    if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType)
      continue;

    auto &MAs = IAClass.InvariantAccesses;
    for (auto *MA : MAs)
      if (MA->getAccessInstruction() == Val)
        return &IAClass;
  }

  return nullptr;
}

ScopArrayInfo *Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
                                              ArrayRef<const SCEV *> Sizes,
                                              MemoryKind Kind,
                                              const char *BaseName) {
  assert((BasePtr || BaseName) &&
         "BasePtr and BaseName can not be nullptr at the same time.");
  assert(!(BasePtr && BaseName) && "BaseName is redundant.");
  auto &SAI = BasePtr ? ScopArrayInfoMap[std::make_pair(BasePtr, Kind)]
                      : ScopArrayNameMap[BaseName];
  if (!SAI) {
    auto &DL = getFunction().getParent()->getDataLayout();
    SAI.reset(new ScopArrayInfo(BasePtr, ElementType, getIslCtx(), Sizes, Kind,
                                DL, this, BaseName));
    ScopArrayInfoSet.insert(SAI.get());
  } else {
    SAI->updateElementType(ElementType);
    // In case of mismatching array sizes, we bail out by setting the run-time
    // context to false.
    if (!SAI->updateSizes(Sizes))
      invalidate(DELINEARIZATION, DebugLoc());
  }
  return SAI.get();
}

ScopArrayInfo *Scop::createScopArrayInfo(Type *ElementType,
                                         const std::string &BaseName,
                                         const std::vector<unsigned> &Sizes) {
  auto *DimSizeType = Type::getInt64Ty(getSE()->getContext());
  std::vector<const SCEV *> SCEVSizes;

  for (auto size : Sizes)
    if (size)
      SCEVSizes.push_back(getSE()->getConstant(DimSizeType, size, false));
    else
      SCEVSizes.push_back(nullptr);

  auto *SAI = getOrCreateScopArrayInfo(nullptr, ElementType, SCEVSizes,
                                       MemoryKind::Array, BaseName.c_str());
  return SAI;
}

const ScopArrayInfo *Scop::getScopArrayInfoOrNull(Value *BasePtr,
                                                  MemoryKind Kind) {
  auto *SAI = ScopArrayInfoMap[std::make_pair(BasePtr, Kind)].get();
  return SAI;
}

const ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
  auto *SAI = getScopArrayInfoOrNull(BasePtr, Kind);
  assert(SAI && "No ScopArrayInfo available for this base pointer");
  return SAI;
}

std::string Scop::getContextStr() const { return getContext().to_str(); }

std::string Scop::getAssumedContextStr() const {
  assert(AssumedContext && "Assumed context not yet built");
  return AssumedContext.to_str();
}

std::string Scop::getInvalidContextStr() const {
  return InvalidContext.to_str();
}

std::string Scop::getNameStr() const {
  std::string ExitName, EntryName;
  std::tie(EntryName, ExitName) = getEntryExitStr();
  return EntryName + "---" + ExitName;
}

std::pair<std::string, std::string> Scop::getEntryExitStr() const {
  std::string ExitName, EntryName;
  raw_string_ostream ExitStr(ExitName);
  raw_string_ostream EntryStr(EntryName);

  R.getEntry()->printAsOperand(EntryStr, false);
  EntryStr.str();

  if (R.getExit()) {
    R.getExit()->printAsOperand(ExitStr, false);
    ExitStr.str();
  } else
    ExitName = "FunctionExit";

  return std::make_pair(EntryName, ExitName);
}

isl::set Scop::getContext() const { return Context; }

isl::space Scop::getParamSpace() const { return getContext().get_space(); }

isl::space Scop::getFullParamSpace() const {
  std::vector<isl::id> FortranIDs;
  FortranIDs = getFortranArrayIds(arrays());

  isl::space Space = isl::space::params_alloc(
      getIslCtx(), ParameterIds.size() + FortranIDs.size());

  unsigned PDim = 0;
  for (const SCEV *Parameter : Parameters) {
    isl::id Id = getIdForParam(Parameter);
    Space = Space.set_dim_id(isl::dim::param, PDim++, Id);
  }

  for (isl::id Id : FortranIDs)
    Space = Space.set_dim_id(isl::dim::param, PDim++, Id);

  return Space;
}

isl::set Scop::getAssumedContext() const {
  assert(AssumedContext && "Assumed context not yet built");
  return AssumedContext;
}

