reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file transforms calls of the current function (self recursion) followed
// by a return instruction with a branch to the entry of the function, creating
// a loop.  This pass also implements the following extensions to the basic
// algorithm:
//
//  1. Trivial instructions between the call and return do not prevent the
//     transformation from taking place, though currently the analysis cannot
//     support moving any really useful instructions (only dead ones).
//  2. This pass transforms functions that are prevented from being tail
//     recursive by an associative and commutative expression to use an
//     accumulator variable, thus compiling the typical naive factorial or
//     'fib' implementation into efficient code.
//  3. TRE is performed if the function returns void, if the return
//     returns the result returned by the call, or if the function returns a
//     run-time constant on all exits from the function.  It is possible, though
//     unlikely, that the return returns something else (like constant 0), and
//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
//     the function return the exact same value.
//  4. If it can prove that callees do not access their caller stack frame,
//     they are marked as eligible for tail call elimination (by the code
//     generator).
//
// There are several improvements that could be made:
//
//  1. If the function has any alloca instructions, these instructions will be
//     moved out of the entry block of the function, causing them to be
//     evaluated each time through the tail recursion.  Safely keeping allocas
//     in the entry block requires analysis to proves that the tail-called
//     function does not read or write the stack object.
//  2. Tail recursion is only performed if the call immediately precedes the
//     return instruction.  It's possible that there could be a jump between
//     the call and the return.
//  3. There can be intervening operations between the call and the return that
//     prevent the TRE from occurring.  For example, there could be GEP's and
//     stores to memory that will not be read or written by the call.  This
//     requires some substantial analysis (such as with DSA) to prove safe to
//     move ahead of the call, but doing so could allow many more TREs to be
//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
//  4. The algorithm we use to detect if callees access their caller stack
//     frames is very primitive.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;

#define DEBUG_TYPE "tailcallelim"

STATISTIC(NumEliminated, "Number of tail calls removed");
STATISTIC(NumRetDuped,   "Number of return duplicated");
STATISTIC(NumAccumAdded, "Number of accumulators introduced");

/// Scan the specified function for alloca instructions.
/// If it contains any dynamic allocas, returns false.
static bool canTRE(Function &F) {
  // Because of PR962, we don't TRE dynamic allocas.
  return llvm::all_of(instructions(F), [](Instruction &I) {
    auto *AI = dyn_cast<AllocaInst>(&I);
    return !AI || AI->isStaticAlloca();
  });
}

namespace {
struct AllocaDerivedValueTracker {
  // Start at a root value and walk its use-def chain to mark calls that use the
  // value or a derived value in AllocaUsers, and places where it may escape in
  // EscapePoints.
  void walk(Value *Root) {
    SmallVector<Use *, 32> Worklist;
    SmallPtrSet<Use *, 32> Visited;

    auto AddUsesToWorklist = [&](Value *V) {
      for (auto &U : V->uses()) {
        if (!Visited.insert(&U).second)
          continue;
        Worklist.push_back(&U);
      }
    };

    AddUsesToWorklist(Root);

    while (!Worklist.empty()) {
      Use *U = Worklist.pop_back_val();
      Instruction *I = cast<Instruction>(U->getUser());

      switch (I->getOpcode()) {
      case Instruction::Call:
      case Instruction::Invoke: {
        CallSite CS(I);
        // If the alloca-derived argument is passed byval it is not an escape
        // point, or a use of an alloca. Calling with byval copies the contents
        // of the alloca into argument registers or stack slots, which exist
        // beyond the lifetime of the current frame.
        if (CS.isArgOperand(U) && CS.isByValArgument(CS.getArgumentNo(U)))
          continue;
        bool IsNocapture =
            CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
        callUsesLocalStack(CS, IsNocapture);
        if (IsNocapture) {
          // If the alloca-derived argument is passed in as nocapture, then it
          // can't propagate to the call's return. That would be capturing.
          continue;
        }
        break;
      }
      case Instruction::Load: {
        // The result of a load is not alloca-derived (unless an alloca has
        // otherwise escaped, but this is a local analysis).
        continue;
      }
      case Instruction::Store: {
        if (U->getOperandNo() == 0)
          EscapePoints.insert(I);
        continue;  // Stores have no users to analyze.
      }
      case Instruction::BitCast:
      case Instruction::GetElementPtr:
      case Instruction::PHI:
      case Instruction::Select:
      case Instruction::AddrSpaceCast:
        break;
      default:
        EscapePoints.insert(I);
        break;
      }

