reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
//===--- UseTrailingReturnTypeCheck.cpp - clang-tidy-----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "UseTrailingReturnTypeCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Tooling/FixIt.h"

#include <cctype>

using namespace clang::ast_matchers;

namespace clang {
namespace tidy {
namespace modernize {
namespace {
struct UnqualNameVisitor : public RecursiveASTVisitor<UnqualNameVisitor> {
public:
  UnqualNameVisitor(const FunctionDecl &F) : F(F) {}

  bool Collision = false;

  bool shouldWalkTypesOfTypeLocs() const { return false; }

  bool VisitUnqualName(StringRef UnqualName) {
    // Check for collisions with function arguments.
    for (ParmVarDecl *Param : F.parameters())
      if (const IdentifierInfo *Ident = Param->getIdentifier())
        if (Ident->getName() == UnqualName) {
          Collision = true;
          return true;
        }
    return false;
  }

  bool TraverseTypeLoc(TypeLoc TL, bool Elaborated = false) {
    if (TL.isNull())
      return true;

    if (!Elaborated) {
      switch (TL.getTypeLocClass()) {
      case TypeLoc::Record:
        if (VisitUnqualName(
                TL.getAs<RecordTypeLoc>().getTypePtr()->getDecl()->getName()))
          return false;
        break;
      case TypeLoc::Enum:
        if (VisitUnqualName(
                TL.getAs<EnumTypeLoc>().getTypePtr()->getDecl()->getName()))
          return false;
        break;
      case TypeLoc::TemplateSpecialization:
        if (VisitUnqualName(TL.getAs<TemplateSpecializationTypeLoc>()
                                .getTypePtr()
                                ->getTemplateName()
                                .getAsTemplateDecl()
                                ->getName()))
          return false;
        break;
      default:
        break;
      }
    }

    return RecursiveASTVisitor<UnqualNameVisitor>::TraverseTypeLoc(TL);
  }

  // Replace the base method in order to call ower own
  // TraverseTypeLoc().
  bool TraverseQualifiedTypeLoc(QualifiedTypeLoc TL) {
    return TraverseTypeLoc(TL.getUnqualifiedLoc());
  }

  // Replace the base version to inform TraverseTypeLoc that the type is
  // elaborated.
  bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc TL) {
    if (TL.getQualifierLoc() &&
        !TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()))
      return false;
    return TraverseTypeLoc(TL.getNamedTypeLoc(), true);
  }

  bool VisitDeclRefExpr(DeclRefExpr *S) {
    DeclarationName Name = S->getNameInfo().getName();
    return S->getQualifierLoc() || !Name.isIdentifier() ||
           !VisitUnqualName(Name.getAsIdentifierInfo()->getName());
  }

private:
  const FunctionDecl &F;
};
} // namespace

constexpr llvm::StringLiteral Message =
    "use a trailing return type for this function";

static SourceLocation expandIfMacroId(SourceLocation Loc,
                                      const SourceManager &SM) {
  if (Loc.isMacroID())
    Loc = expandIfMacroId(SM.getImmediateExpansionRange(Loc).getBegin(), SM);
  assert(!Loc.isMacroID() &&
         "SourceLocation must not be a macro ID after recursive expansion");
  return Loc;
}

SourceLocation UseTrailingReturnTypeCheck::findTrailingReturnTypeSourceLocation(
    const FunctionDecl &F, const FunctionTypeLoc &FTL, const ASTContext &Ctx,
    const SourceManager &SM, const LangOptions &LangOpts) {
  // We start with the location of the closing parenthesis.
  SourceRange ExceptionSpecRange = F.getExceptionSpecSourceRange();
  if (ExceptionSpecRange.isValid())
    return Lexer::getLocForEndOfToken(ExceptionSpecRange.getEnd(), 0, SM,
                                      LangOpts);

