reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
//===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "FindTarget.h"
#include "AST.h"
#include "Logger.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <utility>

namespace clang {
namespace clangd {
namespace {
using ast_type_traits::DynTypedNode;

LLVM_ATTRIBUTE_UNUSED std::string
nodeToString(const ast_type_traits::DynTypedNode &N) {
  std::string S = N.getNodeKind().asStringRef();
  {
    llvm::raw_string_ostream OS(S);
    OS << ": ";
    N.print(OS, PrintingPolicy(LangOptions()));
  }
  std::replace(S.begin(), S.end(), '\n', ' ');
  return S;
}

// TargetFinder locates the entities that an AST node refers to.
//
// Typically this is (possibly) one declaration and (possibly) one type, but
// may be more:
//  - for ambiguous nodes like OverloadExpr
//  - if we want to include e.g. both typedefs and the underlying type
//
// This is organized as a set of mutually recursive helpers for particular node
// types, but for most nodes this is a short walk rather than a deep traversal.
//
// It's tempting to do e.g. typedef resolution as a second normalization step,
// after finding the 'primary' decl etc. But we do this monolithically instead
// because:
//  - normalization may require these traversals again (e.g. unwrapping a
//    typedef reveals a decltype which must be traversed)
//  - it doesn't simplify that much, e.g. the first stage must still be able
//    to yield multiple decls to handle OverloadExpr
//  - there are cases where it's required for correctness. e.g:
//      template<class X> using pvec = vector<x*>; pvec<int> x;
//    There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
//    and both are lossy. We must know upfront what the caller ultimately wants.
//
// FIXME: improve common dependent scope using name lookup in primary templates.
// e.g. template<typename T> int foo() { return std::vector<T>().size(); }
// formally size() is unresolved, but the primary template is a good guess.
// This affects:
//  - DependentTemplateSpecializationType,
//  - DependentScopeMemberExpr
//  - DependentScopeDeclRefExpr
//  - DependentNameType
struct TargetFinder {
  using RelSet = DeclRelationSet;
  using Rel = DeclRelation;
  llvm::SmallDenseMap<const Decl *, RelSet> Decls;
  RelSet Flags;

  static const Decl *getTemplatePattern(const Decl *D) {
    if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
      return CRD->getTemplateInstantiationPattern();
    } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
      return FD->getTemplateInstantiationPattern();
    } else if (auto *VD = dyn_cast<VarDecl>(D)) {
      // Hmm: getTIP returns its arg if it's not an instantiation?!
      VarDecl *T = VD->getTemplateInstantiationPattern();
      return (T == D) ? nullptr : T;
    } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
      return ED->getInstantiatedFromMemberEnum();
    } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
      const auto *ND = cast<NamedDecl>(D);
      if (const DeclContext *Parent = dyn_cast_or_null<DeclContext>(
              getTemplatePattern(llvm::cast<Decl>(ND->getDeclContext()))))
        for (const NamedDecl *BaseND : Parent->lookup(ND->getDeclName()))
          if (!BaseND->isImplicit() && BaseND->getKind() == ND->getKind())
            return BaseND;
    } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
      if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
        if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
          for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
            return BaseECD;
        }
      }
    }
    return nullptr;
  }

  template <typename T> void debug(T &Node, RelSet Flags) {
    dlog("visit [{0}] {1}", Flags,
         nodeToString(ast_type_traits::DynTypedNode::create(Node)));
  }

  void report(const Decl *D, RelSet Flags) {
    dlog("--> [{0}] {1}", Flags,
         nodeToString(ast_type_traits::DynTypedNode::create(*D)));
    Decls[D] |= Flags;
  }

public:
  void add(const Decl *D, RelSet Flags) {
    if (!D)
      return;
    debug(*D, Flags);
    if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
      D = UDD->getNominatedNamespaceAsWritten();

    if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
      add(TND->getUnderlyingType(), Flags | Rel::Underlying);
      Flags |= Rel::Alias; // continue with the alias.
    } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
      for (const UsingShadowDecl *S : UD->shadows())
        add(S->getUnderlyingDecl(), Flags | Rel::Underlying);
      Flags |= Rel::Alias; // continue with the alias.
    } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
      add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
      Flags |= Rel::Alias; // continue with the alias
    } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
      // Include the using decl, but don't traverse it. This may end up
      // including *all* shadows, which we don't want.
      report(USD->getUsingDecl(), Flags | Rel::Alias);
      // Shadow decls are synthetic and not themselves interesting.
      // Record the underlying decl instead, if allowed.
      D = USD->getTargetDecl();
      Flags |= Rel::Underlying; // continue with the underlying decl.
    }