      AddUsesToWorklist(I);
    }
  }

  void callUsesLocalStack(CallSite CS, bool IsNocapture) {
    // Add it to the list of alloca users.
    AllocaUsers.insert(CS.getInstruction());

    // If it's nocapture then it can't capture this alloca.
    if (IsNocapture)
      return;

    // If it can write to memory, it can leak the alloca value.
    if (!CS.onlyReadsMemory())
      EscapePoints.insert(CS.getInstruction());
  }

  SmallPtrSet<Instruction *, 32> AllocaUsers;
  SmallPtrSet<Instruction *, 32> EscapePoints;
};
}

static bool markTails(Function &F, bool &AllCallsAreTailCalls,
                      OptimizationRemarkEmitter *ORE) {
  if (F.callsFunctionThatReturnsTwice())
    return false;
  AllCallsAreTailCalls = true;

  // The local stack holds all alloca instructions and all byval arguments.
  AllocaDerivedValueTracker Tracker;
  for (Argument &Arg : F.args()) {
    if (Arg.hasByValAttr())
      Tracker.walk(&Arg);
  }
  for (auto &BB : F) {
    for (auto &I : BB)
      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
        Tracker.walk(AI);
  }

  bool Modified = false;

  // Track whether a block is reachable after an alloca has escaped. Blocks that
  // contain the escaping instruction will be marked as being visited without an
  // escaped alloca, since that is how the block began.
  enum VisitType {
    UNVISITED,
    UNESCAPED,
    ESCAPED
  };
  DenseMap<BasicBlock *, VisitType> Visited;

  // We propagate the fact that an alloca has escaped from block to successor.
  // Visit the blocks that are propagating the escapedness first. To do this, we
  // maintain two worklists.
  SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;

  // We may enter a block and visit it thinking that no alloca has escaped yet,
  // then see an escape point and go back around a loop edge and come back to
  // the same block twice. Because of this, we defer setting tail on calls when
  // we first encounter them in a block. Every entry in this list does not
  // statically use an alloca via use-def chain analysis, but may find an alloca
  // through other means if the block turns out to be reachable after an escape
  // point.
  SmallVector<CallInst *, 32> DeferredTails;

  BasicBlock *BB = &F.getEntryBlock();
  VisitType Escaped = UNESCAPED;
  do {
    for (auto &I : *BB) {
      if (Tracker.EscapePoints.count(&I))
        Escaped = ESCAPED;

      CallInst *CI = dyn_cast<CallInst>(&I);
      if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I))
        continue;

      bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();

      if (!IsNoTail && CI->doesNotAccessMemory()) {
        // A call to a readnone function whose arguments are all things computed
        // outside this function can be marked tail. Even if you stored the
        // alloca address into a global, a readnone function can't load the
        // global anyhow.
        //
        // Note that this runs whether we know an alloca has escaped or not. If
        // it has, then we can't trust Tracker.AllocaUsers to be accurate.
        bool SafeToTail = true;
        for (auto &Arg : CI->arg_operands()) {
          if (isa<Constant>(Arg.getUser()))
            continue;
          if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
            if (!A->hasByValAttr())
              continue;
          SafeToTail = false;
          break;
        }
        if (SafeToTail) {
          using namespace ore;
          ORE->emit([&]() {
            return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
                   << "marked as tail call candidate (readnone)";
          });
          CI->setTailCall();
          Modified = true;
          continue;
        }
      }