  // If the function argument list ends inside of a macro, it is dangerous to
  // start lexing from here - bail out.
  SourceLocation ClosingParen = FTL.getRParenLoc();
  if (ClosingParen.isMacroID())
    return {};

  SourceLocation Result =
      Lexer::getLocForEndOfToken(ClosingParen, 0, SM, LangOpts);

  // Skip subsequent CV and ref qualifiers.
  std::pair<FileID, unsigned> Loc = SM.getDecomposedLoc(Result);
  StringRef File = SM.getBufferData(Loc.first);
  const char *TokenBegin = File.data() + Loc.second;
  Lexer Lexer(SM.getLocForStartOfFile(Loc.first), LangOpts, File.begin(),
              TokenBegin, File.end());
  Token T;
  while (!Lexer.LexFromRawLexer(T)) {
    if (T.is(tok::raw_identifier)) {
      IdentifierInfo &Info = Ctx.Idents.get(
          StringRef(SM.getCharacterData(T.getLocation()), T.getLength()));
      T.setIdentifierInfo(&Info);
      T.setKind(Info.getTokenID());
    }

    if (T.isOneOf(tok::amp, tok::ampamp, tok::kw_const, tok::kw_volatile,
                  tok::kw_restrict)) {
      Result = T.getEndLoc();
      continue;
    }
    break;
  }
  return Result;
}

static bool IsCVR(Token T) {
  return T.isOneOf(tok::kw_const, tok::kw_volatile, tok::kw_restrict);
}

static bool IsSpecifier(Token T) {
  return T.isOneOf(tok::kw_constexpr, tok::kw_inline, tok::kw_extern,
                   tok::kw_static, tok::kw_friend, tok::kw_virtual);
}

static llvm::Optional<ClassifiedToken>
classifyToken(const FunctionDecl &F, Preprocessor &PP, Token Tok) {
  ClassifiedToken CT;
  CT.T = Tok;
  CT.isQualifier = true;
  CT.isSpecifier = true;
  bool ContainsQualifiers = false;
  bool ContainsSpecifiers = false;
  bool ContainsSomethingElse = false;

  Token End;
  End.setKind(tok::eof);
  SmallVector<Token, 2> Stream{Tok, End};

  // FIXME: do not report these token to Preprocessor.TokenWatcher.
  PP.EnterTokenStream(Stream, false, /*IsReinject=*/false);
  while (true) {
    Token T;
    PP.Lex(T);
    if (T.is(tok::eof))
      break;

    bool Qual = IsCVR(T);
    bool Spec = IsSpecifier(T);
    CT.isQualifier &= Qual;
    CT.isSpecifier &= Spec;
    ContainsQualifiers |= Qual;
    ContainsSpecifiers |= Spec;
    ContainsSomethingElse |= !Qual && !Spec;
  }

  // If the Token/Macro contains more than one type of tokens, we would need
  // to split the macro in order to move parts to the trailing return type.
  if (ContainsQualifiers + ContainsSpecifiers + ContainsSomethingElse > 1)
    return llvm::None;

  return CT;
}

llvm::Optional<SmallVector<ClassifiedToken, 8>>
UseTrailingReturnTypeCheck::classifyTokensBeforeFunctionName(
    const FunctionDecl &F, const ASTContext &Ctx, const SourceManager &SM,
    const LangOptions &LangOpts) {
  SourceLocation BeginF = expandIfMacroId(F.getBeginLoc(), SM);
  SourceLocation BeginNameF = expandIfMacroId(F.getLocation(), SM);

