reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
//===--- UseNullptrCheck.cpp - clang-tidy----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "UseNullptrCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Lex/Lexer.h"

using namespace clang;
using namespace clang::ast_matchers;
using namespace llvm;

namespace clang {
namespace tidy {
namespace modernize {
namespace {

const char CastSequence[] = "sequence";

AST_MATCHER(Type, sugaredNullptrType) {
  const Type *DesugaredType = Node.getUnqualifiedDesugaredType();
  if (const auto *BT = dyn_cast<BuiltinType>(DesugaredType))
    return BT->getKind() == BuiltinType::NullPtr;
  return false;
}

/// Create a matcher that finds implicit casts as well as the head of a
/// sequence of zero or more nested explicit casts that have an implicit cast
/// to null within.
/// Finding sequences of explict casts is necessary so that an entire sequence
/// can be replaced instead of just the inner-most implicit cast.
StatementMatcher makeCastSequenceMatcher() {
  StatementMatcher ImplicitCastToNull = implicitCastExpr(
      anyOf(hasCastKind(CK_NullToPointer), hasCastKind(CK_NullToMemberPointer)),
      unless(hasImplicitDestinationType(qualType(substTemplateTypeParmType()))),
      unless(hasSourceExpression(hasType(sugaredNullptrType()))));

  return castExpr(anyOf(ImplicitCastToNull,
                        explicitCastExpr(hasDescendant(ImplicitCastToNull))),
                  unless(hasAncestor(explicitCastExpr())))
      .bind(CastSequence);
}

bool isReplaceableRange(SourceLocation StartLoc, SourceLocation EndLoc,
                        const SourceManager &SM) {
  return SM.isWrittenInSameFile(StartLoc, EndLoc);
}

/// Replaces the provided range with the text "nullptr", but only if
/// the start and end location are both in main file.
/// Returns true if and only if a replacement was made.
void replaceWithNullptr(ClangTidyCheck &Check, SourceManager &SM,
                        SourceLocation StartLoc, SourceLocation EndLoc) {
  CharSourceRange Range(SourceRange(StartLoc, EndLoc), true);
  // Add a space if nullptr follows an alphanumeric character. This happens
  // whenever there is an c-style explicit cast to nullptr not surrounded by
  // parentheses and right beside a return statement.
  SourceLocation PreviousLocation = StartLoc.getLocWithOffset(-1);
  bool NeedsSpace = isAlphanumeric(*SM.getCharacterData(PreviousLocation));
  Check.diag(Range.getBegin(), "use nullptr") << FixItHint::CreateReplacement(
      Range, NeedsSpace ? " nullptr" : "nullptr");
}

/// Returns the name of the outermost macro.
///
/// Given
/// \code
/// #define MY_NULL NULL
/// \endcode
/// If \p Loc points to NULL, this function will return the name MY_NULL.
StringRef getOutermostMacroName(SourceLocation Loc, const SourceManager &SM,
                                const LangOptions &LO) {
  assert(Loc.isMacroID());
  SourceLocation OutermostMacroLoc;

  while (Loc.isMacroID()) {
    OutermostMacroLoc = Loc;
    Loc = SM.getImmediateMacroCallerLoc(Loc);
  }

  return Lexer::getImmediateMacroName(OutermostMacroLoc, SM, LO);
}

/// RecursiveASTVisitor for ensuring all nodes rooted at a given AST
/// subtree that have file-level source locations corresponding to a macro
/// argument have implicit NullTo(Member)Pointer nodes as ancestors.
class MacroArgUsageVisitor : public RecursiveASTVisitor<MacroArgUsageVisitor> {
public:
  MacroArgUsageVisitor(SourceLocation CastLoc, const SourceManager &SM)
      : CastLoc(CastLoc), SM(SM), Visited(false), CastFound(false),
        InvalidFound(false) {
    assert(CastLoc.isFileID());
  }

  bool TraverseStmt(Stmt *S) {
    bool VisitedPreviously = Visited;

    if (!RecursiveASTVisitor<MacroArgUsageVisitor>::TraverseStmt(S))
      return false;