      if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
        DeferredTails.push_back(CI);
      } else {
        AllCallsAreTailCalls = false;
      }
    }

    for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
      auto &State = Visited[SuccBB];
      if (State < Escaped) {
        State = Escaped;
        if (State == ESCAPED)
          WorklistEscaped.push_back(SuccBB);
        else
          WorklistUnescaped.push_back(SuccBB);
      }
    }

    if (!WorklistEscaped.empty()) {
      BB = WorklistEscaped.pop_back_val();
      Escaped = ESCAPED;
    } else {
      BB = nullptr;
      while (!WorklistUnescaped.empty()) {
        auto *NextBB = WorklistUnescaped.pop_back_val();
        if (Visited[NextBB] == UNESCAPED) {
          BB = NextBB;
          Escaped = UNESCAPED;
          break;
        }
      }
    }
  } while (BB);

  for (CallInst *CI : DeferredTails) {
    if (Visited[CI->getParent()] != ESCAPED) {
      // If the escape point was part way through the block, calls after the
      // escape point wouldn't have been put into DeferredTails.
      LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
      CI->setTailCall();
      Modified = true;
    } else {
      AllCallsAreTailCalls = false;
    }
  }

  return Modified;
}

/// Return true if it is safe to move the specified
/// instruction from after the call to before the call, assuming that all
/// instructions between the call and this instruction are movable.
///
static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
  // FIXME: We can move load/store/call/free instructions above the call if the
  // call does not mod/ref the memory location being processed.
  if (I->mayHaveSideEffects())  // This also handles volatile loads.
    return false;

  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    // Loads may always be moved above calls without side effects.
    if (CI->mayHaveSideEffects()) {
      // Non-volatile loads may be moved above a call with side effects if it
      // does not write to memory and the load provably won't trap.
      // Writes to memory only matter if they may alias the pointer
      // being loaded from.
      const DataLayout &DL = L->getModule()->getDataLayout();
      if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
          !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
                                       MaybeAlign(L->getAlignment()), DL, L))
        return false;
    }
  }

  // Otherwise, if this is a side-effect free instruction, check to make sure
  // that it does not use the return value of the call.  If it doesn't use the
  // return value of the call, it must only use things that are defined before
  // the call, or movable instructions between the call and the instruction
  // itself.
  return !is_contained(I->operands(), CI);
}

/// Return true if the specified value is the same when the return would exit
/// as it was when the initial iteration of the recursive function was executed.
///
/// We currently handle static constants and arguments that are not modified as
/// part of the recursion.
static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
  if (isa<Constant>(V)) return true; // Static constants are always dyn consts

  // Check to see if this is an immutable argument, if so, the value
  // will be available to initialize the accumulator.
  if (Argument *Arg = dyn_cast<Argument>(V)) {
    // Figure out which argument number this is...
    unsigned ArgNo = 0;
    Function *F = CI->getParent()->getParent();
    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
      ++ArgNo;

    // If we are passing this argument into call as the corresponding
    // argument operand, then the argument is dynamically constant.
    // Otherwise, we cannot transform this function safely.
    if (CI->getArgOperand(ArgNo) == Arg)
      return true;
  }

  // Switch cases are always constant integers. If the value is being switched
  // on and the return is only reachable from one of its cases, it's
  // effectively constant.
  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
      if (SI->getCondition() == V)
        return SI->getDefaultDest() != RI->getParent();

  // Not a constant or immutable argument, we can't safely transform.
  return false;
}

/// Check to see if the function containing the specified tail call consistently
/// returns the same runtime-constant value at all exit points except for
/// IgnoreRI. If so, return the returned value.
static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
  Function *F = CI->getParent()->getParent();
  Value *ReturnedValue = nullptr;

  for (BasicBlock &BBI : *F) {
    ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
    if (RI == nullptr || RI == IgnoreRI) continue;