  // Create tokens for everything before the name of the function.
  std::pair<FileID, unsigned> Loc = SM.getDecomposedLoc(BeginF);
  StringRef File = SM.getBufferData(Loc.first);
  const char *TokenBegin = File.data() + Loc.second;
  Lexer Lexer(SM.getLocForStartOfFile(Loc.first), LangOpts, File.begin(),
              TokenBegin, File.end());
  Token T;
  SmallVector<ClassifiedToken, 8> ClassifiedTokens;
  while (!Lexer.LexFromRawLexer(T) &&
         SM.isBeforeInTranslationUnit(T.getLocation(), BeginNameF)) {
    if (T.is(tok::raw_identifier)) {
      IdentifierInfo &Info = Ctx.Idents.get(
          StringRef(SM.getCharacterData(T.getLocation()), T.getLength()));

      if (Info.hasMacroDefinition()) {
        const MacroInfo *MI = PP->getMacroInfo(&Info);
        if (!MI || MI->isFunctionLike()) {
          // Cannot handle function style macros.
          diag(F.getLocation(), Message);
          return llvm::None;
        }
      }

      T.setIdentifierInfo(&Info);
      T.setKind(Info.getTokenID());
    }

    if (llvm::Optional<ClassifiedToken> CT = classifyToken(F, *PP, T))
      ClassifiedTokens.push_back(*CT);
    else {
      diag(F.getLocation(), Message);
      return llvm::None;
    }
  }

  return ClassifiedTokens;
}

static bool hasAnyNestedLocalQualifiers(QualType Type) {
  bool Result = Type.hasLocalQualifiers();
  if (Type->isPointerType())
    Result = Result || hasAnyNestedLocalQualifiers(
                           Type->castAs<PointerType>()->getPointeeType());
  if (Type->isReferenceType())
    Result = Result || hasAnyNestedLocalQualifiers(
                           Type->castAs<ReferenceType>()->getPointeeType());
  return Result;
}

SourceRange UseTrailingReturnTypeCheck::findReturnTypeAndCVSourceRange(
    const FunctionDecl &F, const ASTContext &Ctx, const SourceManager &SM,
    const LangOptions &LangOpts) {

  // We start with the range of the return type and expand to neighboring
  // qualifiers (const, volatile and restrict).
  SourceRange ReturnTypeRange = F.getReturnTypeSourceRange();
  if (ReturnTypeRange.isInvalid()) {
    // Happens if e.g. clang cannot resolve all includes and the return type is
    // unknown.
    diag(F.getLocation(), Message);
    return {};
  }

  // If the return type has no local qualifiers, it's source range is accurate.
  if (!hasAnyNestedLocalQualifiers(F.getReturnType()))
    return ReturnTypeRange;

  // Include qualifiers to the left and right of the return type.
  llvm::Optional<SmallVector<ClassifiedToken, 8>> MaybeTokens =
      classifyTokensBeforeFunctionName(F, Ctx, SM, LangOpts);
  if (!MaybeTokens)
    return {};
  const SmallVector<ClassifiedToken, 8> &Tokens = *MaybeTokens;

  ReturnTypeRange.setBegin(expandIfMacroId(ReturnTypeRange.getBegin(), SM));
  ReturnTypeRange.setEnd(expandIfMacroId(ReturnTypeRange.getEnd(), SM));

  bool ExtendedLeft = false;
  for (size_t I = 0; I < Tokens.size(); I++) {
    // If we found the beginning of the return type, include left qualifiers.
    if (!SM.isBeforeInTranslationUnit(Tokens[I].T.getLocation(),
                                      ReturnTypeRange.getBegin()) &&
        !ExtendedLeft) {
      assert(I <= size_t(std::numeric_limits<int>::max()) &&
             "Integer overflow detected");
      for (int J = static_cast<int>(I) - 1; J >= 0 && Tokens[J].isQualifier;
           J--)
        ReturnTypeRange.setBegin(Tokens[J].T.getLocation());
      ExtendedLeft = true;
    }
    // If we found the end of the return type, include right qualifiers.
    if (SM.isBeforeInTranslationUnit(ReturnTypeRange.getEnd(),
                                     Tokens[I].T.getLocation())) {
      for (size_t J = I; J < Tokens.size() && Tokens[J].isQualifier; J++)
        ReturnTypeRange.setEnd(Tokens[J].T.getLocation());
      break;
    }
  }

