reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Calculate a program structure tree built out of single entry single exit
// regions.
// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
// Koehler - 2009".
// The algorithm to calculate these data structures however is completely
// different, as it takes advantage of existing information already available
// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
// and in practice hopefully better performing algorithm. The runtime of the
// algorithms described in the papers above are both linear in graph size,
// O(V+E), whereas this algorithm is not, as the dominance frontier information
// itself is not, but in practice runtime seems to be in the order of magnitude
// of dominance tree calculation.
//
// WARNING: LLVM is generally very concerned about compile time such that
//          the use of additional analysis passes in the default
//          optimization sequence is avoided as much as possible.
//          Specifically, if you do not need the RegionInfo, but dominance
//          information could be sufficient please base your work only on
//          the dominator tree. Most passes maintain it, such that using
//          it has often near zero cost. In contrast RegionInfo is by
//          default not available, is not maintained by existing
//          transformations and there is no intention to do so.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_REGIONINFO_H
#define LLVM_ANALYSIS_REGIONINFO_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <type_traits>
#include <vector>

namespace llvm {

class DominanceFrontier;
class DominatorTree;
class Loop;
class LoopInfo;
class PostDominatorTree;
class Region;
template <class RegionTr> class RegionBase;
class RegionInfo;
template <class RegionTr> class RegionInfoBase;
class RegionNode;

// Class to be specialized for different users of RegionInfo
// (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
// pass around an unreasonable number of template parameters.
template <class FuncT_>
struct RegionTraits {
  // FuncT
  // BlockT
  // RegionT
  // RegionNodeT
  // RegionInfoT
  using BrokenT = typename FuncT_::UnknownRegionTypeError;
};

template <>
struct RegionTraits<Function> {
  using FuncT = Function;
  using BlockT = BasicBlock;
  using RegionT = Region;
  using RegionNodeT = RegionNode;
  using RegionInfoT = RegionInfo;
  using DomTreeT = DominatorTree;
  using DomTreeNodeT = DomTreeNode;
  using DomFrontierT = DominanceFrontier;
  using PostDomTreeT = PostDominatorTree;
  using InstT = Instruction;
  using LoopT = Loop;
  using LoopInfoT = LoopInfo;

  static unsigned getNumSuccessors(BasicBlock *BB) {
    return BB->getTerminator()->getNumSuccessors();
  }
};

/// Marker class to iterate over the elements of a Region in flat mode.
///
/// The class is used to either iterate in Flat mode or by not using it to not
/// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
/// and the iteration returns every BasicBlock.  If the Flat mode is not
/// selected for SubRegions just one RegionNode containing the subregion is
/// returned.
template <class GraphType>
class FlatIt {};

/// A RegionNode represents a subregion or a BasicBlock that is part of a
/// Region.
template <class Tr>
class RegionNodeBase {
  friend class RegionBase<Tr>;

public:
  using BlockT = typename Tr::BlockT;
  using RegionT = typename Tr::RegionT;

private:
  /// This is the entry basic block that starts this region node.  If this is a
  /// BasicBlock RegionNode, then entry is just the basic block, that this
  /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
  ///
  /// In the BBtoRegionNode map of the parent of this node, BB will always map
  /// to this node no matter which kind of node this one is.
  ///
  /// The node can hold either a Region or a BasicBlock.
  /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
  /// RegionNode.
  PointerIntPair<BlockT *, 1, bool> entry;

  /// The parent Region of this RegionNode.
  /// @see getParent()
  RegionT *parent;

protected:
  /// Create a RegionNode.
  ///
  /// @param Parent      The parent of this RegionNode.
  /// @param Entry       The entry BasicBlock of the RegionNode.  If this
  ///                    RegionNode represents a BasicBlock, this is the
  ///                    BasicBlock itself.  If it represents a subregion, this
  ///                    is the entry BasicBlock of the subregion.
  /// @param isSubRegion If this RegionNode represents a SubRegion.
  inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
                        bool isSubRegion = false)
      : entry(Entry, isSubRegion), parent(Parent) {}

public:
  RegionNodeBase(const RegionNodeBase &) = delete;
  RegionNodeBase &operator=(const RegionNodeBase &) = delete;