    // The point at which VisitedPreviously is false and Visited is true is the
    // root of a subtree containing nodes whose locations match CastLoc. It's
    // at this point we test that the Implicit NullTo(Member)Pointer cast was
    // found or not.
    if (!VisitedPreviously) {
      if (Visited && !CastFound) {
        // Found nodes with matching SourceLocations but didn't come across a
        // cast. This is an invalid macro arg use. Can stop traversal
        // completely now.
        InvalidFound = true;
        return false;
      }
      // Reset state as we unwind back up the tree.
      CastFound = false;
      Visited = false;
    }
    return true;
  }

  bool VisitStmt(Stmt *S) {
    if (SM.getFileLoc(S->getBeginLoc()) != CastLoc)
      return true;
    Visited = true;

    const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(S);
    if (Cast && (Cast->getCastKind() == CK_NullToPointer ||
                 Cast->getCastKind() == CK_NullToMemberPointer))
      CastFound = true;

    return true;
  }

  bool TraverseInitListExpr(InitListExpr *S) {
    // Only go through the semantic form of the InitListExpr, because
    // ImplicitCast might not appear in the syntactic form, and this results in
    // finding usages of the macro argument that don't have a ImplicitCast as an
    // ancestor (thus invalidating the replacement) when they actually have.
    return RecursiveASTVisitor<MacroArgUsageVisitor>::
        TraverseSynOrSemInitListExpr(
            S->isSemanticForm() ? S : S->getSemanticForm());
  }

  bool foundInvalid() const { return InvalidFound; }

private:
  SourceLocation CastLoc;
  const SourceManager &SM;

  bool Visited;
  bool CastFound;
  bool InvalidFound;
};

/// Looks for implicit casts as well as sequences of 0 or more explicit
/// casts with an implicit null-to-pointer cast within.
///
/// The matcher this visitor is used with will find a single implicit cast or a
/// top-most explicit cast (i.e. it has no explicit casts as an ancestor) where
/// an implicit cast is nested within. However, there is no guarantee that only
/// explicit casts exist between the found top-most explicit cast and the
/// possibly more than one nested implicit cast. This visitor finds all cast
/// sequences with an implicit cast to null within and creates a replacement
/// leaving the outermost explicit cast unchanged to avoid introducing
/// ambiguities.
class CastSequenceVisitor : public RecursiveASTVisitor<CastSequenceVisitor> {
public:
  CastSequenceVisitor(ASTContext &Context, ArrayRef<StringRef> NullMacros,
                      ClangTidyCheck &check)
      : SM(Context.getSourceManager()), Context(Context),
        NullMacros(NullMacros), Check(check), FirstSubExpr(nullptr),
        PruneSubtree(false) {}

  bool TraverseStmt(Stmt *S) {
    // Stop traversing down the tree if requested.
    if (PruneSubtree) {
      PruneSubtree = false;
      return true;
    }
    return RecursiveASTVisitor<CastSequenceVisitor>::TraverseStmt(S);
  }

  // Only VisitStmt is overridden as we shouldn't find other base AST types
  // within a cast expression.
  bool VisitStmt(Stmt *S) {
    auto *C = dyn_cast<CastExpr>(S);
    // Catch the castExpr inside cxxDefaultArgExpr.
    if (auto *E = dyn_cast<CXXDefaultArgExpr>(S)) {
      C = dyn_cast<CastExpr>(E->getExpr());
      FirstSubExpr = nullptr;
    }
    if (!C) {
      FirstSubExpr = nullptr;
      return true;
    }

    auto* CastSubExpr = C->getSubExpr()->IgnoreParens();
    // Ignore cast expressions which cast nullptr literal.
    if (isa<CXXNullPtrLiteralExpr>(CastSubExpr)) {
      return true;
    }

    if (!FirstSubExpr)
      FirstSubExpr = CastSubExpr;

    if (C->getCastKind() != CK_NullToPointer &&
        C->getCastKind() != CK_NullToMemberPointer) {
      return true;
    }

    SourceLocation StartLoc = FirstSubExpr->getBeginLoc();
    SourceLocation EndLoc = FirstSubExpr->getEndLoc();

    // If the location comes from a macro arg expansion, *all* uses of that
    // arg must be checked to result in NullTo(Member)Pointer casts.
    //
    // If the location comes from a macro body expansion, check to see if its
    // coming from one of the allowed 'NULL' macros.
    if (SM.isMacroArgExpansion(StartLoc) && SM.isMacroArgExpansion(EndLoc)) {
      SourceLocation FileLocStart = SM.getFileLoc(StartLoc),
                     FileLocEnd = SM.getFileLoc(EndLoc);
      SourceLocation ImmediateMacroArgLoc, MacroLoc;
      // Skip NULL macros used in macro.
      if (!getMacroAndArgLocations(StartLoc, ImmediateMacroArgLoc, MacroLoc) ||
          ImmediateMacroArgLoc != FileLocStart)
        return skipSubTree();

      if (isReplaceableRange(FileLocStart, FileLocEnd, SM) &&
          allArgUsesValid(C)) {
        replaceWithNullptr(Check, SM, FileLocStart, FileLocEnd);
      }
      return true;
    }

    if (SM.isMacroBodyExpansion(StartLoc) && SM.isMacroBodyExpansion(EndLoc)) {
      StringRef OutermostMacroName =
          getOutermostMacroName(StartLoc, SM, Context.getLangOpts());