bool Scop::isProfitable(bool ScalarsAreUnprofitable) const {
  if (PollyProcessUnprofitable)
    return true;

  if (isEmpty())
    return false;

  unsigned OptimizableStmtsOrLoops = 0;
  for (auto &Stmt : *this) {
    if (Stmt.getNumIterators() == 0)
      continue;

    bool ContainsArrayAccs = false;
    bool ContainsScalarAccs = false;
    for (auto *MA : Stmt) {
      if (MA->isRead())
        continue;
      ContainsArrayAccs |= MA->isLatestArrayKind();
      ContainsScalarAccs |= MA->isLatestScalarKind();
    }

    if (!ScalarsAreUnprofitable || (ContainsArrayAccs && !ContainsScalarAccs))
      OptimizableStmtsOrLoops += Stmt.getNumIterators();
  }

  return OptimizableStmtsOrLoops > 1;
}

bool Scop::hasFeasibleRuntimeContext() const {
  auto PositiveContext = getAssumedContext();
  auto NegativeContext = getInvalidContext();
  PositiveContext = addNonEmptyDomainConstraints(PositiveContext);
  // addNonEmptyDomainConstraints returns null if ScopStmts have a null domain
  if (!PositiveContext)
    return false;

  bool IsFeasible = !(PositiveContext.is_empty() ||
                      PositiveContext.is_subset(NegativeContext));
  if (!IsFeasible)
    return false;

  auto DomainContext = getDomains().params();
  IsFeasible = !DomainContext.is_subset(NegativeContext);
  IsFeasible &= !getContext().is_subset(NegativeContext);

  return IsFeasible;
}

isl::set Scop::addNonEmptyDomainConstraints(isl::set C) const {
  isl::set DomainContext = getDomains().params();
  return C.intersect_params(DomainContext);
}

MemoryAccess *Scop::lookupBasePtrAccess(MemoryAccess *MA) {
  Value *PointerBase = MA->getOriginalBaseAddr();

  auto *PointerBaseInst = dyn_cast<Instruction>(PointerBase);
  if (!PointerBaseInst)
    return nullptr;

  auto *BasePtrStmt = getStmtFor(PointerBaseInst);
  if (!BasePtrStmt)
    return nullptr;

  return BasePtrStmt->getArrayAccessOrNULLFor(PointerBaseInst);
}

static std::string toString(AssumptionKind Kind) {
  switch (Kind) {
  case ALIASING:
    return "No-aliasing";
  case INBOUNDS:
    return "Inbounds";
  case WRAPPING:
    return "No-overflows";
  case UNSIGNED:
    return "Signed-unsigned";
  case COMPLEXITY:
    return "Low complexity";
  case PROFITABLE:
    return "Profitable";
  case ERRORBLOCK:
    return "No-error";
  case INFINITELOOP:
    return "Finite loop";
  case INVARIANTLOAD:
    return "Invariant load";
  case DELINEARIZATION:
    return "Delinearization";
  }
  llvm_unreachable("Unknown AssumptionKind!");
}

bool Scop::isEffectiveAssumption(isl::set Set, AssumptionSign Sign) {
  if (Sign == AS_ASSUMPTION) {
    if (Context.is_subset(Set))
      return false;

    if (AssumedContext.is_subset(Set))
      return false;
  } else {
    if (Set.is_disjoint(Context))
      return false;

    if (Set.is_subset(InvalidContext))
      return false;
  }
  return true;
}

bool Scop::trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
                           AssumptionSign Sign, BasicBlock *BB) {
  if (PollyRemarksMinimal && !isEffectiveAssumption(Set, Sign))
    return false;

  // Do never emit trivial assumptions as they only clutter the output.
  if (!PollyRemarksMinimal) {
    isl::set Univ;
    if (Sign == AS_ASSUMPTION)
      Univ = isl::set::universe(Set.get_space());

    bool IsTrivial = (Sign == AS_RESTRICTION && Set.is_empty()) ||
                     (Sign == AS_ASSUMPTION && Univ.is_equal(Set));

