reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
//===- ScopDetection.h - Detect Scops ---------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Detect the maximal Scops of a function.
//
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
// that only has statically known control flow and can therefore be described
// within the polyhedral model.
//
// Every Scop fulfills these restrictions:
//
// * It is a single entry single exit region
//
// * Only affine linear bounds in the loops
//
// Every natural loop in a Scop must have a number of loop iterations that can
// be described as an affine linear function in surrounding loop iterators or
// parameters. (A parameter is a scalar that does not change its value during
// execution of the Scop).
//
// * Only comparisons of affine linear expressions in conditions
//
// * All loops and conditions perfectly nested
//
// The control flow needs to be structured such that it could be written using
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
// 'continue'.
//
// * Side effect free functions call
//
// Only function calls and intrinsics that do not have side effects are allowed
// (readnone).
//
// The Scop detection finds the largest Scops by checking if the largest
// region is a Scop. If this is not the case, its canonical subregions are
// checked until a region is a Scop. It is now tried to extend this Scop by
// creating a larger non canonical region.
//
//===----------------------------------------------------------------------===//

#ifndef POLLY_SCOPDETECTION_H
#define POLLY_SCOPDETECTION_H

#include "polly/ScopDetectionDiagnostic.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Pass.h"
#include <set>

using namespace llvm;

namespace llvm {
void initializeScopDetectionWrapperPassPass(PassRegistry &);
} // namespace llvm

namespace polly {

using ParamSetType = std::set<const SCEV *>;

// Description of the shape of an array.
struct ArrayShape {
  // Base pointer identifying all accesses to this array.
  const SCEVUnknown *BasePointer;

  // Sizes of each delinearized dimension.
  SmallVector<const SCEV *, 4> DelinearizedSizes;

  ArrayShape(const SCEVUnknown *B) : BasePointer(B) {}
};

struct MemAcc {
  const Instruction *Insn;

  // A pointer to the shape description of the array.
  std::shared_ptr<ArrayShape> Shape;

  // Subscripts computed by delinearization.
  SmallVector<const SCEV *, 4> DelinearizedSubscripts;

  MemAcc(const Instruction *I, std::shared_ptr<ArrayShape> S)
      : Insn(I), Shape(S) {}
};

using MapInsnToMemAcc = std::map<const Instruction *, MemAcc>;
using PairInstSCEV = std::pair<const Instruction *, const SCEV *>;
using AFs = std::vector<PairInstSCEV>;
using BaseToAFs = std::map<const SCEVUnknown *, AFs>;
using BaseToElSize = std::map<const SCEVUnknown *, const SCEV *>;

extern bool PollyTrackFailures;
extern bool PollyDelinearize;
extern bool PollyUseRuntimeAliasChecks;
extern bool PollyProcessUnprofitable;
extern bool PollyInvariantLoadHoisting;
extern bool PollyAllowUnsignedOperations;
extern bool PollyAllowFullFunction;

/// A function attribute which will cause Polly to skip the function
extern StringRef PollySkipFnAttr;

//===----------------------------------------------------------------------===//
/// Pass to detect the maximal static control parts (Scops) of a
/// function.
class ScopDetection {
public:
  using RegionSet = SetVector<const Region *>;

  // Remember the valid regions
  RegionSet ValidRegions;

  /// Context variables for SCoP detection.
  struct DetectionContext {
    Region &CurRegion;   // The region to check.
    AliasSetTracker AST; // The AliasSetTracker to hold the alias information.
    bool Verifying;      // If we are in the verification phase?

    /// Container to remember rejection reasons for this region.
    RejectLog Log;

    /// Map a base pointer to all access functions accessing it.
    ///
    /// This map is indexed by the base pointer. Each element of the map
    /// is a list of memory accesses that reference this base pointer.
    BaseToAFs Accesses;

    /// The set of base pointers with non-affine accesses.
    ///
    /// This set contains all base pointers and the locations where they are
    /// used for memory accesses that can not be detected as affine accesses.
    SetVector<std::pair<const SCEVUnknown *, Loop *>> NonAffineAccesses;
    BaseToElSize ElementSize;

    /// The region has at least one load instruction.
    bool hasLoads = false;

    /// The region has at least one store instruction.
    bool hasStores = false;

    /// Flag to indicate the region has at least one unknown access.
    bool HasUnknownAccess = false;

    /// The set of non-affine subregions in the region we analyze.
    RegionSet NonAffineSubRegionSet;

    /// The set of loops contained in non-affine regions.
    BoxedLoopsSetTy BoxedLoopsSet;