  /// Get the parent Region of this RegionNode.
  ///
  /// The parent Region is the Region this RegionNode belongs to. If for
  /// example a BasicBlock is element of two Regions, there exist two
  /// RegionNodes for this BasicBlock. Each with the getParent() function
  /// pointing to the Region this RegionNode belongs to.
  ///
  /// @return Get the parent Region of this RegionNode.
  inline RegionT *getParent() const { return parent; }

  /// Get the entry BasicBlock of this RegionNode.
  ///
  /// If this RegionNode represents a BasicBlock this is just the BasicBlock
  /// itself, otherwise we return the entry BasicBlock of the Subregion
  ///
  /// @return The entry BasicBlock of this RegionNode.
  inline BlockT *getEntry() const { return entry.getPointer(); }

  /// Get the content of this RegionNode.
  ///
  /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
  /// check the type of the content with the isSubRegion() function call.
  ///
  /// @return The content of this RegionNode.
  template <class T> inline T *getNodeAs() const;

  /// Is this RegionNode a subregion?
  ///
  /// @return True if it contains a subregion. False if it contains a
  ///         BasicBlock.
  inline bool isSubRegion() const { return entry.getInt(); }
};

//===----------------------------------------------------------------------===//
/// A single entry single exit Region.
///
/// A Region is a connected subgraph of a control flow graph that has exactly
/// two connections to the remaining graph. It can be used to analyze or
/// optimize parts of the control flow graph.
///
/// A <em> simple Region </em> is connected to the remaining graph by just two
/// edges. One edge entering the Region and another one leaving the Region.
///
/// An <em> extended Region </em> (or just Region) is a subgraph that can be
/// transform into a simple Region. The transformation is done by adding
/// BasicBlocks that merge several entry or exit edges so that after the merge
/// just one entry and one exit edge exists.
///
/// The \e Entry of a Region is the first BasicBlock that is passed after
/// entering the Region. It is an element of the Region. The entry BasicBlock
/// dominates all BasicBlocks in the Region.
///
/// The \e Exit of a Region is the first BasicBlock that is passed after
/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
/// postdominates all BasicBlocks in the Region.
///
/// A <em> canonical Region </em> cannot be constructed by combining smaller
/// Regions.
///
/// Region A is the \e parent of Region B, if B is completely contained in A.
///
/// Two canonical Regions either do not intersect at all or one is
/// the parent of the other.
///
/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
/// Regions in the control flow graph and E is the \e parent relation of these
/// Regions.
///
/// Example:
///
/// \verbatim
/// A simple control flow graph, that contains two regions.
///
///        1
///       / |
///      2   |
///     / \   3
///    4   5  |
///    |   |  |
///    6   7  8
///     \  | /
///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
///        9        Region B: 2 -> 9 {2,4,5,6,7}
/// \endverbatim
///
/// You can obtain more examples by either calling
///
/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
/// or
/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
///
/// on any LLVM file you are interested in.
///
/// The first call returns a textual representation of the program structure
/// tree, the second one creates a graphical representation using graphviz.
template <class Tr>
class RegionBase : public RegionNodeBase<Tr> {
  friend class RegionInfoBase<Tr>;

  using FuncT = typename Tr::FuncT;
  using BlockT = typename Tr::BlockT;
  using RegionInfoT = typename Tr::RegionInfoT;
  using RegionT = typename Tr::RegionT;
  using RegionNodeT = typename Tr::RegionNodeT;
  using DomTreeT = typename Tr::DomTreeT;
  using LoopT = typename Tr::LoopT;
  using LoopInfoT = typename Tr::LoopInfoT;
  using InstT = typename Tr::InstT;

  using BlockTraits = GraphTraits<BlockT *>;
  using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
  using SuccIterTy = typename BlockTraits::ChildIteratorType;
  using PredIterTy = typename InvBlockTraits::ChildIteratorType;