    if (const Decl *Pat = getTemplatePattern(D)) {
      assert(Pat != D);
      add(Pat, Flags | Rel::TemplatePattern);
      // Now continue with the instantiation.
      Flags |= Rel::TemplateInstantiation;
    }

    report(D, Flags);
  }

  void add(const Stmt *S, RelSet Flags) {
    if (!S)
      return;
    debug(*S, Flags);
    struct Visitor : public ConstStmtVisitor<Visitor> {
      TargetFinder &Outer;
      RelSet Flags;
      Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}

      void VisitDeclRefExpr(const DeclRefExpr *DRE) {
        const Decl *D = DRE->getDecl();
        // UsingShadowDecl allows us to record the UsingDecl.
        // getFoundDecl() returns the wrong thing in other cases (templates).
        if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
          D = USD;
        Outer.add(D, Flags);
      }
      void VisitMemberExpr(const MemberExpr *ME) {
        const Decl *D = ME->getMemberDecl();
        if (auto *USD =
                llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
          D = USD;
        Outer.add(D, Flags);
      }
      void VisitOverloadExpr(const OverloadExpr *OE) {
        for (auto *D : OE->decls())
          Outer.add(D, Flags);
      }
      void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
        Outer.add(CCE->getConstructor(), Flags);
      }
      void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
        for (const DesignatedInitExpr::Designator &D :
             llvm::reverse(DIE->designators()))
          if (D.isFieldDesignator()) {
            Outer.add(D.getField(), Flags);
            // We don't know which designator was intended, we assume the outer.
            break;
          }
      }
      void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
        Outer.add(OIRE->getDecl(), Flags);
      }
      void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
        Outer.add(OME->getMethodDecl(), Flags);
      }
      void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
        if (OPRE->isExplicitProperty())
          Outer.add(OPRE->getExplicitProperty(), Flags);
        else {
          if (OPRE->isMessagingGetter())
            Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
          if (OPRE->isMessagingSetter())
            Outer.add(OPRE->getImplicitPropertySetter(), Flags);
        }
      }
      void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
        Outer.add(OPE->getProtocol(), Flags);
      }
    };
    Visitor(*this, Flags).Visit(S);
  }

  void add(QualType T, RelSet Flags) {
    if (T.isNull())
      return;
    debug(T, Flags);
    struct Visitor : public TypeVisitor<Visitor> {
      TargetFinder &Outer;
      RelSet Flags;
      Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}

      void VisitTagType(const TagType *TT) {
        Outer.add(TT->getAsTagDecl(), Flags);
      }
      void VisitDecltypeType(const DecltypeType *DTT) {
        Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
      }
      void VisitDeducedType(const DeducedType *DT) {
        // FIXME: In practice this doesn't work: the AutoType you find inside
        // TypeLoc never has a deduced type. https://llvm.org/PR42914
        Outer.add(DT->getDeducedType(), Flags | Rel::Underlying);
      }
      void VisitTypedefType(const TypedefType *TT) {
        Outer.add(TT->getDecl(), Flags);
      }
      void
      VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
        // Have to handle these case-by-case.

        // templated type aliases: there's no specialized/instantiated using
        // decl to point to. So try to find a decl for the underlying type
        // (after substitution), and failing that point to the (templated) using
        // decl.
        if (TST->isTypeAlias()) {
          Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
          // Don't *traverse* the alias, which would result in traversing the
          // template of the underlying type.
          Outer.report(
              TST->getTemplateName().getAsTemplateDecl()->getTemplatedDecl(),
              Flags | Rel::Alias | Rel::TemplatePattern);
        }
        // specializations of template template parameters aren't instantiated
        // into decls, so they must refer to the parameter itself.
        else if (const auto *Parm =
                     llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
                         TST->getTemplateName().getAsTemplateDecl()))
          Outer.add(Parm, Flags);
        // class template specializations have a (specialized) CXXRecordDecl.
        else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
          Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
        else {
          // fallback: the (un-specialized) declaration from primary template.
          if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
            Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
        }
      }
      void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
        Outer.add(TTPT->getDecl(), Flags);
      }
      void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
        Outer.add(OIT->getDecl(), Flags);
      }
      void VisitObjCObjectType(const ObjCObjectType *OOT) {
        // FIXME: ObjCObjectTypeLoc has no children for the protocol list, so
        // there is no node in id<Foo> that refers to ObjCProtocolDecl Foo.
        if (OOT->isObjCQualifiedId() && OOT->getNumProtocols() == 1)
          Outer.add(OOT->getProtocol(0), Flags);
      }
    };
    Visitor(*this, Flags).Visit(T.getTypePtr());
  }