    // We can only perform this transformation if the value returned is
    // evaluatable at the start of the initial invocation of the function,
    // instead of at the end of the evaluation.
    //
    Value *RetOp = RI->getOperand(0);
    if (!isDynamicConstant(RetOp, CI, RI))
      return nullptr;

    if (ReturnedValue && RetOp != ReturnedValue)
      return nullptr;     // Cannot transform if differing values are returned.
    ReturnedValue = RetOp;
  }
  return ReturnedValue;
}

/// If the specified instruction can be transformed using accumulator recursion
/// elimination, return the constant which is the start of the accumulator
/// value.  Otherwise return null.
static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
  if (!I->isAssociative() || !I->isCommutative()) return nullptr;
  assert(I->getNumOperands() == 2 &&
         "Associative/commutative operations should have 2 args!");

  // Exactly one operand should be the result of the call instruction.
  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
      (I->getOperand(0) != CI && I->getOperand(1) != CI))
    return nullptr;

  // The only user of this instruction we allow is a single return instruction.
  if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
    return nullptr;

  // Ok, now we have to check all of the other return instructions in this
  // function.  If they return non-constants or differing values, then we cannot
  // transform the function safely.
  return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
}

static Instruction *firstNonDbg(BasicBlock::iterator I) {
  while (isa<DbgInfoIntrinsic>(I))
    ++I;
  return &*I;
}

static CallInst *findTRECandidate(Instruction *TI,
                                  bool CannotTailCallElimCallsMarkedTail,
                                  const TargetTransformInfo *TTI) {
  BasicBlock *BB = TI->getParent();
  Function *F = BB->getParent();

  if (&BB->front() == TI) // Make sure there is something before the terminator.
    return nullptr;

  // Scan backwards from the return, checking to see if there is a tail call in
  // this block.  If so, set CI to it.
  CallInst *CI = nullptr;
  BasicBlock::iterator BBI(TI);
  while (true) {
    CI = dyn_cast<CallInst>(BBI);
    if (CI && CI->getCalledFunction() == F)
      break;

    if (BBI == BB->begin())
      return nullptr;          // Didn't find a potential tail call.
    --BBI;
  }

  // If this call is marked as a tail call, and if there are dynamic allocas in
  // the function, we cannot perform this optimization.
  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
    return nullptr;

  // As a special case, detect code like this:
  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
  // and disable this xform in this case, because the code generator will
  // lower the call to fabs into inline code.
  if (BB == &F->getEntryBlock() &&
      firstNonDbg(BB->front().getIterator()) == CI &&
      firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
      !TTI->isLoweredToCall(CI->getCalledFunction())) {
    // A single-block function with just a call and a return. Check that
    // the arguments match.
    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
                           E = CallSite(CI).arg_end();
    Function::arg_iterator FI = F->arg_begin(),
                           FE = F->arg_end();
    for (; I != E && FI != FE; ++I, ++FI)
      if (*I != &*FI) break;
    if (I == E && FI == FE)
      return nullptr;
  }

  return CI;
}

static bool eliminateRecursiveTailCall(
    CallInst *CI, ReturnInst *Ret, BasicBlock *&OldEntry,
    bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
  // If we are introducing accumulator recursion to eliminate operations after
  // the call instruction that are both associative and commutative, the initial
  // value for the accumulator is placed in this variable.  If this value is set
  // then we actually perform accumulator recursion elimination instead of
  // simple tail recursion elimination.  If the operation is an LLVM instruction
  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
  // we are handling the case when the return instruction returns a constant C
  // which is different to the constant returned by other return instructions
  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
  // special case of accumulator recursion, the operation being "return C".
  Value *AccumulatorRecursionEliminationInitVal = nullptr;
  Instruction *AccumulatorRecursionInstr = nullptr;