    if (IsTrivial)
      return false;
  }

  switch (Kind) {
  case ALIASING:
    AssumptionsAliasing++;
    break;
  case INBOUNDS:
    AssumptionsInbounds++;
    break;
  case WRAPPING:
    AssumptionsWrapping++;
    break;
  case UNSIGNED:
    AssumptionsUnsigned++;
    break;
  case COMPLEXITY:
    AssumptionsComplexity++;
    break;
  case PROFITABLE:
    AssumptionsUnprofitable++;
    break;
  case ERRORBLOCK:
    AssumptionsErrorBlock++;
    break;
  case INFINITELOOP:
    AssumptionsInfiniteLoop++;
    break;
  case INVARIANTLOAD:
    AssumptionsInvariantLoad++;
    break;
  case DELINEARIZATION:
    AssumptionsDelinearization++;
    break;
  }

  auto Suffix = Sign == AS_ASSUMPTION ? " assumption:\t" : " restriction:\t";
  std::string Msg = toString(Kind) + Suffix + Set.to_str();
  if (BB)
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict", Loc, BB)
             << Msg);
  else
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict", Loc,
                                        R.getEntry())
             << Msg);
  return true;
}

void Scop::addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
                         AssumptionSign Sign, BasicBlock *BB) {
  // Simplify the assumptions/restrictions first.
  Set = Set.gist_params(getContext());

  if (!trackAssumption(Kind, Set, Loc, Sign, BB))
    return;

  if (Sign == AS_ASSUMPTION)
    AssumedContext = AssumedContext.intersect(Set).coalesce();
  else
    InvalidContext = InvalidContext.unite(Set).coalesce();
}

void Scop::recordAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
                            AssumptionSign Sign, BasicBlock *BB) {
  assert((Set.is_params() || BB) &&
         "Assumptions without a basic block must be parameter sets");
  RecordedAssumptions.push_back({Kind, Sign, Set, Loc, BB});
}

void Scop::invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB) {
  LLVM_DEBUG(dbgs() << "Invalidate SCoP because of reason " << Kind << "\n");
  addAssumption(Kind, isl::set::empty(getParamSpace()), Loc, AS_ASSUMPTION, BB);
}

isl::set Scop::getInvalidContext() const { return InvalidContext; }

void Scop::printContext(raw_ostream &OS) const {
  OS << "Context:\n";
  OS.indent(4) << Context << "\n";

  OS.indent(4) << "Assumed Context:\n";
  OS.indent(4) << AssumedContext << "\n";

  OS.indent(4) << "Invalid Context:\n";
  OS.indent(4) << InvalidContext << "\n";

  unsigned Dim = 0;
  for (const SCEV *Parameter : Parameters)
    OS.indent(4) << "p" << Dim++ << ": " << *Parameter << "\n";
}

void Scop::printAliasAssumptions(raw_ostream &OS) const {
  int noOfGroups = 0;
  for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
    if (Pair.second.size() == 0)
      noOfGroups += 1;
    else
      noOfGroups += Pair.second.size();
  }

  OS.indent(4) << "Alias Groups (" << noOfGroups << "):\n";
  if (MinMaxAliasGroups.empty()) {
    OS.indent(8) << "n/a\n";
    return;
  }

  for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {

    // If the group has no read only accesses print the write accesses.
    if (Pair.second.empty()) {
      OS.indent(8) << "[[";
      for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
        OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
           << ">";
      }
      OS << " ]]\n";
    }

    for (const MinMaxAccessTy &MMAReadOnly : Pair.second) {
      OS.indent(8) << "[[";
      OS << " <" << MMAReadOnly.first << ", " << MMAReadOnly.second << ">";
      for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
        OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
           << ">";
      }
      OS << " ]]\n";
    }
  }
}

void Scop::printStatements(raw_ostream &OS, bool PrintInstructions) const {
  OS << "Statements {\n";

  for (const ScopStmt &Stmt : *this) {
    OS.indent(4);
    Stmt.print(OS, PrintInstructions);
  }

  OS.indent(4) << "}\n";
}

void Scop::printArrayInfo(raw_ostream &OS) const {
  OS << "Arrays {\n";

  for (auto &Array : arrays())
    Array->print(OS);

  OS.indent(4) << "}\n";

  OS.indent(4) << "Arrays (Bounds as pw_affs) {\n";

  for (auto &Array : arrays())
    Array->print(OS, /* SizeAsPwAff */ true);