  void add(const NestedNameSpecifier *NNS, RelSet Flags) {
    if (!NNS)
      return;
    debug(*NNS, Flags);
    switch (NNS->getKind()) {
    case NestedNameSpecifier::Identifier:
      return;
    case NestedNameSpecifier::Namespace:
      add(NNS->getAsNamespace(), Flags);
      return;
    case NestedNameSpecifier::NamespaceAlias:
      add(NNS->getAsNamespaceAlias(), Flags);
      return;
    case NestedNameSpecifier::TypeSpec:
    case NestedNameSpecifier::TypeSpecWithTemplate:
      add(QualType(NNS->getAsType(), 0), Flags);
      return;
    case NestedNameSpecifier::Global:
      // This should be TUDecl, but we can't get a pointer to it!
      return;
    case NestedNameSpecifier::Super:
      add(NNS->getAsRecordDecl(), Flags);
      return;
    }
    llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
  }

  void add(const CXXCtorInitializer *CCI, RelSet Flags) {
    if (!CCI)
      return;
    debug(*CCI, Flags);

    if (CCI->isAnyMemberInitializer())
      add(CCI->getAnyMember(), Flags);
    // Constructor calls contain a TypeLoc node, so we don't handle them here.
  }
};

} // namespace

llvm::SmallVector<std::pair<const Decl *, DeclRelationSet>, 1>
allTargetDecls(const ast_type_traits::DynTypedNode &N) {
  dlog("allTargetDecls({0})", nodeToString(N));
  TargetFinder Finder;
  DeclRelationSet Flags;
  if (const Decl *D = N.get<Decl>())
    Finder.add(D, Flags);
  else if (const Stmt *S = N.get<Stmt>())
    Finder.add(S, Flags);
  else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
    Finder.add(NNSL->getNestedNameSpecifier(), Flags);
  else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
    Finder.add(NNS, Flags);
  else if (const TypeLoc *TL = N.get<TypeLoc>())
    Finder.add(TL->getType(), Flags);
  else if (const QualType *QT = N.get<QualType>())
    Finder.add(*QT, Flags);
  else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
    Finder.add(CCI, Flags);

  return {Finder.Decls.begin(), Finder.Decls.end()};
}

llvm::SmallVector<const Decl *, 1>
targetDecl(const ast_type_traits::DynTypedNode &N, DeclRelationSet Mask) {
  llvm::SmallVector<const Decl *, 1> Result;
  for (const auto &Entry : allTargetDecls(N)) {
    if (!(Entry.second & ~Mask))
      Result.push_back(Entry.first);
  }
  return Result;
}

namespace {
/// Find declarations explicitly referenced in the source code defined by \p N.
/// For templates, will prefer to return a template instantiation whenever
/// possible. However, can also return a template pattern if the specialization
/// cannot be picked, e.g. in dependent code or when there is no corresponding
/// Decl for a template instantitation, e.g. for templated using decls:
///    template <class T> using Ptr = T*;
///    Ptr<int> x;
///    ^~~ there is no Decl for 'Ptr<int>', so we return the template pattern.
llvm::SmallVector<const NamedDecl *, 1>
explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask = {}) {
  assert(!(Mask & (DeclRelation::TemplatePattern |
                   DeclRelation::TemplateInstantiation)) &&
         "explicitRefenceTargets handles templates on its own");
  auto Decls = allTargetDecls(N);