      // Check to see if the user wants to replace the macro being expanded.
      if (!llvm::is_contained(NullMacros, OutermostMacroName))
        return skipSubTree();

      StartLoc = SM.getFileLoc(StartLoc);
      EndLoc = SM.getFileLoc(EndLoc);
    }

    if (!isReplaceableRange(StartLoc, EndLoc, SM)) {
      return skipSubTree();
    }
    replaceWithNullptr(Check, SM, StartLoc, EndLoc);

    return true;
  }

private:
  bool skipSubTree() {
    PruneSubtree = true;
    return true;
  }

  /// Tests that all expansions of a macro arg, one of which expands to
  /// result in \p CE, yield NullTo(Member)Pointer casts.
  bool allArgUsesValid(const CastExpr *CE) {
    SourceLocation CastLoc = CE->getBeginLoc();

    // Step 1: Get location of macro arg and location of the macro the arg was
    // provided to.
    SourceLocation ArgLoc, MacroLoc;
    if (!getMacroAndArgLocations(CastLoc, ArgLoc, MacroLoc))
      return false;

    // Step 2: Find the first ancestor that doesn't expand from this macro.
    ast_type_traits::DynTypedNode ContainingAncestor;
    if (!findContainingAncestor(
            ast_type_traits::DynTypedNode::create<Stmt>(*CE), MacroLoc,
            ContainingAncestor))
      return false;

    // Step 3:
    // Visit children of this containing parent looking for the least-descended
    // nodes of the containing parent which are macro arg expansions that expand
    // from the given arg location.
    // Visitor needs: arg loc.
    MacroArgUsageVisitor ArgUsageVisitor(SM.getFileLoc(CastLoc), SM);
    if (const auto *D = ContainingAncestor.get<Decl>())
      ArgUsageVisitor.TraverseDecl(const_cast<Decl *>(D));
    else if (const auto *S = ContainingAncestor.get<Stmt>())
      ArgUsageVisitor.TraverseStmt(const_cast<Stmt *>(S));
    else
      llvm_unreachable("Unhandled ContainingAncestor node type");

    return !ArgUsageVisitor.foundInvalid();
  }

  /// Given the SourceLocation for a macro arg expansion, finds the
  /// non-macro SourceLocation of the macro the arg was passed to and the
  /// non-macro SourceLocation of the argument in the arg list to that macro.
  /// These results are returned via \c MacroLoc and \c ArgLoc respectively.
  /// These values are undefined if the return value is false.
  ///
  /// \returns false if one of the returned SourceLocations would be a
  /// SourceLocation pointing within the definition of another macro.
  bool getMacroAndArgLocations(SourceLocation Loc, SourceLocation &ArgLoc,
                               SourceLocation &MacroLoc) {
    assert(Loc.isMacroID() && "Only reasonble to call this on macros");

    ArgLoc = Loc;

    // Find the location of the immediate macro expansion.
    while (true) {
      std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(ArgLoc);
      const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
      const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();

      SourceLocation OldArgLoc = ArgLoc;
      ArgLoc = Expansion.getExpansionLocStart();
      if (!Expansion.isMacroArgExpansion()) {
        if (!MacroLoc.isFileID())
          return false;

        StringRef Name =
            Lexer::getImmediateMacroName(OldArgLoc, SM, Context.getLangOpts());
        return llvm::is_contained(NullMacros, Name);
      }

      MacroLoc = SM.getExpansionRange(ArgLoc).getBegin();

      ArgLoc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
      if (ArgLoc.isFileID())
        return true;

      // If spelling location resides in the same FileID as macro expansion
      // location, it means there is no inner macro.
      FileID MacroFID = SM.getFileID(MacroLoc);
      if (SM.isInFileID(ArgLoc, MacroFID)) {
        // Don't transform this case. If the characters that caused the
        // null-conversion come from within a macro, they can't be changed.
        return false;
      }
    }

    llvm_unreachable("getMacroAndArgLocations");
  }

  /// Tests if TestMacroLoc is found while recursively unravelling
  /// expansions starting at TestLoc. TestMacroLoc.isFileID() must be true.
  /// Implementation is very similar to getMacroAndArgLocations() except in this
  /// case, it's not assumed that TestLoc is expanded from a macro argument.
  /// While unravelling expansions macro arguments are handled as with
  /// getMacroAndArgLocations() but in this function macro body expansions are
  /// also handled.
  ///
  /// False means either:
  /// - TestLoc is not from a macro expansion.
  /// - TestLoc is from a different macro expansion.
  bool expandsFrom(SourceLocation TestLoc, SourceLocation TestMacroLoc) {
    if (TestLoc.isFileID()) {
      return false;
    }