  OS.indent(4) << "}\n";
}

void Scop::print(raw_ostream &OS, bool PrintInstructions) const {
  OS.indent(4) << "Function: " << getFunction().getName() << "\n";
  OS.indent(4) << "Region: " << getNameStr() << "\n";
  OS.indent(4) << "Max Loop Depth:  " << getMaxLoopDepth() << "\n";
  OS.indent(4) << "Invariant Accesses: {\n";
  for (const auto &IAClass : InvariantEquivClasses) {
    const auto &MAs = IAClass.InvariantAccesses;
    if (MAs.empty()) {
      OS.indent(12) << "Class Pointer: " << *IAClass.IdentifyingPointer << "\n";
    } else {
      MAs.front()->print(OS);
      OS.indent(12) << "Execution Context: " << IAClass.ExecutionContext
                    << "\n";
    }
  }
  OS.indent(4) << "}\n";
  printContext(OS.indent(4));
  printArrayInfo(OS.indent(4));
  printAliasAssumptions(OS);
  printStatements(OS.indent(4), PrintInstructions);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void Scop::dump() const { print(dbgs(), true); }
#endif

isl::ctx Scop::getIslCtx() const { return IslCtx.get(); }

__isl_give PWACtx Scop::getPwAff(const SCEV *E, BasicBlock *BB,
                                 bool NonNegative) {
  // First try to use the SCEVAffinator to generate a piecewise defined
  // affine function from @p E in the context of @p BB. If that tasks becomes to
  // complex the affinator might return a nullptr. In such a case we invalidate
  // the SCoP and return a dummy value. This way we do not need to add error
  // handling code to all users of this function.
  auto PWAC = Affinator.getPwAff(E, BB);
  if (PWAC.first) {
    // TODO: We could use a heuristic and either use:
    //         SCEVAffinator::takeNonNegativeAssumption
    //       or
    //         SCEVAffinator::interpretAsUnsigned
    //       to deal with unsigned or "NonNegative" SCEVs.
    if (NonNegative)
      Affinator.takeNonNegativeAssumption(PWAC);
    return PWAC;
  }

  auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
  invalidate(COMPLEXITY, DL, BB);
  return Affinator.getPwAff(SE->getZero(E->getType()), BB);
}

isl::union_set Scop::getDomains() const {
  isl_space *EmptySpace = isl_space_params_alloc(getIslCtx().get(), 0);
  isl_union_set *Domain = isl_union_set_empty(EmptySpace);

  for (const ScopStmt &Stmt : *this)
    Domain = isl_union_set_add_set(Domain, Stmt.getDomain().release());

  return isl::manage(Domain);
}

isl::pw_aff Scop::getPwAffOnly(const SCEV *E, BasicBlock *BB) {
  PWACtx PWAC = getPwAff(E, BB);
  return PWAC.first;
}

isl::union_map
Scop::getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate) {
  isl::union_map Accesses = isl::union_map::empty(getParamSpace());

  for (ScopStmt &Stmt : *this) {
    for (MemoryAccess *MA : Stmt) {
      if (!Predicate(*MA))
        continue;

      isl::set Domain = Stmt.getDomain();
      isl::map AccessDomain = MA->getAccessRelation();
      AccessDomain = AccessDomain.intersect_domain(Domain);
      Accesses = Accesses.add_map(AccessDomain);
    }
  }

  return Accesses.coalesce();
}

isl::union_map Scop::getMustWrites() {
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isMustWrite(); });
}

isl::union_map Scop::getMayWrites() {
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isMayWrite(); });
}

isl::union_map Scop::getWrites() {
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isWrite(); });
}

isl::union_map Scop::getReads() {
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isRead(); });
}

isl::union_map Scop::getAccesses() {
  return getAccessesOfType([](MemoryAccess &MA) { return true; });
}

isl::union_map Scop::getAccesses(ScopArrayInfo *Array) {
  return getAccessesOfType(
      [Array](MemoryAccess &MA) { return MA.getScopArrayInfo() == Array; });
}

isl::union_map Scop::getSchedule() const {
  auto Tree = getScheduleTree();
  return Tree.get_map();
}

isl::schedule Scop::getScheduleTree() const {
  return Schedule.intersect_domain(getDomains());
}

void Scop::setSchedule(isl::union_map NewSchedule) {
  auto S = isl::schedule::from_domain(getDomains());
  Schedule = S.insert_partial_schedule(
      isl::multi_union_pw_aff::from_union_map(NewSchedule));
  ScheduleModified = true;
}

void Scop::setScheduleTree(isl::schedule NewSchedule) {
  Schedule = NewSchedule;
  ScheduleModified = true;
}

bool Scop::restrictDomains(isl::union_set Domain) {
  bool Changed = false;
  for (ScopStmt &Stmt : *this) {
    isl::union_set StmtDomain = isl::union_set(Stmt.getDomain());
    isl::union_set NewStmtDomain = StmtDomain.intersect(Domain);

    if (StmtDomain.is_subset(NewStmtDomain))
      continue;