  // Information necessary to manage this Region.
  RegionInfoT *RI;
  DomTreeT *DT;

  // The exit BasicBlock of this region.
  // (The entry BasicBlock is part of RegionNode)
  BlockT *exit;

  using RegionSet = std::vector<std::unique_ptr<RegionT>>;

  // The subregions of this region.
  RegionSet children;

  using BBNodeMapT = std::map<BlockT *, std::unique_ptr<RegionNodeT>>;

  // Save the BasicBlock RegionNodes that are element of this Region.
  mutable BBNodeMapT BBNodeMap;

  /// Check if a BB is in this Region. This check also works
  /// if the region is incorrectly built. (EXPENSIVE!)
  void verifyBBInRegion(BlockT *BB) const;

  /// Walk over all the BBs of the region starting from BB and
  /// verify that all reachable basic blocks are elements of the region.
  /// (EXPENSIVE!)
  void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;

  /// Verify if the region and its children are valid regions (EXPENSIVE!)
  void verifyRegionNest() const;

public:
  /// Create a new region.
  ///
  /// @param Entry  The entry basic block of the region.
  /// @param Exit   The exit basic block of the region.
  /// @param RI     The region info object that is managing this region.
  /// @param DT     The dominator tree of the current function.
  /// @param Parent The surrounding region or NULL if this is a top level
  ///               region.
  RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
             RegionT *Parent = nullptr);

  RegionBase(const RegionBase &) = delete;
  RegionBase &operator=(const RegionBase &) = delete;

  /// Delete the Region and all its subregions.
  ~RegionBase();

  /// Get the entry BasicBlock of the Region.
  /// @return The entry BasicBlock of the region.
  BlockT *getEntry() const {
    return RegionNodeBase<Tr>::getEntry();
  }

  /// Replace the entry basic block of the region with the new basic
  ///        block.
  ///
  /// @param BB  The new entry basic block of the region.
  void replaceEntry(BlockT *BB);

  /// Replace the exit basic block of the region with the new basic
  ///        block.
  ///
  /// @param BB  The new exit basic block of the region.
  void replaceExit(BlockT *BB);

  /// Recursively replace the entry basic block of the region.
  ///
  /// This function replaces the entry basic block with a new basic block. It
  /// also updates all child regions that have the same entry basic block as
  /// this region.
  ///
  /// @param NewEntry The new entry basic block.
  void replaceEntryRecursive(BlockT *NewEntry);

  /// Recursively replace the exit basic block of the region.
  ///
  /// This function replaces the exit basic block with a new basic block. It
  /// also updates all child regions that have the same exit basic block as
  /// this region.
  ///
  /// @param NewExit The new exit basic block.
  void replaceExitRecursive(BlockT *NewExit);

  /// Get the exit BasicBlock of the Region.
  /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
  ///         Region.
  BlockT *getExit() const { return exit; }

  /// Get the parent of the Region.
  /// @return The parent of the Region or NULL if this is a top level
  ///         Region.
  RegionT *getParent() const {
    return RegionNodeBase<Tr>::getParent();
  }

  /// Get the RegionNode representing the current Region.
  /// @return The RegionNode representing the current Region.
  RegionNodeT *getNode() const {
    return const_cast<RegionNodeT *>(
        reinterpret_cast<const RegionNodeT *>(this));
  }

  /// Get the nesting level of this Region.
  ///
  /// An toplevel Region has depth 0.
  ///
  /// @return The depth of the region.
  unsigned getDepth() const;

  /// Check if a Region is the TopLevel region.
  ///
  /// The toplevel region represents the whole function.
  bool isTopLevelRegion() const { return exit == nullptr; }

  /// Return a new (non-canonical) region, that is obtained by joining
  ///        this region with its predecessors.
  ///
  /// @return A region also starting at getEntry(), but reaching to the next
  ///         basic block that forms with getEntry() a (non-canonical) region.
  ///         NULL if such a basic block does not exist.
  RegionT *getExpandedRegion() const;