  // Ok, we found a potential tail call.  We can currently only transform the
  // tail call if all of the instructions between the call and the return are
  // movable to above the call itself, leaving the call next to the return.
  // Check that this is the case now.
  BasicBlock::iterator BBI(CI);
  for (++BBI; &*BBI != Ret; ++BBI) {
    if (canMoveAboveCall(&*BBI, CI, AA))
      continue;

    // If we can't move the instruction above the call, it might be because it
    // is an associative and commutative operation that could be transformed
    // using accumulator recursion elimination.  Check to see if this is the
    // case, and if so, remember the initial accumulator value for later.
    if ((AccumulatorRecursionEliminationInitVal =
             canTransformAccumulatorRecursion(&*BBI, CI))) {
      // Yes, this is accumulator recursion.  Remember which instruction
      // accumulates.
      AccumulatorRecursionInstr = &*BBI;
    } else {
      return false;   // Otherwise, we cannot eliminate the tail recursion!
    }
  }

  // We can only transform call/return pairs that either ignore the return value
  // of the call and return void, ignore the value of the call and return a
  // constant, return the value returned by the tail call, or that are being
  // accumulator recursion variable eliminated.
  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
      !isa<UndefValue>(Ret->getReturnValue()) &&
      AccumulatorRecursionEliminationInitVal == nullptr &&
      !getCommonReturnValue(nullptr, CI)) {
    // One case remains that we are able to handle: the current return
    // instruction returns a constant, and all other return instructions
    // return a different constant.
    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
      return false; // Current return instruction does not return a constant.
    // Check that all other return instructions return a common constant.  If
    // so, record it in AccumulatorRecursionEliminationInitVal.
    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
    if (!AccumulatorRecursionEliminationInitVal)
      return false;
  }

  BasicBlock *BB = Ret->getParent();
  Function *F = BB->getParent();

  using namespace ore;
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
           << "transforming tail recursion into loop";
  });

  // OK! We can transform this tail call.  If this is the first one found,
  // create the new entry block, allowing us to branch back to the old entry.
  if (!OldEntry) {
    OldEntry = &F->getEntryBlock();
    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
    NewEntry->takeName(OldEntry);
    OldEntry->setName("tailrecurse");
    BranchInst *BI = BranchInst::Create(OldEntry, NewEntry);
    BI->setDebugLoc(CI->getDebugLoc());

    // If this tail call is marked 'tail' and if there are any allocas in the
    // entry block, move them up to the new entry block.
    TailCallsAreMarkedTail = CI->isTailCall();
    if (TailCallsAreMarkedTail)
      // Move all fixed sized allocas from OldEntry to NewEntry.
      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
             NEBI = NewEntry->begin(); OEBI != E; )
        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
          if (isa<ConstantInt>(AI->getArraySize()))
            AI->moveBefore(&*NEBI);

    // Now that we have created a new block, which jumps to the entry
    // block, insert a PHI node for each argument of the function.
    // For now, we initialize each PHI to only have the real arguments
    // which are passed in.
    Instruction *InsertPos = &OldEntry->front();
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I) {
      PHINode *PN = PHINode::Create(I->getType(), 2,
                                    I->getName() + ".tr", InsertPos);
      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
      PN->addIncoming(&*I, NewEntry);
      ArgumentPHIs.push_back(PN);
    }
    // The entry block was changed from OldEntry to NewEntry.
    // The forward DominatorTree needs to be recalculated when the EntryBB is
    // changed. In this corner-case we recalculate the entire tree.
    DTU.recalculate(*NewEntry->getParent());
  }

  // If this function has self recursive calls in the tail position where some
  // are marked tail and some are not, only transform one flavor or another.  We
  // have to choose whether we move allocas in the entry block to the new entry
  // block or not, so we can't make a good choice for both.  NOTE: We could do
  // slightly better here in the case that the function has no entry block
  // allocas.
  if (TailCallsAreMarkedTail && !CI->isTailCall())
    return false;