    Changed = true;

    NewStmtDomain = NewStmtDomain.coalesce();

    if (NewStmtDomain.is_empty())
      Stmt.restrictDomain(isl::set::empty(Stmt.getDomainSpace()));
    else
      Stmt.restrictDomain(isl::set(NewStmtDomain));
  }
  return Changed;
}

ScalarEvolution *Scop::getSE() const { return SE; }

void Scop::addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop,
                       std::vector<Instruction *> Instructions) {
  assert(BB && "Unexpected nullptr!");
  Stmts.emplace_back(*this, *BB, Name, SurroundingLoop, Instructions);
  auto *Stmt = &Stmts.back();
  StmtMap[BB].push_back(Stmt);
  for (Instruction *Inst : Instructions) {
    assert(!InstStmtMap.count(Inst) &&
           "Unexpected statement corresponding to the instruction.");
    InstStmtMap[Inst] = Stmt;
  }
}

void Scop::addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop,
                       std::vector<Instruction *> Instructions) {
  assert(R && "Unexpected nullptr!");
  Stmts.emplace_back(*this, *R, Name, SurroundingLoop, Instructions);
  auto *Stmt = &Stmts.back();

  for (Instruction *Inst : Instructions) {
    assert(!InstStmtMap.count(Inst) &&
           "Unexpected statement corresponding to the instruction.");
    InstStmtMap[Inst] = Stmt;
  }

  for (BasicBlock *BB : R->blocks()) {
    StmtMap[BB].push_back(Stmt);
    if (BB == R->getEntry())
      continue;
    for (Instruction &Inst : *BB) {
      assert(!InstStmtMap.count(&Inst) &&
             "Unexpected statement corresponding to the instruction.");
      InstStmtMap[&Inst] = Stmt;
    }
  }
}

ScopStmt *Scop::addScopStmt(isl::map SourceRel, isl::map TargetRel,
                            isl::set Domain) {
#ifndef NDEBUG
  isl::set SourceDomain = SourceRel.domain();
  isl::set TargetDomain = TargetRel.domain();
  assert(Domain.is_subset(TargetDomain) &&
         "Target access not defined for complete statement domain");
  assert(Domain.is_subset(SourceDomain) &&
         "Source access not defined for complete statement domain");
#endif
  Stmts.emplace_back(*this, SourceRel, TargetRel, Domain);
  CopyStmtsNum++;
  return &(Stmts.back());
}

ArrayRef<ScopStmt *> Scop::getStmtListFor(BasicBlock *BB) const {
  auto StmtMapIt = StmtMap.find(BB);
  if (StmtMapIt == StmtMap.end())
    return {};
  return StmtMapIt->second;
}

ScopStmt *Scop::getIncomingStmtFor(const Use &U) const {
  auto *PHI = cast<PHINode>(U.getUser());
  BasicBlock *IncomingBB = PHI->getIncomingBlock(U);

  // If the value is a non-synthesizable from the incoming block, use the
  // statement that contains it as user statement.
  if (auto *IncomingInst = dyn_cast<Instruction>(U.get())) {
    if (IncomingInst->getParent() == IncomingBB) {
      if (ScopStmt *IncomingStmt = getStmtFor(IncomingInst))
        return IncomingStmt;
    }
  }

  // Otherwise, use the epilogue/last statement.
  return getLastStmtFor(IncomingBB);
}

ScopStmt *Scop::getLastStmtFor(BasicBlock *BB) const {
  ArrayRef<ScopStmt *> StmtList = getStmtListFor(BB);
  if (!StmtList.empty())
    return StmtList.back();
  return nullptr;
}

ArrayRef<ScopStmt *> Scop::getStmtListFor(RegionNode *RN) const {
  if (RN->isSubRegion())
    return getStmtListFor(RN->getNodeAs<Region>());
  return getStmtListFor(RN->getNodeAs<BasicBlock>());
}