  /// Return the first block of this region's single entry edge,
  ///        if existing.
  ///
  /// @return The BasicBlock starting this region's single entry edge,
  ///         else NULL.
  BlockT *getEnteringBlock() const;

  /// Return the first block of this region's single exit edge,
  ///        if existing.
  ///
  /// @return The BasicBlock starting this region's single exit edge,
  ///         else NULL.
  BlockT *getExitingBlock() const;

  /// Collect all blocks of this region's single exit edge, if existing.
  ///
  /// @return True if this region contains all the predecessors of the exit.
  bool getExitingBlocks(SmallVectorImpl<BlockT *> &Exitings) const;

  /// Is this a simple region?
  ///
  /// A region is simple if it has exactly one exit and one entry edge.
  ///
  /// @return True if the Region is simple.
  bool isSimple() const;

  /// Returns the name of the Region.
  /// @return The Name of the Region.
  std::string getNameStr() const;

  /// Return the RegionInfo object, that belongs to this Region.
  RegionInfoT *getRegionInfo() const { return RI; }

  /// PrintStyle - Print region in difference ways.
  enum PrintStyle { PrintNone, PrintBB, PrintRN };

  /// Print the region.
  ///
  /// @param OS The output stream the Region is printed to.
  /// @param printTree Print also the tree of subregions.
  /// @param level The indentation level used for printing.
  void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
             PrintStyle Style = PrintNone) const;

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  /// Print the region to stderr.
  void dump() const;
#endif

  /// Check if the region contains a BasicBlock.
  ///
  /// @param BB The BasicBlock that might be contained in this Region.
  /// @return True if the block is contained in the region otherwise false.
  bool contains(const BlockT *BB) const;

  /// Check if the region contains another region.
  ///
  /// @param SubRegion The region that might be contained in this Region.
  /// @return True if SubRegion is contained in the region otherwise false.
  bool contains(const RegionT *SubRegion) const {
    // Toplevel Region.
    if (!getExit())
      return true;

    return contains(SubRegion->getEntry()) &&
           (contains(SubRegion->getExit()) ||
            SubRegion->getExit() == getExit());
  }

  /// Check if the region contains an Instruction.
  ///
  /// @param Inst The Instruction that might be contained in this region.
  /// @return True if the Instruction is contained in the region otherwise
  /// false.
  bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }

  /// Check if the region contains a loop.
  ///
  /// @param L The loop that might be contained in this region.
  /// @return True if the loop is contained in the region otherwise false.
  ///         In case a NULL pointer is passed to this function the result
  ///         is false, except for the region that describes the whole function.
  ///         In that case true is returned.
  bool contains(const LoopT *L) const;

  /// Get the outermost loop in the region that contains a loop.
  ///
  /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
  /// and is itself contained in the region.
  ///
  /// @param L The loop the lookup is started.
  /// @return The outermost loop in the region, NULL if such a loop does not
  ///         exist or if the region describes the whole function.
  LoopT *outermostLoopInRegion(LoopT *L) const;

  /// Get the outermost loop in the region that contains a basic block.
  ///
  /// Find for a basic block BB the outermost loop L that contains BB and is
  /// itself contained in the region.
  ///
  /// @param LI A pointer to a LoopInfo analysis.
  /// @param BB The basic block surrounded by the loop.
  /// @return The outermost loop in the region, NULL if such a loop does not
  ///         exist or if the region describes the whole function.
  LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;

  /// Get the subregion that starts at a BasicBlock
  ///
  /// @param BB The BasicBlock the subregion should start.
  /// @return The Subregion if available, otherwise NULL.
  RegionT *getSubRegionNode(BlockT *BB) const;

  /// Get the RegionNode for a BasicBlock
  ///
  /// @param BB The BasicBlock at which the RegionNode should start.
  /// @return If available, the RegionNode that represents the subregion
  ///         starting at BB. If no subregion starts at BB, the RegionNode
  ///         representing BB.
  RegionNodeT *getNode(BlockT *BB) const;