  // Ok, now that we know we have a pseudo-entry block WITH all of the
  // required PHI nodes, add entries into the PHI node for the actual
  // parameters passed into the tail-recursive call.
  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);

  // If we are introducing an accumulator variable to eliminate the recursion,
  // do so now.  Note that we _know_ that no subsequent tail recursion
  // eliminations will happen on this function because of the way the
  // accumulator recursion predicate is set up.
  //
  if (AccumulatorRecursionEliminationInitVal) {
    Instruction *AccRecInstr = AccumulatorRecursionInstr;
    // Start by inserting a new PHI node for the accumulator.
    pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
    PHINode *AccPN = PHINode::Create(
        AccumulatorRecursionEliminationInitVal->getType(),
        std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());

    // Loop over all of the predecessors of the tail recursion block.  For the
    // real entry into the function we seed the PHI with the initial value,
    // computed earlier.  For any other existing branches to this block (due to
    // other tail recursions eliminated) the accumulator is not modified.
    // Because we haven't added the branch in the current block to OldEntry yet,
    // it will not show up as a predecessor.
    for (pred_iterator PI = PB; PI != PE; ++PI) {
      BasicBlock *P = *PI;
      if (P == &F->getEntryBlock())
        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
      else
        AccPN->addIncoming(AccPN, P);
    }

    if (AccRecInstr) {
      // Add an incoming argument for the current block, which is computed by
      // our associative and commutative accumulator instruction.
      AccPN->addIncoming(AccRecInstr, BB);

      // Next, rewrite the accumulator recursion instruction so that it does not
      // use the result of the call anymore, instead, use the PHI node we just
      // inserted.
      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
    } else {
      // Add an incoming argument for the current block, which is just the
      // constant returned by the current return instruction.
      AccPN->addIncoming(Ret->getReturnValue(), BB);
    }

    // Finally, rewrite any return instructions in the program to return the PHI
    // node instead of the "initval" that they do currently.  This loop will
    // actually rewrite the return value we are destroying, but that's ok.
    for (BasicBlock &BBI : *F)
      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
        RI->setOperand(0, AccPN);
    ++NumAccumAdded;
  }

  // Now that all of the PHI nodes are in place, remove the call and
  // ret instructions, replacing them with an unconditional branch.
  BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
  NewBI->setDebugLoc(CI->getDebugLoc());

  BB->getInstList().erase(Ret);  // Remove return.
  BB->getInstList().erase(CI);   // Remove call.
  DTU.applyUpdates({{DominatorTree::Insert, BB, OldEntry}});
  ++NumEliminated;
  return true;
}

static bool foldReturnAndProcessPred(
    BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry,
    bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
    bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
  bool Change = false;

  // Make sure this block is a trivial return block.
  assert(BB->getFirstNonPHIOrDbg() == Ret &&
         "Trying to fold non-trivial return block");

  // If the return block contains nothing but the return and PHI's,
  // there might be an opportunity to duplicate the return in its
  // predecessors and perform TRE there. Look for predecessors that end
  // in unconditional branch and recursive call(s).
  SmallVector<BranchInst*, 8> UncondBranchPreds;
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    BasicBlock *Pred = *PI;
    Instruction *PTI = Pred->getTerminator();
    if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
      if (BI->isUnconditional())
        UncondBranchPreds.push_back(BI);
  }

  while (!UncondBranchPreds.empty()) {
    BranchInst *BI = UncondBranchPreds.pop_back_val();
    BasicBlock *Pred = BI->getParent();
    if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
      LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
                        << "INTO UNCOND BRANCH PRED: " << *Pred);
      ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU);