ArrayRef<ScopStmt *> Scop::getStmtListFor(Region *R) const {
  return getStmtListFor(R->getEntry());
}

int Scop::getRelativeLoopDepth(const Loop *L) const {
  if (!L || !R.contains(L))
    return -1;
  // outermostLoopInRegion always returns nullptr for top level regions
  if (R.isTopLevelRegion()) {
    // LoopInfo's depths start at 1, we start at 0
    return L->getLoopDepth() - 1;
  } else {
    Loop *OuterLoop = R.outermostLoopInRegion(const_cast<Loop *>(L));
    assert(OuterLoop);
    return L->getLoopDepth() - OuterLoop->getLoopDepth();
  }
}

ScopArrayInfo *Scop::getArrayInfoByName(const std::string BaseName) {
  for (auto &SAI : arrays()) {
    if (SAI->getName() == BaseName)
      return SAI;
  }
  return nullptr;
}

void Scop::addAccessData(MemoryAccess *Access) {
  const ScopArrayInfo *SAI = Access->getOriginalScopArrayInfo();
  assert(SAI && "can only use after access relations have been constructed");

  if (Access->isOriginalValueKind() && Access->isRead())
    ValueUseAccs[SAI].push_back(Access);
  else if (Access->isOriginalAnyPHIKind() && Access->isWrite())
    PHIIncomingAccs[SAI].push_back(Access);
}

void Scop::removeAccessData(MemoryAccess *Access) {
  if (Access->isOriginalValueKind() && Access->isWrite()) {
    ValueDefAccs.erase(Access->getAccessValue());
  } else if (Access->isOriginalValueKind() && Access->isRead()) {
    auto &Uses = ValueUseAccs[Access->getScopArrayInfo()];
    auto NewEnd = std::remove(Uses.begin(), Uses.end(), Access);
    Uses.erase(NewEnd, Uses.end());
  } else if (Access->isOriginalPHIKind() && Access->isRead()) {
    PHINode *PHI = cast<PHINode>(Access->getAccessInstruction());
    PHIReadAccs.erase(PHI);
  } else if (Access->isOriginalAnyPHIKind() && Access->isWrite()) {
    auto &Incomings = PHIIncomingAccs[Access->getScopArrayInfo()];
    auto NewEnd = std::remove(Incomings.begin(), Incomings.end(), Access);
    Incomings.erase(NewEnd, Incomings.end());
  }
}

MemoryAccess *Scop::getValueDef(const ScopArrayInfo *SAI) const {
  assert(SAI->isValueKind());

  Instruction *Val = dyn_cast<Instruction>(SAI->getBasePtr());
  if (!Val)
    return nullptr;

  return ValueDefAccs.lookup(Val);
}

ArrayRef<MemoryAccess *> Scop::getValueUses(const ScopArrayInfo *SAI) const {
  assert(SAI->isValueKind());
  auto It = ValueUseAccs.find(SAI);
  if (It == ValueUseAccs.end())
    return {};
  return It->second;
}

MemoryAccess *Scop::getPHIRead(const ScopArrayInfo *SAI) const {
  assert(SAI->isPHIKind() || SAI->isExitPHIKind());

  if (SAI->isExitPHIKind())
    return nullptr;

  PHINode *PHI = cast<PHINode>(SAI->getBasePtr());
  return PHIReadAccs.lookup(PHI);
}

ArrayRef<MemoryAccess *> Scop::getPHIIncomings(const ScopArrayInfo *SAI) const {
  assert(SAI->isPHIKind() || SAI->isExitPHIKind());
  auto It = PHIIncomingAccs.find(SAI);
  if (It == PHIIncomingAccs.end())
    return {};
  return It->second;
}

bool Scop::isEscaping(Instruction *Inst) {
  assert(contains(Inst) && "The concept of escaping makes only sense for "
                           "values defined inside the SCoP");

  for (Use &Use : Inst->uses()) {
    BasicBlock *UserBB = getUseBlock(Use);
    if (!contains(UserBB))
      return true;

    // When the SCoP region exit needs to be simplified, PHIs in the region exit
    // move to a new basic block such that its incoming blocks are not in the
    // SCoP anymore.
    if (hasSingleExitEdge() && isa<PHINode>(Use.getUser()) &&
        isExit(cast<PHINode>(Use.getUser())->getParent()))
      return true;
  }
  return false;
}

void Scop::incrementNumberOfAliasingAssumptions(unsigned step) {
  AssumptionsAliasing += step;
}