    /// Loads that need to be invariant during execution.
    InvariantLoadsSetTy RequiredILS;

    /// Map to memory access description for the corresponding LLVM
    ///        instructions.
    MapInsnToMemAcc InsnToMemAcc;

    /// Initialize a DetectionContext from scratch.
    DetectionContext(Region &R, AliasAnalysis &AA, bool Verify)
        : CurRegion(R), AST(AA), Verifying(Verify), Log(&R) {}

    /// Initialize a DetectionContext with the data from @p DC.
    DetectionContext(const DetectionContext &&DC)
        : CurRegion(DC.CurRegion), AST(DC.AST.getAliasAnalysis()),
          Verifying(DC.Verifying), Log(std::move(DC.Log)),
          Accesses(std::move(DC.Accesses)),
          NonAffineAccesses(std::move(DC.NonAffineAccesses)),
          ElementSize(std::move(DC.ElementSize)), hasLoads(DC.hasLoads),
          hasStores(DC.hasStores), HasUnknownAccess(DC.HasUnknownAccess),
          NonAffineSubRegionSet(std::move(DC.NonAffineSubRegionSet)),
          BoxedLoopsSet(std::move(DC.BoxedLoopsSet)),
          RequiredILS(std::move(DC.RequiredILS)) {
      AST.add(DC.AST);
    }
  };

  /// Helper data structure to collect statistics about loop counts.
  struct LoopStats {
    int NumLoops;
    int MaxDepth;
  };

private:
  //===--------------------------------------------------------------------===//

  /// Analyses used
  //@{
  const DominatorTree &DT;
  ScalarEvolution &SE;
  LoopInfo &LI;
  RegionInfo &RI;
  AliasAnalysis &AA;
  //@}

  /// Map to remember detection contexts for all regions.
  using DetectionContextMapTy = DenseMap<BBPair, DetectionContext>;
  mutable DetectionContextMapTy DetectionContextMap;

  /// Remove cached results for @p R.
  void removeCachedResults(const Region &R);

  /// Remove cached results for the children of @p R recursively.
  void removeCachedResultsRecursively(const Region &R);

  /// Check if @p S0 and @p S1 do contain multiple possibly aliasing pointers.
  ///
  /// @param S0    A expression to check.
  /// @param S1    Another expression to check or nullptr.
  /// @param Scope The loop/scope the expressions are checked in.
  ///
  /// @returns True, if multiple possibly aliasing pointers are used in @p S0
  ///          (and @p S1 if given).
  bool involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, Loop *Scope) const;

  /// Add the region @p AR as over approximated sub-region in @p Context.
  ///
  /// @param AR      The non-affine subregion.
  /// @param Context The current detection context.
  ///
  /// @returns True if the subregion can be over approximated, false otherwise.
  bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const;

  /// Find for a given base pointer terms that hint towards dimension
  ///        sizes of a multi-dimensional array.
  ///
  /// @param Context      The current detection context.
  /// @param BasePointer  A base pointer indicating the virtual array we are
  ///                     interested in.
  SmallVector<const SCEV *, 4>
  getDelinearizationTerms(DetectionContext &Context,
                          const SCEVUnknown *BasePointer) const;

  /// Check if the dimension size of a delinearized array is valid.
  ///
  /// @param Context     The current detection context.
  /// @param Sizes       The sizes of the different array dimensions.
  /// @param BasePointer The base pointer we are interested in.
  /// @param Scope       The location where @p BasePointer is being used.
  /// @returns True if one or more array sizes could be derived - meaning: we
  ///          see this array as multi-dimensional.
  bool hasValidArraySizes(DetectionContext &Context,
                          SmallVectorImpl<const SCEV *> &Sizes,
                          const SCEVUnknown *BasePointer, Loop *Scope) const;

  /// Derive access functions for a given base pointer.
  ///
  /// @param Context     The current detection context.
  /// @param Sizes       The sizes of the different array dimensions.
  /// @param BasePointer The base pointer of all the array for which to compute
  ///                    access functions.
  /// @param Shape       The shape that describes the derived array sizes and
  ///                    which should be filled with newly computed access
  ///                    functions.
  /// @returns True if a set of affine access functions could be derived.
  bool computeAccessFunctions(DetectionContext &Context,
                              const SCEVUnknown *BasePointer,
                              std::shared_ptr<ArrayShape> Shape) const;