  /// Get the BasicBlock RegionNode for a BasicBlock
  ///
  /// @param BB The BasicBlock for which the RegionNode is requested.
  /// @return The RegionNode representing the BB.
  RegionNodeT *getBBNode(BlockT *BB) const;

  /// Add a new subregion to this Region.
  ///
  /// @param SubRegion The new subregion that will be added.
  /// @param moveChildren Move the children of this region, that are also
  ///                     contained in SubRegion into SubRegion.
  void addSubRegion(RegionT *SubRegion, bool moveChildren = false);

  /// Remove a subregion from this Region.
  ///
  /// The subregion is not deleted, as it will probably be inserted into another
  /// region.
  /// @param SubRegion The SubRegion that will be removed.
  RegionT *removeSubRegion(RegionT *SubRegion);

  /// Move all direct child nodes of this Region to another Region.
  ///
  /// @param To The Region the child nodes will be transferred to.
  void transferChildrenTo(RegionT *To);

  /// Verify if the region is a correct region.
  ///
  /// Check if this is a correctly build Region. This is an expensive check, as
  /// the complete CFG of the Region will be walked.
  void verifyRegion() const;

  /// Clear the cache for BB RegionNodes.
  ///
  /// After calling this function the BasicBlock RegionNodes will be stored at
  /// different memory locations. RegionNodes obtained before this function is
  /// called are therefore not comparable to RegionNodes abtained afterwords.
  void clearNodeCache();

  /// @name Subregion Iterators
  ///
  /// These iterators iterator over all subregions of this Region.
  //@{
  using iterator = typename RegionSet::iterator;
  using const_iterator = typename RegionSet::const_iterator;

  iterator begin() { return children.begin(); }
  iterator end() { return children.end(); }

  const_iterator begin() const { return children.begin(); }
  const_iterator end() const { return children.end(); }
  //@}

  /// @name BasicBlock Iterators
  ///
  /// These iterators iterate over all BasicBlocks that are contained in this
  /// Region. The iterator also iterates over BasicBlocks that are elements of
  /// a subregion of this Region. It is therefore called a flat iterator.
  //@{
  template <bool IsConst>
  class block_iterator_wrapper
      : public df_iterator<
            typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
    using super =
        df_iterator<
            typename std::conditional<IsConst, const BlockT, BlockT>::type *>;

  public:
    using Self = block_iterator_wrapper<IsConst>;
    using value_type = typename super::value_type;

    // Construct the begin iterator.
    block_iterator_wrapper(value_type Entry, value_type Exit)
        : super(df_begin(Entry)) {
      // Mark the exit of the region as visited, so that the children of the
      // exit and the exit itself, i.e. the block outside the region will never
      // be visited.
      super::Visited.insert(Exit);
    }

    // Construct the end iterator.
    block_iterator_wrapper() : super(df_end<value_type>((BlockT *)nullptr)) {}

    /*implicit*/ block_iterator_wrapper(super I) : super(I) {}

    // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
    //        This was introduced for backwards compatibility, but should
    //        be removed as soon as all users are fixed.
    BlockT *operator*() const {
      return const_cast<BlockT *>(super::operator*());
    }
  };

  using block_iterator = block_iterator_wrapper<false>;
  using const_block_iterator = block_iterator_wrapper<true>;

  block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }

  block_iterator block_end() { return block_iterator(); }

  const_block_iterator block_begin() const {
    return const_block_iterator(getEntry(), getExit());
  }
  const_block_iterator block_end() const { return const_block_iterator(); }

  using block_range = iterator_range<block_iterator>;
  using const_block_range = iterator_range<const_block_iterator>;

  /// Returns a range view of the basic blocks in the region.
  inline block_range blocks() {
    return block_range(block_begin(), block_end());
  }