Scop::ScopStatistics Scop::getStatistics() const {
  ScopStatistics Result;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
  auto LoopStat = ScopDetection::countBeneficialLoops(&R, *SE, *getLI(), 0);

  int NumTotalLoops = LoopStat.NumLoops;
  Result.NumBoxedLoops = getBoxedLoops().size();
  Result.NumAffineLoops = NumTotalLoops - Result.NumBoxedLoops;

  for (const ScopStmt &Stmt : *this) {
    isl::set Domain = Stmt.getDomain().intersect_params(getContext());
    bool IsInLoop = Stmt.getNumIterators() >= 1;
    for (MemoryAccess *MA : Stmt) {
      if (!MA->isWrite())
        continue;

      if (MA->isLatestValueKind()) {
        Result.NumValueWrites += 1;
        if (IsInLoop)
          Result.NumValueWritesInLoops += 1;
      }

      if (MA->isLatestAnyPHIKind()) {
        Result.NumPHIWrites += 1;
        if (IsInLoop)
          Result.NumPHIWritesInLoops += 1;
      }

      isl::set AccSet =
          MA->getAccessRelation().intersect_domain(Domain).range();
      if (AccSet.is_singleton()) {
        Result.NumSingletonWrites += 1;
        if (IsInLoop)
          Result.NumSingletonWritesInLoops += 1;
      }
    }
  }
#endif
  return Result;
}

raw_ostream &polly::operator<<(raw_ostream &OS, const Scop &scop) {
  scop.print(OS, PollyPrintInstructions);
  return OS;
}

//===----------------------------------------------------------------------===//
void ScopInfoRegionPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addRequired<RegionInfoPass>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
  AU.addRequiredTransitive<ScopDetectionWrapperPass>();
  AU.addRequired<AAResultsWrapperPass>();
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  AU.setPreservesAll();
}

void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
                              Scop::ScopStatistics ScopStats) {
  assert(Stats.NumLoops == ScopStats.NumAffineLoops + ScopStats.NumBoxedLoops);

  NumScops++;
  NumLoopsInScop += Stats.NumLoops;
  MaxNumLoopsInScop =
      std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);

  if (Stats.MaxDepth == 0)
    NumScopsDepthZero++;
  else if (Stats.MaxDepth == 1)
    NumScopsDepthOne++;
  else if (Stats.MaxDepth == 2)
    NumScopsDepthTwo++;
  else if (Stats.MaxDepth == 3)
    NumScopsDepthThree++;
  else if (Stats.MaxDepth == 4)
    NumScopsDepthFour++;
  else if (Stats.MaxDepth == 5)
    NumScopsDepthFive++;
  else
    NumScopsDepthLarger++;

  NumAffineLoops += ScopStats.NumAffineLoops;
  NumBoxedLoops += ScopStats.NumBoxedLoops;

  NumValueWrites += ScopStats.NumValueWrites;
  NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
  NumPHIWrites += ScopStats.NumPHIWrites;
  NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
  NumSingletonWrites += ScopStats.NumSingletonWrites;
  NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;
}

bool ScopInfoRegionPass::runOnRegion(Region *R, RGPassManager &RGM) {
  auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD();

  if (!SD.isMaxRegionInScop(*R))
    return false;

  Function *F = R->getEntry()->getParent();
  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto const &DL = F->getParent()->getDataLayout();
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F);
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

  ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE);
  S = SB.getScop(); // take ownership of scop object

#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
  if (S) {
    ScopDetection::LoopStats Stats =
        ScopDetection::countBeneficialLoops(&S->getRegion(), SE, LI, 0);
    updateLoopCountStatistic(Stats, S->getStatistics());
  }
#endif

  return false;
}

void ScopInfoRegionPass::print(raw_ostream &OS, const Module *) const {
  if (S)
    S->print(OS, PollyPrintInstructions);
  else
    OS << "Invalid Scop!\n";
}

char ScopInfoRegionPass::ID = 0;