  /// Check if all accesses to a given BasePointer are affine.
  ///
  /// @param Context     The current detection context.
  /// @param BasePointer the base pointer we are interested in.
  /// @param Scope       The location where @p BasePointer is being used.
  /// @param True if consistent (multi-dimensional) array accesses could be
  ///        derived for this array.
  bool hasBaseAffineAccesses(DetectionContext &Context,
                             const SCEVUnknown *BasePointer, Loop *Scope) const;

  // Delinearize all non affine memory accesses and return false when there
  // exists a non affine memory access that cannot be delinearized. Return true
  // when all array accesses are affine after delinearization.
  bool hasAffineMemoryAccesses(DetectionContext &Context) const;

  // Try to expand the region R. If R can be expanded return the expanded
  // region, NULL otherwise.
  Region *expandRegion(Region &R);

  /// Find the Scops in this region tree.
  ///
  /// @param The region tree to scan for scops.
  void findScops(Region &R);

  /// Check if all basic block in the region are valid.
  ///
  /// @param Context The context of scop detection.
  ///
  /// @return True if all blocks in R are valid, false otherwise.
  bool allBlocksValid(DetectionContext &Context) const;

  /// Check if a region has sufficient compute instructions.
  ///
  /// This function checks if a region has a non-trivial number of instructions
  /// in each loop. This can be used as an indicator whether a loop is worth
  /// optimizing.
  ///
  /// @param Context  The context of scop detection.
  /// @param NumLoops The number of loops in the region.
  ///
  /// @return True if region is has sufficient compute instructions,
  ///         false otherwise.
  bool hasSufficientCompute(DetectionContext &Context,
                            int NumAffineLoops) const;

  /// Check if the unique affine loop might be amendable to distribution.
  ///
  /// This function checks if the number of non-trivial blocks in the unique
  /// affine loop in Context.CurRegion is at least two, thus if the loop might
  /// be amendable to distribution.
  ///
  /// @param Context  The context of scop detection.
  ///
  /// @return True only if the affine loop might be amendable to distributable.
  bool hasPossiblyDistributableLoop(DetectionContext &Context) const;

  /// Check if a region is profitable to optimize.
  ///
  /// Regions that are unlikely to expose interesting optimization opportunities
  /// are called 'unprofitable' and may be skipped during scop detection.
  ///
  /// @param Context The context of scop detection.
  ///
  /// @return True if region is profitable to optimize, false otherwise.
  bool isProfitableRegion(DetectionContext &Context) const;

  /// Check if a region is a Scop.
  ///
  /// @param Context The context of scop detection.
  ///
  /// @return True if R is a Scop, false otherwise.
  bool isValidRegion(DetectionContext &Context) const;

  /// Check if an intrinsic call can be part of a Scop.
  ///
  /// @param II      The intrinsic call instruction to check.
  /// @param Context The current detection context.
  ///
  /// @return True if the call instruction is valid, false otherwise.
  bool isValidIntrinsicInst(IntrinsicInst &II, DetectionContext &Context) const;

  /// Check if a call instruction can be part of a Scop.
  ///
  /// @param CI      The call instruction to check.
  /// @param Context The current detection context.
  ///
  /// @return True if the call instruction is valid, false otherwise.
  bool isValidCallInst(CallInst &CI, DetectionContext &Context) const;

  /// Check if the given loads could be invariant and can be hoisted.
  ///
  /// If true is returned the loads are added to the required invariant loads
  /// contained in the @p Context.
  ///
  /// @param RequiredILS The loads to check.
  /// @param Context     The current detection context.
  ///
  /// @return True if all loads can be assumed invariant.
  bool onlyValidRequiredInvariantLoads(InvariantLoadsSetTy &RequiredILS,
                                       DetectionContext &Context) const;

  /// Check if a value is invariant in the region Reg.
  ///
  /// @param Val Value to check for invariance.
  /// @param Reg The region to consider for the invariance of Val.
  /// @param Ctx The current detection context.
  ///
  /// @return True if the value represented by Val is invariant in the region
  ///         identified by Reg.
  bool isInvariant(Value &Val, const Region &Reg, DetectionContext &Ctx) const;

  /// Check if the memory access caused by @p Inst is valid.
  ///
  /// @param Inst    The access instruction.
  /// @param AF      The access function.
  /// @param BP      The access base pointer.
  /// @param Context The current detection context.
  bool isValidAccess(Instruction *Inst, const SCEV *AF, const SCEVUnknown *BP,
                     DetectionContext &Context) const;