  /// Returns a range view of the basic blocks in the region.
  ///
  /// This is the 'const' version of the range view.
  inline const_block_range blocks() const {
    return const_block_range(block_begin(), block_end());
  }
  //@}

  /// @name Element Iterators
  ///
  /// These iterators iterate over all BasicBlock and subregion RegionNodes that
  /// are direct children of this Region. It does not iterate over any
  /// RegionNodes that are also element of a subregion of this Region.
  //@{
  using element_iterator =
      df_iterator<RegionNodeT *, df_iterator_default_set<RegionNodeT *>, false,
                  GraphTraits<RegionNodeT *>>;

  using const_element_iterator =
      df_iterator<const RegionNodeT *,
                  df_iterator_default_set<const RegionNodeT *>, false,
                  GraphTraits<const RegionNodeT *>>;

  element_iterator element_begin();
  element_iterator element_end();
  iterator_range<element_iterator> elements() {
    return make_range(element_begin(), element_end());
  }

  const_element_iterator element_begin() const;
  const_element_iterator element_end() const;
  iterator_range<const_element_iterator> elements() const {
    return make_range(element_begin(), element_end());
  }
  //@}
};

/// Print a RegionNode.
template <class Tr>
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);

//===----------------------------------------------------------------------===//
/// Analysis that detects all canonical Regions.
///
/// The RegionInfo pass detects all canonical regions in a function. The Regions
/// are connected using the parent relation. This builds a Program Structure
/// Tree.
template <class Tr>
class RegionInfoBase {
  friend class RegionInfo;
  friend class MachineRegionInfo;

  using BlockT = typename Tr::BlockT;
  using FuncT = typename Tr::FuncT;
  using RegionT = typename Tr::RegionT;
  using RegionInfoT = typename Tr::RegionInfoT;
  using DomTreeT = typename Tr::DomTreeT;
  using DomTreeNodeT = typename Tr::DomTreeNodeT;
  using PostDomTreeT = typename Tr::PostDomTreeT;
  using DomFrontierT = typename Tr::DomFrontierT;
  using BlockTraits = GraphTraits<BlockT *>;
  using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
  using SuccIterTy = typename BlockTraits::ChildIteratorType;
  using PredIterTy = typename InvBlockTraits::ChildIteratorType;

  using BBtoBBMap = DenseMap<BlockT *, BlockT *>;
  using BBtoRegionMap = DenseMap<BlockT *, RegionT *>;

  RegionInfoBase();

  RegionInfoBase(RegionInfoBase &&Arg)
    : DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)),
      TopLevelRegion(std::move(Arg.TopLevelRegion)),
      BBtoRegion(std::move(Arg.BBtoRegion)) {
    Arg.wipe();
  }

  RegionInfoBase &operator=(RegionInfoBase &&RHS) {
    DT = std::move(RHS.DT);
    PDT = std::move(RHS.PDT);
    DF = std::move(RHS.DF);
    TopLevelRegion = std::move(RHS.TopLevelRegion);
    BBtoRegion = std::move(RHS.BBtoRegion);
    RHS.wipe();
    return *this;
  }

  virtual ~RegionInfoBase();

  DomTreeT *DT;
  PostDomTreeT *PDT;
  DomFrontierT *DF;

  /// The top level region.
  RegionT *TopLevelRegion = nullptr;

  /// Map every BB to the smallest region, that contains BB.
  BBtoRegionMap BBtoRegion;

protected:
  /// Update refences to a RegionInfoT held by the RegionT managed here
  ///
  /// This is a post-move helper. Regions hold references to the owning
  /// RegionInfo object. After a move these need to be fixed.
  template<typename TheRegionT>
  void updateRegionTree(RegionInfoT &RI, TheRegionT *R) {
    if (!R)
      return;
    R->RI = &RI;
    for (auto &SubR : *R)
      updateRegionTree(RI, SubR.get());
  }

private:
  /// Wipe this region tree's state without releasing any resources.
  ///
  /// This is essentially a post-move helper only. It leaves the object in an
  /// assignable and destroyable state, but otherwise invalid.
  void wipe() {
    DT = nullptr;
    PDT = nullptr;
    DF = nullptr;
    TopLevelRegion = nullptr;
    BBtoRegion.clear();
  }