  assert(!ReturnTypeRange.getBegin().isMacroID() &&
         "Return type source range begin must not be a macro");
  assert(!ReturnTypeRange.getEnd().isMacroID() &&
         "Return type source range end must not be a macro");
  return ReturnTypeRange;
}

bool UseTrailingReturnTypeCheck::keepSpecifiers(
    std::string &ReturnType, std::string &Auto, SourceRange ReturnTypeCVRange,
    const FunctionDecl &F, const FriendDecl *Fr, const ASTContext &Ctx,
    const SourceManager &SM, const LangOptions &LangOpts) {
  // Check if there are specifiers inside the return type. E.g. unsigned
  // inline int.
  const auto *M = dyn_cast<CXXMethodDecl>(&F);
  if (!F.isConstexpr() && !F.isInlineSpecified() &&
      F.getStorageClass() != SC_Extern && F.getStorageClass() != SC_Static &&
      !Fr && !(M && M->isVirtualAsWritten()))
    return true;

  // Tokenize return type. If it contains macros which contain a mix of
  // qualifiers, specifiers and types, give up.
  llvm::Optional<SmallVector<ClassifiedToken, 8>> MaybeTokens =
      classifyTokensBeforeFunctionName(F, Ctx, SM, LangOpts);
  if (!MaybeTokens)
    return false;

  // Find specifiers, remove them from the return type, add them to 'auto'.
  unsigned int ReturnTypeBeginOffset =
      SM.getDecomposedLoc(ReturnTypeCVRange.getBegin()).second;
  size_t InitialAutoLength = Auto.size();
  unsigned int DeletedChars = 0;
  for (ClassifiedToken CT : *MaybeTokens) {
    if (SM.isBeforeInTranslationUnit(CT.T.getLocation(),
                                     ReturnTypeCVRange.getBegin()) ||
        SM.isBeforeInTranslationUnit(ReturnTypeCVRange.getEnd(),
                                     CT.T.getLocation()))
      continue;
    if (!CT.isSpecifier)
      continue;

    // Add the token to 'auto' and remove it from the return type, including
    // any whitespace following the token.
    unsigned int TOffset = SM.getDecomposedLoc(CT.T.getLocation()).second;
    assert(TOffset >= ReturnTypeBeginOffset &&
           "Token location must be after the beginning of the return type");
    unsigned int TOffsetInRT = TOffset - ReturnTypeBeginOffset - DeletedChars;
    unsigned int TLengthWithWS = CT.T.getLength();
    while (TOffsetInRT + TLengthWithWS < ReturnType.size() &&
           std::isspace(ReturnType[TOffsetInRT + TLengthWithWS]))
      TLengthWithWS++;
    std::string Specifier = ReturnType.substr(TOffsetInRT, TLengthWithWS);
    if (!std::isspace(Specifier.back()))
      Specifier.push_back(' ');
    Auto.insert(Auto.size() - InitialAutoLength, Specifier);
    ReturnType.erase(TOffsetInRT, TLengthWithWS);
    DeletedChars += TLengthWithWS;
  }

  return true;
}

void UseTrailingReturnTypeCheck::registerMatchers(MatchFinder *Finder) {
  if (!getLangOpts().CPlusPlus11)
    return;

  auto F = functionDecl(unless(anyOf(hasTrailingReturn(), returns(voidType()),
                                     returns(autoType()), cxxConversionDecl(),
                                     cxxMethodDecl(isImplicit()))))
               .bind("Func");