  // We prefer to return template instantiation, but fallback to template
  // pattern if instantiation is not available.
  Mask |= DeclRelation::TemplatePattern | DeclRelation::TemplateInstantiation;

  llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
  llvm::SmallVector<const NamedDecl *, 1> Targets;
  bool SeenTemplateInstantiations = false;
  for (auto &D : Decls) {
    if (D.second & ~Mask)
      continue;
    if (D.second & DeclRelation::TemplatePattern) {
      TemplatePatterns.push_back(llvm::cast<NamedDecl>(D.first));
      continue;
    }
    if (D.second & DeclRelation::TemplateInstantiation)
      SeenTemplateInstantiations = true;
    Targets.push_back(llvm::cast<NamedDecl>(D.first));
  }
  if (!SeenTemplateInstantiations)
    Targets.insert(Targets.end(), TemplatePatterns.begin(),
                   TemplatePatterns.end());
  return Targets;
}

llvm::SmallVector<ReferenceLoc, 2> refInDecl(const Decl *D) {
  struct Visitor : ConstDeclVisitor<Visitor> {
    llvm::SmallVector<ReferenceLoc, 2> Refs;

    void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
      // We want to keep it as non-declaration references, as the
      // "using namespace" declaration doesn't have a name.
      Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
                                  D->getIdentLocation(),
                                  /*IsDecl=*/false,
                                  {D->getNominatedNamespaceAsWritten()}});
    }

    void VisitUsingDecl(const UsingDecl *D) {
      // "using ns::identifer;" is a non-declaration reference.
      Refs.push_back(
          ReferenceLoc{D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
                       explicitReferenceTargets(DynTypedNode::create(*D),
                                                DeclRelation::Underlying)});
    }

    void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
      // For namespace alias, "namespace Foo = Target;", we add two references.
      // Add a declaration reference for Foo.
      VisitNamedDecl(D);
      // Add a non-declaration reference for Target.
      Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
                                  D->getTargetNameLoc(),
                                  /*IsDecl=*/false,
                                  {D->getAliasedNamespace()}});
    }

    void VisitNamedDecl(const NamedDecl *ND) {
      // FIXME: decide on how to surface destructors when we need them.
      if (llvm::isa<CXXDestructorDecl>(ND))
        return;
      // Filter anonymous decls, name location will point outside the name token
      // and the clients are not prepared to handle that.
      if (ND->getDeclName().isIdentifier() &&
          !ND->getDeclName().getAsIdentifierInfo())
        return;
      Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
                                  ND->getLocation(),
                                  /*IsDecl=*/true,
                                  {ND}});
    }
  };

  Visitor V;
  V.Visit(D);
  return V.Refs;
}

llvm::SmallVector<ReferenceLoc, 2> refInExpr(const Expr *E) {
  struct Visitor : ConstStmtVisitor<Visitor> {
    // FIXME: handle more complicated cases, e.g. ObjC, designated initializers.
    llvm::SmallVector<ReferenceLoc, 2> Refs;

    void VisitDeclRefExpr(const DeclRefExpr *E) {
      Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
                                  E->getNameInfo().getLoc(),
                                  /*IsDecl=*/false,
                                  {E->getFoundDecl()}});
    }

    void VisitMemberExpr(const MemberExpr *E) {
      Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
                                  E->getMemberNameInfo().getLoc(),
                                  /*IsDecl=*/false,
                                  {E->getFoundDecl()}});
    }

    void VisitOverloadExpr(const OverloadExpr *E) {
      Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
                                  E->getNameInfo().getLoc(),
                                  /*IsDecl=*/false,
                                  llvm::SmallVector<const NamedDecl *, 1>(
                                      E->decls().begin(), E->decls().end())});
    }
  };

  Visitor V;
  V.Visit(E);
  return V.Refs;
}

llvm::SmallVector<ReferenceLoc, 2> refInTypeLoc(TypeLoc L) {
  struct Visitor : TypeLocVisitor<Visitor> {
    llvm::Optional<ReferenceLoc> Ref;

    void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
      // We only know about qualifier, rest if filled by inner locations.
      Visit(L.getNamedTypeLoc().getUnqualifiedLoc());
      // Fill in the qualifier.
      if (!Ref)
        return;
      assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
      Ref->Qualifier = L.getQualifierLoc();
    }

    void VisitTagTypeLoc(TagTypeLoc L) {
      Ref = ReferenceLoc{NestedNameSpecifierLoc(),
                         L.getNameLoc(),
                         /*IsDecl=*/false,
                         {L.getDecl()}};
    }

    void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
      Ref = ReferenceLoc{NestedNameSpecifierLoc(),
                         L.getNameLoc(),
                         /*IsDecl=*/false,
                         {L.getDecl()}};
    }