  // Check whether the entries of BBtoRegion for the BBs of region
  // SR are correct. Triggers an assertion if not. Calls itself recursively for
  // subregions.
  void verifyBBMap(const RegionT *SR) const;

  // Returns true if BB is in the dominance frontier of
  // entry, because it was inherited from exit. In the other case there is an
  // edge going from entry to BB without passing exit.
  bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;

  // Check if entry and exit surround a valid region, based on
  // dominance tree and dominance frontier.
  bool isRegion(BlockT *entry, BlockT *exit) const;

  // Saves a shortcut pointing from entry to exit.
  // This function may extend this shortcut if possible.
  void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;

  // Returns the next BB that postdominates N, while skipping
  // all post dominators that cannot finish a canonical region.
  DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;

  // A region is trivial, if it contains only one BB.
  bool isTrivialRegion(BlockT *entry, BlockT *exit) const;

  // Creates a single entry single exit region.
  RegionT *createRegion(BlockT *entry, BlockT *exit);

  // Detect all regions starting with bb 'entry'.
  void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);

  // Detects regions in F.
  void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);

  // Get the top most parent with the same entry block.
  RegionT *getTopMostParent(RegionT *region);

  // Build the region hierarchy after all region detected.
  void buildRegionsTree(DomTreeNodeT *N, RegionT *region);

  // Update statistic about created regions.
  virtual void updateStatistics(RegionT *R) = 0;

  // Detect all regions in function and build the region tree.
  void calculate(FuncT &F);

public:
  RegionInfoBase(const RegionInfoBase &) = delete;
  RegionInfoBase &operator=(const RegionInfoBase &) = delete;

  static bool VerifyRegionInfo;
  static typename RegionT::PrintStyle printStyle;

  void print(raw_ostream &OS) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  void dump() const;
#endif

  void releaseMemory();

  /// Get the smallest region that contains a BasicBlock.
  ///
  /// @param BB The basic block.
  /// @return The smallest region, that contains BB or NULL, if there is no
  /// region containing BB.
  RegionT *getRegionFor(BlockT *BB) const;

  ///  Set the smallest region that surrounds a basic block.
  ///
  /// @param BB The basic block surrounded by a region.
  /// @param R The smallest region that surrounds BB.
  void setRegionFor(BlockT *BB, RegionT *R);

  /// A shortcut for getRegionFor().
  ///
  /// @param BB The basic block.
  /// @return The smallest region, that contains BB or NULL, if there is no
  /// region containing BB.
  RegionT *operator[](BlockT *BB) const;

  /// Return the exit of the maximal refined region, that starts at a
  /// BasicBlock.
  ///
  /// @param BB The BasicBlock the refined region starts.
  BlockT *getMaxRegionExit(BlockT *BB) const;

  /// Find the smallest region that contains two regions.
  ///
  /// @param A The first region.
  /// @param B The second region.
  /// @return The smallest region containing A and B.
  RegionT *getCommonRegion(RegionT *A, RegionT *B) const;

  /// Find the smallest region that contains two basic blocks.
  ///
  /// @param A The first basic block.
  /// @param B The second basic block.
  /// @return The smallest region that contains A and B.
  RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
    return getCommonRegion(getRegionFor(A), getRegionFor(B));
  }

  /// Find the smallest region that contains a set of regions.
  ///
  /// @param Regions A vector of regions.
  /// @return The smallest region that contains all regions in Regions.
  RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;

  /// Find the smallest region that contains a set of basic blocks.
  ///
  /// @param BBs A vector of basic blocks.
  /// @return The smallest region that contains all basic blocks in BBS.
  RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;