    SourceLocation Loc = TestLoc, MacroLoc;

    while (true) {
      std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
      const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
      const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();

      Loc = Expansion.getExpansionLocStart();

      if (!Expansion.isMacroArgExpansion()) {
        if (Loc.isFileID()) {
          return Loc == TestMacroLoc;
        }
        // Since Loc is still a macro ID and it's not an argument expansion, we
        // don't need to do the work of handling an argument expansion. Simply
        // keep recursively expanding until we hit a FileID or a macro arg
        // expansion or a macro arg expansion.
        continue;
      }

      MacroLoc = SM.getImmediateExpansionRange(Loc).getBegin();
      if (MacroLoc.isFileID() && MacroLoc == TestMacroLoc) {
        // Match made.
        return true;
      }

      Loc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
      if (Loc.isFileID()) {
        // If we made it this far without finding a match, there is no match to
        // be made.
        return false;
      }
    }

    llvm_unreachable("expandsFrom");
  }

  /// Given a starting point \c Start in the AST, find an ancestor that
  /// doesn't expand from the macro called at file location \c MacroLoc.
  ///
  /// \pre MacroLoc.isFileID()
  /// \returns true if such an ancestor was found, false otherwise.
  bool findContainingAncestor(ast_type_traits::DynTypedNode Start,
                              SourceLocation MacroLoc,
                              ast_type_traits::DynTypedNode &Result) {
    // Below we're only following the first parent back up the AST. This should
    // be fine since for the statements we care about there should only be one
    // parent, except for the case specified below.

    assert(MacroLoc.isFileID());

    while (true) {
      const auto &Parents = Context.getParents(Start);
      if (Parents.empty())
        return false;
      if (Parents.size() > 1) {
        // If there are more than one parents, don't do the replacement unless
        // they are InitListsExpr (semantic and syntactic form). In this case we
        // can choose any one here, and the ASTVisitor will take care of
        // traversing the right one.
        for (const auto &Parent : Parents) {
          if (!Parent.get<InitListExpr>())
            return false;
        }
      }

      const ast_type_traits::DynTypedNode &Parent = Parents[0];

      SourceLocation Loc;
      if (const auto *D = Parent.get<Decl>())
        Loc = D->getBeginLoc();
      else if (const auto *S = Parent.get<Stmt>())
        Loc = S->getBeginLoc();

      // TypeLoc and NestedNameSpecifierLoc are members of the parent map. Skip
      // them and keep going up.
      if (Loc.isValid()) {
        if (!expandsFrom(Loc, MacroLoc)) {
          Result = Parent;
          return true;
        }
      }
      Start = Parent;
    }

    llvm_unreachable("findContainingAncestor");
  }

private:
  SourceManager &SM;
  ASTContext &Context;
  ArrayRef<StringRef> NullMacros;
  ClangTidyCheck &Check;
  Expr *FirstSubExpr;
  bool PruneSubtree;
};

} // namespace

UseNullptrCheck::UseNullptrCheck(StringRef Name, ClangTidyContext *Context)
    : ClangTidyCheck(Name, Context),
      NullMacrosStr(Options.get("NullMacros", "")) {
  StringRef(NullMacrosStr).split(NullMacros, ",");
}

void UseNullptrCheck::storeOptions(ClangTidyOptions::OptionMap &Opts) {
  Options.store(Opts, "NullMacros", NullMacrosStr);
}

void UseNullptrCheck::registerMatchers(MatchFinder *Finder) {
  // Only register the matcher for C++. Because this checker is used for
  // modernization, it is reasonable to run it on any C++ standard with the
  // assumption the user is trying to modernize their codebase.
  if (getLangOpts().CPlusPlus)
    Finder->addMatcher(makeCastSequenceMatcher(), this);
}

void UseNullptrCheck::check(const MatchFinder::MatchResult &Result) {
  const auto *NullCast = Result.Nodes.getNodeAs<CastExpr>(CastSequence);
  assert(NullCast && "Bad Callback. No node provided");

  // Given an implicit null-ptr cast or an explicit cast with an implicit
  // null-to-pointer cast within use CastSequenceVisitor to identify sequences
  // of explicit casts that can be converted into 'nullptr'.
  CastSequenceVisitor(*Result.Context, NullMacros, *this)
      .TraverseStmt(const_cast<CastExpr *>(NullCast));
}

} // namespace modernize
} // namespace tidy
} // namespace clang