  Finder->addMatcher(F, this);
  Finder->addMatcher(friendDecl(hasDescendant(F)).bind("Friend"), this);
}

void UseTrailingReturnTypeCheck::registerPPCallbacks(
    const SourceManager &SM, Preprocessor *PP, Preprocessor *ModuleExpanderPP) {
  this->PP = PP;
}

void UseTrailingReturnTypeCheck::check(const MatchFinder::MatchResult &Result) {
  assert(PP && "Expected registerPPCallbacks() to have been called before so "
               "preprocessor is available");

  const auto *F = Result.Nodes.getNodeAs<FunctionDecl>("Func");
  const auto *Fr = Result.Nodes.getNodeAs<FriendDecl>("Friend");
  assert(F && "Matcher is expected to find only FunctionDecls");

  if (F->getLocation().isInvalid())
    return;

  // TODO: implement those
  if (F->getDeclaredReturnType()->isFunctionPointerType() ||
      F->getDeclaredReturnType()->isMemberFunctionPointerType() ||
      F->getDeclaredReturnType()->isMemberPointerType() ||
      F->getDeclaredReturnType()->getAs<DecltypeType>() != nullptr) {
    diag(F->getLocation(), Message);
    return;
  }

  const ASTContext &Ctx = *Result.Context;
  const SourceManager &SM = *Result.SourceManager;
  const LangOptions &LangOpts = getLangOpts();

  const TypeSourceInfo *TSI = F->getTypeSourceInfo();
  if (!TSI)
    return;

  FunctionTypeLoc FTL =
      TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
  if (!FTL) {
    // FIXME: This may happen if we have __attribute__((...)) on the function.
    // We abort for now. Remove this when the function type location gets
    // available in clang.
    diag(F->getLocation(), Message);
    return;
  }

  SourceLocation InsertionLoc =
      findTrailingReturnTypeSourceLocation(*F, FTL, Ctx, SM, LangOpts);
  if (InsertionLoc.isInvalid()) {
    diag(F->getLocation(), Message);
    return;
  }

  // Using the declared return type via F->getDeclaredReturnType().getAsString()
  // discards user formatting and order of const, volatile, type, whitespace,
  // space before & ... .
  SourceRange ReturnTypeCVRange =
      findReturnTypeAndCVSourceRange(*F, Ctx, SM, LangOpts);
  if (ReturnTypeCVRange.isInvalid())
    return;

  // Check if unqualified names in the return type conflict with other entities
  // after the rewrite.
  // FIXME: this could be done better, by performing a lookup of all
  // unqualified names in the return type in the scope of the function. If the
  // lookup finds a different entity than the original entity identified by the
  // name, then we can either not perform a rewrite or explicitely qualify the
  // entity. Such entities could be function parameter names, (inherited) class
  // members, template parameters, etc.
  UnqualNameVisitor UNV{*F};
  UNV.TraverseTypeLoc(FTL.getReturnLoc());
  if (UNV.Collision) {
    diag(F->getLocation(), Message);
    return;
  }

  SourceLocation ReturnTypeEnd =
      Lexer::getLocForEndOfToken(ReturnTypeCVRange.getEnd(), 0, SM, LangOpts);
  StringRef CharAfterReturnType = Lexer::getSourceText(
      CharSourceRange::getCharRange(ReturnTypeEnd,
                                    ReturnTypeEnd.getLocWithOffset(1)),
      SM, LangOpts);
  bool NeedSpaceAfterAuto =
      CharAfterReturnType.empty() || !std::isspace(CharAfterReturnType[0]);

  std::string Auto = NeedSpaceAfterAuto ? "auto " : "auto";
  std::string ReturnType = tooling::fixit::getText(ReturnTypeCVRange, Ctx);
  keepSpecifiers(ReturnType, Auto, ReturnTypeCVRange, *F, Fr, Ctx, SM,
                 LangOpts);

  diag(F->getLocation(), Message)
      << FixItHint::CreateReplacement(ReturnTypeCVRange, Auto)
      << FixItHint::CreateInsertion(InsertionLoc, " -> " + ReturnType);
}

} // namespace modernize
} // namespace tidy
} // namespace clang