    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
      // We must ensure template type aliases are included in results if they
      // were written in the source code, e.g. in
      //    template <class T> using valias = vector<T>;
      //    ^valias<int> x;
      // 'explicitReferenceTargets' will return:
      //    1. valias with mask 'Alias'.
      //    2. 'vector<int>' with mask 'Underlying'.
      //  we want to return only #1 in this case.
      Ref = ReferenceLoc{
          NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
          explicitReferenceTargets(DynTypedNode::create(L.getType()),
                                   DeclRelation::Alias)};
    }
    void VisitDeducedTemplateSpecializationTypeLoc(
        DeducedTemplateSpecializationTypeLoc L) {
      Ref = ReferenceLoc{
          NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
          explicitReferenceTargets(DynTypedNode::create(L.getType()),
                                   DeclRelation::Alias)};
    }

    void VisitDependentTemplateSpecializationTypeLoc(
        DependentTemplateSpecializationTypeLoc L) {
      Ref = ReferenceLoc{
          L.getQualifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
          explicitReferenceTargets(DynTypedNode::create(L.getType()))};
    }

    void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
      Ref = ReferenceLoc{
          L.getQualifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
          explicitReferenceTargets(DynTypedNode::create(L.getType()))};
    }

    void VisitTypedefTypeLoc(TypedefTypeLoc L) {
      Ref = ReferenceLoc{NestedNameSpecifierLoc(),
                         L.getNameLoc(),
                         /*IsDecl=*/false,
                         {L.getTypedefNameDecl()}};
    }
  };

  Visitor V;
  V.Visit(L.getUnqualifiedLoc());
  if (!V.Ref)
    return {};
  return {*V.Ref};
}

class ExplicitReferenceColletor
    : public RecursiveASTVisitor<ExplicitReferenceColletor> {
public:
  ExplicitReferenceColletor(llvm::function_ref<void(ReferenceLoc)> Out)
      : Out(Out) {
    assert(Out);
  }

  bool VisitTypeLoc(TypeLoc TTL) {
    if (TypeLocsToSkip.count(TTL.getBeginLoc().getRawEncoding()))
      return true;
    visitNode(DynTypedNode::create(TTL));
    return true;
  }

  bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
    // ElaboratedTypeLoc will reports information for its inner type loc.
    // Otherwise we loose information about inner types loc's qualifier.
    TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
    TypeLocsToSkip.insert(Inner.getBeginLoc().getRawEncoding());
    return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
  }

  bool VisitExpr(Expr *E) {
    visitNode(DynTypedNode::create(*E));
    return true;
  }

  // We re-define Traverse*, since there's no corresponding Visit*.
  // TemplateArgumentLoc is the only way to get locations for references to
  // template template parameters.
  bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
    switch (A.getArgument().getKind()) {
    case TemplateArgument::Template:
    case TemplateArgument::TemplateExpansion:
      reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
                                   A.getTemplateNameLoc(),
                                   /*IsDecl=*/false,
                                   {A.getArgument()
                                        .getAsTemplateOrTemplatePattern()
                                        .getAsTemplateDecl()}},
                      DynTypedNode::create(A.getArgument()));
      break;
    case TemplateArgument::Declaration:
      break; // FIXME: can this actually happen in TemplateArgumentLoc?
    case TemplateArgument::Integral:
    case TemplateArgument::Null:
    case TemplateArgument::NullPtr:
      break; // no references.
    case TemplateArgument::Pack:
    case TemplateArgument::Type:
    case TemplateArgument::Expression:
      break; // Handled by VisitType and VisitExpression.
    };
    return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
  }

  bool VisitDecl(Decl *D) {
    visitNode(DynTypedNode::create(*D));
    return true;
  }