      // Cleanup: if all predecessors of BB have been eliminated by
      // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
      // because the ret instruction in there is still using a value which
      // eliminateRecursiveTailCall will attempt to remove.
      if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
        DTU.deleteBB(BB);

      eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
                                 ArgumentPHIs, AA, ORE, DTU);
      ++NumRetDuped;
      Change = true;
    }
  }

  return Change;
}

static bool processReturningBlock(
    ReturnInst *Ret, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail,
    SmallVectorImpl<PHINode *> &ArgumentPHIs,
    bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
  CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
  if (!CI)
    return false;

  return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
                                    ArgumentPHIs, AA, ORE, DTU);
}

static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI,
                                   AliasAnalysis *AA,
                                   OptimizationRemarkEmitter *ORE,
                                   DomTreeUpdater &DTU) {
  if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
    return false;

  bool MadeChange = false;
  bool AllCallsAreTailCalls = false;
  MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
  if (!AllCallsAreTailCalls)
    return MadeChange;

  // If this function is a varargs function, we won't be able to PHI the args
  // right, so don't even try to convert it...
  if (F.getFunctionType()->isVarArg())
    return false;

  BasicBlock *OldEntry = nullptr;
  bool TailCallsAreMarkedTail = false;
  SmallVector<PHINode*, 8> ArgumentPHIs;

  // If false, we cannot perform TRE on tail calls marked with the 'tail'
  // attribute, because doing so would cause the stack size to increase (real
  // TRE would deallocate variable sized allocas, TRE doesn't).
  bool CanTRETailMarkedCall = canTRE(F);

  // Change any tail recursive calls to loops.
  //
  // FIXME: The code generator produces really bad code when an 'escaping
  // alloca' is changed from being a static alloca to being a dynamic alloca.
  // Until this is resolved, disable this transformation if that would ever
  // happen.  This bug is PR962.
  for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
    BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
      bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
                                          ArgumentPHIs, !CanTRETailMarkedCall,
                                          TTI, AA, ORE, DTU);
      if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
        Change = foldReturnAndProcessPred(
            BB, Ret, OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
            !CanTRETailMarkedCall, TTI, AA, ORE, DTU);
      MadeChange |= Change;
    }
  }

  // If we eliminated any tail recursions, it's possible that we inserted some
  // silly PHI nodes which just merge an initial value (the incoming operand)
  // with themselves.  Check to see if we did and clean up our mess if so.  This
  // occurs when a function passes an argument straight through to its tail
  // call.
  for (PHINode *PN : ArgumentPHIs) {
    // If the PHI Node is a dynamic constant, replace it with the value it is.
    if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
      PN->replaceAllUsesWith(PNV);
      PN->eraseFromParent();
    }
  }

  return MadeChange;
}

namespace {
struct TailCallElim : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid
  TailCallElim() : FunctionPass(ID) {
    initializeTailCallElimPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<PostDominatorTreeWrapperPass>();
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
    auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
    auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
    // There is no noticable performance difference here between Lazy and Eager
    // UpdateStrategy based on some test results. It is feasible to switch the
    // UpdateStrategy to Lazy if we find it profitable later.
    DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);

    return eliminateTailRecursion(
        F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
        &getAnalysis<AAResultsWrapperPass>().getAAResults(),
        &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
  }
};
}

char TailCallElim::ID = 0;
INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
                    false, false)

// Public interface to the TailCallElimination pass
FunctionPass *llvm::createTailCallEliminationPass() {
  return new TailCallElim();
}

PreservedAnalyses TailCallElimPass::run(Function &F,
                                        FunctionAnalysisManager &AM) {

  TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
  AliasAnalysis &AA = AM.getResult<AAManager>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
  auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
  // There is no noticable performance difference here between Lazy and Eager
  // UpdateStrategy based on some test results. It is feasible to switch the
  // UpdateStrategy to Lazy if we find it profitable later.
  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
  bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE, DTU);

  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<GlobalsAA>();
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<PostDominatorTreeAnalysis>();
  return PA;
}