  /// Check if a memory access can be part of a Scop.
  ///
  /// @param Inst The instruction accessing the memory.
  /// @param Context The context of scop detection.
  ///
  /// @return True if the memory access is valid, false otherwise.
  bool isValidMemoryAccess(MemAccInst Inst, DetectionContext &Context) const;

  /// Check if an instruction has any non trivial scalar dependencies as part of
  /// a Scop.
  ///
  /// @param Inst The instruction to check.
  /// @param RefRegion The region in respect to which we check the access
  ///                  function.
  ///
  /// @return True if the instruction has scalar dependences, false otherwise.
  bool hasScalarDependency(Instruction &Inst, Region &RefRegion) const;

  /// Check if an instruction can be part of a Scop.
  ///
  /// @param Inst The instruction to check.
  /// @param Context The context of scop detection.
  ///
  /// @return True if the instruction is valid, false otherwise.
  bool isValidInstruction(Instruction &Inst, DetectionContext &Context) const;

  /// Check if the switch @p SI with condition @p Condition is valid.
  ///
  /// @param BB           The block to check.
  /// @param SI           The switch to check.
  /// @param Condition    The switch condition.
  /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
  /// @param Context      The context of scop detection.
  ///
  /// @return True if the branch @p BI is valid.
  bool isValidSwitch(BasicBlock &BB, SwitchInst *SI, Value *Condition,
                     bool IsLoopBranch, DetectionContext &Context) const;

  /// Check if the branch @p BI with condition @p Condition is valid.
  ///
  /// @param BB           The block to check.
  /// @param BI           The branch to check.
  /// @param Condition    The branch condition.
  /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
  /// @param Context      The context of scop detection.
  ///
  /// @return True if the branch @p BI is valid.
  bool isValidBranch(BasicBlock &BB, BranchInst *BI, Value *Condition,
                     bool IsLoopBranch, DetectionContext &Context) const;

  /// Check if the SCEV @p S is affine in the current @p Context.
  ///
  /// This will also use a heuristic to decide if we want to require loads to be
  /// invariant to make the expression affine or if we want to treat is as
  /// non-affine.
  ///
  /// @param S           The expression to be checked.
  /// @param Scope       The loop nest in which @p S is used.
  /// @param Context     The context of scop detection.
  bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context) const;

  /// Check if the control flow in a basic block is valid.
  ///
  /// This function checks if a certain basic block is terminated by a
  /// Terminator instruction we can handle or, if this is not the case,
  /// registers this basic block as the start of a non-affine region.
  ///
  /// This function optionally allows unreachable statements.
  ///
  /// @param BB               The BB to check the control flow.
  /// @param IsLoopBranch     Flag to indicate the branch is a loop exit/latch.
  //  @param AllowUnreachable Allow unreachable statements.
  /// @param Context          The context of scop detection.
  ///
  /// @return True if the BB contains only valid control flow.
  bool isValidCFG(BasicBlock &BB, bool IsLoopBranch, bool AllowUnreachable,
                  DetectionContext &Context) const;

  /// Is a loop valid with respect to a given region.
  ///
  /// @param L The loop to check.
  /// @param Context The context of scop detection.
  ///
  /// @return True if the loop is valid in the region.
  bool isValidLoop(Loop *L, DetectionContext &Context) const;

  /// Count the number of loops and the maximal loop depth in @p L.
  ///
  /// @param L The loop to check.
  /// @param SE The scalar evolution analysis.
  /// @param MinProfitableTrips The minimum number of trip counts from which
  ///                           a loop is assumed to be profitable and
  ///                           consequently is counted.
  /// returns A tuple of number of loops and their maximal depth.
  static ScopDetection::LoopStats
  countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
                          unsigned MinProfitableTrips);

  /// Check if the function @p F is marked as invalid.
  ///
  /// @note An OpenMP subfunction will be marked as invalid.
  bool isValidFunction(Function &F);

  /// Can ISL compute the trip count of a loop.
  ///
  /// @param L The loop to check.
  /// @param Context The context of scop detection.
  ///
  /// @return True if ISL can compute the trip count of the loop.
  bool canUseISLTripCount(Loop *L, DetectionContext &Context) const;

  /// Print the locations of all detected scops.
  void printLocations(Function &F);

  /// Check if a region is reducible or not.
  ///
  /// @param Region The region to check.
  /// @param DbgLoc Parameter to save the location of instruction that
  ///               causes irregular control flow if the region is irreducible.
  ///
  /// @return True if R is reducible, false otherwise.
  bool isReducibleRegion(Region &R, DebugLoc &DbgLoc) const;