  RegionT *getTopLevelRegion() const { return TopLevelRegion; }

  /// Clear the Node Cache for all Regions.
  ///
  /// @see Region::clearNodeCache()
  void clearNodeCache() {
    if (TopLevelRegion)
      TopLevelRegion->clearNodeCache();
  }

  void verifyAnalysis() const;
};

class Region;

class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
public:
  inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
      : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}

  bool operator==(const Region &RN) const {
    return this == reinterpret_cast<const RegionNode *>(&RN);
  }
};

class Region : public RegionBase<RegionTraits<Function>> {
public:
  Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
         Region *Parent = nullptr);
  ~Region();

  bool operator==(const RegionNode &RN) const {
    return &RN == reinterpret_cast<const RegionNode *>(this);
  }
};

class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
public:
  using Base = RegionInfoBase<RegionTraits<Function>>;

  explicit RegionInfo();

  RegionInfo(RegionInfo &&Arg) : Base(std::move(static_cast<Base &>(Arg))) {
    updateRegionTree(*this, TopLevelRegion);
  }

  RegionInfo &operator=(RegionInfo &&RHS) {
    Base::operator=(std::move(static_cast<Base &>(RHS)));
    updateRegionTree(*this, TopLevelRegion);
    return *this;
  }

  ~RegionInfo() override;

  /// Handle invalidation explicitly.
  bool invalidate(Function &F, const PreservedAnalyses &PA,
                  FunctionAnalysisManager::Invalidator &);

  // updateStatistics - Update statistic about created regions.
  void updateStatistics(Region *R) final;

  void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
                   DominanceFrontier *DF);

#ifndef NDEBUG
  /// Opens a viewer to show the GraphViz visualization of the regions.
  ///
  /// Useful during debugging as an alternative to dump().
  void view();

  /// Opens a viewer to show the GraphViz visualization of this region
  /// without instructions in the BasicBlocks.
  ///
  /// Useful during debugging as an alternative to dump().
  void viewOnly();
#endif
};

class RegionInfoPass : public FunctionPass {
  RegionInfo RI;

public:
  static char ID;

  explicit RegionInfoPass();
  ~RegionInfoPass() override;

  RegionInfo &getRegionInfo() { return RI; }

  const RegionInfo &getRegionInfo() const { return RI; }

  /// @name FunctionPass interface
  //@{
  bool runOnFunction(Function &F) override;
  void releaseMemory() override;
  void verifyAnalysis() const override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  void print(raw_ostream &OS, const Module *) const override;
  void dump() const;
  //@}
};

/// Analysis pass that exposes the \c RegionInfo for a function.
class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> {
  friend AnalysisInfoMixin<RegionInfoAnalysis>;

  static AnalysisKey Key;

public:
  using Result = RegionInfo;

  RegionInfo run(Function &F, FunctionAnalysisManager &AM);
};

/// Printer pass for the \c RegionInfo.
class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> {
  raw_ostream &OS;

public:
  explicit RegionInfoPrinterPass(raw_ostream &OS);

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};

/// Verifier pass for the \c RegionInfo.
struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> {
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};

template <>
template <>
inline BasicBlock *
RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
  assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
  return getEntry();
}

template <>
template <>
inline Region *
RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
  assert(isSubRegion() && "This is not a subregion RegionNode!");
  auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
  return reinterpret_cast<Region *>(Unconst);
}

template <class Tr>
inline raw_ostream &operator<<(raw_ostream &OS,
                               const RegionNodeBase<Tr> &Node) {
  using BlockT = typename Tr::BlockT;
  using RegionT = typename Tr::RegionT;

  if (Node.isSubRegion())
    return OS << Node.template getNodeAs<RegionT>()->getNameStr();
  else
    return OS << Node.template getNodeAs<BlockT>()->getName();
}

extern template class RegionBase<RegionTraits<Function>>;
extern template class RegionNodeBase<RegionTraits<Function>>;
extern template class RegionInfoBase<RegionTraits<Function>>;

} // end namespace llvm

#endif // LLVM_ANALYSIS_REGIONINFO_H