Pass *polly::createScopInfoRegionPassPass() { return new ScopInfoRegionPass(); }

INITIALIZE_PASS_BEGIN(ScopInfoRegionPass, "polly-scops",
                      "Polly - Create polyhedral description of Scops", false,
                      false);
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_END(ScopInfoRegionPass, "polly-scops",
                    "Polly - Create polyhedral description of Scops", false,
                    false)

//===----------------------------------------------------------------------===//
ScopInfo::ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE,
                   LoopInfo &LI, AliasAnalysis &AA, DominatorTree &DT,
                   AssumptionCache &AC, OptimizationRemarkEmitter &ORE)
    : DL(DL), SD(SD), SE(SE), LI(LI), AA(AA), DT(DT), AC(AC), ORE(ORE) {
  recompute();
}

void ScopInfo::recompute() {
  RegionToScopMap.clear();
  /// Create polyhedral description of scops for all the valid regions of a
  /// function.
  for (auto &It : SD) {
    Region *R = const_cast<Region *>(It);
    if (!SD.isMaxRegionInScop(*R))
      continue;

    ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE);
    std::unique_ptr<Scop> S = SB.getScop();
    if (!S)
      continue;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
    ScopDetection::LoopStats Stats =
        ScopDetection::countBeneficialLoops(&S->getRegion(), SE, LI, 0);
    updateLoopCountStatistic(Stats, S->getStatistics());
#endif
    bool Inserted = RegionToScopMap.insert({R, std::move(S)}).second;
    assert(Inserted && "Building Scop for the same region twice!");
    (void)Inserted;
  }
}

bool ScopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
                          FunctionAnalysisManager::Invalidator &Inv) {
  // Check whether the analysis, all analyses on functions have been preserved
  // or anything we're holding references to is being invalidated
  auto PAC = PA.getChecker<ScopInfoAnalysis>();
  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
         Inv.invalidate<ScopAnalysis>(F, PA) ||
         Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
         Inv.invalidate<LoopAnalysis>(F, PA) ||
         Inv.invalidate<AAManager>(F, PA) ||
         Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
         Inv.invalidate<AssumptionAnalysis>(F, PA);
}

AnalysisKey ScopInfoAnalysis::Key;

ScopInfoAnalysis::Result ScopInfoAnalysis::run(Function &F,
                                               FunctionAnalysisManager &FAM) {
  auto &SD = FAM.getResult<ScopAnalysis>(F);
  auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
  auto &LI = FAM.getResult<LoopAnalysis>(F);
  auto &AA = FAM.getResult<AAManager>(F);
  auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
  auto &AC = FAM.getResult<AssumptionAnalysis>(F);
  auto &DL = F.getParent()->getDataLayout();
  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  return {DL, SD, SE, LI, AA, DT, AC, ORE};
}

PreservedAnalyses ScopInfoPrinterPass::run(Function &F,
                                           FunctionAnalysisManager &FAM) {
  auto &SI = FAM.getResult<ScopInfoAnalysis>(F);
  // Since the legacy PM processes Scops in bottom up, we print them in reverse
  // order here to keep the output persistent
  for (auto &It : reverse(SI)) {
    if (It.second)
      It.second->print(Stream, PollyPrintInstructions);
    else
      Stream << "Invalid Scop!\n";
  }
  return PreservedAnalyses::all();
}

void ScopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addRequired<RegionInfoPass>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
  AU.addRequiredTransitive<ScopDetectionWrapperPass>();
  AU.addRequired<AAResultsWrapperPass>();
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  AU.setPreservesAll();
}

bool ScopInfoWrapperPass::runOnFunction(Function &F) {
  auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD();
  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto const &DL = F.getParent()->getDataLayout();
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

  Result.reset(new ScopInfo{DL, SD, SE, LI, AA, DT, AC, ORE});
  return false;
}

void ScopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
  for (auto &It : *Result) {
    if (It.second)
      It.second->print(OS, PollyPrintInstructions);
    else
      OS << "Invalid Scop!\n";
  }
}

char ScopInfoWrapperPass::ID = 0;

Pass *polly::createScopInfoWrapperPassPass() {
  return new ScopInfoWrapperPass();
}

INITIALIZE_PASS_BEGIN(
    ScopInfoWrapperPass, "polly-function-scops",
    "Polly - Create polyhedral description of all Scops of a function", false,
    false);
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_END(
    ScopInfoWrapperPass, "polly-function-scops",
    "Polly - Create polyhedral description of all Scops of a function", false,
    false)