  /// Track diagnostics for invalid scops.
  ///
  /// @param Context The context of scop detection.
  /// @param Assert Throw an assert in verify mode or not.
  /// @param Args Argument list that gets passed to the constructor of RR.
  template <class RR, typename... Args>
  inline bool invalid(DetectionContext &Context, bool Assert,
                      Args &&... Arguments) const;

public:
  ScopDetection(Function &F, const DominatorTree &DT, ScalarEvolution &SE,
                LoopInfo &LI, RegionInfo &RI, AliasAnalysis &AA,
                OptimizationRemarkEmitter &ORE);

  /// Get the RegionInfo stored in this pass.
  ///
  /// This was added to give the DOT printer easy access to this information.
  RegionInfo *getRI() const { return &RI; }

  /// Get the LoopInfo stored in this pass.
  LoopInfo *getLI() const { return &LI; }

  /// Is the region is the maximum region of a Scop?
  ///
  /// @param R The Region to test if it is maximum.
  /// @param Verify Rerun the scop detection to verify SCoP was not invalidated
  ///               meanwhile.
  ///
  /// @return Return true if R is the maximum Region in a Scop, false otherwise.
  bool isMaxRegionInScop(const Region &R, bool Verify = true) const;

  /// Return the detection context for @p R, nullptr if @p R was invalid.
  DetectionContext *getDetectionContext(const Region *R) const;

  /// Return the set of rejection causes for @p R.
  const RejectLog *lookupRejectionLog(const Region *R) const;

  /// Return true if @p SubR is a non-affine subregion in @p ScopR.
  bool isNonAffineSubRegion(const Region *SubR, const Region *ScopR) const;

  /// Get a message why a region is invalid
  ///
  /// @param R The region for which we get the error message
  ///
  /// @return The error or "" if no error appeared.
  std::string regionIsInvalidBecause(const Region *R) const;

  /// @name Maximum Region In Scops Iterators
  ///
  /// These iterators iterator over all maximum region in Scops of this
  /// function.
  //@{
  using iterator = RegionSet::iterator;
  using const_iterator = RegionSet::const_iterator;

  iterator begin() { return ValidRegions.begin(); }
  iterator end() { return ValidRegions.end(); }

  const_iterator begin() const { return ValidRegions.begin(); }
  const_iterator end() const { return ValidRegions.end(); }
  //@}

  /// Emit rejection remarks for all rejected regions.
  ///
  /// @param F The function to emit remarks for.
  void emitMissedRemarks(const Function &F);

  /// Mark the function as invalid so we will not extract any scop from
  ///        the function.
  ///
  /// @param F The function to mark as invalid.
  static void markFunctionAsInvalid(Function *F);

  /// Verify if all valid Regions in this Function are still valid
  /// after some transformations.
  void verifyAnalysis() const;

  /// Verify if R is still a valid part of Scop after some transformations.
  ///
  /// @param R The Region to verify.
  void verifyRegion(const Region &R) const;

  /// Count the number of loops and the maximal loop depth in @p R.
  ///
  /// @param R The region to check
  /// @param SE The scalar evolution analysis.
  /// @param MinProfitableTrips The minimum number of trip counts from which
  ///                           a loop is assumed to be profitable and
  ///                           consequently is counted.
  /// returns A tuple of number of loops and their maximal depth.
  static ScopDetection::LoopStats
  countBeneficialLoops(Region *R, ScalarEvolution &SE, LoopInfo &LI,
                       unsigned MinProfitableTrips);

private:
  /// OptimizationRemarkEmitter object used to emit diagnostic remarks
  OptimizationRemarkEmitter &ORE;
};

struct ScopAnalysis : public AnalysisInfoMixin<ScopAnalysis> {
  static AnalysisKey Key;

  using Result = ScopDetection;

  ScopAnalysis();

  Result run(Function &F, FunctionAnalysisManager &FAM);
};

struct ScopAnalysisPrinterPass : public PassInfoMixin<ScopAnalysisPrinterPass> {
  ScopAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);

  raw_ostream &OS;
};

struct ScopDetectionWrapperPass : public FunctionPass {
  static char ID;
  std::unique_ptr<ScopDetection> Result;

  ScopDetectionWrapperPass();

  /// @name FunctionPass interface
  //@{
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  void releaseMemory() override;
  bool runOnFunction(Function &F) override;
  void print(raw_ostream &OS, const Module *) const override;
  //@}

  ScopDetection &getSD() { return *Result; }
  const ScopDetection &getSD() const { return *Result; }
};
} // namespace polly

#endif // POLLY_SCOPDETECTION_H