  // We have to use Traverse* because there is no corresponding Visit*.
  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
    if (!L.getNestedNameSpecifier())
      return true;
    visitNode(DynTypedNode::create(L));
    // Inner type is missing information about its qualifier, skip it.
    if (auto TL = L.getTypeLoc())
      TypeLocsToSkip.insert(TL.getBeginLoc().getRawEncoding());
    return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
  }

  bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
    visitNode(DynTypedNode::create(*Init));
    return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
  }

private:
  /// Obtain information about a reference directly defined in \p N. Does not
  /// recurse into child nodes, e.g. do not expect references for constructor
  /// initializers
  ///
  /// Any of the fields in the returned structure can be empty, but not all of
  /// them, e.g.
  ///   - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
  ///     source location information may be missing,
  ///   - for dependent code, targets may be empty.
  ///
  /// (!) For the purposes of this function declarations are not considered to
  ///     be references. However, declarations can have references inside them,
  ///     e.g. 'namespace foo = std' references namespace 'std' and this
  ///     function will return the corresponding reference.
  llvm::SmallVector<ReferenceLoc, 2> explicitReference(DynTypedNode N) {
    if (auto *D = N.get<Decl>())
      return refInDecl(D);
    if (auto *E = N.get<Expr>())
      return refInExpr(E);
    if (auto *NNSL = N.get<NestedNameSpecifierLoc>())
      return {ReferenceLoc{NNSL->getPrefix(), NNSL->getLocalBeginLoc(), false,
                           explicitReferenceTargets(DynTypedNode::create(
                               *NNSL->getNestedNameSpecifier()))}};
    if (const TypeLoc *TL = N.get<TypeLoc>())
      return refInTypeLoc(*TL);
    if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
      // Other type initializers (e.g. base initializer) are handled by visiting
      // the typeLoc.
      if (CCI->isAnyMemberInitializer()) {
        return {ReferenceLoc{NestedNameSpecifierLoc(),
                             CCI->getMemberLocation(),
                             /*IsDecl=*/false,
                             {CCI->getAnyMember()}}};
      }
    }
    // We do not have location information for other nodes (QualType, etc)
    return {};
  }

  void visitNode(DynTypedNode N) {
    for (const auto &R : explicitReference(N))
      reportReference(R, N);
  }

  void reportReference(const ReferenceLoc &Ref, DynTypedNode N) {
    // Our promise is to return only references from the source code. If we lack
    // location information, skip these nodes.
    // Normally this should not happen in practice, unless there are bugs in the
    // traversals or users started the traversal at an implicit node.
    if (Ref.NameLoc.isInvalid()) {
      dlog("invalid location at node {0}", nodeToString(N));
      return;
    }
    Out(Ref);
  }

  llvm::function_ref<void(ReferenceLoc)> Out;
  /// TypeLocs starting at these locations must be skipped, see
  /// TraverseElaboratedTypeSpecifierLoc for details.
  llvm::DenseSet</*SourceLocation*/ unsigned> TypeLocsToSkip;
};
} // namespace

void findExplicitReferences(const Stmt *S,
                            llvm::function_ref<void(ReferenceLoc)> Out) {
  assert(S);
  ExplicitReferenceColletor(Out).TraverseStmt(const_cast<Stmt *>(S));
}
void findExplicitReferences(const Decl *D,
                            llvm::function_ref<void(ReferenceLoc)> Out) {
  assert(D);
  ExplicitReferenceColletor(Out).TraverseDecl(const_cast<Decl *>(D));
}

llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
  switch (R) {
#define REL_CASE(X)                                                            \
  case DeclRelation::X:                                                        \
    return OS << #X;
    REL_CASE(Alias);
    REL_CASE(Underlying);
    REL_CASE(TemplateInstantiation);
    REL_CASE(TemplatePattern);
#undef REL_CASE
  }
  llvm_unreachable("Unhandled DeclRelation enum");
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
  const char *Sep = "";
  for (unsigned I = 0; I < RS.S.size(); ++I) {
    if (RS.S.test(I)) {
      OS << Sep << static_cast<DeclRelation>(I);
      Sep = "|";
    }
  }
  return OS;
}

llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
  // note we cannot print R.NameLoc without a source manager.
  OS << "targets = {";
  bool First = true;
  for (const NamedDecl *T : R.Targets) {
    if (!First)
      OS << ", ";
    else
      First = false;
    OS << printQualifiedName(*T) << printTemplateSpecializationArgs(*T);
  }
  OS << "}";
  if (R.Qualifier) {
    OS << ", qualifier = '";
    R.Qualifier.getNestedNameSpecifier()->print(OS,
                                                PrintingPolicy(LangOptions()));
    OS << "'";
  }
  if (R.IsDecl)
    OS << ", decl";
  return OS;
}

} // namespace clangd
} // namespace clang